1
|
Zhang Z, Song B, Wei H, Liu Y, Zhang W, Yang Y, Sun B. NDRG1 overcomes resistance to immunotherapy of pancreatic ductal adenocarcinoma through inhibiting ATG9A-dependent degradation of MHC-1. Drug Resist Updat 2024; 73:101040. [PMID: 38228036 DOI: 10.1016/j.drup.2023.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is resistant to immune checkpoint blockade (ICB) therapies. Emerging evidence suggests that NDRG1 may be an important target for the development of new therapies for PDAC. Herein, we investigated the novel roles of NDRG1 and Combretastatin A-4 (CA-4) in the treatment of PDAC ICB resistance. METHODS Enrichment of MHC class I was detected by RNA sequence and verified by RT-qPCR and immunoblotting in NDRG1-knockdown human pancreatic cancer cell lines. The protein degradation mode was found by stimulation with various inhibitors, and the autophagy degradation pathway was found by immunoprecipitation and immunolocalization. The roles of NDRG1 and MHC-I in immunotherapy were investigated by orthotopic solid tumors, histology, immunohistochemistry, multiplex immunofluorescence staining and flow cytometry. RESULTS Here, we identified a previously undescribed role of NDRG1 in activating major histocompatibility complex class 1 (MHC-1) expression in pancreatic ductal adenocarcinoma (PDAC) cells through lysosomal-autophagy-dependent degradation. In mouse models of PDAC, either tumor cell overexpression or pharmacologic activation of NDRG1 leads to MHC-1 upregulation in tumor cells, which in turn promotes the infiltration and activity of CD8 + T cells, enhances anti-tumor immunity, and overcomes resistance to ICB therapy. Moreover, combination therapy of CA-4 and ICB overcomes the drug resistance of pancreatic cancer to ICB therapy. In PDAC patients, NDRG1 expression correlates with high MHC-1 expression and better survival. CONCLUSION Our results reveal NDRG1 in PDAC cancer cells as a tumor suppressor and suggest that pharmaceutically targeting NDRG1 is a promising way to overcome pancreatic cancer resistance to immunotherapy and provides a potential therapeutic strategy for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Bojiao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haowei Wei
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yuhong Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Tomkinson B. Tripeptidyl-peptidase II: Update on an oldie that still counts. Biochimie 2019; 166:27-37. [DOI: 10.1016/j.biochi.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
3
|
Intracellular RNA Sensing in Mammalian Cells: Role in Stress Response and Cancer Therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 344:31-89. [DOI: 10.1016/bs.ircmb.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Garrido F, Perea F, Bernal M, Sánchez-Palencia A, Aptsiauri N, Ruiz-Cabello F. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture. Vaccines (Basel) 2017; 5:vaccines5010007. [PMID: 28264447 PMCID: PMC5371743 DOI: 10.3390/vaccines5010007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 12/18/2022] Open
Abstract
Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I) expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/“soft” or irreversible/“hard” due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL).
Collapse
Affiliation(s)
- Federico Garrido
- Servicio de Analisis Clinicos e Inmunologia, UGC Laboratorio Clinico, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain.
- Instituto de Investigacion Biosanitaria ibs.Granda, Granada 18014, Spain.
- Departamento de Bioquimica, Biologia Molecular e Inmunologia III, Facultad de Medicina, Universidad de Granada, Granada 18071, Spain.
| | - Francisco Perea
- Servicio de Analisis Clinicos e Inmunologia, UGC Laboratorio Clinico, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain.
| | - Mónica Bernal
- Servicio de Analisis Clinicos e Inmunologia, UGC Laboratorio Clinico, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain.
| | - Abel Sánchez-Palencia
- Unidad de Cirugía Torácica, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain.
| | - Natalia Aptsiauri
- Instituto de Investigacion Biosanitaria ibs.Granda, Granada 18014, Spain.
- Departamento de Bioquimica, Biologia Molecular e Inmunologia III, Facultad de Medicina, Universidad de Granada, Granada 18071, Spain.
| | - Francisco Ruiz-Cabello
- Servicio de Analisis Clinicos e Inmunologia, UGC Laboratorio Clinico, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain.
- Instituto de Investigacion Biosanitaria ibs.Granda, Granada 18014, Spain.
- Departamento de Bioquimica, Biologia Molecular e Inmunologia III, Facultad de Medicina, Universidad de Granada, Granada 18071, Spain.
| |
Collapse
|
5
|
Dasgupta S, Castro LM, Dulman R, Yang C, Schmidt M, Ferro ES, Fricker LD. Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells. PLoS One 2014; 9:e103604. [PMID: 25079948 PMCID: PMC4117522 DOI: 10.1371/journal.pone.0103604] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/03/2014] [Indexed: 12/17/2022] Open
Abstract
The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell.
Collapse
Affiliation(s)
- Sayani Dasgupta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Leandro M. Castro
- Department of Pharmacology, Support Center for Research in Proteolysis and Cell Signaling, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Russell Dulman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ciyu Yang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Marion Schmidt
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Emer S. Ferro
- Department of Pharmacology, Support Center for Research in Proteolysis and Cell Signaling, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ferro ES, Rioli V, Castro LM, Fricker LD. Intracellular peptides: From discovery to function. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Li P, Luo Z, Liu P, Gao N, Zhang Y, Pan H, Liu L, Wang C, Cai L, Ma Y. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release 2013; 168:271-9. [PMID: 23562637 DOI: 10.1016/j.jconrel.2013.03.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/06/2013] [Accepted: 03/17/2013] [Indexed: 01/15/2023]
Abstract
Although polysaccharide nanogels have emerged as a novel antigen delivery system for vaccine development, whether modulating the redox sensitivity of nanogels could improve vaccine efficacy remains unclear. In the present study, we generated bioreducible cationic alginate-polyethylenimine (PEI) nanogels as a novel vaccine delivery system. Briefly, nanogels were prepared by the electrostatic interaction of negatively charged alginate sodium with branched PEI2k, followed by disulfide cross-linking to generate bioreducible nanogels (AP-SS). The AP-SS nanogels demonstrated great antigen-loading capacity and minimal cytotoxicity. The in vitro study showed that reducible AP-SS nanogels not only facilitated antigen uptake by mouse bone marrow dendritic cells (BMDCs), but also promoted intracellular antigen degradation and cytosolic release. Moreover, AP-SS nanogels significantly enhanced both MHC class I and II antigen presentation by BMDCs. Compared with the non-reducible nanogels, AP-SS nanogels more potently enhanced vaccine-induced antibody production and CD8+ T cell-mediated tumor cell lysis. Hence, the bioreducible alginate-PEI nanogels could serve as a potent adjuvant to improve vaccine-elicited humoral and cellular immune responses.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Cancer Nanotechnology, Shenzhen Innovative Pharmacology and Biotherapy Pre-clinical Test Public Service Platform, Shenzhen Institutes of Advance Technology, Chinese Academy of Science, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen JH, Yu YS, Liu HH, Chen XH, Xi M, Zang GQ, Tang ZH. Ubiquitin conjugation of hepatitis B virus core antigen DNA vaccine leads to enhanced cell-mediated immune response in BALB/c mice. HEPATITIS MONTHLY 2011. [PMID: 22140385 DOI: 10.5812/kowsar.1735143x.1372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nearly 350 million persons worldwide are chronically infected with hepatitis B virus (HBV). Ubiquitin (Ub) is a highly conserved small regulatory protein, ubiquitous in eukaryotes, that usually serves as a signal for the target protein that is recognised and degraded in proteasomes . The Ub-mediated processing of antigens is rapid and efficient and stimulates cell-mediated immune responses. Accordingly, Ub-mediated processing of antigens has been widely used in chronic-infection and cancer studies to improve immune response. OBJECTIVES Many clinical trials have shown that DNA vaccine potency needs to be greatly enhanced. Here, we report a new strategy for designing an HBV DNA vaccine using the ubiquitin (Ub) sequence. The aim of this study was to investigate a novel DNA vaccination, based on the expression of HBV core antigen (HBcAg), fused to Ub to enhance DNA vaccine potency. MATERIALS AND METHODS Mouse ubiquitin fused to the HBcAg gene and cloned into the eukaryotic vector pcDNA3.1 (-). BALB/c mice were immunized with recombinant pUb-HBcAg or pHBcAg DNA vaccine. Lymphocyte proliferation assay, intracellular IFN-γ assay, CTL cytotoxicity assay, and antibody assay were performed to analyze the cellular and humoral immune responses to our DNA constructs. RESULTS HBcAg was expressed effectively in the COS-7 cells that were transiently transfected with pUb-HBcAg. Strong anti-HBc IgG responses were elicited in mice that were immunized with pUb-HBcAg. The endpoint titers of anti-HBc peaked at 1:656100 on the 42nd day after the third immunization. pUb-HBcAg stimulated greater lymphocyte proliferation and induced higher levels of IL-2 and IFN-γ and a greater percentage of HBcAg-specific CD8+ T cells in mice than pHBcAg. In the CTL assay, the specific lysis rate reached 56.5% at an effector:target ratio of 50:1 in mice that were immunized with pUb-HBcAg. CONCLUSIONS pUb-HBcAg elicits specific anti-HBc responses and induces HBc-specific CTL responses in immunized BALB/c mice. Our results imply that Ub can be used as a molecular adjuvant that enhances the potency of DNA vaccines.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Department of Infectious Diseases, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
9
|
The antiviral efficacy of HIV-specific CD8⁺ T-cells to a conserved epitope is heavily dependent on the infecting HIV-1 isolate. PLoS Pathog 2011; 7:e1001341. [PMID: 21589893 PMCID: PMC3093356 DOI: 10.1371/journal.ppat.1001341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 04/11/2011] [Indexed: 01/03/2023] Open
Abstract
A major challenge to developing a successful HIV vaccine is the vast diversity of viral sequences, yet it is generally assumed that an epitope conserved between different strains will be recognised by responding T-cells. We examined whether an invariant HLA-B8 restricted Nef90–97 epitope FL8 shared between five high titre viruses and eight recombinant vaccinia viruses expressing Nef from different viral isolates (clades A–H) could activate antiviral activity in FL8-specific cytotoxic T-lymphocytes (CTL). Surprisingly, despite epitope conservation, we found that CTL antiviral efficacy is dependent on the infecting viral isolate. Only 23% of Nef proteins, expressed by HIV-1 isolates or as recombinant vaccinia-Nef, were optimally recognised by CTL. Recognition of the HIV-1 isolates by CTL was independent of clade-grouping but correlated with virus-specific polymorphisms in the epitope flanking region, which altered immunoproteasomal cleavage resulting in enhanced or impaired epitope generation. The finding that the majority of virus isolates failed to present this conserved epitope highlights the importance of viral variance in CTL epitope flanking regions on the efficiency of antigen processing, which has been considerably underestimated previously. This has important implications for future vaccine design strategies since efficient presentation of conserved viral epitopes is necessary to promote enhanced anti-viral immune responses. One of the greatest challenges to developing an effective HIV vaccine is the ability of HIV to rapidly alter its viral sequence. Such variation in viral sequence enables the virus to frequently evade recognition by the host immune system. To counteract this problem, there has been increasing interest in developing HIV vaccines that target T-cell responses to the regions of the virus that are highly conserved between strains of HIV. However, previous studies have focused on identifying amino acid variation predominantly within a single viral isolate, or have focused on classical within-epitope escape mutation. Our study assessed T-cell recognition of a conserved epitope shared by a total of 13 HIV strains. Strikingly, we show that only a small proportion of the viral strains were effectively recognised and targeted by the T-cells. In contrast, differences in amino acid sequence in the region flanking the epitope impaired the intracellular processing and presentation of epitope in the majority of HIV strains tested. Thus, our findings highlight that a large proportion of HIV strains may evade epitope-specific T-cell recognition despite absolute epitope conservation. This has important implications for both vaccine design and evaluation of vaccine efficacy.
Collapse
|
10
|
Castro LM, Berti DA, Russo LC, Coelho V, Gozzo FC, Oliveira V, Ferro ES. Similar intracellular peptide profile of TAP1/β2 microglobulin double-knockout mice and C57BL/6 wild-type mice as revealed by peptidomic analysis. AAPS JOURNAL 2010; 12:608-16. [PMID: 20665142 DOI: 10.1208/s12248-010-9224-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 07/13/2010] [Indexed: 12/14/2022]
Abstract
Cells produce and use peptides in distinctive ways. In the present report, using isotope labeling plus semi-quantitative mass spectrometry, we evaluated the intracellular peptide profile of TAP1/β2m⁻(/)⁻ (transporter associated with antigen-processing 1/ß2 microglobulin) double-knockout mice and compared it with that of C57BL/6 wild-type animals. Overall, 92 distinctive peptides were identified, and most were shown to have a similar concentration in both mouse strains. However, some peptides showed a modest increase or decrease (~2-fold), whereas a glycine-rich peptide derived from the C-terminal of neurogranin (KGPGPGGPGGAGGARGGAGGGPSGD) showed a substantial increase (6-fold) in TAP1/β2m⁻(/)⁻ mice. Thus, TAP1 and β2microglobulin have a small influence on the peptide profile of neuronal tissue, suggesting that the presence of peptides derived from intracellular proteins in neuronal tissue is not associated with antigens of the class I major histocompatibility complex. Therefore, it is possible that these intracellular peptides play a physiological role.
Collapse
Affiliation(s)
- Leandro M Castro
- Department of Cell Biology and Development, Biomedical Science Institute, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Berti DA, Morano C, Russo LC, Castro LM, Cunha FM, Zhang X, Sironi J, Klitzke CF, Ferro ES, Fricker LD. Analysis of intracellular substrates and products of thimet oligopeptidase in human embryonic kidney 293 cells. J Biol Chem 2009; 284:14105-16. [PMID: 19282285 PMCID: PMC2682859 DOI: 10.1074/jbc.m807916200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/05/2009] [Indexed: 01/03/2023] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9-11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8-10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.
Collapse
Affiliation(s)
- Denise A Berti
- Department of Cell Biology and Development , Biomedical Science Institute, University of São Paulo, São Paulo SP 05508-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Osna NA. Hepatitis C virus and ethanol alter antigen presentation in liver cells. World J Gastroenterol 2009; 15:1201-1208. [PMID: 19291820 PMCID: PMC2658850 DOI: 10.3748/wjg.15.1201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 02/06/2023] Open
Abstract
Alcoholic patients have a high incidence of hepatitis C virus (HCV) infection. Alcohol consumption enhances the severity of the HCV disease course and worsens the outcome of chronic hepatitis C. The accumulation of virally infected cells in the liver is related to the HCV-induced inability of the immune system to recognize infected cells and to develop the immune responses. This review covers the effects of HCV proteins and ethanol on major histocompatibility complex (MHC) class I- and class II-restricted antigen presentation. Here, we discuss the liver which functions as an immune privilege organ; factors, which affect cleavage and loading of antigenic peptides onto MHC class I and class II in hepatocytes and dendritic cells, and the modulating effects of ethanol and HCV on antigen presentation by liver cells. Altered antigen presentation in the liver limits the ability of the immune system to clear HCV and infected cells and contributes to disease progression. HCV by itself affects dendritic cell function, switching their cytokine profile to the suppressive phenotype of interleukin-10 (IL-10) and transforming growth factor beta (TGFbeta) predominance, preventing cell maturation and allostimulation capacity. The synergistic action of ethanol with HCV results in the suppression of MHC class II-restricted antigen presentation. In addition, ethanol metabolism and HCV proteins reduce proteasome function and interferon signaling, thereby suppressing the generation of peptides for MHC class I-restricted antigen presentation. Collectively, ethanol exposure further impairs antigen presentation in HCV-infected liver cells, which may provide a partial explanation for exacerbations and the poor outcome of HCV infection in alcoholics.
Collapse
|
13
|
Cunha FM, Berti DA, Ferreira ZS, Klitzke CF, Markus RP, Ferro ES. Intracellular peptides as natural regulators of cell signaling. J Biol Chem 2008; 283:24448-59. [PMID: 18617518 PMCID: PMC3259820 DOI: 10.1074/jbc.m801252200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/20/2008] [Indexed: 12/25/2022] Open
Abstract
Protein degradation by the ubiquitin proteasome system releases large amounts of oligopeptides within cells. To investigate possible functions for these intracellularly generated oligopeptides, we fused them to a cationic transactivator peptide sequence using reversible disulfide bonds, introduced them into cells, and analyzed their effect on G protein-coupled receptor (GPCR) signal transduction. A mixture containing four of these peptides (20-80 microm) significantly inhibited the increase in the extracellular acidification response triggered by angiotensin II (ang II) in CHO-S cells transfected with the ang II type 1 receptor (AT1R-CHO-S). Subsequently, either alone or in a mixture, these peptides increased luciferase gene transcription in AT1R CHO-S cells stimulated with ang II and in HEK293 cells treated with isoproterenol. These peptides without transactivator failed to affect GPCR cellular responses. All four functional peptides were shown in vitro to competitively inhibit the degradation of a synthetic substrate by thimet oligopeptidase. Overexpression of thimet oligopeptidase in both CHO-S and HEK293 cells was sufficient to reduce luciferase activation triggered by a specific GPCR agonist. Moreover, using individual peptides as baits in affinity columns, several proteins involved in GPCR signaling were identified, including alpha-adaptin A and dynamin 1. These results suggest that before their complete degradation, intracellular peptides similar to those generated by proteasomes can actively affect cell signaling, probably representing additional bioactive molecules within cells.
Collapse
Affiliation(s)
- Fernanda M. Cunha
- Departments of Cell Biology and
Development and Physiology, Biomedical Science
Institute, University of São Paulo, São Paulo, SP 05508-900, the
Department of Biochemistry, Federal University
of São Paulo, São Paulo, SP 04044-020, and the
Center for Applied Toxinology, CAT/CEPID,
Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Denise A. Berti
- Departments of Cell Biology and
Development and Physiology, Biomedical Science
Institute, University of São Paulo, São Paulo, SP 05508-900, the
Department of Biochemistry, Federal University
of São Paulo, São Paulo, SP 04044-020, and the
Center for Applied Toxinology, CAT/CEPID,
Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Zulma S. Ferreira
- Departments of Cell Biology and
Development and Physiology, Biomedical Science
Institute, University of São Paulo, São Paulo, SP 05508-900, the
Department of Biochemistry, Federal University
of São Paulo, São Paulo, SP 04044-020, and the
Center for Applied Toxinology, CAT/CEPID,
Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Clécio F. Klitzke
- Departments of Cell Biology and
Development and Physiology, Biomedical Science
Institute, University of São Paulo, São Paulo, SP 05508-900, the
Department of Biochemistry, Federal University
of São Paulo, São Paulo, SP 04044-020, and the
Center for Applied Toxinology, CAT/CEPID,
Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Regina P. Markus
- Departments of Cell Biology and
Development and Physiology, Biomedical Science
Institute, University of São Paulo, São Paulo, SP 05508-900, the
Department of Biochemistry, Federal University
of São Paulo, São Paulo, SP 04044-020, and the
Center for Applied Toxinology, CAT/CEPID,
Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Emer S. Ferro
- Departments of Cell Biology and
Development and Physiology, Biomedical Science
Institute, University of São Paulo, São Paulo, SP 05508-900, the
Department of Biochemistry, Federal University
of São Paulo, São Paulo, SP 04044-020, and the
Center for Applied Toxinology, CAT/CEPID,
Butantan Institute, São Paulo, SP 05503-900, Brazil
| |
Collapse
|
14
|
Sabado RL, Babcock E, Kavanagh DG, Tjomsland V, Walker BD, Lifson JD, Bhardwaj N, Larsson M. Pathways utilized by dendritic cells for binding, uptake, processing and presentation of antigens derived from HIV-1. Eur J Immunol 2007; 37:1752-63. [PMID: 17534864 DOI: 10.1002/eji.200636981] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The outcome following HIV infection depends on the nature and durability of the HIV-specific T cell response induced initially. The activation of protective T cell responses depends upon dendritic cells (DC), antigen-presenting cells which have the capacity to process and present viral antigens. DC pulsed with aldrithiol-2-inactivated HIV and delivered in vivo were reported to induce immune responses and promote virologic control in chronically HIV-1-infected subjects. To gain an understanding of this phenomenon, we characterized the steps involved in the presentation of antigens derived from aldrithiol-2-treated vs. infectious HIV-1 by DC. Antigen presentation, on both MHC class I and II, was independent of DC-specific ICAM-3-grabbing integrin, DEC-205 and macrophage mannose receptor, C-type lectins expressed by the DC. Inhibitor studies showed that presentation on MHC class I was dependent on viral fusion in a CD4/coreceptor-dependent manner, both at the cell surface and within endosomes, and access to the classical endosomal processing pathway. MHC class II presentation of HIV-associated antigens was dependent on active endocytosis, probably receptor-mediated, and subsequent degradation of virions in acidified endosomes in the DC. Our study brings forth new facts regarding the binding, uptake, and processing of chemically inactivated virions leading to efficient antigen presentation and should aid in the design of more effective HIV vaccines.
Collapse
Affiliation(s)
- Rachel L Sabado
- Department of Medicine and Pathology, School of Medicine, New York University, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kumar S, Zhou B, Liang F, Yang H, Wang WQ, Zhang ZY. Global analysis of protein tyrosine phosphatase activity with ultra-sensitive fluorescent probes. J Proteome Res 2007; 5:1898-905. [PMID: 16889411 DOI: 10.1021/pr050449x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein tyrosine phosphatases (PTPs) consist of a large family of enzymes known to play important roles in controlling virtually all aspects of cellular processes. However, assigning functional significance of PTPs in normal physiology and in diseases remains a major challenge in cell signaling. Since the function of a PTP is directly associated with its intrinsic activity, which is subject to post-translational regulation, new tools are needed to monitor the dynamic activities of PTPs, rather than mere abundance, on a global scale within the physiologically relevant environment of cells. To meet this objective, we report the synthesis and characterization of two rhodamine-conjugated probes that covalently label the active site of the PTPs in an activity-dependent manner, thus providing a direct readout of PTP activity and superior sensitivity, robustness, and quantifiability to previously reported biotinylated probes. We present evidence that the fluorescent probes can be used to identify new PTP markers and targets for potential diagnosis and treatment of human diseases. We also show that the fluorescent probes are capable of monitoring H(2)O(2)-mediated PTP inactivation, which should facilitate the study of regulated H(2)O(2) production as a new tier of control over tyrosine phosphorylation-dependent signal transduction. The ability to profile the entire PTP family on the basis of changes in their activity is expected to yield new functional insights into pathways regulated by PTPs and contribute to the discovery of PTPs as novel therapeutic targets.
Collapse
Affiliation(s)
- Sanjai Kumar
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
16
|
Nagy P, Vámosi G, Damjanovich S, Damjanovich L. ICAM-1 inhibits the homocluster formation of MHC-I in colon carcinoma cells. Biochem Biophys Res Commun 2006; 347:758-63. [PMID: 16844085 DOI: 10.1016/j.bbrc.2006.06.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 06/25/2006] [Indexed: 11/23/2022]
Abstract
ICAM-1 and MHC-I proteins play fundamental roles in antigen presentation, activation of T lymphocytes, and immune responses against tumor cells. Both of them participate in the formation of lipid raft-associated membrane protein clusters. We found significant colocalization between ICAM-1 and MHC-I at the level of large-scale associations. We combined RNA interference and fluorescence resonance energy transfer studies to show that ICAM-1 promotes the partial disassembly of MHC-I homoclusters on LS-174T colon carcinoma cells. Interferon-gamma (IFN-gamma) treatment induced an increase in the expression of MHC-I and ICAM-1 resulting in decreased MHC-I homoassociation. Small interfering RNAs directed against ICAM-1 restored the homoassociation of MHC-I without influencing the expression level of MHC-I by eliminating ICAM-1 molecules interspersed in MHC-I clusters. We conclude that the composition of membrane protein clusters is dynamically altered in response to both physiological and experimentally elicited changes in antigen expression levels.
Collapse
Affiliation(s)
- Peter Nagy
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Hungary
| | | | | | | |
Collapse
|
17
|
Jiang S, Song R, Popov S, Mirshahidi S, Ruprecht RM. Overlapping synthetic peptides as vaccines. Vaccine 2006; 24:6356-65. [PMID: 16793181 PMCID: PMC7127786 DOI: 10.1016/j.vaccine.2006.04.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/13/2006] [Accepted: 04/20/2006] [Indexed: 01/06/2023]
Abstract
Several vaccine strategies aim to generate cell-mediated immunity (CMI) against microorganisms or tumors. While epitope-based vaccines offer advantages, knowledge of specific epitopes and frequency of major histocompatibility complex (MHC) alleles is required. Here we show that using promiscuous overlapping synthetic peptides (OSP) as immunogens generated peptide-specific CMI in all vaccinated outbred mice and in different strains of inbred mice; CMI responses also recognized viral proteins. OSP immunogens also induced CMI ex vivo in dendritic cell/T-cell cocultures involving cells from individuals with different HLA haplotypes. Thus, broad CMI was induced by OSP in different experimental settings, using different immunogens, without identifying either epitopes or MHC backgrounds of the vaccinees.
Collapse
Affiliation(s)
- Shisong Jiang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
18
|
Gupta V, Tabiin TM, Sun K, Chandrasekaran A, Anwar A, Yang K, Chikhlikar P, Salmon J, Brusic V, Marques ET, Kellathur SN, August TJ. SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens. Virology 2006; 347:127-39. [PMID: 16387339 PMCID: PMC7111852 DOI: 10.1016/j.virol.2005.11.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/22/2005] [Accepted: 11/22/2005] [Indexed: 01/12/2023]
Abstract
Correspondence between the T-cell epitope responses of vaccine immunogens and those of pathogen antigens is critical to vaccine efficacy. In the present study, we analyzed the spectrum of immune responses of mice to three different forms of the SARS coronavirus nucleocapsid (N): (1) exogenous recombinant protein (N-GST) with Freund's adjuvant; (2) DNA encoding unmodified N as an endogenous cytoplasmic protein (pN); and (3) DNA encoding N as a LAMP-1 chimera targeted to the lysosomal MHC II compartment (p-LAMP-N). Lysosomal trafficking of the LAMP/N chimera in transfected cells was documented by both confocal and immunoelectron microscopy. The responses of the immunized mice differed markedly. The strongest T-cell IFN-γ and CTL responses were to the LAMP-N chimera followed by the pN immunogen. In contrast, N-GST elicited strong T cell IL-4 but minimal IFN-γ responses and a much greater antibody response. Despite these differences, however, the immunodominant T-cell ELISpot responses to each of the three immunogens were elicited by the same N peptides, with the greatest responses being generated by a cluster of five overlapping peptides, N76–114, each of which contained nonameric H2d binding domains with high binding scores for both class I and, except for N76–93, class II alleles. These results demonstrate that processing and presentation of N, whether exogenously or endogenously derived, resulted in common immunodominant epitopes, supporting the usefulness of modified antigen delivery and trafficking forms and, in particular, LAMP chimeras as vaccine candidates. Nevertheless, the profiles of T-cell responses were distinctly different. The pronounced Th-2 and humoral response to N protein plus adjuvant are in contrast to the balanced IFN-γ and IL-4 responses and strong memory CTL responses to the LAMP-N chimera.
Collapse
Affiliation(s)
- Vandana Gupta
- Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
| | - Tani M. Tabiin
- Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
| | - Kai Sun
- Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
| | - Ananth Chandrasekaran
- Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
| | - Azlinda Anwar
- Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
| | - Kun Yang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Priya Chikhlikar
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Jerome Salmon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Vladimir Brusic
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore
- School of Land and Food Sciences and the Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Ernesto T.A. Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
- Department of Medicine, Division of Infectious Diseases, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21218, USA
- Virology and Experimental Therapy Laboratory, Aggeu Magalhaes Research Center, Recife, PE 50670-420, Brazil
| | - Srinivasan N. Kellathur
- Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Thomas J. August
- Division of Biomedical Sciences, Johns Hopkins in Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
- Corresponding author. Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA. Fax: +1 410 502 3066.
| |
Collapse
|
19
|
Roychowdhury S, Svensson CK. Mechanisms of drug-induced delayed-type hypersensitivity reactions in the skin. AAPS JOURNAL 2005; 7:E834-46. [PMID: 16594635 PMCID: PMC2750952 DOI: 10.1208/aapsj070480] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cutaneous drug reactions (CDRs) are the most commonly reported adverse drug reactions. These reactions can range from mildly discomforting to life threatening. CDRs can arise either from immunological or nonimmunological mechanisms, though the preponderance of evidence suggests an important role for immunological responses. Some cutaneous eruptions appear shortly after drug intake, while others are not manifested until 7 to 10 days after initiation of therapy and are consistent with delayed-type hypersensitivity. This review discusses critical steps in the initiation of delayed-type hypersensitivity reactions in the skin, which include protein haptenation, dendritic cell activation/migration and T-cell propagation. Recently, an alternative mechanism of drug presentation has been postulated that does not require bioactivation of the parent drug or antigen processing to elicit a drug-specific T-cell response. This review also discusses the role of various immune-mediators, such as cytokines, nitric oxide, and reactive oxygen species, in the development of delayed-type drug hypersensitivity reactions in skin. As keratinocytes have been shown to play a crucial role in the initiation and propagation of cutaneous immune responses, we also discuss the means by which these cells may initiate or modulate CDRs.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Division of Pharmaceutics, College of Pharmacy, The University of Iowa, 115 S Grand Avenue, S213 PHAR Iowa City, IA 52242
| | - Craig K. Svensson
- Division of Pharmaceutics, College of Pharmacy, The University of Iowa, 115 S Grand Avenue, S213 PHAR Iowa City, IA 52242
| |
Collapse
|
20
|
Godefroy E, Moreau-Aubry A, Diez E, Dreno B, Jotereau F, Guilloux Y. alpha v beta3-dependent cross-presentation of matrix metalloproteinase-2 by melanoma cells gives rise to a new tumor antigen. ACTA ACUST UNITED AC 2005; 202:61-72. [PMID: 15998788 PMCID: PMC2212908 DOI: 10.1084/jem.20042138] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A large array of antigens that are recognized by tumor-specific T cells has been identified and shown to be generated through various processes. We describe a new mechanism underlying T cell recognition of melanoma cells, which involves the generation of a major histocompatibility complex class I–restricted epitope after tumor-mediated uptake and processing of an extracellular protein—a process referred to as cross-presentation—which is believed to be restricted to immune cells. We show that melanoma cells cross-present, in an αvβ3-dependent manner, an antigen derived from secreted matrix metalloproteinase–2 (MMP-2) to human leukocyte antigen A*0201-restricted T cells. Because MMP-2 activity is critical for melanoma progression, the MMP-2 peptide should be cross-presented by most progressing melanomas and represents a unique antigen for vaccine therapy of these tumors.
Collapse
Affiliation(s)
- Emmanuelle Godefroy
- Institut National de la Santé et de la Recherche Médicale, Unité 601, Nantes, France
| | | | | | | | | | | |
Collapse
|
21
|
Hopkins LM, Davis JM, Buchli R, Vangundy RS, Schwartz KA, Gerlach JA. MHC Class I–Associated Peptides Identified From Normal Platelets and From Individuals With Idiopathic Thrombocytopenic Purpura. Hum Immunol 2005; 66:874-83. [PMID: 16216671 DOI: 10.1016/j.humimm.2005.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Indexed: 11/22/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules bind and display peptide antigens on the cell surface. CD8(+) T lymphocytes recognize peptides in association with class I proteins to initiate a cytotoxic immune response. To understand the specificity of such immune responses and to facilitate the development of therapies for disease, it is important to identify MHC-presented peptides. In this study, platelets, easily obtainable and often associated with immune-mediated disease, were selected to identify MHC class I-associated peptides. MHC-associated peptides presented on platelets of normal individuals and individuals with idiopathic thrombocytopenic purpura (ITP) were characterized. ITP is characterized by the premature immune destruction of platelets. It is associated with the production of antiplatelet autoantibodies, most often targeting platelet membrane GPIIb/IIIa or GPIb/IX. In addition to characterizing five fully and several partially sequenced peptides from platelets, the peptide GPRGA(L/I)S(L/I)(L/I) was identified from four of the five ITP patients. The anchor motif of this peptide correlates with the presence of the HLA-B7 allele. A BLAST search identified this peptide as GPIb (4-12). In conclusion, platelets from normal and ITP individuals can present peptides from general cellular proteins and platelet specific proteins, such as GPIb, to the immune system via MHC class I.
Collapse
Affiliation(s)
- Leann M Hopkins
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ramadan G, Davies B, Kurup VP, Keever-Taylor CA. Generation of cytotoxic T cell responses directed to human leucocyte antigen Class I restricted epitopes from the Aspergillus f16 allergen. Clin Exp Immunol 2005; 140:81-91. [PMID: 15762878 PMCID: PMC1809331 DOI: 10.1111/j.1365-2249.2005.02738.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Invasive aspergillosis (IA) is a major cause of infection-related mortality in patients with haematological malignancies, especially in recipients of haematopoietic stem cell transplants. We have prepared overlapping pentadecapeptides (11-aa overlap with previous peptide) spanning the entire 427-aa coding region of the Aspergillus allergen, Asp f16 shown previously in mice to induce Th1-type cell responses in vivo and in humans to induce proliferative and cytotoxic CD4(+) T cell responses. Mature dendritic cells (DC) pulsed with a complete pool of peptides were used to generate T cell lines. Two lines from HLA-B*3501(+) donors were found to be strongly cytotoxic to autologous Asp f16-peptide pool- and Aspergillus culture extract-pulsed targets after 4-5 weekly primings. Cytotoxic T lymphocyte (CTL) culture supernatant killed Aspergillus conidia, and cells directly killed Aspergillus hyphae. Cytotoxic activity and interferon (IFN)-gamma production were mediated exclusively by CD8(+) T cells in response to pool-pulsed targets. Interleukin (IL)-4 production was not detected. CTL activity was restricted by HLA-B*3501 and based on peptide prediction programmes was most probably directed to YFKYTAAAL (YFK), LPLCSAQTW (LPL) and GTRFPQTPM (GTR) in one donor, while only LPL was recognized by CTL from the second donor. Pool-pulsed B*3503(+) BLCL but not B*3502(+) or B*3508(+) BLCL presented peptide to donor no. 1. B*3503(+) BLCL presented YFK and to a lesser extent GTR, but not peptide LPL. Our data show that in addition to our previously identified Class II restricted peptide response, DC pulsed with a pentadecapeptide pool from Asp f16 are capable of inducing polyclonal, HLA-Class I-restricted, Aspergillus-specific T cells that may be capable of conferring immunity to IA.
Collapse
Affiliation(s)
- G Ramadan
- Medical College of Wisconsin, BMT Program, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The conversion of exogenous and endogenous proteins into immunogenic peptides recognized by T lymphocytes involves a series of proteolytic and other enzymatic events culminating in the formation of peptides bound to MHC class I or class II molecules. Although the biochemistry of these events has been studied in detail, only in the past few years has similar information begun to emerge describing the cellular context in which these events take place. This review thus concentrates on the properties of antigen-presenting cells, especially those aspects of their overall organization, regulation, and intracellular transport that both facilitate and modulate the processing of protein antigens. Emphasis is placed on dendritic cells and the specializations that help account for their marked efficiency at antigen processing and presentation both in vitro and, importantly, in vivo. How dendritic cells handle antigens is likely to be as important a determinant of immunogenicity and tolerance as is the nature of the antigens themselves.
Collapse
Affiliation(s)
- E Sergio Trombetta
- Department of Cell Biology and Section of Immunobiology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA.
| | | |
Collapse
|
24
|
Pozharskaya VP, Weakland LL, Offermann MK. Inhibition of infectious human herpesvirus 8 production by gamma interferon and alpha interferon in BCBL-1 cells. J Gen Virol 2004; 85:2779-2787. [PMID: 15448338 DOI: 10.1099/vir.0.80214-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human herpesvirus-8 (HHV-8) is aetiologically linked to Kaposi's sarcoma and primary effusion lymphoma. Although interferon-alpha (IFN-alpha) and interferon-gamma (IFN-gamma) are both antiviral cytokines, IFN-alpha blocks entry of HHV-8 into the lytic phase, whereas IFN-gamma induces an increase in the percentage of cells undergoing lytic replication. Multiple events in the lytic cascade must be completed to produce infectious virus. The ability of both types of IFN to affect the production of infectious virus was explored. Both IFN-alpha and IFN-gamma induced expression of the antiviral proteins double-stranded RNA-activated protein kinase (PKR) and 2'5'-oligoadenylate synthetase (2'5'-OAS) in HHV-8-infected BCBL-1 cells. Higher levels resulted from incubation with IFN-alpha than with IFN-gamma, whereas IFN-gamma induced higher levels of IRF-1 than did IFN-alpha. IFN-gamma induced a minor increase in lytic viral gene expression, which was not accompanied by a detectable increase in infectious virus. When lytic replication of HHV-8 was induced using TPA, high levels of infectious virus appeared in the conditioned medium. When IFN-gamma was present during TPA stimulation, the production of infectious virus was reduced by at least a 60 %, and IFN-alpha fully blocked TPA-induced production of infectious virus. The greater reduction of viral production that occurred with IFN-alpha is consistent with the higher levels of the antiviral proteins PKR and 2'5'-OAS induced by IFN-alpha than by IFN-gamma. These studies indicate that the augmentation of cellular antiviral defences by IFN-gamma was sufficient to prevent production of infectious virus despite IFN-gamma-induced entry of some cells into the lytic phase of HHV-8 replication.
Collapse
Affiliation(s)
- Veronika P Pozharskaya
- Winship Cancer Institute, Emory University, 1365-B Clifton Rd NE, Atlanta, GA 30322, USA
| | - Laura L Weakland
- Winship Cancer Institute, Emory University, 1365-B Clifton Rd NE, Atlanta, GA 30322, USA
| | - Margaret K Offermann
- Winship Cancer Institute, Emory University, 1365-B Clifton Rd NE, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Hartmann-Petersen R, Gordon C. Integral UBL domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol 2004; 15:247-59. [PMID: 15209385 DOI: 10.1016/j.semcdb.2003.12.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact with 26S proteasomes. The 26S proteasome is a multisubunit protease which is responsible for the majority of intracellular proteolysis in eukaryotic cells. Before degradation commences most proteins are first marked for destruction by being coupled to a chain of ubiquitin molecules. Some UBL-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle to accommodate various cellular substrates.
Collapse
|
26
|
Hemelaar J, Galardy PJ, Borodovsky A, Kessler BM, Ploegh HL, Ovaa H. Chemistry-based functional proteomics: mechanism-based activity-profiling tools for ubiquitin and ubiquitin-like specific proteases. J Proteome Res 2004; 3:268-76. [PMID: 15113103 DOI: 10.1021/pr0341080] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Determining the biological function of newly discovered gene products requires the development of novel functional approaches. To facilitate this task, recent developments in proteomics include small molecular probes that target proteolytic enzyme families including serine, threonine, and cysteine proteases. For the families of ubiquitin (Ub) and ubiquitin-like (UBL)-specific proteases, such tools were lacking until recently. Here, we review the advances made in the development of protein-based active site-directed probes that target proteases specific for ubiquitin and ubiquitin-like proteins. Such probes were applied successfully to discover and characterize novel Ub/UBL-specific proteases. Ub/UBL processing and deconjugation are performed by a diverse set of proteases belonging to several different enzyme families, including members of the ovarian tumor domain (OTU) protease family. A further definition of this family of enzymes will benefit from a directed chemical proteomics approach. Some of the Ub/UBL-specific proteases react with multiple Ub/UBLs and members of the same protease family can recognize multiple Ub/UBLs, underscoring the need for tools that appropriately address enzyme specificity.
Collapse
Affiliation(s)
- Joris Hemelaar
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chen L, Jondal M. Endolysosomal Processing of Exogenous Antigen into Major Histocompatibility Complex Class I-Binding Peptides. Scand J Immunol 2004; 59:545-52. [PMID: 15182249 DOI: 10.1111/j.1365-3083.2004.01426.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An alternative endolysosomal pathway has recently been suggested for the processing of MHC-I-binding peptides, and peptide/MHC-I complexes have been demonstrated in this compartment. However, it remains unclear where in the antigen-presenting cells such peptides are processed, in the endolysosomes themselves or in the proteasomal complex. Here, we have investigated this using monoclonal antibodies specific for the immunodominant SIINFEKL/Kb complex (25-D1) or for the carbohydrate part of Db- or Kb-binding glycopeptides in combination with inhibitors for classical and endolysosomal MHC-I-processing pathways. Alternative processing was detected in both wt and TAP1(-/-) immature DC (iDC) as the expression of SIINFEKL/Kb complexes on the surface of OVA-treated cells in the presence of Brefeldin A (BFA) or lactacystin and their absence in the presence of the lysosomotropic amines ammonium chloride, chloroquine and methylamine. Internalized Db- and Kb-binding glycopeptides, detected with high specificity using an anti-galabiose (Gal2) monoclonal antibody, were found to appear on the cell surface of BFA-treated cells after intracellular MHC-I-binding. Peptide exchange in Kb was demonstrated as the gradual appearance of SIINFEKL/Kb complexes on BFA-treated cells which earlier had been saturated with another Kb-binding peptide. Our data support the presence of a fully functional endolysosomal processing pathway in iDC guided by the chaperone function of MHC-I molecules.
Collapse
Affiliation(s)
- L Chen
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
28
|
Tanioka T, Hattori A, Masuda S, Nomura Y, Nakayama H, Mizutani S, Tsujimoto M. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J Biol Chem 2003; 278:32275-83. [PMID: 12799365 DOI: 10.1074/jbc.m305076200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we report the cloning and characterization of a novel human aminopeptidase, which we designate leukocyte-derived arginine aminopeptidase (L-RAP). The sequence encodes a 960-amino acid protein with significant homology to placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase. The predicted L-RAP contains the HEXXH(X)18E zinc-binding motif, which is characteristic of the M1 family of zinc metallopeptidases. Phylogenetic analysis indicates that L-RAP forms a distinct subfamily with placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase in the M1 family. Immunocytochemical analysis indicates that L-RAP is located in the lumenal side of the endoplasmic reticulum. Among various synthetic substrates tested, L-RAP revealed a preference for arginine, establishing that the enzyme is a novel arginine aminopeptidase with restricted substrate specificity. In addition to natural hormones such as angiotensin III and kallidin, L-RAP cleaved various N-terminal extended precursors to major histocompatibility complex class I-presented antigenic peptides. Like other proteins involved in antigen presentation, L-RAP is induced by interferon-gamma. These results indicate that L-RAP is a novel aminopeptidase that can trim the N-terminal extended precursors to antigenic peptides in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Toshihiro Tanioka
- Laboratory of Cellular Biochemistry, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Pittock SJ, Lucchinetti CF, Lennon VA. Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann Neurol 2003; 53:580-7. [PMID: 12730991 DOI: 10.1002/ana.10518] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We identified the IgG autoantibody ANNA-2 ("anti-Ri") in 34 patients in a 12-year period by immunofluorescence screening of sera from approximately 75000 patients with subacute neurological disorders that were suspected to be paraneoplastic. Detailed clinical information was available for 28 patients (10 men, 18 women). Cancer was diagnosed in 24 patients (86%); 21 had histologically proven carcinoma (10 lung, 9 breast, 1 cervical, 1 bladder), and 3 had an intrathoracic imaging abnormality. Cancer anteceded neurological symptoms in 4 of 28 patients. Cancer detection frequency increased with continued surveillance. Neurological disorders, in decreasing frequency, were brainstem syndrome (including opsoclonus, myoclonus, or both), cerebellar syndrome, myelopathy, peripheral neuropathy, cranial neuropathy, movement disorder, encephalopathy, Lambert-Eaton syndrome, and seizures. Four patients had laryngospasm and four had jaw opening dystonia (two with neck dystonia). Nine (32%) were wheelchair-bound 1 month after neurological symptom onset. Most improved neurologically after immunomodulatory or tumor-directed therapy. Accompanying autoantibodies, found in 73% of sera, included ANNA-1, ANNA-3, CRMP-5-IgG, P/Q-type and N-type Ca(2+) channel antibodies, and muscle-type acetylcholine receptor antibody. Some neurological accompaniments of ANNA-2 may reflect potentially pathogenic humoral or cell-mediated responses to coimmunogenic tumor antigens, for example, Lambert-Eaton syndrome (P/Q-type Ca(2+) channel antibody) and peripheral neuropathy (ANNA-1 effector T cells).
Collapse
Affiliation(s)
- Sean J Pittock
- Department of Neurology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
30
|
Lautscham G, Rickinson A, Blake N. TAP-independent antigen presentation on MHC class I molecules: lessons from Epstein-Barr virus. Microbes Infect 2003; 5:291-9. [PMID: 12706442 DOI: 10.1016/s1286-4579(03)00031-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For recognition by CD8(+) lymphocytes, peptides derived from cytosolically processed antigen need to access MHC class I molecules en route to the target cell surface. This normally requires peptide transport into the endoplasmic reticulum via the transporter associated with antigen presentation (TAP) complex. However, as recent work with Epstein-Barr virus illustrates, TAP-independent presentation pathways also exist and are growing in number.
Collapse
Affiliation(s)
- Georg Lautscham
- Max Delbrueck Centrum for Molecular Medicine, 13125 Berlin, Germany
| | | | | |
Collapse
|