1
|
Wang L, Liang Q, Lin A, Chen X, Wu Y, Zhang B, Zhang Y, Min H, Wen Y, Song S, Gao Q. Puerarin Increases Survival and Protects Against Organ Injury by Suppressing NF-κB/JNK Signaling in Experimental Sepsis. Front Pharmacol 2020; 11:560. [PMID: 32457606 PMCID: PMC7221141 DOI: 10.3389/fphar.2020.00560] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Puerarin, an isoflavonoid rich in Radix Puerariae, has been reported to be a broadly effective regulator in various biological processes and clinic conditions. However, the role of puerarin in sepsis-induced mortality with multiple-organ injury remains unknown. Herein, we showed that puerarin potently attenuated organ injury and increased survival rate in both lipopolysaccharides (LPS) and cecal ligation and puncture (CLP) induced mouse sepsis models. It greatly suppressed systemic inflammation, determined by the serum levels of proinflammatory factors TNF-α, IL-6, IL-1β, IL-10, as well as monocyte chemotactic protein-1 (MCP-1) and C-reactive protein (CRP). Flow cytometry analysis indicated that puerarin settled overall inflammation mainly by normalizing expanded macrophages with limited effects on dendritic cells and CD4+T cells in the circulation of sepsis mice. In the liver, puerarin inhibited the transcription of inflammatory factor TNF-α, IL-6, and IL-1β and protected hepatocyte apoptosis in sepsis mouse models. In vitro, puerarin inhibited LPS-induced inflammation in LO2 hepatocytes, prevented TNF-α-mediated cell apoptosis and promoted an M2 phenotype revealed by M2 marker IL-10 and Arginase-1 (Arg-1) in LPS challenged Raw 264.7 macrophages, through the inhibition of TLR4/NF-κB/JNK pathway. In conclusion, puerarin reduced systemic inflammation and protected organ injury in sepsis mice, thus, it might provide a new modality for a better treatment of sepsis.
Collapse
Affiliation(s)
- Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Anqi Lin
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xiufang Chen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongzhen Wu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Bin Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, China
| | - Yu Zhang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Haiyan Min
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yanting Wen
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Zhao R, Liu Y, Wang H, Yang J, Niu W, Fan S, Xiong W, Ma J, Li X, Phillips JB, Tan M, Qiu Y, Li G, Zhou M. BRD7 plays an anti-inflammatory role during early acute inflammation by inhibiting activation of the NF-кB signaling pathway. Cell Mol Immunol 2017; 14:830-841. [PMID: 27374794 PMCID: PMC5649105 DOI: 10.1038/cmi.2016.31] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence has shown a strong association between tumor-suppressor genes and inflammation. However, the role of BRD7 as a novel tumor suppressor in inflammation remains unknown. In this study, by observing BRD7 knockout mice for 6-12 months, we discovered that compared with BRD7+/+ mice, BRD7-/- mice were more prone to inflammation, such as external inflammation and abdominal abscess. By using mouse embryo fibroblast (MEF) cells from the BRD7 knockout mouse, an in vitro lipopolysaccharide (LPS)-stimulated MEF cell line was established. The mRNA levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-X-C motif) ligand 1 (CXCL-1) and inducible nitric oxide synthase (iNOS) were significantly increased in BRD7-/- MEF cells compared with BRD7+/+ MEF cells after LPS stimulation for 1 or 6 h. In addition, the cytoplasm-to-nucleus translocation of nuclear factor kappa-B (NF-κB; p65) and an increased NF-κB reporter activity were observed in BRD7-/- MEF cells at the 1 h time point but not at the 6 h time point. Furthermore, an in vivo dextran sodium sulfate (DSS)-induced acute colitis model was created. As expected, the disease activity index (DAI) value was significantly increased in the BRD7-/- mice after DSS treatment for 1-5 days, which was demonstrated by the presence of a significantly shorter colon, splenomegaly and tissue damage. Moreover, higher expression levels of IL-6, TNF-α, p65, CXCL-1 and iNOS, and an increased level of NF-κB (p65) nuclear translocation were also found in the DSS-treated BRD7-/- mice. These findings suggest that BRD7 has an anti-inflammatory role during early acute inflammation by inhibiting activation of the NF-кB signaling pathway, which provides evidence to aid in understanding the therapeutic effects of BRD7 on inflammatory diseases.
Collapse
Affiliation(s)
- Ran Zhao
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| | - Yukun Liu
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| | - Heran Wang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| | - Jing Yang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| | - Weihong Niu
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| | - Songqing Fan
- The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Xiong
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| | - Jian Ma
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| | - Xiaoling Li
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| | - Joshua B Phillips
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Yuanzheng Qiu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| | - Ming Zhou
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis and Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan 410078, China
| |
Collapse
|
3
|
Gu L, Kitamura M. Sensitive detection and monitoring of senescence-associated secretory phenotype by SASP-RAP assay. PLoS One 2012; 7:e52305. [PMID: 23272236 PMCID: PMC3525586 DOI: 10.1371/journal.pone.0052305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/16/2012] [Indexed: 12/22/2022] Open
Abstract
Senescence-associated secretory phenotype (SASP) is characterized by abundant secretion of various proteins in senescent cells and implicated in tumor progression and inflammatory responses. However, the profile of secreted proteins in SASP is different from cell type to cell type, and currently, universal markers for SASP have not been reported. In the present investigation, we show that SASP-responsive alkaline phosphatase (SASP-RAP) serves as a sensitive, general and convenient marker for SASP. Etoposide-treated cells exhibited a senescent phenotype characterized by senile morphology, positive staining for senescence-associated β-galactosidase, growth arrest and induction of p53 and p21WAF1/CIP1. In SASP-RAP-transfected cells, exposure to etoposide increased secretion of SASP-RAP time-dependently. The kinetics of secretion was closely correlated with that of activation of the p21WAF1/CIP1 promoter and the p16INK4a promoter. The enhanced secretion of SASP-RAP by senescence was also observed in cells treated with other senescence inducers such as trichostatin A, doxorubicin and 4-phenylbutylic acid. The induction of SASP-RAP by senescence was similarly observed in natural replicative senescence. To confirm selectivity of the SASP-RAP response, cells were treated with senescence-related and -unrelated stimuli (IL-1β, LPS, TNF-α and TGF-β), and induction of senescence markers and activity of SASP-RAP were evaluated in parallel. Unlike etoposide, senescence-unrelated stimuli did not induce p53 and p21WAF1/CIP1, and it was correlated with lack of induction of SASP-RAP. In contrast, senescence-unrelated stimuli up-regulated conventional indicators for SASP, e.g., MMP-3, IL-6 and TIMP, without induction of senescence. SASP-RAP thus serves as a selective, convenient and general marker for detection and monitoring of SASP during cellular senescence.
Collapse
Affiliation(s)
- Liubao Gu
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- Diabetes Care and Research Center, Jiangsu Province Institute of Geriatrics, Nanjing, People’s Republic of China
| | - Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- * E-mail:
| |
Collapse
|
4
|
Zhang HH, Basu S, Wu F, Begley CG, Saris CJM, Dunn AR, Burgess AW, Walker F. Macrophage-colony stimulating factor is required for the production of neutrophil-promoting activity by mouse embryo fibroblasts deficient in G-CSF and GM-CSF. J Leukoc Biol 2007; 82:915-25. [PMID: 17652450 DOI: 10.1189/jlb.0107023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
G-CSF and GM-CSF play important roles in regulating neutrophil production, survival, differentiation, and function. However, we have shown previously that G-CSF/GM-CSF double-deficient [knockout (KO)] mice still develop a profound neutrophilia in bone marrow and blood after infection with Candida albicans. This finding suggests the existence of other systems, which can regulate emergency neutrophil production. We have now developed an "in vitro" technique to detect and characterize a neutrophil-promoting activity (NPA) in the media conditioned by mouse embryonic fibroblasts (MEFs) derived from G-CSF(-/-)/GM-CSF(-/-) mice. NPA is produced in vitro by the MEFs after stimulation with LPS or heat-inactivated C. albicans. Although M-CSF added directly to bone marrow cultures does not sustain granulocyte production, our studies indicate that production of NPA requires activation of the M-CSF receptor (c-fms). First, G-CSF(-/-)/GM-CSF(-/-) MEFs produce high levels of NPA after stimulation with LPS or C. albicans, and G-CSF/GM-CSF/M-CSF triple-KO MEFs do not. Second, the production of NPA by the G-CSF(-/-)/GM-CSF(-/-) MEFs is reduced significantly upon incubation with neutralizing antibodies to M-CSF or c-fms. Third, NPA production by G-CSF(-/-)/GM-CSF(-/-)/M-CSF(-/-) fibroblasts is enhanced by supplementing culture medium with M-CSF. Thus, stimulation of c-fms by M-CSF is a prerequisite for the production of NPA.
Collapse
Affiliation(s)
- Hui Hua Zhang
- Ludwig Institute for Cancer Research, Melbourne Tumor Biology Branch, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Takei E, Tamauchi H, Maruyama H, Nakanishi K, Ishikawa M, Unno N, Habu S. Immunological Characterization of Superantigen-induced Intrauterine Fetal and Newborn Death. Am J Reprod Immunol 2005; 54:232-9. [PMID: 16135014 DOI: 10.1111/j.1600-0897.2005.00305.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM The present study characterizes the immunological responses induced by superantigen and the underlying pathological mechanism using T-cell receptor-transgenic mice (TCR-Tg) to enable the ligand toxic shock syndrome toxin-1 (TSST-1) to induce a cytokine storm. METHOD OF STUDY Three kinds of pregnant mice which could respond to TSST-1 at various levels were injected with TSST-1 on gestation day 17.5 and then the incidence of fetal/newborn death, production of cytokines including serum interleukin-2 (IL-2) and the histological status of the placenta were examined on day 18.5. RESULTS The incidence of fetal/newborn death and the concentrations of cytokines such as IL-2 were higher in TCR-Tg mother than those in other strains of mice. Pathological examinations revealed that the placenta was congestive and apoptotic in TCR-Tg mice. CONCLUSIONS Superantigen injection into pregnant mice appears to increase the incidence of fetal/newborn death through an IL-2-dependent immunological pathway.
Collapse
Affiliation(s)
- Eriko Takei
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Malagarie-Cazenave S, Ségui B, Lévêque S, Garcia V, Carpentier S, Altié MF, Brouchet A, Gouazé V, Andrieu-Abadie N, Barreira Y, Benoist H, Levade T. Role of FAN in tumor necrosis factor-alpha and lipopolysaccharide-induced interleukin-6 secretion and lethality in D-galactosamine-sensitized mice. J Biol Chem 2004; 279:18648-55. [PMID: 14985352 DOI: 10.1074/jbc.m314294200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tumor necrosis factor (TNF) alpha-induced neutral sphingomyelinase-mediated generation of ceramide, a bioactive lipid molecule, is transduced by the adaptor protein FAN, which binds to the intracellular region of the CD120a TNFalpha receptor. FAN-deficient mice do not exhibit any gross abnormality. To further explore the functions of FAN in vivo and because CD120a-deficient mice are resistant to endotoxin-induced liver failure and lethality, we investigated the susceptibility of FAN-deficient animals to lipopolysaccharide (LPS). We show that after d-galactosamine sensitization, FAN-deficient mice were partially resistant to LPS- and TNFalpha-induced lethality. Although LPS challenge resulted in a hepatic ceramide content lower in mutant mice than in control animals, it triggered similar histological alterations, caspase activation, and DNA fragmentation in the liver. Interestingly, LPS-induced elevation of IL-6 (but not TNFalpha) serum concentrations was attenuated in FAN-deficient mice. A less pronounced secretion of IL-6 was also observed after LPS or TNFalpha treatment of cultured peritoneal macrophages and embryonic fibroblasts isolated from FAN-deficient mice, as well as in human fibroblasts expressing a mutated FAN. Finally, we show that d-galactosamine-sensitized IL-6-deficient mice were partially resistant to endotoxin-induced liver apoptosis and lethality. These findings highlight the role of FAN and IL-6 in the inflammatory response initiated by endotoxin, implicating TNFalpha.
Collapse
Affiliation(s)
- Sophie Malagarie-Cazenave
- INSERM U.466, Laboratoire de Biochimie, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fitzpatrick FA, Wheeler R. The immunopharmacology of paclitaxel (Taxol®), docetaxel (Taxotere®), and related agents. Int Immunopharmacol 2003; 3:1699-714. [PMID: 14636822 DOI: 10.1016/j.intimp.2003.08.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Paclitaxel (Taxol) and docetaxel (Taxotere) are among the most unique, and successful, chemotherapeutic agents used for the treatment of breast and ovarian cancer. Both agents have anti-mitotic properties derived from binding to tubulin and excessive stabilization of microtubules. Their anti-neoplastic effects derive from this mechanism. Distinct from their effects on microtubule stabilization, paclitaxel, docetaxel, and related taxanes display immunopharmacological traits. In this review, we discuss their induction of pro-inflammatory genes and proteins; the current hypotheses on the molecular mechanism for this induction, especially its relationship to the lipopolysaccharide (LPS) signaling pathway. We also discuss the structure-activity relationships (SAR) that govern gene induction, especially the striking differences between the SAR for murine and human cells in vitro. Lastly, we discuss the immunopharmacological traits of paclitaxel and docetaxel in terms of their relevance to human clinical pharmacology and toxicology and their activity in animal models of autoimmune disorders.
Collapse
Affiliation(s)
- F A Fitzpatrick
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84103, USA.
| | | |
Collapse
|
8
|
Schilling JD, Hultgren SJ, Lorenz RG. Recent advances in the molecular basis of pathogen recognition and host responses in the urinary tract. Int Rev Immunol 2002; 21:291-304. [PMID: 12486816 DOI: 10.1080/08830180213275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Joel D Schilling
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
9
|
Kohmura Y, Kirikae T, Kirikae F, Nakano M, Sato I. Lipopolysaccharide (LPS)-induced intra-uterine fetal death (IUFD) in mice is principally due to maternal cause but not fetal sensitivity to LPS. Microbiol Immunol 2001; 44:897-904. [PMID: 11145270 DOI: 10.1111/j.1348-0421.2000.tb02581.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study deals with whether lipopolysaccharide (LPS)-induced intra-uterine fetal death (IUFD) is related to LPS-susceptibility of either mother or fetus and how LPS or LPS-induced TNF causes IUFD. LPS-susceptible C3H/HeN or -hypo-susceptible C3H/HeJ pregnant mice and the mice mated reciprocally with these mice were used on days 14 to 16 of gestation for experiments. All of fetuses in pregnant C3H/HeN mice mated with either C3H/HeN males [HeN(HeN)] or C3H/HeJ males [HeN(HeJ)] were killed within 24 hr when injected intravenously (i.v.) with 50 or 100 microg of LPS. On the other hand, the majority of fetuses in C3H/HeJ females mated with either C3H/HeJ males [HeJ(HeJ)] or C3H/HeN males [HeJ(HeN)] survived when injected i.v. with even 400 microg of LPS. These findings indicate that LPS-induced IUFD depends on the maternal LPS-responsiveness. LPS injected into mothers could pass through placenta to fetuses, since an injection with 125I-labeled LPS or IgG into pregnant mice resulted in considerable levels of radioactivity in fetuses as well as placenta. Cultured peritoneal macrophages derived from F1 mice of HeJ(HeN) or HeN(HeJ) mice, produced nitric oxide (NO) and tumor necrosis factor (TNF) in response to LPS, although the levels of NO and TNF were lower in comparison with those of C3H/HeN macrophage cultures, suggesting a possibility that the fetus as well as F1 cells might be responsible to LPS. LPS-induced IUFD was not blocked by treatment with anti-TNF antibody which inhibited LPS-induced TNF production in pregnant females, although an injection of recombinant TNFalpha instead of LPS could induce IUFD, suggesting that the cause of IUFD cannot be attributed to mother-derived TNF alone. The roles of LPS passed through placenta and LPS-induced mediators on IUFD were discussed.
Collapse
Affiliation(s)
- Y Kohmura
- Department of Obstetrics and Gynecology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | |
Collapse
|
10
|
Morrissey J, Guo G, McCracken R, Tolley T, Klahr S. Induction of CD14 in tubular epithelial cells during kidney disease. J Am Soc Nephrol 2000; 11:1681-1690. [PMID: 10966493 DOI: 10.1681/asn.v1191681] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Analysis of gene expression in a mouse model of unilateral ureteral obstruction (UUO) revealed significant induction of CD14 mRNA in kidneys with obstructed ureters. Immunocytochemical analysis indicated that CD14 was upregulated in tubular epithelial cells and this upregulation was not attributable to infiltration of the kidneys by mononuclear cells. This induction of CD14 mRNA was found to occur in BALB/C, C57BL/6, C3H/HeN, and C3H/HeJ mice during UUO. Ischemia/reperfusion of kidneys also induced CD14 mRNA. Mice lacking either of the tumor necrosis factor-alpha receptor (TNFR) genes were also studied; the induction of CD14 was blunted in TNFR 1-knockout mice but not in TNFR2-knockout mice. Apoptosis of tubular cells in lipopolysaccharide-resistant CH3/HeJ mice was significantly (P: < 0. 05) less than that in lipopolysaccharide-responsive CH3/HeN mice during UUO. These results suggest that CD14 is acutely induced in tubular epithelial cells in two mouse models of renal injury. This induction is regulated by tumor necrosis factor-alpha, through TNFR1. CD14 may participate in the apoptosis of tubular epithelial cells on a more chronic basis by activating a pathway that is absent or deficient in C3H/HeJ mice.
Collapse
Affiliation(s)
- Jeremiah Morrissey
- Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri
| | - Guangjie Guo
- Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri
| | - Ruth McCracken
- Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri
| | - Timothy Tolley
- Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri
| | - Saulo Klahr
- Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri
| |
Collapse
|
11
|
Goh KC, deVeer MJ, Williams BR. The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO J 2000; 19:4292-7. [PMID: 10944112 PMCID: PMC302024 DOI: 10.1093/emboj/19.16.4292] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein kinase RNA-regulated (PKR) is an established component of innate antiviral immunity. Recently, PKR has been shown to be essential for signal transduction in other situations of cellular stress. The relationship between PKR and the stress-activated protein kinases (SAPKs), such as p38 mitogen-activated protein kinase (MAPK), is not clear. Using embryonic fibroblasts from PKR wild-type and null mice, we established a requirement for PKR in the activation of SAPKs by double-stranded RNA, lipopolysaccharide (LPS) and proinflammatory cytokines. This does not reflect a global failure to activate SAPKs in the PKR-null background as these kinases are activated normally by anisomycin and other physicochemical stress. Activation of p38 MAPK was restored in immortalized PKR-null cells by reconstitution with human PKR. We also show that LPS induction of interleukin-6 and interleukin-12 mRNA is defective in PKR-null cells, and that production of these cytokines is impaired in PKR-null mice challenged with LPS. Our findings indicate, for the first time, that PKR is required for p38 MAPK signaling and plays a potentially important role in the innate response against bacterial endotoxin.
Collapse
Affiliation(s)
- K C Goh
- Department of Cancer Biology/NB40, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
12
|
Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 1999; 274:17406-9. [PMID: 10364168 DOI: 10.1074/jbc.274.25.17406] [Citation(s) in RCA: 1271] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The life-threatening complications of sepsis in humans are elicited by infection with Gram-negative as well as Gram-positive bacteria. Recently, lipopolysaccharide (LPS), a major biologically active agent of Gram-negative bacteria, was shown to mediate cellular activation by a member of the human Toll-like receptor family, Toll-like receptor (TLR) 2. Here we investigate the mechanism of cellular activation by soluble peptidoglycan (sPGN) and lipoteichoic acid (LTA), main stimulatory components of Gram-positive bacteria. Like LPS, sPGN and LTA bind to the glycosylphosphatidylinositol-anchored membrane protein CD14 and induce activation of the transcription factor NF-kappaB in host cells like macrophages. We show that whole Gram-positive bacteria, sPGN and LTA induce the activation of NF-kappaB in HEK293 cells expressing TLR2 but not in cells expressing TLR1 or TLR4. The sPGN- and LTA-induced NF-kappaB activation was not inhibited by polymyxin B, an antibiotic that binds and neutralizes LPS. Coexpression together with membrane CD14 enhances sPGN signal transmission through TLR2. In contrast to LPS signaling, activation of TLR2 by sPGN and LTA does not require serum. These findings identify TLR2 as a signal transducer for sPGN and LTA in addition to LPS.
Collapse
Affiliation(s)
- R Schwandner
- Tularik Inc., South San Francisco, California 94080, USA
| | | | | | | | | |
Collapse
|
13
|
Moos PJ, Muskardin DT, Fitzpatrick FA. Effect of Taxol and Taxotere on Gene Expression in Macrophages: Induction of the Prostaglandin H Synthase-2 Isoenzyme. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Induction of genes encoding cytokines or other, unidentified proteins may contribute to the pharmacological effects of taxol. We hypothesized that prostaglandin H synthase-2 (PGHS-2) was one of the unidentified genes induced by taxol. Taxol alone or taxol plus IFN-γ increased PGE2 formation, PGHS-2 protein expression, and PGHS-2 mRNA expression in RAW 264.7 murine macrophages. The kinetics for mRNA induction, protein expression, and catalysis were self-consistent. A selective inhibitor of PGHS-2 blocked PGE2 formation by cells incubated with taxol; a selective inhibitor of PGHS-1 had no effect. A glucocorticoid blocked the induction of mRNA, the expression of PGHS-2 protein, and the formation of PGE2. Neither taxol alone nor taxol plus IFN-γ altered the expression of the PGHS-1 isoenzyme in RAW 264.7 cells. Taxotere, an analogue that stabilizes microtubules as potently as taxol, did not alter the expression of PGHS-2, implying that its induction in RAW 264.7 murine macrophages did not originate from microtubule stabilization. Taxol and taxotere each induced PGHS-2 expression in human monocytes suspended in 10% human serum. However, human monocytes suspended in 10% bovine serum responded only to LPS, not to taxol or taxotere, implying that they act independently of the LPS-mimetic process that is prominent in mice. Taxol induced PGHS-2 in human and murine monocytes via a p38 mitogen-associated protein kinase pathway. The inclusion of PGHS-2 among the early response genes induced in leukocytes may be relevant to the beneficial and adverse effects encountered during taxol administration.
Collapse
Affiliation(s)
- Philip J. Moos
- *Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84108; and
| | - D. T. Muskardin
- †Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - F. A. Fitzpatrick
- *Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84108; and
| |
Collapse
|
14
|
Kikkawa I, Saito S, Tominaga K, Hoshino Y, Ooi Y, Nakano M. Lipopolysaccharide (LPS) stimulates the production of tumor necrosis factor (TNF)-alpha and expression of inducible nitric oxide synthase (iNOS) by osteoclasts (OCL) in murine bone marrow cell culture. Microbiol Immunol 1998; 42:591-8. [PMID: 9802559 DOI: 10.1111/j.1348-0421.1998.tb02329.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Osteoclasts (OCL) resorb bone. They are essential for the development of normal bones and the repair of impaired bones. The function of OCL is presumed to be supported by cytokines and other biological mediators, including tumor necrosis factor (TNF)-alpha and nitric oxide (NO). Bacterial lipopolysaccharide (LPS) is a potent inducer of TNF-alpha and inducible nitric oxide synthase (iNOS), which is the specific enzyme for synthesizing NO from L-arginine. To obtain direct evidence on LPS-induced TNF-alpha production and iNOS expression by OCL, OCL-enriched cultures were prepared by 7-day cocultures of bone marrow cells of adult BALB/c mice and osteoblastic cells (OBs) derived from calvaria of newborn BALB/c mice, and the generation of TNF-alpha and iNOS in OCL stimulated with LPS was examined immunocytochemically. When the cultured cells were stimulated with 100 ng/ml of LPS, OCL clearly showed TNF-alpha and iNOS expression. Without LPS-stimulation, no expression was observed. TNF activity in the culture supernatants of the OCL-enriched cultures in the presence of LPS was also detected by cytotoxic assay that used TNF-sensitive L929 cells. The dentin resorption activity of OCL was estimated by area and number of pits formed on dentin slices, which were covered by the OCL fraction and cultured in the presence or absence of LPS, sodium nitroprusside (SNP; a NO generating compound), N(G)-monomethyl L-arginine acetate (L-NMMA; a competitive inhibitor of NO synthase (NOS)), or LPS plus L-NMMA. Pit formation was obviously inhibited in the presence of SNP and slightly inhibited in the presence of L-NMMA, but it was not affected in the presence of LPS or LPS plus L-NMMA. These findings indicate that OCL produces TNF and expresses iNOS in response to LPS, but the LPS-activation of OCL scarcely affects pit formation by them.
Collapse
Affiliation(s)
- I Kikkawa
- Department of Orthopedic Surgery, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|