1
|
He X, Zhu J, Gong X, Zhang D, Li Y, Zhang X, Zhao X, Zhou C. Advances in deciphering the mechanisms of salt tolerance in Maize. PLANT SIGNALING & BEHAVIOR 2025; 20:2479513. [PMID: 40098499 PMCID: PMC11959903 DOI: 10.1080/15592324.2025.2479513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/19/2025]
Abstract
Maize (Zea mays L.) is a vital crop worldwide, serving as a cornerstone for food security, livestock feed, and biofuel production. However, its cultivation is increasingly jeopardized by environmental challenges, notably soil salinization, which severely constrains growth, yield, and quality. To combat salinity stress, maize employs an array of adaptive mechanisms, including enhanced antioxidant enzyme activity and modulated plant hormone levels, which work synergistically to maintain reactive oxygen species (ROS) balance and ion homeostasis. This review explores the intricate interactions among ROS, antioxidant systems, plant hormones, and ion regulation in maize under salt stress, providing a comprehensive understanding of the physiological and molecular basis of its tolerance. By elucidating these mechanisms, this study contributes to the development of salt-tolerant maize varieties and informs innovative strategies to sustain agricultural productivity under adverse environmental conditions, offering significant theoretical insights into plant stress biology and practical solutions for achieving sustainable agriculture amidst global climate challenges.
Collapse
Affiliation(s)
- Xiaofei He
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Junke Zhu
- School of Agricultural Engineering & Food Science, Shandong University of Technology, Zibo, Shandong, China
- College of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| | - Xuehua Gong
- Hebei Province Carbon-Based Heavy Metal Soil Pollution Remediation Technology Innovation Center, Tangshan, Hebei, China
| | - Dongqing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Yuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
2
|
Syed Mortadza SA, Mohamad Zahir NZ, Wei CT, Jiang LH. The PKC/NOX/ROS and PYK2/MEK/ERK/PARP signalling pathways drive TRPM2 channel activation induced by non-cytolytic oxidative stress in microglial cells. Redox Rep 2025; 30:2503131. [PMID: 40375438 PMCID: PMC12086945 DOI: 10.1080/13510002.2025.2503131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
OBJECTIVES The study aimed to investigate the signalling mechanism for TRPM2 channel activation by non-cytolytic oxidative stress in microglia. METHODS Microglia from wild-type (WT) and TRPM2-knockout (KO) mice were exposed to 10-30 mM H2O2 for up to 24 hours. Morphological changes characteristic of microglial activation, [Ca2+]c, ROS generation and the effects of inhibiting particular signalling pathways were examined. RESULTS Exposure of WT microglia to H2O2 for 24 hours caused no cell death but induced salient morphological changes, which was prevented by TRPM2-KO. Exposure of WT microglia to H2O2 to 2 hours failed, and extension to 8 hours was required, to induce an increase in [Ca2+]c, which was abolished by TRPM2-KO. Exposure of microglia to H2O2 for 8 hours induced ROS generation, which was suppressed by inhibition of PKC and NADPH oxidases (NOX). H2O2-induced PARP activation in TRPM2-KO cells was lower than that in WT cells. Furthermore, H2O2-induced activation of PARP and TRPM2 and morphological changes were attenuated by inhibition of PCK and NOX as well as PYK2 and MEK/ERK. CONCLUSION Our results support that PKC/NOX-mediated ROS generation and TRPM2-mediated Ca2+-induced activation of the PYK2/MEK/ERK pathway form a positive feedback mechanism to drive TRPM2 channel activation by non-cytolytic oxidative stress.
Collapse
Affiliation(s)
- Sharifah Alawieyah Syed Mortadza
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, People's Republic of China
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nur Zulaikha Mohamad Zahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chew Tze Wei
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, People's Republic of China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Wang X, Liu Z, Lin C. Metal ions-induced programmed cell death: how does oxidative stress regulate cell death? Life Sci 2025; 374:123688. [PMID: 40328371 DOI: 10.1016/j.lfs.2025.123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/20/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
In recent years, the mechanisms of ferroptosis and cuproptosis, two novel modes of cell death, have been elucidated and have attracted much attention. Ferroptosis is dependent on the metabolic disruption of iron ions and lipid peroxidation, whereas cuproptosis is closely related to intracellular accumulation of copper ions, aggregation of lipoylated proteins and damage to FeS cluster proteins. In particular, oxidative stress plays an important role in both types of cell death. During ferroptosis, the central role of oxidative stress is reflected in the overproduction of reactive oxygen species (ROS) and lipid peroxidation of the cell membrane. Recent studies have revealed that ROS can propagate over long distances across cells in the form of trigger waves, triggering large-scale ferroptosis. In embryonic development, different regional redox states can limit the long-distance propagation of ferroptosis waves, which is critical for muscle remodeling and tissue formation during development. In cuproptosis, processes such as copper ions accumulation, tricarboxylic acid (TCA) cycle blockade, and reduced level of FeS cluster proteins are closely associated with oxidative stress. In addition, there is a close link between oxidative stress and death induced by other metal ions (Ca2+, Zn2+, etc.). In this paper, we review the role of oxidative stress in ferroptosis and cuproptosis and the related research progress to provide new ideas for understanding the mechanism of cell death and the occurrence and treatment of related diseases.
Collapse
Affiliation(s)
- Xingsheng Wang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zuohao Liu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Faizan M, Alam P, Iqbal S, Waheed Z, Eren A, Shamsi A, Shahwan M. Calcium-mediated mitigation strategies and novel approaches to alleviate arsenic induced plant stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112527. [PMID: 40287099 DOI: 10.1016/j.plantsci.2025.112527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
One worldwide environmental concern is the presence of potentially hazardous elements (PTEs) in air, soil, and water resources. Arsenic is one of the PTEs that is thought to be the most poisonous and carcinogenic. Plants exposed to arsenic may experience several morphological, physiological, and biochemical changes-even at extremely low concentrations. Arsenic toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the kind of plant species, and with other soil parameters affecting arsenic accumulation in plants, according to new study on arsenic in the soil-plant system. Arsenic stress modifies metabolic cascades in plants at different developmental stages by affecting the pattern of gene expressions mediated by small non-coding RNAs (micro-RNAs), which are essential for plant adaptation to oxidative stress and play a key role in the moderation of numerous cellular processes. In this review, we investigated the impact of calcium (Ca2 +) on the toxicity of arsenic in plant and soil environments. Plant grown with arsenic exhibited enhanced arsenic uptake, increased oxidative stress and growth inhibition. Arsenic toxicity modulates carbohydrate, lipid, and protein metabolism along with DNA structure. Role of Ca2+, Ca channels and Ca sensors to signaling pathways also described briefly. A worldwide issue for humanity is the poisoning of soil ecosystems by arsenic. Its toxicity, tolerance, and phytoremediation of polluted soils utilizing calcium were the main points of the recent review, which also highlighted the significant mechanisms of arsenic in soil-plant systems.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India.
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Sumera Iqbal
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Zainab Waheed
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Abdullah Eren
- Department of Organic Agriculture, Kiziltepe Vocational School, Mardin Artuklu University, Mardin, Turkiye
| | - Anas Shamsi
- Centre for Medical and Bio-Allied Health Science Research, Ajman University, United Arab Emirates
| | - Moyad Shahwan
- Centre for Medical and Bio-Allied Health Science Research, Ajman University, United Arab Emirates
| |
Collapse
|
5
|
de Oliveira MR. Pre-clinical evidence for mitochondria as a therapeutic target for luteolin: A mechanistic view. Chem Biol Interact 2025; 413:111492. [PMID: 40154935 DOI: 10.1016/j.cbi.2025.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Pre-clinical evidence indicates that mitochondria may be a therapeutic target for luteolin (3',4',5,7-tetrahydroxyflavone; LUT) in different conditions. LUT modulates mitochondrial physiology in in vitro, ex vivo, and in vivo experimental models. This flavone exerted mitochondria-related antioxidant and anti-apoptotic effects, stimulated mitochondrial fusion and fission, induced mitophagy, and promoted mitochondrial biogenesis in human and animal cells and tissues. Moreover, LUT modulated the activity of components of the oxidative phosphorylation (OXPHOS) system, improving the ability of mitochondria to produce adenosine triphosphate (ATP) in certain circumstances. The mechanism of action by which LUT promoted mitochondrial benefits and protection are not completely clear yet. Nonetheless, LUT is a potential candidate to be utilized in mitochondrial therapy in the future. In this work, it is explored the mechanisms of action by which LUT modulates mitochondrial physiology in different pre-clinical experimental models.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), CEP 78060-900, Cuiaba, Mato Grosso, Brazil; Grupo de Estudos em Terapia Mitocondrial, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Wahabi S, Selmi S, Gharbi K, Ayari A, Yahmdi F, Sebai H. Protective effects of Arbutus unedo extract on acetic acid-induced colitis in rats: histological, biochemical, and antioxidant assessments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40395169 DOI: 10.1002/jsfa.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND This study aimed to analyze the advantageous effects of the decoction aqueous extract of Arbutus unedo fruits (AUFDE) against ulcerative colitis (UC) caused by acetic acid (AA) in rats, along with the processes involved in this protective effect. Adult male Wistar rats were divided into six groups: control (H2O), AA, AA combined with various doses of AUFDE (75, 150, and 300 mg kg-1 b.w., p.o.), and AA combined with sulfasalazine (SULF) (100 mg kg-1 b.w., p.o.) during 7 days. All rats underwent overnight fasting, followed by the induction of UC via rectal infusion of AA (300 mg kg-1 b.w.) at a concentration of 3% (v/v), administered at a volume of 5 mL kg-1 b.w. for 30 s. The colon was resected and subjected to macroscopic examination to assess ulcerated areas and the ulcer index. RESULTS The in vivo assay's findings revealed that AUFDE pretreatment attenuates histological changes and significantly reduces colonic mucosa lesions caused by AA. Also, AUFDE reduced the oxidative state that AA caused in the colonic mucosa, as indicated by elevated malondialdehyde levels and the reduction of both enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase, and non-enzymatic antioxidants such as thiol groups. Furthermore, AUFDE pretreatment controlled the dysregulation of all intracellular mediators and significantly decreased inflammatory indicators like C-reactive protein and alkaline phosphatase levels, whereas AA intoxication raised iron and calcium levels in plasma. According to our findings, AUFDE may have protected rats from AA-induced colitis. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Soumaya Wahabi
- LR: Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Beja, Beja, Tunisia
| | - Slimen Selmi
- LR: Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Beja, Beja, Tunisia
| | - Khaoula Gharbi
- LR: Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Beja, Beja, Tunisia
| | - Ala Ayari
- LR: Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Beja, Beja, Tunisia
| | - Fethi Yahmdi
- Clinical Biology Laboratory, Nefza Hospital, Beja, Tunisia
| | - Hichem Sebai
- LR: Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Beja, Beja, Tunisia
| |
Collapse
|
7
|
Chen J, Wang H, Wang J, Zheng X, Qu W, Fang H, Wang S, He L, Hao S, Dresselhaus T. Fertilization-induced synergid cell death by RALF12-triggered ROS production and ethylene signaling. Nat Commun 2025; 16:3059. [PMID: 40155397 PMCID: PMC11953305 DOI: 10.1038/s41467-025-58246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Fertilization-dependent elimination of the persistent synergid cell is essential to block supernumerary pollen tubes and thus to avoid polyspermy in flowering plants. Little is known about the molecular mechanisms ensuring timely induction and execution of synergid cell death. We analyzed manually isolated maize synergid cells along their degeneration and show that they are gland cells expressing batteries of genes encoding small secreted proteins under control of the MYB98 transcription factor. This network is down-regulated after fertilization, while genes involved in reactive oxygen species (ROS) production, ethylene biosynthesis and response, senescence, and oxidative stress regulation are induced before synergid elimination and its ultimate fusion with the endosperm. We further show that the fertilization-induced RALF12 peptide specifically triggers mitochondrial ROS and apoptosis, while ethylene promotes synergid degeneration. In conclusion, this study sheds light on developmental programmed cell death (dPCD) in plants and provides a unique resource to discover unknown PCD regulators.
Collapse
Affiliation(s)
- Junyi Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China.
| | - Huan Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Jinlin Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xixi Zheng
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Wantong Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Huijian Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Shuang Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Le He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Shuang Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
Huang H, Zhang C, Wang H, Wu F, Fang Q. A rice SOUL family heme-binding protein REAC1 enhances the antioxidative capacity of C. elegans through modulation of ROS-related gene expression. Sci Rep 2025; 15:10379. [PMID: 40140533 PMCID: PMC11947160 DOI: 10.1038/s41598-025-95254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
The development and identification of beneficial components from crop resources are vital for individuals, especially the elderly, as they are capable of facilitating health. Red rice is widely consumed and possesses potential therapeutic effects to some extent, but it is important to discover the specific roles of each component when consumed purposefully. In this context, the REAC1/rHBP2, a red rice heme-binding protein (HBP) from the SOUL family, was revealed that possesses a role in boosting the antioxidative capacity of C. elegans that consume this protein. The Arabidopsis plants overexpressing REAC1 presented more tolerance to oxidative stress related to the wild-type plants. Furthermore, REAC1 derived from engineered bacteria exhibited clear activities of heme-binding and hydroxy radical inhibition in vitro. While no adverse effects were observed in the nematodes that were treated with REAC1, they exhibited enhanced motility and improved survival under oxidative conditions simulated by treatment with 5 mM H2O2 compared to the control group. Additionally, the levels of endogenous reactive oxygen species (ROS) were significantly reduced, and the expression of redox-related genes, such as SOD-3 and CAT-1, was evidently upregulated in the treated nematodes. Taken together, these results suggest that the red rice heme-binding protein REAC1 plays a critical role in the enhancement of the antioxidative capacity of C. elegans through ROS-related regulation, thereby offering a promising approach for individuals to combat oxidative stress.
Collapse
Affiliation(s)
- Hui Huang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Caiyun Zhang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China
| | - Haiyang Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Feiyan Wu
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Qing Fang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China.
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
9
|
Cheng L, Li F, Luo Y, Shi C, Cao R, Huang C, Zhang Y, Gao Y, Zhang H, Geng N, Chen J. Medium-Chain Chlorinated Paraffins Induced Reproductive Toxicity in Female Rats by Interfering with Oocyte Meiosis and Triggering DNA Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40080447 DOI: 10.1021/acs.est.4c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Medium-chain chlorinated paraffins (MCCPs) are among the most prevalent chemicals detected in human serum. As an emerging persistent organic pollutant, their toxicity mechanisms, particularly concerning the female reproductive system, remain poorly understood. In this study, we present both in vivo and in vitro evidence of ovarian toxicity induced by MCCPs and insights into their underlying molecular mechanisms. MCCP exposure induced chromatin condensation in the nucleus and mitochondria vacuolization of ovarian granulosa cells in rats and significantly increased the levels of serum gonadotropins and sex hormones, while reducing gonadotropin-releasing hormone levels. Transcriptomics analysis of ovaries revealed a predominant effect of MCCPs on the cell cycle, oocyte meiosis, and DNA damage repair pathways. Moreover, dual-omics integrative analysis indicated significant disturbance of steroid hormone biosynthesis caused by MCCPs, as well as amino acid metabolism related to TCA cycle. Furthermore, in vitro assays demonstrated that MCCP exposure disrupts intracellular Ca2+ homeostasis and generates reactive oxygen species, ultimately leading to DNA damage. In conclusion, this study revealed potential mechanisms by which MCCPs affect ovary function. These findings can provide valuable insights for the mechanism-based risk assessment of MCCPs on female reproduction.
Collapse
Affiliation(s)
- Lin Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yun Luo
- College of Medicine, Linyi University, Linyi, Shandong 276005, China
| | - Chengcheng Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Chenhao Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yichi Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
10
|
Mikami R, Sato Y, Kanemura S, Muraoka T, Okumura M, Arai K. Ca 2+-triggered allosteric catalysts crosstalk with cellular redox systems through their foldase- and reductase-like activities. Commun Chem 2025; 8:74. [PMID: 40069499 PMCID: PMC11897157 DOI: 10.1038/s42004-025-01466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Effective chemical catalysts can artificially control intracellular metabolism. However, in conventional catalytic chemistry, activity and cytotoxicity have a trade-off relationship; thus, driving catalysts in living cells remains challenging. To overcome this critical issue at the interface between catalytic chemistry and biology, we developed cell-driven allosteric catalysts that exert catalytic activity at specific times. The synthesized allosteric redox catalysts up- and downregulated their foldase- and antioxidase-like activities in response to varying Ca2+ concentrations, which is a key factor for maintenance of the redox status in cells. In the absence of Ca2+ or at low Ca2+ concentrations, the compounds were mostly inactive and hence did not affect cell viability. In contrast, under specific conditions with elevated cytosolic Ca2+ concentrations, the activated compounds resisted the redox imbalance induced by the reactive oxygen species generated by Ca2+-stimulated mitochondria. Smart catalysts that crosstalk with biological phenomena may provide a platform for new prodrug development guidelines.
Collapse
Affiliation(s)
- Rumi Mikami
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan
| | - Yuhei Sato
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakato, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan.
- Institute of Advanced Biosciences, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan.
| |
Collapse
|
11
|
Kim KH, Park JB, An JN, Bae G, Kim KH, Park SJ, Jung Y, Kim YC, Lee JP, Lee JW, Kim DK, Kim YS, Hong BH, Yang SH. Effects of Graphene Quantum Dots on Renal Fibrosis Through Alleviating Oxidative Stress and Restoring Mitochondrial Membrane Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410747. [PMID: 39739624 PMCID: PMC11904958 DOI: 10.1002/advs.202410747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/13/2024] [Indexed: 01/02/2025]
Abstract
Podocyte injury and proteinuria in glomerular disease are critical indicators of acute kidney injury progression to chronic kidney disease. Renal mitochondrial dysfunction, mediated by intracellular calcium levels and oxidative stress, is a major contributor to podocyte complications. Despite various strategies targeting mitochondria to improve kidney function, effective treatments remain lacking. This study investigates the potential of graphene quantum dots (GQDs) in mitigating renal fibrosis and elucidates their underlying mechanisms. In animal models of Adriamycin-induced nephropathy and 5/6 subtotal nephrectomy, GQDs treatment exhibits anti-inflammatory, anti-fibrotic, and anti-apoptotic effects by restoring podocyte actin structure. These therapeutic benefits are associated with the downregulation of transient receptor potential channel 5 (TRPC5) activity, which is related to kidney fibrosis and mitochondrial dysfunction. In vitro, GQDs suppress TRPC5, enhancing anti-fibrotic and anti-apoptotic effects by lowering calcium levels under oxidative stress and mechanical pressure. Anti-oxidative and anti-senescent effects are also confirmed. Most significantly, transcriptomics and electron microscopy analyses reveal that GQD treatment enhances mitochondrial respiration-related gene profiles and improves mitochondrial cristae morphology. These findings suggest that GQDs are a promising therapeutic nanomaterial for renal cell damage, capable of modulating calcium-dependent apoptosis associated with mitochondrial injury, potentially slowing fibrosis progression.
Collapse
Affiliation(s)
- Kyu Hong Kim
- Department of Biomedical SciencesSeoul National UniversitySeoulSouth Korea
| | - Jong Bo Park
- Department of Chemistry, College of Natural SciencesSeoul National UniversitySeoulSouth Korea
- R&D Center of Graphene Square Chemical Inc.SeoulSouth Korea
| | - Jung Nam An
- Department of Internal MedicineHallym University Sacred Heart HospitalAnyangSouth Korea
| | - Gaeun Bae
- Department of Chemistry, College of Natural SciencesSeoul National UniversitySeoulSouth Korea
| | - Kyu Hyeon Kim
- Department of Biomedical SciencesSeoul National UniversitySeoulSouth Korea
| | - Seong Joon Park
- Department of Biomedical SciencesSeoul National UniversitySeoulSouth Korea
| | - Youngjin Jung
- Department of Chemistry, College of Natural SciencesSeoul National UniversitySeoulSouth Korea
| | - Yong Chul Kim
- Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
| | - Jung Pyo Lee
- Department of Internal MedicineSeoul National University Boramae Medical CenterSeoulSouth Korea
| | - Jae Wook Lee
- Nephrology ClinicNational Cancer CenterGoyangSouth Korea
| | - Dong Ki Kim
- Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
- Department of Kidney Research InstituteSeoul National University Medical Research CenterSeoulSouth Korea
| | - Yon Su Kim
- Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
- Department of Kidney Research InstituteSeoul National University Medical Research CenterSeoulSouth Korea
| | - Byung Hee Hong
- Department of Chemistry, College of Natural SciencesSeoul National UniversitySeoulSouth Korea
- Graduate School of Convergence Science and TechnologySeoul National UniversitySuwonSouth Korea
- Graphene Research CenterAdvanced Institute of Convergence TechnologySeoul National UniversitySeoulSouth Korea
| | - Seung Hee Yang
- Department of Kidney Research InstituteSeoul National University Medical Research CenterSeoulSouth Korea
- Biomedical Research InstituteSeoul National University HospitalSeoulSouth Korea
| |
Collapse
|
12
|
Hamadneh J, Al-Zenati AA, Banihani SA. Semen Quality Measures in Hookah and Cigarette Smokers Compared to Nonsmokers. ScientificWorldJournal 2025; 2025:3380445. [PMID: 39995979 PMCID: PMC11850069 DOI: 10.1155/tswj/3380445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Background: The relationship between smoking and human health is a well-researched and continuously evolving field. The impact of smoking on semen quality, and consequently on male fertility, has also been explored, though most studies have primarily focused on cigarette smoking rather than hookah smoking. Objective: In this study, we aimed to investigate and compare the effects of hookah and cigarette smoking on semen parameters in a sample of Jordanian males. Methods: A total of 558 participants were prospectively recruited, including 300 cigarette smokers, 95 hookah smokers, and 163 nonsmokers (control). Semen analysis was performed approximately 1 h after ejaculation following the World Health Organization guidelines (2021). Results: Interestingly, semen volume was significantly decreased in hookah smokers (p = 0.0097) but not in cigarette smokers when compared to the control group. No significant differences were observed in semen volume, progressive sperm motility, total motility, sperm count, sperm morphology (p = 0.2714, p = 0.8752, p = 0.6671, p = 8614, and p = 0.9261, respectively), and sperm vitality between hookah and cigarette smokers. Furthermore, except for semen volume, these semen parameters were not statistically different in both tested groups when compared to the control group. Conclusions: Hookah smokers demonstrated lower semen volume compared to the control group. Additionally, no significant differences were found in sperm count, percentage of sperm motility, normal forms of sperm, and sperm vitality between hookah and cigarette smokers or between these groups and the control group.
Collapse
Affiliation(s)
- Jehan Hamadneh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Aseel A. Al-Zenati
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Saleem A. Banihani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
Liu Z, Yao Z, Yang H, Wu S, Tang Z. Leveraging the dual role of ROS in liver diseases with nanomaterials: clearing and amplifying for therapy. NANOSCALE 2025; 17:3688-3697. [PMID: 39745101 DOI: 10.1039/d4nr04469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The dual role of reactive oxygen species (ROS) in various liver diseases leads to the potential of nanomaterials in addressing challenges related to liver conditions. Considering the pivotal role of ROS in liver disease progression, the design and application of nanomaterials need to align with distinct disease characteristics and the unique liver microenvironment. By reviewing the interaction between nanomaterials and ROS in liver diseases and their potential applications in liver disease treatment, this work discusses the multifaceted properties of nanomaterials and their high specificity and prospects in liver disease treatments.
Collapse
Affiliation(s)
- Zonglin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Department of Radiology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Haibo Yang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Zhongmin Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
14
|
Mohmmed Hegab AM, Hassanin SO, Mekky RH, Abuzahrah SS, Hamza AA, Talaat IM, Amin A. Withania somnifera Ameliorates Doxorubicin-Induced Nephrotoxicity and Potentiates Its Therapeutic Efficacy Targeting SIRT1/Nrf2, Oxidative Stress, Inflammation, and Apoptosis. Pharmaceuticals (Basel) 2025; 18:248. [PMID: 40006061 PMCID: PMC11859695 DOI: 10.3390/ph18020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Doxorubicin (DOX) is a very powerful chemotherapy drug. However, its severe toxicity and potential for resistance development limit its application. Withania somnifera L. Dunal (WIT) has therapeutic capacities, including anti-inflammatory, antioxidant, and anticancer activities. This study investigates the preventative benefits of a standardized WIT extract against DOX-induced renal damage in vivo. We also investigate the synergistic effects of combining WIT and DOX to improve therapeutic efficacy in breast cancer cells (MCF7-ADR). Methods: This study employed an animal model where rats were administered 300 mg/kg/day of WIT orally for a duration of 14 days. Rats received DOX injections at a dose of 5 mg/kg, for a total of 15 mg, on the 6th, 8th, and 10th days. Results: Present results revealed that WIT reduced DOX-induced increase levels of blood urea and creatinine and the activity of kidney injury molecule-1. WIT also reduced renal tissue damage, oxidative stress, and levels of pro-inflammatory markers. WIT alleviated the effects of DOX on nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and sirtuin 1 in the renal tissues. WIT modulated nuclear factor-κB activity and decreased apoptotic indicators. Furthermore, WIT improves DOX's capacity to kill drug-resistant MCF7-ADR cells by arresting the cell cycle and promoting apoptosis. Chemical analysis of WIT root extract revealed 34 distinct compounds, including alkaloids, withanolides, flavanones, and fatty acids. Conclusions: These constituents synergistically contribute to WIT's antioxidant, anti-inflammatory, and anti-apoptotic properties. In addition, they confirm its ability to reduce systemic toxicity while improving treatment efficacy.
Collapse
Affiliation(s)
- Amany Mohammed Mohmmed Hegab
- Developmental Pharmacology and Acute Toxicity Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza 12611, Egypt;
| | - Soha Osama Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11585, Egypt;
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt;
| | - Samah Sulaiman Abuzahrah
- Samah Sulaiman Abuzahrah, Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Alaaeldin Ahmed Hamza
- Biology Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza 12611, Egypt
| | - Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pathology Department, Alexandria University, Alexandria 22113, Egypt
| | - Amr Amin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
15
|
Yan HX, Zhang YZ, Niu YQ, Wang YW, Liu LH, Tang YP, Huang JM, Leung ELH. Investigating the interaction between calcium signaling and ferroptosis for novel cancer treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156377. [PMID: 39798340 DOI: 10.1016/j.phymed.2025.156377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Drug resistance in cancer is steadily rising, making the development of new therapeutic targets increasingly critical for improving treatment outcomes. PURPOSE The mutual regulation of ions is essential for cell growth. Based on this concept, ion interference strategies offer a highly effective approach for cancer treatment. Calcium ions (Ca2+), as major second messengers, are closely associated with ion exchange and homeostasis. Disruptions in this balance can lead to cell death. However, while iron ions are also crucial, the connection between Ca2+and iron-induced cell death (ferroptosis) has not been well established. Therefore, this study suggests that Ca2+ may play a role in the induction of ferroptosis, presenting a novel and efficient target for cancer therapy. STUDY DESIGN PubMed, Google Scholar, and Web of Science databases were systematically searched for articles published in the past 15 years on the mechanisms of calcium ion-induced ferroptosis in cancer and related drugs. RESULTS The analysis highlights how Ca2+regulate ferroptosis. The mechanisms by which Ca2+influence ferroptosis are summarized based on existing literature, and relevant drugs that act on Ca2+/ferroptosis axis are outlined. CONCLUSION Ca2+ regulate ferroptosis primarily through the modulation of reactive oxygen species (ROS) and glutathione (GSH) levels, a mechanism that applies to a wide range of cancer cells as well as paracancerous and normal cells in cancer treatment. Furthermore, plant-derived active compounds exhibit potent anticancer properties and often act on the Ca2+/ferroptosis axis. These natural compounds could play a significant role in the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Hao-Xin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yu-Qing Niu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China
| | - Yu-Wei Wang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China
| | - Li-Hua Liu
- Economics and Management Yanbian University, Yanji, PR China
| | - Yu-Ping Tang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China.
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| |
Collapse
|
16
|
Fishta A, Thakur R, Sharma KC, Thakur N, Patial B. Effects of Fluoride Toxicity on Female Reproductive System of Mammals: A Meta-Analysis. Biol Trace Elem Res 2025; 203:646-669. [PMID: 38709367 DOI: 10.1007/s12011-024-04203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Considerable integrative efforts have been made to investigate the effects of fluoride on female reproductive organs since the last years. The ingestion of fluoride causes adverse effects on human health like causing skeletal fluorosis, dental fluorosis, bone fractures, kidney problems, decrease birth rates, weakening of thyroid functionality, and impair intelligence, particularly in children. In this review, we discuss the adverse effects of fluoride on female reproductive organs and presented certain remedies. A total of 53 papers on the effect of fluoride on female reproductive organs, including 6 population surveys were examined. Google Scholar, Google, Research Gate, PubMed, and the International Journal of Fluoride have all been searched for fluoride research papers. Various doses and pathological effects have been described in this review article.
Collapse
Affiliation(s)
- Aditi Fishta
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Ruhi Thakur
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India.
| | | | - Neha Thakur
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Bhavna Patial
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| |
Collapse
|
17
|
la Torre A, Lo Vecchio F, Angelillis VS, Gravina C, D’Onofrio G, Greco A. Reinforcing Nrf2 Signaling: Help in the Alzheimer's Disease Context. Int J Mol Sci 2025; 26:1130. [PMID: 39940900 PMCID: PMC11818887 DOI: 10.3390/ijms26031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Oxidative stress plays a role in various pathophysiological diseases, including neurogenerative diseases, such as Alzheimer's disease (AD), which is the most prevalent neuro-pathology in the aging population. Oxidative stress has been reported to be one of the earliest pathological alterations in AD. Additionally, it was demonstrated that in older adults, there is a loss of free radical scavenging ability. The Nrf2 transcription factor is a key regulator in antioxidant defense systems, but, with aging, both the amount and the transcriptional activity of Nrf2 decrease. With the available treatments for AD being poorly effective, reinforcing the antioxidant defense systems via the Nrf2 pathway may be a way to prevent and treat AD. To highlight the predominant role of Nrf2 signaling in defending against oxidative stress and, therefore, against neurotoxicity, we present an overview of the natural compounds that exert their own neuroprotective roles through the activation of the Nrf2 pathway. This review is an opportunity to promote a holistic approach in the treatment of AD and to highlight the need to further refine the development of new potential Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Valentina Soccorsa Angelillis
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| | - Carolina Gravina
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Grazia D’Onofrio
- Clinical Psychology Service, Health Department, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| |
Collapse
|
18
|
Low ZXB, Ng WS, Lim ESY, Goh BH, Kumari Y. The immunomodulatory effects of classical psychedelics: A systematic review of preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111139. [PMID: 39251080 DOI: 10.1016/j.pnpbp.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Emerging evidence suggests that classical psychedelics possess immunomodulatory and anti-inflammatory properties; however, these effects are yet to be well-established. This systematic review aims to provide a timely and comprehensive overview of the immunomodulatory effects of classical psychedelics in preclinical studies. A systematic search was conducted on six databases, including CINAHL, EMBASE, MEDLINE, PsychINFO, Scopus, and Web of Science. Eligible studies targeting classical psychedelics for evaluation of their effects on inflammatory markers and immunomodulation have been included for analysis. Data was extracted from 40 out of 2822 eligible articles, and their risk of bias was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool and Quality Assessment Tool for In Vitro Studies (QUIN). Studies examined 2,5-dimethoxy-4-iodoamphetamine (DOI; n = 18); psilocybin (4-PO-DMT; n = 9); N,N-dimethyltryptamine (DMT; n = 8); lysergic acid diethylamide (LSD; n = 6); 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; n = 3); psilocin (4-HO-DMT; n = 3); and mescaline (n = 2). In 36 studies where inflammatory cytokine levels were measured following psychedelic administration, a decrease in at least one inflammatory cytokine was observed in 29 studies. Immune cell activity was assessed in 10 studies and findings were mixed, with an equal number of studies (n = 5 out of 10) reporting either an increase or decrease in immune cell activity. Classical psychedelics were found to alleviate pre-existing inflammation but promote inflammation when administered under normal physiological conditions. This information is anticipated to inform future clinical trials, exploring classical psychedelics' potential to alleviate inflammation in various pathologies.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Wei Shen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Eugene Sheng Yao Lim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yatinesh Kumari
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
19
|
Ahuja K, Raju S, Dahiya S, Motiani RK. ROS and calcium signaling are critical determinant of skin pigmentation. Cell Calcium 2025; 125:102987. [PMID: 39708588 PMCID: PMC7617625 DOI: 10.1016/j.ceca.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Pigmentation is a protective phenomenon that shields skin cells from UV-induced DNA damage. Perturbations in pigmentation pathways predispose to skin cancers and lead to pigmentary disorders. These ailments impart psychological trauma and severely affect the patients' quality of life. Emerging literature suggests that reactive oxygen species (ROS) and calcium (Ca2+) signaling modules regulate physiological pigmentation. Further, pigmentary disorders are associated with dysregulated ROS homeostasis and changes in Ca2+ dynamics. Here, we systemically review the literature that demonstrates key role of ROS and Ca2+ signaling in pigmentation and pigmentary disorders. Further, we discuss recent studies, which have revealed that organelle-specific Ca2+ transport mechanisms are critical determinant of pigmentation. Importantly, we deliberate upon the possibility of clinical management of pigmentary disorders by therapeutically targeting ROS generation and cellular Ca2+ handling toolkit. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention. Although an important role of ROS and Ca2+ signaling in regulating skin pigmentation has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be vital to investigate in detail the signaling cascades that connect perturbed ROS homeostasis and Ca2+ signaling to human pigmentary disorders.
Collapse
Affiliation(s)
- Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sakshi Dahiya
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
20
|
Güneş I, Dursun AD, Özdemir Ç, Küçük A, Sezen ŞC, Arslan M, Özer A. Effects of Cerium Oxide on Kidney and Liver Tissue Damage in an Experimental Myocardial Ischemia-Reperfusion Model of Distant Organ Damage. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2044. [PMID: 39768923 PMCID: PMC11728079 DOI: 10.3390/medicina60122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Background and Objectives: Ischemia-reperfusion (I/R) injury is a process in which impaired perfusion is restored by restoring blood flow and tissue recirculation. Nanomedicine uses cutting-edge technologies that emerge from interdisciplinary influences. In the literature, there are very few in vivo and in vitro studies on how cerium oxide (CeO2) affects systemic anti-inflammatory response and inflammation. Therefore, in our study, we aimed to investigate whether CeO2 administration has a protective effect against myocardial I/R injury in the liver and kidneys. Materials and Methods: Twenty-four rats were randomly divided into four groups after obtaining approval from an ethics committee. A control (group C), cerium oxide (group CO), IR (group IR), and Cerium oxide-IR (CO-IR group) groups were formed. Intraperitoneal CeO2 was administered at a dose of 0.5 mg/kg 30 min before left thoracotomy and left main coronary (LAD) ligation, and myocardial muscle ischemia was induced for 30 min. After LAD ligation was removed, reperfusion was performed for 120 min. All rats were euthanized using ketamine, and blood was collected. Liver and kidney tissue samples were evaluated histopathologically. Serum AST (aspartate aminotransferase), ALT (alanine aminotransaminase), GGT (gamma-glutamyl transferase), glucose, TOS (Total Oxidant Status), and TAS (Total Antioxidant Status) levels were also measured. Results: Necrotic cell and mononuclear cell infiltration in the liver parenchyma of rats in the IR group was observed to be significantly increased compared to the other groups. Hepatocyte degeneration was greater in the IR group compared to groups C and CO. Vascular vacuolization and hypertrophy, tubular degeneration, and necrosis were increased in the kidney tissue of the IR group compared to the other groups. Tubular dilatation was significantly higher in the IR group than in the C and CO groups. TOS was significantly higher in all groups than in the IR group (p < 0.0001, p < 0.0001, and p = 0.006, respectively). However, TAS level was lower in the IR group than in the other groups (p = 0.002, p = 0.020, and p = 0.031, respectively). Renal and liver histopathological findings decreased significantly in the CO-IR group compared to the IR group. A decrease in the TOS level and an increase in the TAS level were found compared to the IR group. The AST, ALT, GGT, and Glucose levels are shown. Conclusions: CeO2 administered before ischemia-reperfusion reduced oxidative stress and ameliorated IR-induced damage in distant organs. We suggest that CeO2 exerts protective effects in the myocardial IR model.
Collapse
Affiliation(s)
- Işın Güneş
- Department of Anesthesiology and Reanimation, Erciyes University Faculty of Medicine, Kayseri 38039, Turkey;
| | - Ali Doğan Dursun
- Department of Physiology, Atılım University Faculty of Medicine, Ankara 06560, Turkey;
- Vocational School of Health Services, Atilim University, Cankaya, Ankara 06805, Turkey
- Home Care Services, Medicana International Ankara Hospital, Cankaya, Ankara 06520, Turkey
| | - Çağrı Özdemir
- Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, Ankara 06560, Turkey;
| | - Ayşegül Küçük
- Department of Physiology, Kutahya Health Sciences University Faculty of Medicine, Kutahya 43100, Turkey;
| | - Şaban Cem Sezen
- Department of Histology and Embryology, Kırıkkale University Faculty of Medicine, Kırıkkale 71000, Turkey;
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, Ankara 06560, Turkey;
- Application and Research Centre for Life Sciences, Gazi University, Ankara 06560, Turkey
- Centre for Laboratory Animal Breeding and Experimental Research (GÜDAM), Gazi University, Ankara 06560, Turkey
| | - Abdullah Özer
- Department Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara 06560, Turkey;
| |
Collapse
|
21
|
Panday N, Sigdel D, Adam I, Ramirez J, Verma A, Eranki AN, Wang W, Wang D, Ping P. Data-Driven Insights into the Association Between Oxidative Stress and Calcium-Regulating Proteins in Cardiovascular Disease. Antioxidants (Basel) 2024; 13:1420. [PMID: 39594561 PMCID: PMC11590986 DOI: 10.3390/antiox13111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
A growing body of biomedical literature suggests a bidirectional regulatory relationship between cardiac calcium (Ca2+)-regulating proteins and reactive oxygen species (ROS) that is integral to the pathogenesis of various cardiac disorders via oxidative stress (OS) signaling. To address the challenge of finding hidden connections within the growing volume of biomedical research, we developed a data science pipeline for efficient data extraction, transformation, and loading. Employing the CaseOLAP (Context-Aware Semantic Analytic Processing) algorithm, our pipeline quantifies interactions between 128 human cardiomyocyte Ca2+-regulating proteins and eight cardiovascular disease (CVD) categories. Our machine-learning analysis of CaseOLAP scores reveals that the molecular interfaces of Ca2+-regulating proteins uniquely associate with cardiac arrhythmias and diseases of the cardiac conduction system, distinguishing them from other CVDs. Additionally, a knowledge graph analysis identified 59 of the 128 Ca2+-regulating proteins as involved in OS-related cardiac diseases, with cardiomyopathy emerging as the predominant category. By leveraging a link prediction algorithm, our research illuminates the interactions between Ca2+-regulating proteins, OS, and CVDs. The insights gained from our study provide a deeper understanding of the molecular interplay between cardiac ROS and Ca2+-regulating proteins in the context of CVDs. Such an understanding is essential for the innovation and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Namuna Panday
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Dibakar Sigdel
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
| | - Irsyad Adam
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Joseph Ramirez
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Aarushi Verma
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Anirudh N. Eranki
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Wei Wang
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA;
- Department of Computational Medicine, University of California, Los Angeles, CA 90095, USA
- Scalable Analytics Institute (ScAi), University of California, Los Angeles, CA 90095, USA
- Department of Bioinformatics and Biomedical Informatics, University of California, Los Angeles, CA 90095, USA
| | - Ding Wang
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Peipei Ping
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
- Scalable Analytics Institute (ScAi), University of California, Los Angeles, CA 90095, USA
- Department of Bioinformatics and Biomedical Informatics, University of California, Los Angeles, CA 90095, USA
- Department of Medicine/Cardiology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Ajoolabady A, Pratico D, Lin L, Mantzoros CS, Bahijri S, Tuomilehto J, Ren J. Inflammation in atherosclerosis: pathophysiology and mechanisms. Cell Death Dis 2024; 15:817. [PMID: 39528464 PMCID: PMC11555284 DOI: 10.1038/s41419-024-07166-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Atherosclerosis imposes a heavy burden on cardiovascular health due to its indispensable role in the pathogenesis of cardiovascular disease (CVD) such as coronary artery disease and heart failure. Ample clinical and experimental evidence has corroborated the vital role of inflammation in the pathophysiology of atherosclerosis. Hence, the demand for preclinical research into atherosclerotic inflammation is on the horizon. Indeed, the acquisition of an in-depth knowledge of the molecular and cellular mechanisms of inflammation in atherosclerosis should allow us to identify novel therapeutic targets with translational merits. In this review, we aimed to critically discuss and speculate on the recently identified molecular and cellular mechanisms of inflammation in atherosclerosis. Moreover, we delineated various signaling cascades and proinflammatory responses in macrophages and other leukocytes that promote plaque inflammation and atherosclerosis. In the end, we highlighted potential therapeutic targets, the pros and cons of current interventions, as well as anti-inflammatory and atheroprotective mechanisms.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | | | - Suhad Bahijri
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Jaakko Tuomilehto
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Public Health, University of Helsinki, Helsinki, Finland.
- Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
23
|
Montaser AB, Gao F, Peters D, Vainionpää K, Zhibin N, Skowronska-Krawczyk D, Figeys D, Palczewski K, Leinonen H. Retinal Proteome Profiling of Inherited Retinal Degeneration Across Three Different Mouse Models Suggests Common Drug Targets in Retinitis Pigmentosa. Mol Cell Proteomics 2024; 23:100855. [PMID: 39389360 PMCID: PMC11602984 DOI: 10.1016/j.mcpro.2024.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a leading cause of blindness among the population of young people in the developed world. Approximately half of IRDs initially manifest as gradual loss of night vision and visual fields, characteristic of retinitis pigmentosa (RP). Due to challenges in genetic testing, and the large heterogeneity of mutations underlying RP, targeted gene therapies are an impractical largescale solution in the foreseeable future. For this reason, identifying key pathophysiological pathways in IRDs that could be targets for mutation-agnostic and disease-modifying therapies (DMTs) is warranted. In this study, we investigated the retinal proteome of three distinct IRD mouse models, in comparison to sex- and age-matched wild-type mice. Specifically, we used the Pde6βRd10 (rd10) and RhoP23H/WT (P23H) mouse models of autosomal recessive and autosomal dominant RP, respectively, as well as the Rpe65-/- mouse model of Leber's congenital amaurosis type 2 (LCA2). The mice were housed at two distinct institutions and analyzed using LC-MS in three separate facilities/instruments following data-dependent and data-independent acquisition modes. This cross-institutional and multi-methodological approach signifies the reliability and reproducibility of the results. The large-scale profiling of the retinal proteome, coupled with in vivo electroretinography recordings, provided us with a reliable basis for comparing the disease phenotypes and severity. Despite evident inflammation, cellular stress, and downscaled phototransduction observed consistently across all three models, the underlying pathologies of RP and LCA2 displayed many differences, sharing only four general KEGG pathways. The opposite is true for the two RP models in which we identify remarkable convergence in proteomic phenotype even though the mechanism of primary rod death in rd10 and P23H mice is different. Our data highlights the cAMP and cGMP second-messenger signaling pathways as potential targets for therapeutic intervention. The proteomic data is curated and made publicly available, facilitating the discovery of universal therapeutic targets for RP.
Collapse
Affiliation(s)
- Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Fangyuan Gao
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Danielle Peters
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katri Vainionpää
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ning Zhibin
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dorota Skowronska-Krawczyk
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, University of California, Irvine, California, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
24
|
Huve MAP, Bittner N, Kunze R, Hilker M, Remus-Emsermann MNP, Paniagua Voirol LR, Lortzing V. Butterfly eggs prime anti-herbivore defense in an annual but not perennial Arabidopsis species. PLANTA 2024; 260:112. [PMID: 39361039 PMCID: PMC11450040 DOI: 10.1007/s00425-024-04541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
MAIN CONCLUSION Unlike Arabidopsis thaliana, defenses of Arabidopsis lyrata against Pieris brassicae larval feeding are not primable by P. brassicae eggs. Thus, egg primability of plant anti-herbivore defenses is not phylogenetically conserved in the genus Arabidopsis. While plant anti-herbivore defenses of the annual species Arabidopsis thaliana were shown to be primable by Pieris brassicae eggs, the primability of the phylogenetically closely related perennial Arabidopsis lyrata has not yet been investigated. Previous studies revealed that closely related wild Brassicaceae plant species, the annual Brassica nigra and the perennial B. oleracea, exhibit an egg-primable defense trait, even though they have different life spans. Here, we tested whether P. brassicae eggs prime anti-herbivore defenses of the perennial A. lyrata. We exposed A. lyrata to P. brassicae eggs and larval feeding and assessed their primability by (i) determining the biomass of P. brassicae larvae after feeding on plants with and without prior P. brassicae egg deposition and (ii) investigating the plant transcriptomic response after egg deposition and/or larval feeding. For comparison, these studies were also conducted with A. thaliana. Consistent with previous findings, A. thaliana's response to prior P. brassicae egg deposition negatively affected conspecific larvae feeding upon A. thaliana. However, this was not observed in A. lyrata. Arabidopsis thaliana responded to P. brassicae eggs with strong transcriptional reprogramming, whereas A. lyrata responses to eggs were negligible. In response to larval feeding, A. lyrata exhibited a greater transcriptome change compared to A. thaliana. Among the strongly feeding-induced A. lyrata genes were those that are egg-primed in feeding-induced A. thaliana, i.e., CAX3, PR1, PR5, and PDF1.4. These results suggest that A. lyrata has evolved a robust feeding response that is independent from prior egg exposure.
Collapse
Affiliation(s)
- Maryse A P Huve
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Mitja N P Remus-Emsermann
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Luis R Paniagua Voirol
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany.
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
25
|
Kim J, Choi YJ, Gal CW, Sung A, Utami SS, Park H, Yun HS. Enhanced Osteogenesis in 2D and 3D Culture Systems Using RGD Peptide and α-TCP Phase Transition within Alginate-Based Hydrogel. Macromol Biosci 2024; 24:e2400190. [PMID: 39116430 DOI: 10.1002/mabi.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Cell-laden hydrogels have been extensively investigated in various tissue engineering fields by their potential capacity to deposit numerous types of cells in a specific area. They are largely used in soft-tissue engineering applications because of their low mechanical strength. In addition, sodium alginate is well-known for its encapsulation, loading capacity and for being easily controllable; however, it lacks cell-binding ligands and hence the ability to adhere cells. In this study, it is aimed to enhance osteogenesis in cells encapsulated in alginate and improve its mechanical properties by introducing a synthetic peptide and calcium phosphate phase transition. To increase cell-hydrogel interactions and increasing cell viability, an RGD peptide is added to a photocrosslinkable methacrylate-modified alginate, and alpha-tricalcium phosphate (α-TCP) is added to the hydrogel to increase its mechanical strength via phase transition. Cell proliferation, growth, and differentiation are assessed in both 2D and 3D cell cultures. The addition of α-TCP significantly improved the mechanical properties of the hydrogel. Moreover, the RGD peptide and α-TCP showed a synergistic effect with significantly improved cell adhesion and osteogenesis in both 2D and 3D cell cultures. Therefore, the functional hydrogel developed in this study can potentially be used for bone tissue regeneration.
Collapse
Affiliation(s)
- Jueun Kim
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Chang-Woo Gal
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Aram Sung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Siwi Setya Utami
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
| | - Honghyun Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Hui-Suk Yun
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
26
|
Lian H, Zhang Y, Han C, Yang J. Reproductive toxicity of hexabromocyclododecane in rotifer Brachionus plicatilis: Involvement of reactive oxygen species and calcium signaling pathways. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106689. [PMID: 39154542 DOI: 10.1016/j.marenvres.2024.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
To assess the toxicity of Hexabromocyclododecane (HBCD), the population, individual, and cellular biochemical parameters of the rotifer Brachionus plicatilis exposed to different concentrations of HBCD were investigated. The results showed that the population growth rate, reproductive period, and offspring number in B. plicatilis significantly decreased under 324 μg/L and 648 μg/L HBCD. Antioxidant enzyme activity and mRNA expression of CAT and Mn-SOD were promoted at low concentrations (32 μg/L and 64 μg/L) and inhibited at high concentrations (324 μg/L and 648 μg/L), while MDA content accumulated continuously with increasing HBCD concentrations, indicating that HBCD induced oxidation imbalance in rotifers. Further evidence was provided by the correlation between DNA fragmentation and physiological changes. The increased intercellular concentration of Ca2+ and the expression of CaM mRNA suggested that HBCD activated pathways related to calcium signaling. In summary, the excessive production of ROS induced by HBCD was considered to be the main cause of reproductive toxicity.
Collapse
Affiliation(s)
- Hairong Lian
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China; School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, 241002, China
| | - Yu Zhang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Cui Han
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Jiaxin Yang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
27
|
Costa do Bomfim FR, Gonzalez Sella VR, Thomasini RL, Plapler H. Photobiomodulation Modulates Proliferation and Gene Expression Related to Calcium Signaling in Human Osteoblast Cells. J Lasers Med Sci 2024; 15:e45. [PMID: 39381787 PMCID: PMC11459251 DOI: 10.34172/jlms.2024.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024]
Abstract
Introduction: Photobiomodulation with low-level laser treatment can enhance bone formation by stimulating the cell division of osteoblasts and increasing the amount of protein deposition, thus encouraging the formation of new bone. The aim of this study was to evaluate the effects of photobiomodulation with a low-level laser on proliferation and gene expression related to calcium signaling in human osteoblasts. Methods: Osteoblastic cell lines of the hFOB1.19 lineage, human osteoblasts, were grown and assigned into two groups, control (C; n=78 cultured wells) and photobiomodulation (L; n=78 cultured wells) with n=6 per day of the experimental period. Cells were cultured (immature at 34 ºC), and after maturation at 37 ºC, group L cells were exposed to laser irradiation with a low-level laser device (gallium and aluminum arsenide), at a wavelength of 808 nm, a power output of 200 mW, and a power density of 200 mW/cm2. The energy delivered to the cells was 37 J/cm2, with a beam area of 0.02 mm2 and an exposure time of 5 seconds. This treatment was applied daily for a period of 13 days. Following this, the number of cells was counted, and RNA was isolated, measured, and then converted into cDNA for further quantification using a comparative Ct method with real-time polymerase chain reaction. The results were then subjected to statistical analysis through a Mann-Whitney test, with a significance level of P<0.05. Results: The cell count in the L group (37.25x10±4±22.02) was statistically higher compared to the control group (22.75x10±4±7.660) with a P value of 0.0259. The values of 2-ΔΔCt for S100A6, plasma membrane calcium ATPase (PMCA), and calmodulin genes indicated hyper-expression on the thirteenth day, while the osteocalcin gene showed hypo-expression. Conclusion: The study suggests that the photobiomodulation mechanism with a low-level laser may regulate gene expression in human osteoblasts in a dose-dependent and cumulative manner.
Collapse
Affiliation(s)
- Fernando Russo Costa do Bomfim
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
- Laboratory of Molecular Biology, Centro Universitário da Fundação Hermínio Ometto - FHO, Araras, SP, Brazil
| | - Valéria Regina Gonzalez Sella
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Ronaldo Luis Thomasini
- Medicine Faculty, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina, MG, Brazil
| | - Hélio Plapler
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| |
Collapse
|
28
|
He J, Wang Y, Ren Y, Yuan Q, Zhang Z, Li L, Bao B, Jia W, Zhang X, Li M, Tang Y. Calcium-Mediated Cell Adhesion Enhancement-Based Antimetastasis and Synergistic Antitumor Therapy by Conjugated Polymer-Calcium Composite Nanoparticles. ACS NANO 2024; 18:24953-24967. [PMID: 39197151 DOI: 10.1021/acsnano.4c05771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Strengthening tumor cellular adhesion through regulating the concentration of extracellular Ca2+ is highly challenging and promising for antimetastasis. Herein, a pH-responsive conjugated polymer-calcium composite nanoparticle (PFV/CaCO3/PDA@PEG) is developed for calcium-mediated cell adhesion enhancement-based antimetastasis and reactive oxygen species (ROS)-triggered calcium overload and photodynamic therapy (PDT) synergistic tumor treatment. PFV/CaCO3/PDA@PEG is mainly equipped with conjugated poly(fluorene-co-vinylene) (PFV-COOH)-composited CaCO3 nanoparticles, which can be rapidly decomposed under the tumor acidic microenvironment, effectively releasing Ca2+ and the photosensitizer PFV-COOH. The high extracellular Ca2+ concentration facilitates the generation of dimers between two adjacent cadherin ectodomains, which greatly enhances cell-cell adhesion and suppresses tumor metastasis. The inhibition rates are 97 and 87% for highly metastatic tumor cells 4T1 and MCF-7, respectively. Such a well-designed nanoparticle also contributes to realizing PDT, mitochondrial dysfunction, and ROS-triggered Ca2+ overload synergistic therapy. Furthermore, PFV/CaCO3/PDA@PEG displayed superior in vivo inhibition of 4T1 tumor growth and demonstrated a marked antimetastatic effect by both intravenous and intratumoral injection modes. Thus, this study provides a powerful strategy for calcium-mediated metastasis inhibition for tumor therapy.
Collapse
Affiliation(s)
- Junni He
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yuze Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yuxin Ren
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Ziqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Ling Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Wenhua Jia
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
29
|
Ciftci H, Caliskan CE, Koc H, Ozturk K, Ozkaya A, Erbesler ZA. Alleviation of Aluminum-Induced Oxidative Stress, Trace Element, and Mineral Levels in Rat Tissues Protective Role of Pomegranate Juice (Punica Granatum L.). Biol Trace Elem Res 2024; 202:4146-4157. [PMID: 38097903 DOI: 10.1007/s12011-023-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/03/2023] [Indexed: 07/18/2024]
Abstract
The present investigation examined the impact of pomegranate (Punica granatum L.) juice on trace elements, minerals, and oxidative stress in relation to the potential harm inflicted by aluminum chloride (AlCl3) in rats. Rats were split into four groups at random for this purpose: control (C), pomegranate juice (PJ), aluminum chloride (A), and PJ + A. For 30 days, PJ was orally administered by gavage at a rate of 4 mL/kg every other day, whereas AlCl3 was administered intraperitoneally at 8.3 mg/kg. Spectrophotometric analysis was used to measure the levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) enzyme activity in various tissues. In addition, high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was used to determine the amounts of the elements Al, Cu, Fe, Mn, Zn, Ca, and Mg in the tissues. It was discovered that when PJ therapy was applied to all tissues, the antioxidant enzymes SOD and CAT activity increased, the GSH level rose, and the MDA level, a sign of lipid peroxidation, decreased. Al and Ca levels increased in the A group relative to the C group in all tissues, whereas they decreased in the A + PJ group relative to the A group. Group A exhibited a proportionate increase in Fe levels in the liver and renal tissues compared with group C. Furthermore, the A group's brain tissue had a higher Fe level than the C group's. The A + PJ group's brain tissue had a lower Fe level than the A group's. Our findings demonstrate that PJ therapy greatly decreased Al buildup and oxidative stress in tissues while controlling variations in trace element levels. In addition, it is concluded that PJ might have value as a strong chelating agent to prevent Al poisoning.
Collapse
Affiliation(s)
- Harun Ciftci
- Department of Medical Biochemistry, Faculty of Medicine, Kirşehir Ahi Evran University, Kırşehir, Turkey
- Cankiri Karatekin University Rectorate, Çankırı, Turkey
| | - Cigdem Er Caliskan
- Department of Field Crops, Faculty of Agriculture, Kırşehir Ahi Evran University, Kırşehir, Turkey.
| | - Habibe Koc
- Department of Molecular Medicine, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Kubra Ozturk
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Ahmet Ozkaya
- Department of Chemistry, Faculty of Arts and Sciences, Adiyaman University, Adıyaman, Turkey
| | - Zeynel Abidin Erbesler
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Ahi Evran University, Kırşehir, Turkey
| |
Collapse
|
30
|
Faust D, Wenz C, Holm S, Harms G, Greffrath W, Dietrich C. Cell-cell contacts prevent t-BuOOH-triggered ferroptosis and cellular damage in vitro by regulation of intracellular calcium. Arch Toxicol 2024; 98:2953-2969. [PMID: 38814333 PMCID: PMC11324706 DOI: 10.1007/s00204-024-03792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Tert-butyl hydroperoxide (t-BuOOH) is an organic hydroperoxide widely used as a model compound to induce oxidative stress. It leads to a plethora of cellular damage, including lipid peroxidation, DNA double-strand breaks (DNA DSBs), and breakdown of the mitochondrial membrane potential (MMP). We could show in several cell lines that t-BuOOH induces ferroptosis, triggered by iron-dependent lipid peroxidation. We have further revealed that not only t-BuOOH-mediated ferroptosis, but also DNA DSBs and loss of MMP are prevented by cell-cell contacts. The underlying mechanisms are not known. Here, we show in murine fibroblasts and a human colon carcinoma cell line that t-BuOOH (50 or 100 µM, resp.) causes an increase in intracellular Ca2+, and that this increase is key to lipid peroxidation and ferroptosis, DNA DSB formation and dissipation of the MMP. We further demonstrate that cell-cell contacts prevent t-BuOOH-mediated raise in intracellular Ca2+. Hence, we provide novel insights into the mechanism of t-BuOOH-triggered cellular damage including ferroptosis and propose a model in which cell-cell contacts control intracellular Ca2+ levels to prevent lipid peroxidation, DNA DSB-formation and loss of MMP. Since Ca2+ is a central player of toxicity in response to oxidative stress and is involved in various cell death pathways, our observations suggest a broad protective function of cell-cell contacts against a variety of exogenous toxicants.
Collapse
Affiliation(s)
- Dagmar Faust
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Christine Wenz
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
- Department of General and Visceral Surgery, Albklinik Münsingen of the District Hospital Association Reutlingen, Lautertalstraße 47, 72525, Münsingen, Germany
| | - Stefanie Holm
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Gregory Harms
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167, Mannheim, Germany
| | - Cornelia Dietrich
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany.
| |
Collapse
|
31
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
32
|
Zhou H, Yang J, Li Z, Feng J, Duan X, Yan C, Wen G, Qiu X, Shen Z. Hollow mesoporous calcium peroxide nanoparticles for drug-free tumor calcicoptosis therapy. Acta Biomater 2024; 185:456-466. [PMID: 39004329 DOI: 10.1016/j.actbio.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Calcium ions (Ca2+) participate in the regulation of cellular apoptosis as a second messenger. Calcium overload, which refers to the abnormal elevation of intracellular Ca2+ concentration, is a factor that can lead to cell death. Here, based on the unique biological effects of Ca2+, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed by a facile hydrolysis-precipitation method for drug-free tumor calcicoptosis therapy. The average pore size of the optimized HMCPN17 is 6.4 nm, and the surface area is 81.3 m2/g, which enables HMCPN17 with high drug loading capability. The Ca2+ release from HMCPN17 is much faster at pH 6.8 than that at pH 7.4, which can be ascribed to the acid-triggered conversion of HMCPN17 to Ca2+ and H2O2, indicating a pH-responsive decomposition behavior of HMCPN17. The high drug loading contents of doxorubicin (DOX) and/or sorafenib (SFN) indicate that HMCPN17 can be employed as a generic drug delivery system (DDS). The in vitro and in vivo results reinforce the high calcicoptosis therapeutic efficacy of tumors by our HMCPN17 without drug loading, which can be attributed to the efficient accumulation in tumors and the ability of H2O2 and Ca2+ production at acidic TME. Our HMCPN17 has broad application prospect for construction of multi-drug-loaded composite nanomaterials with diversified functions for the treatment of tumors. STATEMENT OF SIGNIFICANCE: The combination of hollow mesoporous nanomaterials and calcium peroxide nanoparticles has a wide range of applications in the synergistic treatment of tumors. In this study, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed based on a simple hydrolysis-precipitation method for tumor calcicoptosis therapy without drug loading. The high drug loading contents of DOX and/or SFN indicate that our HMCPN can serve as a generic DDS. The experimental results demonstrated the high calcicoptosis therapeutic efficacy of HMCPN on tumors even without drug loading.
Collapse
Affiliation(s)
- Huimin Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China; School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Ge Wen
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China; School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
33
|
Barboza BR, Macedo-da-Silva J, Silva LAMT, Gomes VDM, Santos DM, Marques-Neto AM, Mule SN, Angeli CB, Borsoi J, Moraes CB, Moutinho-Melo C, Mühlenhoff M, Colli W, Marie SKN, Pereira LDV, Alves MJM, Palmisano G. ST8Sia2 polysialyltransferase protects against infection by Trypanosoma cruzi. PLoS Negl Trop Dis 2024; 18:e0012454. [PMID: 39321148 PMCID: PMC11466412 DOI: 10.1371/journal.pntd.0012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/10/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Glycosylation is one of the most structurally and functionally diverse co- and post-translational modifications in a cell. Addition and removal of glycans, especially to proteins and lipids, characterize this process which has important implications in several biological processes. In mammals, the repeated enzymatic addition of a sialic acid unit to underlying sialic acids (Sia) by polysialyltransferases, including ST8Sia2, leads to the formation of a sugar polymer called polysialic acid (polySia). The functional relevance of polySia has been extensively demonstrated in the nervous system. However, the role of polysialylation in infection is still poorly explored. Previous reports have shown that Trypanosoma cruzi (T. cruzi), a flagellated parasite that causes Chagas disease (CD), changes host sialylation of glycoproteins. To understand the role of host polySia during T. cruzi infection, we used a combination of in silico and experimental tools. We observed that T. cruzi reduces both the expression of the ST8Sia2 and the polysialylation of target substrates. We also found that chemical and genetic inhibition of host ST8Sia2 increased the parasite load in mammalian cells. We found that modulating host polysialylation may induce oxidative stress, creating a microenvironment that favors T. cruzi survival and infection. These findings suggest a novel approach to interfere with parasite infections through modulation of host polysialylation.
Collapse
Affiliation(s)
- Bruno Rafael Barboza
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Vinícius de Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio Moreira Marques-Neto
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Borsoi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Borsoi Moraes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristiane Moutinho-Melo
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Immunological and Antitumor Analysis, Department of Antibiotics, Bioscience Center, and Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, Brazil
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagashi Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lygia da Veiga Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Julia Manso Alves
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Qian YW, Guo YQ, Li YL, Wang Y, Guo S, Niu QQ, Zhu ML, Li P. The antihypertensive effect of Alizarin is achieved by activating VEGFR2/eNOS pathway, attenuating oxidative stress-induced mitochondrial damage and premature senescence. Life Sci 2024; 351:122862. [PMID: 38917872 DOI: 10.1016/j.lfs.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The primary and initial manifestations of hypertension encompass arterial hypoelasticity and histiocyte senescence. Oxidative stress plays a pivotal role in the progression of senescence. Elevated intracellular oxidative stress levels will directly induce cell damage, disrupt normal physiological signal transduction, which can cause mitochondrial dysfunction to accelerate the process of senescence. Alizarin, an anthraquinone active ingredient isolated from Rubia cordifolia L., has a variety of pharmacological effects, including antioxidant, anti-inflammatory and anti-platelet. Nevertheless, its potential in lowering blood pressure (BP) and mitigating hypertension-induced vascular senescence remains uncertain. In this study, we used spontaneously hypertensive rats (SHR) and human umbilical vein endothelial cells (HUVECs) to establish a model of vascular senescence in hypertension. Our aim was to elucidate the mechanisms underpinning the vascular protective effects of Alizarin. By assessing systolic blood pressure (SBP) and diastolic blood pressure (DBP), H&E staining, SA-β-Gal staining, vascular function, oxidative stress levels, calcium ion concentration and mitochondrial membrane potential, we found that Alizarin not only restored SBP and increased endothelium-dependent relaxation (EDR) in SHR, but also inhibited oxidative stress-induced mitochondrial damage and significantly delayed the vascular senescence effect in hypertension, and the mechanism may be related to the activation of VEGFR2/eNOS signaling pathway.
Collapse
Affiliation(s)
- Yi-Wen Qian
- Department of Pharmacy, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Ya-Qi Guo
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang 150040, China
| | - Yang Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Qian-Qian Niu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
35
|
Toledano JM, Puche-Juarez M, Galvez-Navas JM, Moreno-Fernandez J, Diaz-Castro J, Ochoa JJ. Pregnancy Disorders: A Potential Role for Mitochondrial Altered Homeostasis. Antioxidants (Basel) 2024; 13:979. [PMID: 39199225 PMCID: PMC11351112 DOI: 10.3390/antiox13080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Pregnancy is a complex and challenging process associated with physiological changes whose objective is to adapt the maternal organism to the increasing energetic requirements due to embryo and fetal development. A failed adaptation to these demands may lead to pregnancy complications that threaten the health of both mothers and their offspring. Since mitochondria are the main organelle responsible for energy generation in the form of ATP, the adequate state of these organelles seems crucial for proper pregnancy development and healthy pregnancy outcomes. The homeostasis of these organelles depends on several aspects, including their content, biogenesis, energy production, oxidative stress, dynamics, and signaling functions, such as apoptosis, which can be modified in relation to diseases during pregnancy. The etiology of pregnancy disorders like preeclampsia, fetal growth restriction, and gestational diabetes mellitus is not yet well understood. Nevertheless, insufficient placental perfusion and oxygen transfer are characteristic of many of them, being associated with alterations in the previously cited different aspects of mitochondrial homeostasis. Therefore, and due to the capacity of these multifactorial organelles to respond to physiological and pathophysiological stimuli, it is of great importance to gather the currently available scientific information regarding the relationship between main pregnancy complications and mitochondrial alterations. According to this, the present review is intended to show clear insight into the possible implications of mitochondria in these disorders, thus providing relevant information for further investigation in relation to the investigation and management of pregnancy diseases.
Collapse
Affiliation(s)
- Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jose Maria Galvez-Navas
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
- Cáncer Registry of Granada, Andalusian School of Public Health, Cuesta del Observatorio 4, Campus Universitario de Cartuja, 18011 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| |
Collapse
|
36
|
Norouzzadeh M, Kalantar H, Khorsandi L, Mohtadi S, Khodayar MJ. Betaine ameliorates arsenic-induced kidney injury in mice by mitigating oxidative stress-mediated inflammation. Arch Biochem Biophys 2024; 758:110076. [PMID: 38942108 DOI: 10.1016/j.abb.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Arsenic, an environmental pollutant and poisonous metalloid, has adverse effects on different body organs, including the kidneys. Betaine is a natural nutrient that has many beneficial health effects. This research was conducted to examine the impact of betaine on nephrotoxicity caused by inorganic arsenic (NaAsO2) in mice. Mice were separated into following groups: control, NaAsO2 (50 ppm), NaAsO2 (50 ppm) + betaine (500 mg/kg), and betaine (500 mg/kg). Mice were received NaAsO2 via drinking water for 8 consecutive weeks and betaine was given to the animals via gavage once daily in the 7th and 8th weeks of the study. Upon completion of the study, the mice were euthanized and samples of serum and kidney were obtained for further evaluations. Administration of NaAsO2 increased the levels of blood urea nitrogen and creatinine in the serum. It enhanced the amounts of renal malondialdehyde and decreased the total thiol levels, as well as the activity of antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase). Furthermore, it enhanced the levels of renal inflammatory indicators (tumor necrosis factor-alpha and nitric oxide). Western blot results exhibited an increase in the protein expression of nuclear factor kappa B (NF-κB), and phosphorylated NF-κB in NaAsO2-treated mice. Histopathological results also confirmed kidney damage caused by NaAsO2. However, treatment with betaine improved NaAsO2-related kidney injuries in mice. The results of this work indicated that betaine can attenuate kidney damage caused by NaAsO2 by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mohadeseh Norouzzadeh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
37
|
Leinonen H, Zhang J, Occelli LM, Seemab U, Choi EH, L P Marinho LF, Querubin J, Kolesnikov AV, Galinska A, Kordecka K, Hoang T, Lewandowski D, Lee TT, Einstein EE, Einstein DE, Dong Z, Kiser PD, Blackshaw S, Kefalov VJ, Tabaka M, Foik A, Petersen-Jones SM, Palczewski K. A combination treatment based on drug repurposing demonstrates mutation-agnostic efficacy in pre-clinical retinopathy models. Nat Commun 2024; 15:5943. [PMID: 39009597 PMCID: PMC11251169 DOI: 10.1038/s41467-024-50033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6βrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration.
Collapse
Affiliation(s)
- Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland.
| | - Jianye Zhang
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Laurence M Occelli
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Umair Seemab
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Elliot H Choi
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | | | - Janice Querubin
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander V Kolesnikov
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Anna Galinska
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Thanh Hoang
- Department of Ophthalmology, Department of Cell & Developmental Biology, Ann Arbor, MI, 48105, USA
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Timothy T Lee
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Elliott E Einstein
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - David E Einstein
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Philip D Kiser
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, CA, 92697, USA
- Research Service, VA Long Beach Healthcare System, Long Beach, California, 90822, USA
| | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vladimir J Kefalov
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA.
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
38
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
39
|
Adomako-Bonsu AG, Jacobsen J, Maser E. Metabolic activation of 2,4,6-trinitrotoluene; a case for ROS-induced cell damage. Redox Biol 2024; 72:103082. [PMID: 38527399 PMCID: PMC10979124 DOI: 10.1016/j.redox.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.
Collapse
Affiliation(s)
- Amma Gyapomah Adomako-Bonsu
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Jana Jacobsen
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|
40
|
Daniels WM, Sekhotha MM, Morgan N, Manilall A. The Cytotoxic Effects of Nyaope, a Heroin-based Street Drug, in SH-SY5Y Neuroblastoma Cells. IBRO Neurosci Rep 2024; 16:280-290. [PMID: 38374957 PMCID: PMC10875117 DOI: 10.1016/j.ibneur.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Nyaope is a local adulterated drug that contributes significantly to the psychosocial challenge of substance use in South Africa. Despite being a huge burden on society and the health care system, research into the deleterious effects of nyaope is limited. The aim of the present study was therefore to perform a chemical analysis of the drug and to assess its toxic effects on neuroblastoma cells. Gas chromatography-mass spectrometry (GC/MS) analysis showed that nyaope mainly consists of heroin and heroin-related products. SH-SY5Y cells were subsequently exposed to increasing concentrations of nyaope (0.625, 1.25, 2.5, 5 and 10 µg/µL) for 1, 6 or 24 h. The toxic effects of nyaope were determined by measuring lactate dehydrogenase (LDH) released into the cell culture medium as an indicator of necrosis, the mRNA expression levels of Bax and Bcl-2 as markers of apoptosis, and the mRNA expression levels of p62 and microtubule-associated protein 1 A/1B light-chain 3 (LC3) as indicators of autophagy. Exposing SH-SY5Y cells to concentrations of nyaope 5 µg/µL and greater for 24 h, resulted in a significant increase in LDH levels in the cell culture medium, unchanged mRNA expression of Bax and Bcl-2 mRNA, and significantly reduced p62 and elevated LC3 mRNA expression levels. The chemical analysis suggests that nyaope should be considered synonymous with heroin and the toxic effects of the drug may recruit pathways involved in necrosis and autophagy.
Collapse
Affiliation(s)
- Willie M.U. Daniels
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Matome M. Sekhotha
- Department of Physiology and Environmental Health, School of Molecular Science and Agriculture, University of Limpopo, South Africa
| | - Nirvana Morgan
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
- Department of Psychiatry, Ulm University, Germany
| | - Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| |
Collapse
|
41
|
Luo Z, Zhang X, Fleig A, Romo D, Hull KG, Horgen FD, Sun HS, Feng ZP. TRPM7 in neurodevelopment and therapeutic prospects for neurodegenerative disease. Cell Calcium 2024; 120:102886. [PMID: 38631163 DOI: 10.1016/j.ceca.2024.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Neurodevelopment, a complex and highly regulated process, plays a foundational role in shaping the structure and function of the nervous system. The transient receptor potential melastatin 7 (TRPM7), a divalent cation channel with an α-kinase domain, mediates a wide range of cellular functions, including proliferation, migration, cell adhesion, and survival, all of which are essential processes in neurodevelopment. The global knockout of either TRPM7 or TRPM7-kinase is embryonically lethal, highlighting the crucial role of TRPM7 in development in vivo. Subsequent research further revealed that TRPM7 is indeed involved in various key processes throughout neurodevelopment, from maintaining pluripotency during embryogenesis to regulating gastrulation, neural tube closure, axonal outgrowth, synaptic density, and learning and memory. Moreover, a discrepancy in TRPM7 expression and/or function has been associated with neuropathological conditions, including ischemic stroke, Alzheimer's disease, and Parkinson's disease. Understanding the mechanisms of proper neurodevelopment may provide us with the knowledge required to develop therapeutic interventions that can overcome the challenges of regeneration in CNS injuries and neurodegenerative diseases. Considering that ion channels are the third-largest class targeted for drug development, TRPM7's dual roles in development and degeneration emphasize its therapeutic potential. This review provides a comprehensive overview of the current literature on TRPM7 in various aspects of neurodevelopment. It also discusses the links between neurodevelopment and neurodegeneration, and highlights TRPM7 as a potential therapeutic target for neurodegenerative disorders, with a focus on repair and regeneration.
Collapse
Affiliation(s)
- Zhengwei Luo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Xinyang Zhang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798-7348, USA; The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76798, USA
| | - Kenneth G Hull
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
42
|
Gibb Z, Aitken RJ, Sheridan AR, Holt B, Waugh S, Swegen A. The effects of oxidative stress and intracellular calcium on mitochondrial permeability transition pore formation in equine spermatozoa. FASEB Bioadv 2024; 6:143-158. [PMID: 38846376 PMCID: PMC11150759 DOI: 10.1096/fba.2023-00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
The in vitro storage of stallion spermatozoa for use in artificial insemination leads to oxidative stress and imbalances in calcium homeostasis that trigger the formation of the mitochondrial permeability transition pore (mPTP), resulting in premature cell death. However, little is understood about the dynamics and the role of mPTP formation in mammalian spermatozoa. Here, we identify an important role for mPTP in stallion sperm Ca2+ homeostasis. We show that stallion spermatozoa do not exhibit "classical" features of mPTP; specifically, they are resistant to cyclosporin A-mediated inhibition of mPTP formation, and they do not require exogenous Ca2+ to form the mPTP. However, chelation of endogenous Ca2+ prevented mPTP formation, indicating a role for intracellular Ca2+ in this process. Furthermore, our findings suggest that this cell type can mobilize intracellular Ca2+ stores to form the mPTP in response to low Ca2+ environments and that under oxidative stress conditions, mPTP formation preceded a measurable increase in intracellular Ca2+, and vice versa. Contrary to previous work that identified mitochondrial membrane potential (MMP) as a proxy for mPTP formation, here we show that a loss of MMP can occur independently of mPTP formation, and thus MMP is not an appropriate proxy for the detection of mPTP formation. In conclusion, the mPTP plays a crucial role in maintaining Ca2+ and reactive oxygen species homeostasis in stallion spermatozoa, serving as an important regulatory mechanism for normal sperm function, thereby contraindicating the in vitro pharmacological inhibition of mPTP formation to enhance sperm longevity.
Collapse
Affiliation(s)
- Zamira Gibb
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| | - Robert J. Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| | - Alecia R. Sheridan
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| | - Brandan Holt
- Faculty of Health, School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Stephanie Waugh
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
43
|
Wang CJ, Hu YX, Bai TY, Li J, Wang H, Lv XL, Zhang MD, Chang FH. Identification of disease-specific genes related to immune infiltration in nonalcoholic steatohepatitis using machine learning algorithms. Medicine (Baltimore) 2024; 103:e38001. [PMID: 38758850 PMCID: PMC11098182 DOI: 10.1097/md.0000000000038001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024] Open
Abstract
To identify disease signature genes associated with immune infiltration in nonalcoholic steatohepatitis (NASH), we downloaded 2 publicly available gene expression profiles, GSE164760 and GSE37031, from the gene expression omnibus database. These profiles represent human NASH and control samples and were used for differential genes (DEGs) expression screening. Two machine learning methods, the Least Absolute Shrinkage and Selection Operator regression model and Support Vector Machine Recursive Feature Elimination, were used to identify candidate disease signature genes. The CIBERSORT deconvolution algorithm was employed to analyze the infiltration of 22 immune cell types in NASH. Additionally, we constructed a NASH cell model using HepG2 cells treated with oleic acid and free fatty acids. The construction of the cell model was verified using oil red O staining, and Western blotting was used to detect the protein expression of the disease signature genes in both control and model groups. As a result, a total of 262 DEGs were identified. These DEGs were primarily associated with metal ion transmembrane transporter activity, sodium ion transmembrane transporter protein activity, calcium ion, and neuroactive ligand-receptor interactions. FOS, IGFBP2, dual-specificity phosphatase 1 (DUSP1), and IKZF3 were identified as disease signature genes of NASH by the least absolute shrinkage and selection operator and Support Vector Machine Recursive Feature Elimination algorithms for DEGs analysis. The receiver operating characteristic curves showed that FOS, IGFBP2, DUSP1, and IKZF3 had good diagnostic value (area under receiver operating characteristic curve > 0.8). These findings were validated in the GSE89632 dataset and through cellular assays. Immunocyte infiltration analysis revealed that NASH was associated with CD8 T cells, CD4 T cells, follicular helper T cells, resting NK cells, eosinophils, regulatory T cells, and γδ T cells. The FOS, IGFBP2, DUSP1, and IKZF3 genes were specifically associated with follicular helper T cells. Lipid droplet aggregation significantly increased in HepG2 cells treated with oleic acid and free fatty acids, indicating successful construction of the cell model. In this model, the expression of FOS, IGFBP2, and DUSP1 was significantly decreased, while that of IKZF3 was significantly elevated (P < .01, P < .001) compared with the control group. Therefore, FOS, IGFBP2, DUSP1, and IKZF3 can be considered as disease signature genes associated with immune infiltration in NASH.
Collapse
Affiliation(s)
- Chao-Jie Wang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Yu-Xia Hu
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Tu-Ya Bai
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Jun Li
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Han Wang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Xiao-Li Lv
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Meng-Di Zhang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Fu-Hou Chang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
44
|
Yu L, Zhu Y, Geng L, Xu Y, Zhao M. Effect of different nutrients on blood glucose, inflammatory response and oxidative stress in gestational diabetes mellitus: a network meta-analysis. Br J Nutr 2024; 131:1513-1527. [PMID: 38192249 DOI: 10.1017/s0007114523003069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We searched PubMed, Web of Science, Embase, The Cochrane Library, China Biomedical Literature Database and other databases from inception to June 2023. The included studies were randomised controlled trials (RCT). The studies were screened by four authors, divided into two independent pairs. A total of eighteen studies were included, including 1362 patients, involving twelve intervention measures. The different nutrients had a significant effect on improving blood glucose, reducing inflammation levels and reducing oxidative stress compared with placebo (P < 0.05). Cumulative probability ranking showed that vitamin A + vitamin D + vitamin E ranked first in lowering fasting blood glucose (standardised mean difference (SMD) = 41.30, 95 % CI (2.07, 825.60)) and postprandial 2-h blood glucose (SMD = 15.19, 95 % CI (4.16, 55.53)). In terms of insulin resistance index, the first highest probability ranking is vitamin D (SMD = 5.12, 95 % CI (0.76, 34.54)). In terms of reducing the high-sensitivity C-reactive protein level, the first in probability ranking is VE (SMD = 2.58, 95 % CI (1.87,3.55)). The results of cumulative probability ranking showed that Mg + Zn + Ca + VD ranked first in reducing TNF-α (SMD = 1.90, 95% CI (0.40, 9.08)) and IL-6 (SMD = 1.83, 95 % CI (0.37, 9.12)). In terms of reducing malondialdehyde levels, the first ranked probability is VB1 (SMD = 4.99, 95 % CI (1.85, 13.46)). Cumulative probability ranking results showed that Ca + VD ranked first in reducing total antioxidant capacity (SMD = 0.66,95 % CI (0.38, 1.15)) and glutathione (SMD = 1.39, 95 % CI (0.43, 4.56)). In conclusion, nutritional interventions have significant effects on improving blood glucose, inflammatory levels and oxidative stress in patients with gestational diabetes. Due to the high uncertainty in the results and differences in the number and quality of studies included, the reliability of the conclusions still needs to be validated by conducting large-sample, high-quality RCT studies.
Collapse
Affiliation(s)
- Lingling Yu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Yuan Zhu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Lan Geng
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Yueming Xu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhao
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
45
|
Bao X, Gänzle MG, Wu J. Ovomucin Hydrolysates Reduce Bacterial Adhesion and Inflammation in Enterotoxigenic Escherichia coli (ETEC) K88-Challenged Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7219-7229. [PMID: 38507577 DOI: 10.1021/acs.jafc.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
46
|
Wang G, Zhang S, Lan H, Zheng X. Ochratoxin A (OTA) causes intestinal aging damage through the NLRP3 signaling pathway mediated by calcium overload and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27864-27882. [PMID: 38526719 DOI: 10.1007/s11356-024-32696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Ochratoxin A (OTA) is a widespread environmental toxin that poses a serious threat to human and animal health. OTA has been shown to cause cellular and tissue damage and is a global public health problem. However, the effects of OTA on gastrointestinal aging have not been reported. The aim of this study was to investigate the effects of OTA on intestinal aging in vitro and in vivo. In vitro experiments showed that OTA induced cellular inflammation through calcium overload and oxidative stress, significantly up-regulated the expression of P16, P21, and P53 proteins, markedly increased senescence-associated β-galactosidase activity (SA-β-gal) positive cells, and obviously decreased the expression of proliferating cell nuclear antigen (PCNA) proteins, which led to intestinal cell senescence. Meanwhile, we found that treatment with β-carotene ameliorated OTA-induced intestinal cell senescence. Consistent with the results of the in vitro experiments, in vivo studies showed that the intestinal aging of mice fed OTA was significantly higher than that of the control group. In conclusion, OTA may induce intestinal aging through calcium overload, oxidative stress and inflammation. This study lays a foundation for further research on the toxicological effects of OTA.
Collapse
Affiliation(s)
- Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shuai Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
47
|
Heiliczer S, Yanko R, Sharav Y, Aframian DJ, Klutstein M, Wilensky A, Haviv Y. Oxidative stress-mediated proapoptosis signaling: A novel theory on the mechanism underlying the pathogenesis of burning mouth syndrome. J Am Dent Assoc 2024; 155:258-267. [PMID: 37966403 DOI: 10.1016/j.adaj.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Burning mouth syndrome (BMS) is a chronic oral pain disorder characterized by a generalized burning sensation in the oral mucosa without apparent medical or dental causes. Despite various hypotheses proposed to explain BMS pathogenesis, a clear understanding of the cellular-level events and associated histologic and molecular findings is lacking. Advancing our understanding of BMS pathogenesis could facilitate the development of more targeted therapeutic interventions. TYPES OF STUDIES REVIEWED The authors conducted an extensive literature search and review of cellular mechanisms, focusing on evidence-based data that support a comprehensive hypothesis for BMS pathogenesis. The authors explored novel and detailed mechanisms that may account for the characteristic features of BMS. RESULTS The authors proposed that BMS symptoms arise from the uncontrolled activation of proapoptotic transmembrane calcium permeable channels expressed in intraoral mucosal nerve fibers. Elevated levels of reactive oxygen species or dysfunctional antiapoptosis pathways may lead to uncontrolled oxidative stress-mediated apoptosis signaling, resulting in upregulation of transmembrane transient receptor potential vanilloid type 1 and P2X 3 calcium channels in nociceptive fibers. Activation of these channels can cause nerve terminal depolarization, leading to generation of action potentials that are centrally interpreted as pain. CONCLUSIONS AND PRACTICAL IMPLICATIONS The authors present a novel hypothesis for BMS pathogenesis, highlighting the role of proapoptotic transmembrane calcium permeable channels and oxidative stress-mediated apoptosis signaling in the development of BMS symptoms. Understanding these underlying mechanisms could provide new insights into the development of targeted therapeutic interventions for BMS. Additional research is warranted to validate this hypothesis and explore potential avenues for effective management of BMS.
Collapse
|
48
|
Tang K, Xu S, Chen P, Cai J, Huang T, Liu M, Li W, Yu Y, Che B, Zhang W. Potential role of glutathione S‑transferase M1 gene polymorphism in kidney calcium oxalate stone formation. Int Urol Nephrol 2024; 56:887-892. [PMID: 37891380 DOI: 10.1007/s11255-023-03846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND The purpose of this study was to look into the effects of glutathione S-transferase M1 (GSTM1) gene polymorphism on the formation of kidney calcium oxalate stones. METHODS A total of 159 patients with kidney calcium oxalate stones were included in this study as a case group. One hundred and three healthy individuals were included in the control group. The age, gender, and levels of calcium (Ca), uric acid (UA), creatinine (Cr), and urinary creatinine (Ucr) are tracked. Peripheral blood samples are used to perform a polymerase chain reaction to identify the glutathione S-transferase (GST) gene polymorphism (PCR). A commercial kit was used in this study to measure the levels of malondialdehyde (MDA), nitric oxide (NO), total antioxidant capacity (T-AOC), and 8-hydroxydeoxyguanosine (8-OHdG) in peripheral blood. RESULTS There was no difference in age or gender distribution between the case and control groups (P > 0.05). The Cr, Ucr, Ca, UA, 8-OHdG, MDA, NO, and T-AOC in the case group were significantly higher than those in the control group (P < 0.001). The Hardy-Weinberg genetic equilibrium test showed no difference between the case group (P = 0.23) and the control group (P = 0.09). In the case group, the 8-OHdG and NO in GSTM1 null genotype were significantly higher than those in GSTM1 genotype (P < 0.05), but there was no significant difference in MDA and T-AOC (P > 0.05). Multivariate regression analysis showed that the GSTM1 null genotype was positively correlated with 8-OHdG (P < 0.001) and NO (P < 0.001). CONCLUSIONS GSTM1 gene polymorphism might be a detecting risk factor for kidney calcium oxalate stone formation. TRIAL REGISTRATION ChiCTR2100051300.
Collapse
Affiliation(s)
- Kaifa Tang
- Department of Urology and Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China.
| | - Shenghan Xu
- Department of Urology and Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Pan Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Ji Cai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Tao Huang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Miao Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Wei Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Ying Yu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Bangwei Che
- Department of Urology and Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Wenjun Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
49
|
Guzman-Vallejos MS, Ramirez-Cando LJ, Aguayo L, Ballaz SJ. Molecular Docking Analysis at the Human α7-nAChR and Proliferative and Evoked-Calcium Changes in SH-SY5Y Cells by Imidacloprid and Acetamiprid Insecticides. Neurotox Res 2024; 42:16. [PMID: 38376791 DOI: 10.1007/s12640-024-00697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Acetamiprid (ACE) and Imidacloprid (IMI) are widely-used neonicotinoid insecticides (NNIs) with functional activity at human acetylcholine nicotinic receptors and, therefore, with putative toxic effects. The objective of this study was the evaluation of the interactions between NNIs and α7-nAChR, as this receptor keeps intracellular Ca2+ ([Ca2+]i) to an optimum for an adequate neuronal functioning. Possible interactions between NNIs and the cryo-EM structure of the human α-7 nAChR were identified by molecular docking. Additionally, NNI effects were analyzed in neuroblastoma SH-SY5Y cells, as they naturally express α-7 nAChRs. Functional studies included proliferative/cytotoxic effects (MTT test) in undifferentiated SH-SY-5Y cells and indirect measurements of [Ca2+]i transients in retinoic acid-differentiated SH-SY-5Y cells loaded with Fluo-4 AM. Docking analysis showed that the binding of IMI and ACE occurred at the same aromatic cage that the specific α-7 nAChR agonist EVP-6124. IMI showed a better docking strength than ACE. According to the MTT assays, low doses (10-50 µM) of IMI better than ACE stimulated neuroblastoma cell proliferation. At higher doses (250-500 µM), IMI also prevailed over ACE and dose-dependently triggered more abrupt fluorescence changes due to [Ca2+]i mobilization in differentiated SH-SY5Y neurons. Indeed, only IMI blunted nicotine-evoked intracellular fluorescence stimulation (i.e., nicotine cross-desensitization). Summarizing, IMI demonstrated a superior docking strength and more robust cellular responses compared to ACE, which were likely associated with a stronger activity at α-7nAChRs. Through the interaction with α-7nAChRs, IMI would demonstrate its high neurotoxic potential for humans. More research is needed for investigating the proliferative effects of IMI in neuroblastoma cells.
Collapse
Affiliation(s)
| | - Lenin J Ramirez-Cando
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador
| | - Luis Aguayo
- School of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Santiago J Ballaz
- School of Medicine, Universidad Espíritu Santo, Ave. Samborondón 5, Samborondón, 0901952, Ecuador.
| |
Collapse
|
50
|
Lin C, Akhtar M, Li Y, Ji M, Huang R. Recent Developments in CaCO 3 Nano-Drug Delivery Systems: Advancing Biomedicine in Tumor Diagnosis and Treatment. Pharmaceutics 2024; 16:275. [PMID: 38399329 PMCID: PMC10893456 DOI: 10.3390/pharmaceutics16020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium carbonate (CaCO3), a natural common inorganic material with good biocompatibility, low toxicity, pH sensitivity, and low cost, has a widespread use in the pharmaceutical and chemical industries. In recent years, an increasing number of CaCO3-based nano-drug delivery systems have been developed. CaCO3 as a drug carrier and the utilization of CaCO3 as an efficient Ca2+ and CO2 donor have played a critical role in tumor diagnosis and treatment and have been explored in increasing depth and breadth. Starting from the CaCO3-based nano-drug delivery system, this paper systematically reviews the preparation of CaCO3 nanoparticles and the mechanisms of CaCO3-based therapeutic effects in the internal and external tumor environments and summarizes the latest advances in the application of CaCO3-based nano-drug delivery systems in tumor therapy. In view of the good biocompatibility and in vivo therapeutic mechanisms, they are expected to become an advancing biomedicine in the field of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yingjie Li
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Min Ji
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| |
Collapse
|