1
|
Hifumi E, Ito Y, Tsujita M, Taguchi H, Uda T. Enzymatization of mouse monoclonal antibodies to the corresponding catalytic antibodies. Sci Rep 2024; 14:12184. [PMID: 38806597 PMCID: PMC11133420 DOI: 10.1038/s41598-024-63116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Catalytic antibodies possess a dual function that enables both antigen recognition and degradation. However, their time-consuming preparation is a significant drawback. This study developed a new method for quickly converting mice monoclonal antibodies into catalytic antibodies using site-directed mutagenesis. Three mice type monoclonal antibodies targeting hemagglutinin molecule of influenza A virus could be transformed into the catalytic antibodies by deleting Pro95 in CDR-3 of the light chain. No catalytic activity was observed for monoclonal antibodies and light chains. In contrast, the Pro95-deleted light chains exhibited a catalytic activity to cleave the antigenic peptide including the portion of conserved region of hemagglutinin molecule. The affinity of the Pro95-deleted light chains to the antigen increased approximately 100-fold compared to the wild-type light chains. In the mutants, three residues (Asp1, Ser92, and His93) come closer to the appropriate position to create the catalytic site and contributing to the enhancement of both catalytic function and immunoreactivity. Notably, the Pro95-deleted catalytic light chains could suppress influenza virus infection in vitro assay, whereas the parent antibody and the light chain did not. This strategy offers a rapid and efficient way to create catalytic antibodies from existing antibodies, accelerating the development for various applications in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan.
- Research Center for GLOBAL/LOCAL Infectious Diseases, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan.
| | - Yuina Ito
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
| | - Moe Tsujita
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
| | - Hiroaki Taguchi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, 510-0293, Japan
| | - Taizo Uda
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
- Materials Open Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), Fukuoka, 819-0388, Japan
| |
Collapse
|
2
|
Zavialova M, Kamaeva D, Kazieva L, Skvortsov VS, Smirnova L. Some structural features of the peptide profile of myelin basic protein-hydrolyzing antibodies in schizophrenic patients. PeerJ 2023; 11:e15584. [PMID: 37431466 PMCID: PMC10329820 DOI: 10.7717/peerj.15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/26/2023] [Indexed: 07/12/2023] Open
Abstract
The antibodies of schizophrenic patients that hydrolyze myelin basic protein (MBP) have been actively studied recently, but the mechanism of the catalytic properties of immunoglobulin molecules remains unknown. Determination of specific immunoglobulin sequences associated with the high activity of MBP proteolysis will help to understand the mechanisms of abzyme catalysis. In the course of comparative mass spectrometric analysis of IgG peptides from the blood serum of patients with acute schizophrenia and healthy people, 12 sequences were identified, which were found only in antibodies that hydrolyze MBP. These sequences belong to IgG heavy chains and κ- and λ-type light chains, with eight of them belonging to variable domains. The content of peptides from the variable regions of the light chains does not correlate with the proteolytic activity of IgG to MBP in patients with schizophrenia, whereas for two sequences from the variable regions of the heavy chains (FQ(+0.98)GWVTMTR and *LYLQMN(+0.98)SLR), an increase in activity with increasing their concentration. The results suggest that these sequences may be involved in one way or another in MBP hydrolysis.
Collapse
Affiliation(s)
| | - Daria Kamaeva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | | | | | - Liudmila Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
3
|
Kamaeva DA, Kazantseva DV, Boiko AS, Mednova IA, Smirnova LP, Kornetova EG, Ivanova SA. The Influence of Antipsychotic Treatment on the Activity of Abzymes Targeting Myelin and Levels of Inflammation Markers in Patients with Schizophrenia. Biomedicines 2023; 11:biomedicines11041179. [PMID: 37189796 DOI: 10.3390/biomedicines11041179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Catalytic antibodies, or abzymes, are capable of not only binding but also hydrolyzing various proteins. Previously, an increase in the level of myelin basic protein (MBP)-hydrolyzing activity of antibodies was shown in patients with a number of neurological and mental disorders, including schizophrenia. Furthermore, antipsychotic therapy is known to induce a change in cytokine levels in patients with schizophrenia, which affects regulation of the immune response and inflammatory status. This study investigated the influence of typical and atypical antipsychotics on catalytic antibody activity and the 10 major pro- and anti-inflammatory serum cytokine levels. The study included 40 patients with schizophrenia: 15 treated with first-generation antipsychotics and 25 treated with atypical antipsychotics for 6 weeks. It was found that treatment with atypical antipsychotics changed the levels of some pro-inflammatory cytokines. Antipsychotic therapy also caused a significant decrease in MBP-hydrolyzing activity in patients with schizophrenia (p = 0.0002), and associations of catalytic activity with interleukins were observed.
Collapse
Affiliation(s)
- Daria A Kamaeva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Daria V Kazantseva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Irina A Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Liudmila P Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt, 2, Tomsk 634050, Russia
| |
Collapse
|
4
|
Obtaining Highly Active Catalytic Antibodies Capable of Enzymatically Cleaving Antigens. Int J Mol Sci 2022; 23:ijms232214351. [PMID: 36430828 PMCID: PMC9697424 DOI: 10.3390/ijms232214351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A catalytic antibody has multiple functions compared with a monoclonal antibody because it possesses unique features to digest antigens enzymatically. Therefore, many catalytic antibodies, including their subunits, have been produced since 1989. The catalytic activities often depend on the preparation methods and conditions. In order to elicit the high catalytic activity of the antibodies, the most preferable methods and conditions, which can be generally applicable, must be explored. Based on this view, systematic experiments using two catalytic antibody light chains, #7TR and H34, were performed by varying the purification methods, pH, and chemical reagents. The experimental results obtained by peptidase activity tests and kinetic analysis, revealed that the light chain's high catalytic activity was observed when it was prepared under a basic condition. These data imply that a small structural modulation of the catalytic antibody occurs during the purification process to increase the catalytic activity while the antigen recognition ability is kept constant. The presence of NaCl enhanced the catalytic activity. When the catalytic light chain was prepared with these preferable conditions, #7TR and H34 hugely enhanced the degradation ability of Amyloid-beta and PD-1 peptide, respectively.
Collapse
|
5
|
A new catalytic site functioning in antigen cleavage by H34 catalytic antibody light chain. Sci Rep 2022; 12:19185. [PMID: 36357546 PMCID: PMC9649737 DOI: 10.1038/s41598-022-23689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
The cleavage reactions of catalytic antibodies are mediated by a serine protease mechanism involving a catalytic triad composed of His, Ser, and Asp residues, which reside in the variable region. Recently, we discovered a catalytic antibody, H34 wild type (H34wt), that is capable of enzymatically cleaving an immune-check point PD-1 peptide and recombinant PD-1; however, H34wt does not contain His residues in the variable region. To clarify the reason behind the catalytic features of H34wt and the amino acid residues involved in the catalytic reaction, we performed site-directed mutagenesis focusing on the amino acid residues involved in the cleavage reaction, followed by catalytic activity tests, immunological reactivity evaluation, and molecular modeling. The results revealed that the cleavage reaction by H34wt proceeds through the action of a new catalytic site composed of Arg, Thr, and Gln. This new scheme differs from that of the serine protease mechanism of catalytic antibodies.
Collapse
|
6
|
Hifumi E, Taguchi H, Nonaka T, Harada T, Uda T. Finding and characterizing a catalytic antibody light chain, H34, capable of degrading the PD-1 molecule. RSC Chem Biol 2021; 2:220-229. [PMID: 34458785 PMCID: PMC8341958 DOI: 10.1039/d0cb00155d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
Programmed cell death 1 (PD-1) is an immune checkpoint molecule regulating T-cell function. Preventing PD-1 binding to its ligand PD-L1 has emerged as an important tool in immunotherapy. Here, we describe a unique human catalytic antibody light chain, H34, which mediates enzymatic degradation of human PD-1 peptides and recombinant human PD-1 protein and thus functions to prevent the binding of PD-1 with PD-L1. H34 degraded one half of the PD-1 molecules within about 6 h under the experimental conditions. Investigating the acquisition of the catalytic function by H34, which belongs to subgroup I and lacks a Pro95 residue in CDR-3, revealed the importance of this sequence, as a Pro95-reconstituted mutant (H34-Pro95(+)) exhibited very little catalytic activity to cleave PD-1. Interestingly, EDTA inhibited the catalytic activity of H34, which could work as a metallo-protease. Zn2+ or Co2+ ions may work as a cofactor. It is meaningfull that H34 was obtained from the human antibody gene taken from a healthy volunteer, suggesting that we potentially have such unique molecules in our body.
Collapse
Affiliation(s)
- Emi Hifumi
- Oita University, Research Promotion Institute 700 Dannoharu Oita-shi Oita 870-1192 Japan
| | - Hiroaki Taguchi
- Suzuka University of Medical Science, Faculty of Pharmaceutical Sciences 3500-3 Minamitamagaki-cho Suzuka 510-0293 Japan
| | - Tamami Nonaka
- Oita University, Research Promotion Institute 700 Dannoharu Oita-shi Oita 870-1192 Japan
| | - Takunori Harada
- Oita University, Faculty of Science & Technology, Division of Applied Chemistry 700 Dannoharu Oita-shi Oita 870-1192 Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT) 4-1 Kyudai-shinmachi Fukuoka 879-5593 Japan
| |
Collapse
|
7
|
Hifumi E, Taguchi H, Tsuda H, Minagawa T, Nonaka T, Uda T. A new algorithm to convert a normal antibody into the corresponding catalytic antibody. SCIENCE ADVANCES 2020; 6:eaay6441. [PMID: 32232151 PMCID: PMC7096177 DOI: 10.1126/sciadv.aay6441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Over thousands of monoclonal antibodies (mAbs) have been produced so far, and it would be valuable if these mAbs could be directly converted into catalytic antibodies. We have designed a system to realize the above concept by deleting Pro95, a highly conserved residue in CDR-3 of the antibody light chain. The deletion of Pro95 is a key contributor to catalytic function of the light chain. The S35 and S38 light chains have identical amino acid sequences except for Pro95. The former, with Pro95 did not show any catalytic activity, whereas the latter, without Pro95, exhibited peptidase activity. To verify the generality of this finding, we tested another light chain, T99wt, which had Pro95 and showed little catalytic activity. In contrast, a Pro95-deleted mutant enzymatically degraded the peptide substrate and amyloid-beta molecule. These two cases demonstrate the potential for a new method of creating catalytic antibodies from the corresponding mAbs.
Collapse
Affiliation(s)
- Emi Hifumi
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Hiroaki Taguchi
- Suzuka University of Medical Science, Faculty of Pharmaceutical Sciences, 3500-3 Minamitamagaki-cho, Suzuka 510-0293, Japan
| | - Haruna Tsuda
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
- Oita University, Department of Applied Chemistry, Faculty of Engineering, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Tetsuro Minagawa
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
- Oita University, Department of Applied Chemistry, Faculty of Engineering, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Tamami Nonaka
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Taizo Uda
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4-1 Kyudai-shinmachi, Fukuoka 879-5593, Japan
| |
Collapse
|
8
|
Catalytic antibody (catabody) platform for age-associated amyloid disease: From Heisenberg's uncertainty principle to the verge of medical interventions. Mech Ageing Dev 2019; 185:111188. [PMID: 31783036 DOI: 10.1016/j.mad.2019.111188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/31/2023]
Abstract
Quantum mechanics-based design of useful catalytic antibodies (catabodies) failed because of the uncertain structure of the dynamic catalyst-substrate complex. The Catabody Platform emerged from discovery of beneficial germline gene catabodies that hydrolyzed self-proteins by transient covalent pairing of the strong catabody nucleophile with a weak target protein electrophile. Catabodies have evolved by Darwinian natural selection for protection against misfolded self-proteins that threatened survival by causing amyloid disease. Ancient antibody scaffolds upregulate the catalytic activity of the antibody variable (V) domains. Healthy humans universally produce beneficial catabodies specific for at least 3 misfolded self-proteins, transthyretin, amyloid β peptide and tau protein. Catabody are superior to ordinary antibodies because of catalyst reuse for thousands of target destruction cycles with little or no risk of causing inflammation, a must for non-toxic removal of abundant targets such as amyloids. Library mining with electrophilic target analogs (ETAs) isolates therapy-grade catabodies (fast, specific). Ex vivo- and in vivo-verified catabodies specific for the misfolded protein are available to dissolve brain, cardiac and vertebral amyloids. Immunization with ETAs overcomes important ordinary vaccine limitations (no catabody induction, poor immunogenicity of key target epitopes). We conceive electrophilic longevity vaccines that can induce catabody synthesis for long-lasting protection against amyloid disease.
Collapse
|
9
|
Hifumi E, Taguchi H, Toorisaka E, Uda T. New technologies to introduce a catalytic function into antibodies: A unique human catalytic antibody light chain showing degradation of β-amyloid molecule along with the peptidase activity. FASEB Bioadv 2019; 1:93-104. [PMID: 32123823 PMCID: PMC6996398 DOI: 10.1096/fba.1025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/04/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
Since the discovery of a natural catalytic antibody in 1989, many catalytic antibodies targeting peptides, nucleotides, virus and bacterial proteins, and many molecules have been prepared. Although catalytic antibodies should have features superior to non-catalytic monoclonal antibodies, the reports on catalytic antibodies are far fewer than those on normal (non-catalytic) antibodies. Nowadays, we can obtain any monoclonal antibody we want, which is not the case for catalytic antibodies. To overcome this drawback of catalytic antibodies, much basic research must be done. As one way to attain this purpose, we have been making a protein bank of human antibody light chains, in which the light chains were expressed, purified, and stored for use in screening against many kinds of antigen, to then get clues to introducing a catalytic function in normal antibodies. As the number of stored light chains in the above protein bank has reached the hundreds, in this study, we screened them against amyloid-beta (Aβ), which is well-known as one of the molecules causing Alzheimer's disease. We found two interesting light chains, #7TR and #7GY. The former could degrade both a fluorescence resonance energy transfer-Aβ substrate and Aβ1-40 full peptide. In contrast, #7GY, whose sequence is identical to that of #7TR except for the amino acids at the 29th and 30th positions, did not degrade the FRET-Aβ substrate at all. By using a synthetic substrate, Arg-pNA, the difference between the chemical features of the two light chains was investigated in detail. In addition, we found that the presence of Zn(II) ion hugely influenced the catalytic activity of the #7TR light chain but not #7GY. Through these facts and the discussion, we propose one of the clues to how to put a catalytic function in a normal (non-catalytic) antibody.
Collapse
Affiliation(s)
- Emi Hifumi
- Research Promotion Institute, Oita UniversityOitaJapan
| | - Hiroaki Taguchi
- Faculty of Pharmaceutical SciencesSuzuka University of Medical ScienceSuzukaJapan
| | - Eiichi Toorisaka
- Faculty of Engineering, Department of Sustainable EngineeringYamaguchi UniversityYamaguchiJapan
| | - Taizo Uda
- Faculty of Engineering, Department of Applied ChemistryOita UniversityOitaJapan
- Nanotechnology LaboratoryInstitute of Systems, Information Technologies and Nanotechnologies (ISIT)FukuokaJapan
| |
Collapse
|
10
|
Planque SA, Nishiyama Y, Hara M, Sonoda S, Murphy SK, Watanabe K, Mitsuda Y, Brown EL, Massey RJ, Primmer SR, O'Nuallain B, Paul S. Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J Biol Chem 2014; 289:13243-58. [PMID: 24648510 PMCID: PMC4036335 DOI: 10.1074/jbc.m114.557231] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/13/2014] [Indexed: 01/10/2023] Open
Abstract
Peptide bond-hydrolyzing catalytic antibodies (catabodies) could degrade toxic proteins, but acquired immunity principles have not provided evidence for beneficial catabodies. Transthyretin (TTR) forms misfolded β-sheet aggregates responsible for age-associated amyloidosis. We describe nucleophilic catabodies from healthy humans without amyloidosis that degraded misfolded TTR (misTTR) without reactivity to the physiological tetrameric TTR (phyTTR). IgM class B cell receptors specifically recognized the electrophilic analog of misTTR but not phyTTR. IgM but not IgG class antibodies hydrolyzed the particulate and soluble misTTR species. No misTTR-IgM binding was detected. The IgMs accounted for essentially all of the misTTR hydrolytic activity of unfractionated human serum. The IgMs did not degrade non-amyloidogenic, non-superantigenic proteins. Individual monoclonal IgMs (mIgMs) expressed variable misTTR hydrolytic rates and differing oligoreactivity directed to amyloid β peptide and microbial superantigen proteins. A subset of the mIgMs was monoreactive for misTTR. Excess misTTR was dissolved by a hydrolytic mIgM. The studies reveal a novel antibody property, the innate ability of IgMs to selectively degrade and dissolve toxic misTTR species as a first line immune function.
Collapse
Affiliation(s)
- Stephanie A. Planque
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yasuhiro Nishiyama
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Mariko Hara
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sari Sonoda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sarah K. Murphy
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Kenji Watanabe
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Eric L. Brown
- the Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas 77030
| | | | - Stanley R. Primmer
- the Supercentenarian Research Foundation, Lauderhill, Florida 33319, and
| | - Brian O'Nuallain
- the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Sudhir Paul
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| |
Collapse
|
11
|
Nishiyama Y, Planque S, Hanson CV, Massey RJ, Paul S. CD4 binding determinant mimicry for HIV vaccine design. Front Immunol 2012; 3:383. [PMID: 23251137 PMCID: PMC3523313 DOI: 10.3389/fimmu.2012.00383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022] Open
Abstract
The immunodominant epitopes expressed by the HIV-1 envelope protein gp120 are hypermutable, defeating attempts to develop an effective HIV vaccine. Targeting the structurally conserved gp120 determinant that binds host CD4 receptors (CD4BD) and initiates infection is a more promising route to vaccination, but this has proved difficult because of the conformational flexibility of gp120 and immune evasion mechanisms used by the virus. Mimicking the outer CD4BD conformational epitopes is difficult because of their discontinuous nature. The CD4BD region composed of residues 421–433 (CD4BDcore) is a linear epitope, but this region possesses B cell superantigenic character. While superantigen epitopes are vulnerable to a small subset of spontaneously produced neutralizing antibodies present in humans without infection (innate antibodies), their non-covalent binding to B cell receptors (BCRs) does not stimulate an effective adaptive response from B cells. Covalent binding at naturally occurring nucleophilic sites of the BCRs by an electrophilic gp120 (E-gp120) analog is a promising solution. E-gp120 induces the synthesis of neutralizing antibodies the CD4BDcore. The highly energetic covalent reaction is hypothesized to convert the abortive superantigens–BCR interaction into a stimulatory signal, and the binding of a spatially distinct epitope at the traditional combining site of the BCRs may furnish a second stimulatory signal. Flexible synthetic peptides can detect pre-existing CD4BDcore-specific neutralizing antibodies. However, induced-fit conformational transitions of the peptides dictated by the antibody combining site structure may induce the synthesis of non-neutralizing antibodies. Successful vaccine targeting of the CD4BD will require a sufficiently rigid immunogen that mimics the native epitope conformation and bypasses B cell checkpoints restricting synthesis of the neutralizing antibodies.
Collapse
Affiliation(s)
- Yasuhiro Nishiyama
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School Houston, TX, USA
| | | | | | | | | |
Collapse
|
12
|
Sapparapu G, Planque S, Mitsuda Y, McLean G, Nishiyama Y, Paul S. Constant domain-regulated antibody catalysis. J Biol Chem 2012; 287:36096-104. [PMID: 22948159 DOI: 10.1074/jbc.m112.401075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Some antibodies contain variable (V) domain catalytic sites. We report the superior amide and peptide bond-hydrolyzing activity of the same heavy and light chain V domains expressed in the IgM constant domain scaffold compared with the IgG scaffold. The superior catalytic activity of recombinant IgM was evident using two substrates, a small model peptide that is hydrolyzed without involvement of high affinity epitope binding, and HIV gp120, which is recognized specifically by noncovalent means prior to the hydrolytic reaction. The catalytic activity was inhibited by an electrophilic phosphonate diester, consistent with a nucleophilic catalytic mechanism. All 13 monoclonal IgMs tested displayed robust hydrolytic activities varying over a 91-fold range, consistent with expression of the catalytic functions at distinct levels by different V domains. The catalytic activity of polyclonal IgM was superior to polyclonal IgG from the same sera, indicating that on average IgMs express the catalytic function at levels greater than IgGs. The findings indicate a favorable effect of the remote IgM constant domain scaffold on the integrity of the V-domain catalytic site and provide a structural basis for conceiving antibody catalysis as a first line immune function expressed at high levels prior to development of mature IgG class antibodies.
Collapse
Affiliation(s)
- Gopal Sapparapu
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
13
|
A novel molecular analysis of genes encoding catalytic antibodies. Mol Immunol 2012; 50:160-8. [PMID: 22325472 DOI: 10.1016/j.molimm.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Among the numerous questions remaining opened about catalytic antibodies (abzymes), the understanding of the origin of the genes encoding them is of vital significance. An original statistical analysis of genes encoding abzymes is described in the present report. Results suggested that these genes display a high conservation degree with their germline counterpart and a limited number of amino acid changes. Hence, on the contrary with high-affinity antibodies, maturation process by accumulation of somatic hypermutations is not required for the catalytic function. We demonstrated that despite a weak somatic mutation rate, the physicochemical properties of mutated amino acid (AA) are predominantly dissimilar with that of the germline AA. Further, we developed a novel approach in order to analyze the nature of genes encoding catalytic antibodies. For the first time, an unexpected and significant high level expression of rare gene subgroups was noticed and emphasized. The data described in this paper would lay the foundation for future studies about origin of genes encoding catalytic antibodies.
Collapse
|
14
|
Brown EL, Nishiyama Y, Dunkle JW, Aggarwal S, Planque S, Watanabe K, Csencsits-Smith K, Bowden MG, Kaplan SL, Paul S. Constitutive production of catalytic antibodies to a Staphylococcus aureus virulence factor and effect of infection. J Biol Chem 2012; 287:9940-9951. [PMID: 22303018 DOI: 10.1074/jbc.m111.330043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antibodies that recognize microbial B lymphocyte superantigenic epitopes are produced constitutively with no requirement for adaptive immune maturation. We report cleavage of the Staphylococcus aureus virulence factor extracellular fibrinogen-binding protein (Efb) by catalytic antibodies produced with no exposure to the bacterium and reduction of the catalytic antibody activity following infection. IgG catalytic antibodies that specifically hydrolyzed Efb via a nucleophilic catalytic mechanism were found in the blood of healthy humans and aseptic mice free of S. aureus infection. IgG hydrolyzed peptide bonds on the C-terminal side of basic amino acids, including a bond located within the C3b-binding domain of Efb. Efb digested with the IgG lost its ability to bind C3b and inhibit complement-dependent antibody-mediated red blood cell lysis. In addition to catalysis, the IgG expressed saturable Efb binding activity. IgG from S. aureus-infected mice displayed reduced Efb cleaving activity and increased Efb binding activity compared with uninfected controls, suggesting differing effects of the infection on the antibody subsets responsible for the two activities. IgG from children hospitalized for S. aureus infection also displayed reduced Efb cleavage compared with healthy children. These data suggest a potential defense function for constitutively produced catalytic antibodies to a putative superantigenic site of Efb, but an adaptive catalytic response appears to be proscribed.
Collapse
Affiliation(s)
- Eric L Brown
- Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas 77030,; Department of Extracellular Matrix Biology, The Texas A&M University Institute of Biosciences and Technology, Houston, Texas 77030, and.
| | - Yasuhiro Nishiyama
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Jesse W Dunkle
- Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas 77030
| | - Shreya Aggarwal
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Stephanie Planque
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Kenji Watanabe
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Keri Csencsits-Smith
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - M Gabriela Bowden
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sheldon L Kaplan
- Department of Pediatrics, Baylor College of Medicine and the Texas Children's Hospital, Houston, Texas 77030
| | - Sudhir Paul
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030,.
| |
Collapse
|
15
|
Paul S, Planque SA, Nishiyama Y, Hanson CV, Massey RJ. Nature and nurture of catalytic antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:56-75. [PMID: 22903666 DOI: 10.1007/978-1-4614-3461-0_5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunoglobulins (antibodies) frequently express constitutive functions. Two such functions are nucleophilic catalysis and the reversible binding to B-cell superantigens. Constitutive or "naturally-occurring" antibodies are produced spontaneously from germline genetic information. The antibody structural elements mediating the constitutive functions have originated over millions of years of phylogenic evolution, contrasting with antigen-driven, somatic sequence diversification of the complementarity determining regions (CDR) that underlies the better-known high affinity antigen binding function of antibodies. Often, the framework regions (FRs) play a dominant role in antibody constitutive functions. Catalytic antibody subsets with promiscuous, autoantigen-directed and microbe-directed specificities have been identified. Mucosal antibodies may be specialized to express high-level catalytic activity against microbes transmitted by the mucosal route, exemplified by constitutive production of IgA class antibodies in mucosal secretions that catalyze the cleavage of HIV gp120. Catalytic specificity can be gained by constitutive noncovalent superantigen binding at the FRs and by adaptive development of noncovalent classical antigen or superantigen binding, respectively, at the CDRs and FRs. Growing evidence suggests important functional roles for catalytic antibodies in homeostasis, autoimmune disease and protection against infection. Adaptive antibody responses to microbial superantigens are proscribed underphysiological circumstances. Covalent electrophilic immunogen binding to constitutively expressed nucleophilic sites in B-cell receptors bypasses the restriction on adaptive antibody production, and simultaneous occupancy of the CDR binding site by a stimulatory antigenic epitope can also overcome the downregulatory effect of superantigen binding at the FRs. These concepts may be useful for developing novel vaccines that capitalize and improve on constitutive antibody functions for protection against microbes.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology Research Center, Department of Pathology, University of Texas-Houston Medical School, Texas, USA.
| | | | | | | | | |
Collapse
|
16
|
Hifumi E, Honjo E, Fujimoto N, Arakawa M, Nishizono A, Uda T. Highly efficient method of preparing human catalytic antibody light chains and their biological characteristics. FASEB J 2011; 26:1607-15. [PMID: 22205784 DOI: 10.1096/fj.11-195339] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ultimate goal of catalytic antibody research is to develop new patient therapies that use the advantages offered by human catalytic antibodies. The establishment of a high-throughput method for obtaining valuable candidate catalytic antibodies must be accelerated to achieve this objective. In this study, based on our concept that we can find antibody light chains with a high probability of success if they include a serine protease-like catalytic triad composed of Ser, His, and Asp on a variable region of the antibody structure, we amplified and cloned DNAs encoding human antibody light chains from germline genes of subgroup II by seminested PCR using two primer sets designed for this purpose. Seven DNA fragments encoding light chains in 17 clones were derived from germline gene A18b, 6 DNA fragments from A3/A19, 2 DNA fragments from A17, and a clone DNA fragment from A5 and O11/O1. All light chains expressed in Escherichia coli and highly purified under nondenaturing conditions exhibited amidolytic activity against synthetic peptides. Some of the light chains exhibited unique features that suppressed the infectious activity of the rabies virus. Furthermore, the survival rate of mice in which a lethal level of the rabies virus was coinoculated directly into the brain with light chain 18 was significantly improved. In the case of humans, these results demonstrate that high-throughput selection of light chains possessing catalytic functions and specificity for a target molecule can be attained from a light-chain DNA library amplified from germline genes belonging to subgroup II.
Collapse
Affiliation(s)
- Emi Hifumi
- Research Center for Applied Medical Engineering, Faculty of Engineering, Oita University, 700 Dan-noharu, Oita-shi, Oita 870-1192, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
We review attempts to treat Alzheimer disease with antibodies that bind amyloid beta peptide (Abeta) and the feasibility of developing catalytic antibodies for this purpose. Naturally occurring immunoglobulin M (IgM) class antibodies that hydrolyze Abeta and inhibit Abeta aggregation were identified. The production of these antibodies increases as a function of age, ostensibly reflecting an attempt by the immune system to protect against the deleterious effect of Abeta accumulation in old age. A search for catalytic antibodies in a library of human immunoglobulins variable (IgV) domains yielded catalysts that hydrolyzed Abeta specifically at exceptionally rapid rates. The catalytic IgVs contained the light-chain variable domains within scaffolds that are structurally reminiscent of phylogenetically ancient antibodies. Inclusion of the heavy-chain variable domain in the IgV constructs resulted in reduced catalysis. We present our view that catalytic antibodies are likely to emerge as more efficacious and safer immunotherapy reagents compared to traditional Abeta-binding antibodies.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
18
|
UEDA M. Novel High-Throughput System for Production of New Medicines-Integration and Combination with Molecular Display and Combinatorial Bioengineering. YAKUGAKU ZASSHI 2009; 129:1277-84. [DOI: 10.1248/yakushi.129.1277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mitsuyoshi UEDA
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
19
|
Sharma V, Heriot W, Trisler K, Smider V. A human germ line antibody light chain with hydrolytic properties associated with multimerization status. J Biol Chem 2009; 284:33079-87. [PMID: 19801545 DOI: 10.1074/jbc.m109.036087] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibodies with nucleophilic or catalytic properties often have these characteristics encoded in their germ line genes. Because hydrolytic activity has been reported to be associated with light chain V regions, we have begun an analysis of germ line light chain proteins that could be the basis for affinity maturation into hydrolytic or other reactive antibodies. We produced the germ line A18b light chain and characterized its hydrolytic, nucleophilic, and tertiary structural activities. This light chain was purified to >99% purity and found to hydrolyze aminomethylcoumarin-peptide and larger protein substrates and bind a fluorophosphonate probe. Mutation of putative catalytic residues only resulted in loss of activity of a tetrameric but not dimeric form of the light chain. These biochemical properties provide a framework for understanding the structure-function relationships of germ line antibodies.
Collapse
Affiliation(s)
- Vikram Sharma
- Integrigen, Incorporated, Novato, California 94949, USA
| | | | | | | |
Collapse
|
20
|
Planque S, Nishiyama Y, Taguchi H, Salas M, Hanson C, Paul S. Catalytic antibodies to HIV: physiological role and potential clinical utility. Autoimmun Rev 2008; 7:473-9. [PMID: 18558365 PMCID: PMC2527403 DOI: 10.1016/j.autrev.2008.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Immunoglobulins (Igs) in uninfected humans recognize residues 421-433 located in the B cell superantigenic site (SAg) of the HIV envelope protein gp120 and catalyze its hydrolysis by a serine protease-like mechanism. The catalytic activity is encoded by germline Ig variable (V) region genes, and is expressed at robust levels by IgMs and IgAs but poorly by IgGs. Mucosal IgAs are highly catalytic and neutralize HIV, suggesting that they constitute a first line of defense against HIV. Lupus patients produce the Igs at enhanced levels. Homology of the 421-433 region with an endogenous retroviral sequence and a bacterial protein may provide clues about the antigen driving anti-SAg synthesis in lupus patients and uninfected subjects. The potency and breadth of HIV neutralization revives hopes of clinical application of catalytic anti-421-433 Igs as immunotherapeutic and topical microbicide reagents. Adaptive improvement of anti-SAg catalytic Igs in HIV infected subjects is not customary. Further study of the properties of the naturally occurring anti-SAg catalytic Igs should provide valuable guidance in designing a prophylactic vaccine that amplifies protective catalytic immunity to HIV.
Collapse
Affiliation(s)
- Stephanie Planque
- Chemical Immunology Research Center, Departments of Pathology and Medicine University of Texas–Houston Medical School, Houston, TX
| | - Yasuhiro Nishiyama
- Chemical Immunology Research Center, Departments of Pathology and Medicine University of Texas–Houston Medical School, Houston, TX
| | - Hiroaki Taguchi
- Chemical Immunology Research Center, Departments of Pathology and Medicine University of Texas–Houston Medical School, Houston, TX
| | - Maria Salas
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Carl Hanson
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Sudhir Paul
- Chemical Immunology Research Center, Departments of Pathology and Medicine University of Texas–Houston Medical School, Houston, TX
| |
Collapse
|
21
|
Wootla B, Dasgupta S, Dimitrov JD, Bayry J, Lévesque H, Borg JY, Borel-Derlon A, Rao DN, Friboulet A, Kaveri SV, Lacroix-Desmazes S. Factor VIII Hydrolysis Mediated by Anti-Factor VIII Autoantibodies in Acquired Hemophilia. THE JOURNAL OF IMMUNOLOGY 2008; 180:7714-20. [DOI: 10.4049/jimmunol.180.11.7714] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Planque S, Mitsuda Y, Taguchi H, Salas M, Morris MK, Nishiyama Y, Kyle R, Okhuysen P, Escobar M, Hunter R, Sheppard HW, Hanson C, Paul S. Characterization of gp120 hydrolysis by IgA antibodies from humans without HIV infection. AIDS Res Hum Retroviruses 2007; 23:1541-54. [PMID: 18160012 DOI: 10.1089/aid.2007.0081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Antibody hydrolysis of the superantigenic gp120 site and HIV-1 neutralization was studied as a potential anti-HIV mechanism in uninfected humans. gp120 hydrolysis by purified serum and salivary antibodies was determined by electrophoresis and peptide sequencing, the proteolytic mechanism was analyzed using electrophilic peptide analogs, and viral neutralization was studied using peripheral blood mononuclear cells as hosts. Polyclonal and monoclonal IgA but not IgG preparations selectively catalyzed the cleavage of HIV gp120 at rates sufficient to predict biologically relevant protection against the virus. The IgA hydrolytic reaction proceeded by noncovalent recognition of gp120 residues 421-433, a component of the superantigenic site of gp120, coordinated with peptide bond cleavage via a serine protease-like mechanism. The Lys-432-Ala-433 bond was one of the cleavage sites. Infection of peripheral blood mononuclear cells by a primary isolate of HIV was neutralized by the IgA but not IgG fractions. The neutralizing activity was specifically inhibited by an electrophilic inhibitor of the catalytic activity. The existence of catalytic IgAs to gp120 in uninfected humans suggests their role in resistance to HIV.
Collapse
Affiliation(s)
- Stephanie Planque
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Hiroaki Taguchi
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Maria Salas
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Mary-Kate Morris
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Yasuhiro Nishiyama
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Robert Kyle
- Division of Hematology, Mayo Clinic, Rochester, Minnesota 55905
| | - Pablo Okhuysen
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Miguel Escobar
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Robert Hunter
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Haynes W. Sheppard
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Carl Hanson
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Sudhir Paul
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| |
Collapse
|
23
|
Mitsuda Y, Planque S, Hara M, Kyle R, Taguchi H, Nishiyama Y, Paul S. Naturally occurring catalytic antibodies: evidence for preferred development of the catalytic function in IgA class antibodies. Mol Biotechnol 2007; 36:113-22. [PMID: 17914190 DOI: 10.1007/s12033-007-0003-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
IgG class antibodies express catalytic activities rarely and at very low levels. Here, we studied polyclonal IgA and IgG preparations from healthy human sera and saliva for the ability to hydrolyze model peptidyl-aminomethylcoumarin (peptide-AMC) substrates. These substrates permit objective evaluation of the catalytic potential of the antibody classes with minimal effects of noncovalent interactions occurring at sites remote from the reaction center. The IgA preparations hydrolyzed Glu-Ala-Arg-AMC at rates 3-orders of magnitude greater than IgG preparations from the same individuals. The cleavage occurred preferentially on the C terminal side of a basic residue. The activity was confirmed using monoclonal IgAs isolated from patients with multiple myeloma. Active site-directed inhibitors of serine proteases inhibited the catalytic activity and were bound irreversibly by the IgA, suggesting the involvement of a serine protease-like mechanism similar to that utilized by previously described IgM antibodies. These observations suggest that mechanisms underlying B cell clonal selection favor the retention and improvement of catalytic activity in the IgA, but not the IgG compartment of the immune response.
Collapse
Affiliation(s)
- Yukie Mitsuda
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas - Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Okochi N, Kato-Murai M, Kadonosono T, Ueda M. Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface. Appl Microbiol Biotechnol 2007; 77:597-603. [PMID: 17899065 DOI: 10.1007/s00253-007-1197-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/26/2022]
Abstract
Lc-WT, the wild-type light chain of antibody, and Lc-Triad, its double mutant with E1D and T27aS designing for the construction of catalytic triad within Asp1, Ser27a, and original His93 residues, were displayed on the cell surface of the protease-deficient yeast strain BJ2168. When each cell suspension was reacted with BODIPY FL casein and seven kinds of peptide-MCA substrates, respectively, a remarkable difference in hydrolytic activities toward Suc-GPLGP-MCA (succinyl-Gly-Pro-Leu-Gly-Pro-MCA), a substrate toward collagenase-like peptidase, was observed between the constructs: Lc-Triad-displaying cells showed higher catalytic activity than Lc-WT-displaying cells. The difference disappeared in the presence of the serine protease inhibitor diisopropylfluorophosphate, suggesting that the three amino acid residues, Ser27a, His93, and Asp1, functioned as a catalytic triad responsible for the proteolytic activity in a similar way to the anti-vasoactive intestinal peptide (VIP) antibody light chain. A serine protease-like catalytic triad (Ser, His, and Asp) is considered to be directly involved in the catalytic mechanism of the anti-VIP antibody light chain, which moderately catalyzes the hydrolysis of VIP. These results suggest the possibility of new approach for the creation of tailor-made proteases beyond limitations of the traditional immunization approach.
Collapse
Affiliation(s)
- Norihiko Okochi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
25
|
Staines DR. Postulated vasoactive neuropeptide autoimmunity in fatigue-related conditions: a brief review and hypothesis. Clin Dev Immunol 2006; 13:25-39. [PMID: 16603442 PMCID: PMC2270748 DOI: 10.1080/17402520600568252] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Disorders such as chronic fatigue syndrome (CFS) and gulf war syndrome (GWS) are characterised by prolonged fatigue and a range of debilitating symptoms of pain, intellectual and emotional impairment, chemical sensitivities and immunological dysfunction. Sudden infant death syndrome (SIDS) surprisingly may have certain features in common with these conditions. Post-infection sequelae may be possible contributing factors although ongoing infection is unproven. Immunological aberration may prove to be associated with certain vasoactive neuropeptides (VN) in the context of molecular mimicry, inappropriate immunological memory and autoimmunity. Adenylate cyclase-activating VNs including pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) act as hormones, neurotransmitters, neuroregulators, immune modulators and neurotrophic substances. They and their receptors are potentially immunogenic. VNs are widely distributed in the body particularly in the central and peripheral nervous systems and have been identified in the gut, adrenal gland, blood cells, reproductive system, lung, heart and other tissues. They have a vital role in maintaining cardio-respiratory function, thermoregulation, memory, concentration and executive functions such as emotional responses including social cues and appropriate behaviour. They are co-transmitters for a number of neurotransmitters including acetylcholine and gaseous transmitters, are potent immune regulators with primarily anti-inflammatory activity, and have a significant role in protection of the nervous system against toxic assault as well as being important in the maintenance of homeostasis. This paper describes a biologically plausible mechanism for the development of certain fatigue-related syndromes based on loss of immunological tolerance to these VNs or their receptors following infection, other events or de novo resulting in significant pathophysiology possibly mediated via CpG fragments and heat shock (stress) proteins. These conditions extend the public health context of autoimmunity and VN dysregulation and have implications for military medicine where radiological, biological and chemical agents may have a role in pathogenesis. Possible treatment and prevention options are considered.
Collapse
Affiliation(s)
- Donald R Staines
- Gold Coast Public Health Unit, 10-12 Young Street, Southport, Qld, 4215, Australia.
| |
Collapse
|
26
|
Paul S, Nishiyama Y, Planque S, Taguchi H. Theory of proteolytic antibody occurrence. Immunol Lett 2006; 103:8-16. [PMID: 16290203 DOI: 10.1016/j.imlet.2005.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 10/09/2005] [Accepted: 10/09/2005] [Indexed: 11/22/2022]
Abstract
Antibodies (Abs) with proteolytic and other catalytic activities have been characterized in the blood and mucosal secretions of humans and experimental animals. The catalytic activity can be traced to nucleophilic sites of innate origin located in Ab germline variable regions. Discoveries of the natural chemical reactivity of Abs were initially met with bewilderment, as the notion had taken hold that catalytic activities can be introduced into Abs by artificial means, but somatically operative selection pressures are designed only to adapt non-covalent Ab binding to antigen ground states. Unsurprisingly, initial efforts to engineer Abs with catalytic activity were oriented towards improving the non-covalent binding at the atoms immediately within the transition state reaction center. Slowly, however, dogmatic approaches to Ab catalysis have given way to the realization that efficient and specific catalytic Abs can be prepared by improving the natural nucleophilic reactivity combined with non-covalent recognition of epitope regions remote from the reaction center. The field remains beset, however, with controversy. This article attempts to provide a rational basis for natural Ab catalysis, in the hope that understanding this phenomenon will stimulate medical and basic science advances in the field.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 6431 Fannin, 77030, USA.
| | | | | | | |
Collapse
|
27
|
Armentano F, Knight T, Makker S, Tramontano A. Induction of covalent binding antibodies. Immunol Lett 2005; 103:51-7. [PMID: 16297987 DOI: 10.1016/j.imlet.2005.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 10/10/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Covalent interactions between antibody combining site residues and substrates have been implicated in the catalytic activity of abzymes elicited by design or occurring naturally in autoimmune disease. In this study, the potential for covalent binding by antibodies (Abs) was investigated by the induction of immune responses against molecules presenting chemically reactive haptenic groups. Immunogenic conjugates containing a phosphonate diester or a pyruvate carbonyl group were used to elicit antibodies that could specifically react with the electrophilic moieties. Products formed by covalent binding were detected by a western blot technique or by differential ELISA on reduced or unreduced carbonyl haptens. Antisera to the diphenylphosphonate contained antibodies with covalent reactivity, which increased with immunization. The reactivity was specific to the anti-phosphonate response and not to control immune sera induced against the unmodified carrier protein. Reactivity was focused on the antibody light (L) chain. Antisera to the phenylpyruvate hapten appeared to bind strongly to proteins modified by the carbonyl group hapten. However, anti-carrier antisera and non-immune sera had similar reactivity, indicating that the pyruvate moiety reacts nonspecifically with immunoglobulins. This suggested that affinity maturation of antibodies for reversible binding through hemiacetal or Schiff base adducts with antigens requires a less reactive carbonyl in the antigen. On the other hand, the induction of antibodies with enhanced nucleophilic reactivity toward phosphonate esters implies that irreversible binding to the B cell receptor can drive clonal expansion and antibody selection. These results support a designer strategy for generating nucleophilic abzymes and could also account for the occurrence of chemically reactive or catalytic antibodies in natural immunity or autoimmunity.
Collapse
Affiliation(s)
- Francesca Armentano
- Department of Pediatrics, University of California Davis, School of Medicine, One Shields Avenue, 95616, USA
| | | | | | | |
Collapse
|
28
|
Paul S, Nishiyama Y, Planque S, Karle S, Taguchi H, Hanson C, Weksler ME. Antibodies as defensive enzymes. ACTA ACUST UNITED AC 2005; 26:485-503. [PMID: 15633014 DOI: 10.1007/s00281-004-0191-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Antibodies (Abs) and enzymes are structural and functional relatives. Abs with promiscuous peptidase activity are ubiquitous in healthy humans, evidently derived from germline variable domain immunoglobulin genes encoding the serine protease-like nucleophilic function. Exogenous and endogenous electrophilic antigens can bind the nucleophilic sites covalently, and recent evidence suggests that immunization with such antigens can induce proteolytic antibodies. Previously, Ab catalytic activities have been linked to pathogenic autoimmune reactions, but recent studies indicate that proteolytic Abs may also serve beneficial functions. An example is the rapid and selective cleavage of the HIV-1 coat protein gp120 by IgMs found in uninfected humans. The selectivity of this reaction appears to derive from recognition of gp120 as a superantigen. A second example is the cleavage of amyloid beta-peptide by IgM and IgG from aged humans, a phenomenon that may represent a specific proteolytic response to a neurotoxic endogenous peptide implicated in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, MSB 2.250, 6431 Fannin, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Staines DR. Therapeutic and preventive interventions for postulated vasoactive neuropeptide autoimmune fatigue-related disorders. Med Hypotheses 2005; 65:797-803. [PMID: 16042995 DOI: 10.1016/j.mehy.2005.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
Major advances have been made in understanding the relatively novel group of vasoactive (vasodilatory) neuropeptides (VNs) in humans. VNs comprise a novel but expanding group of substances having immunoregulation, inflammation modulation, neurotransmitter, neurotrophic, hormonal and metabolic functions. These substances may control gene expression for mRNA for themselves and their receptors. They have complex relationships with gaseous and other neurotransmitters and xenobiotic substances. Theoretical arguments have implicated these substances in autoimmune phenomena resulting in fatigue-related conditions such as chronic fatigue syndrome (CFS), sudden infant death syndrome (SIDS), fibromyalgia (FM) and Gulf War syndrome (GWS) but remain unproven. As well as possibly spontaneous onset, the precipitating causes of VN autoimmune dysfunction are likely to be a combination of genetic predisposition, infection and xenobiotic substances. Therapeutic and preventive possibilities for postulated VN autoimmune conditions will be influenced by the complex patholophysiology underpinning them. Some speculative possibilities are VN substitution/replacement, preservation of biological effect, epigenetic DNA modifications, plasma exchange, anti-cholinesterases, e.g., pyridostigmine, corticosteroids and other drug treatments, thymectomy, intravenous immunoglobulin and anti-idiotype antibodies, and CpG/DNA vaccines. Prevention and treatment of possible VN autoimmune fatigue-related disorders may prove to be important areas for future research and development.
Collapse
Affiliation(s)
- Donald R Staines
- Gold Coast Public Health Unit, 10-12 Young Street, Southport 4215, Queensland, Australia.
| |
Collapse
|
30
|
Voice J, Donnelly S, Dorsam G, Dolganov G, Paul S, Goetzl EJ. c-Maf and JunB mediation of Th2 differentiation induced by the type 2 G protein-coupled receptor (VPAC2) for vasoactive intestinal peptide. THE JOURNAL OF IMMUNOLOGY 2004; 172:7289-96. [PMID: 15187104 DOI: 10.4049/jimmunol.172.12.7289] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vasoactive intestinal peptide and its G protein-coupled receptors, VPAC(1) and VPAC(2), regulate critical aspects of innate and adaptive immunity. T cell VPAC(2)Rs mediate changes in cytokine generation, which potently increase the Th2/Th1 ratio and consequently shift the effector responses toward allergy and inflammation. To examine mechanisms of VPAC(2) promotion of the Th2 phenotype, we analyzed controls of IL-4 transcription in CD4 T cells from T cell-targeted VPAC(2) transgenic (Tg), VPAC(2) knockout, and wild-type (WT) mice. c-maf and junB mRNA, protein, and activity were significantly up-regulated to a higher level in TCR-stimulated CD4 T cells from Tg mice compared with those from knockout and WT C57BL/6 mice. In contrast, GATA3, T-bet, and NFATc levels were identical in WT and Tg CD4 T cells. Vasoactive intestinal peptide binding to VPAC(2) on CD4 T cells specifically induces an up-regulation of the Th2-type transcription factors c-Maf and JunB, which consequently enhances IL-4 and IL-5 production, leading to a Th2-type phenotype.
Collapse
Affiliation(s)
- Julia Voice
- Departments of Medicine and Microbiology/Immunology, Medical Center, University of California-San Francisco, 533 Parnassus at 4th, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
31
|
Taguchi H, Keck Z, Foung SKH, Paul S, Nishiyama Y. Antibody light chain-catalyzed hydrolysis of a hepatitis C virus peptide. Bioorg Med Chem Lett 2004; 14:4529-32. [PMID: 15357986 DOI: 10.1016/j.bmcl.2004.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/12/2004] [Accepted: 06/12/2004] [Indexed: 10/26/2022]
Abstract
A panel of human monoclonal and recombinant antibody light chains was screened for cleavage of the synthetic peptide corresponding to a neutralizing epitope of hepatitis C virus (residues 192-205 of envelope glycoprotein E1). One of the 39 light chains studied hydrolyzed the Val197-Ser198 bond of the peptide with Km and kcat values of 223 +/- 7 microM and 0.087 +/- 0.001 min(-1).
Collapse
Affiliation(s)
- Hiroaki Taguchi
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 6431 Fannin, 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Paul S, Karle S, Planque S, Taguchi H, Salas M, Nishiyama Y, Handy B, Hunter R, Edmundson A, Hanson C. Naturally occurring proteolytic antibodies: selective immunoglobulin M-catalyzed hydrolysis of HIV gp120. J Biol Chem 2004; 279:39611-9. [PMID: 15269209 DOI: 10.1074/jbc.m406719200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the selective catalytic cleavage of the HIV coat protein gp120, a B cell superantigen, by IgM antibodies (Abs) from uninfected humans and mice that had not been previously exposed to gp120. The rate of IgM-catalyzed gp120 cleavage was greater than of other polypeptide substrates, including the bacterial superantigen protein A. The kinetic parameters of gp120 cleavage varied over a broad range depending on the source of the IgMs, and turnover numbers as great as 2.1/min were observed, suggesting that different Abs possess distinct gp120 recognition properties. IgG Abs failed to cleave gp120 detectably. The Fab fragment of a monoclonal IgM cleaved gp120, suggesting that the catalytic activity belongs to the antibody combining site. The electrophoretic profile of gp120 incubated with a monoclonal human IgM suggested hydrolysis at several sites. One of the cleavage sites was identified as the Lys(432)-Ala(433) peptide bond, located within the region thought to be the Ab-recognizable superantigenic determinant. A covalently reactive peptide analog (CRA) corresponding to gp120 residues 421-431 with a C-terminal amidino phosphonate diester mimetic of the Lys(432)-Ala(433) bond was employed to probe IgM nucleophilic reactivity. The peptidyl CRA inhibited the IgM-catalyzed cleavage of gp120 and formed covalent IgM adducts at levels exceeding a control hapten CRA devoid of the peptide sequence. These observations suggest that IgMs can selectively cleave gp120 by a nucleophilic mechanism and raise the possibility of their role as defense enzymes.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ohara K, Munakata H, Hifumi E, Uda T, Matsuura K. Improvement of catalytic antibody activity by protease processing. Biochem Biophys Res Commun 2004; 315:612-6. [PMID: 14975745 DOI: 10.1016/j.bbrc.2004.01.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Indexed: 11/16/2022]
Abstract
An immunoglobulin L chain (HIR) was treated with lysyl-endopeptidase. Gel filtration chromatography of the digestion mix identified a peak displaying a significantly higher specific catalytic activity than that of the original sample. The protein in the peak was 11 kDa in size and constituted the VL fragment of HIR. The Km and Kcat values of Chromozym TRY hydrolysis for HIR were 1.5 x 10(-4) M and 6.2 min(-1), and for the VL fragment 7.3 x 10(-4) M and 4.8 x 10(2) min(-1), respectively. Three out of the five BJPs studied in this paper displayed elevated catalytic activity after processing with lysyl-endopeptidase. Similar results were also obtained for the complete antibody.
Collapse
|
34
|
Planque S, Taguchi H, Burr G, Bhatia G, Karle S, Zhou YX, Nishiyama Y, Paul S. Broadly distributed chemical reactivity of natural antibodies expressed in coordination with specific antigen binding activity. J Biol Chem 2003; 278:20436-43. [PMID: 12668670 DOI: 10.1074/jbc.m301468200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody (Ab) nucleophilic reactivity was studied using hapten and polypeptide antigens containing biotinylated phosphonate diester groups (covalently reactive antigen analogs, CRAs). Polyclonal IgG from healthy donors formed covalent adducts with a positively charged hapten CRA at levels superior to trypsin. Each of the 16 single chain Fv clones studied expressed a similar reactivity, indicating the V domain location of the nucleophiles and their broad distribution in diverse Abs. The formation of hapten CRA-Fv adducts was correlated with Fv proteolytic activity determined by cleavage of a model peptide substrate. Despite excellent nucleophilicity, proteolysis by IgG proceeded at lower rates than trypsin, suggesting that events occurring after nucleophilic attack on the substrate limit the rate of Ab proteolysis. The extracellular domain of the epidermal growth factor receptor with phosphonate diester groups at Lys side chains and a synthetic peptide corresponding to residues 421- 431 of human immunodeficiency virus glycoprotein (gp) 120 with the phosphonate diester at the C terminus formed covalent adducts with specific polyclonal and monoclonal Abs raised by immunization with epidermal growth factor receptor and synthetic gp120-(421- 436) devoid of phosphonate diester groups, respectively. Adduct formation was inhibited by extracellular domain of the epidermal growth factor receptor (exEGFB) and synthetic gp120-(421- 436) devoid of phosphonate groups, suggesting that the nucleophiles are located within the antigen binding sites. These results suggest the innate character of the Ab nucleophilic reactivity, its functional coordination with non-covalent adaptive binding interactions developing over the course of B cell maturation, and novel routes toward permanent inhibition of Abs.
Collapse
Affiliation(s)
- Stephanie Planque
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Paul S, Planque S, Zhou YX, Taguchi H, Bhatia G, Karle S, Hanson C, Nishiyama Y. Specific HIV gp120-cleaving antibodies induced by covalently reactive analog of gp120. J Biol Chem 2003; 278:20429-35. [PMID: 12665517 DOI: 10.1074/jbc.m300870200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the results of efforts to strengthen and direct the natural nucleophilic activity of antibodies (Abs) for the purpose of specific cleavage of the human immunodeficiency virus-1 coat protein gp120. Phosphonate diester groups previously reported to form a covalent bond with the active site nucleophile of serine proteases (Paul, S., Tramontano, A., Gololobov, G., Zhou, Y. X., Taguchi, H., Karle, S., Nishiyama, Y., Planque, S., and George, S. (2001) J. Biol. Chem. 276, 28314-28320) were placed on Lys side chains of gp120. Seven monoclonal Abs raised by immunization with the covalently reactive analog of gp120 displayed irreversible binding to this compound (binding resistant to dissociation with the denaturant SDS). Catalytic cleavage of biotinylated gp120 by three monoclonal antibodies was observed. No cleavage of albumin and the extracellular domain of the epidermal growth factor receptor was detected. Cleavage of model peptide substrates occurred on the C-terminal side of basic amino acids, and Km for this reaction was approximately 200-fold greater than that for gp120 cleavage, indicating Ab specialization for the gp120 substrate. A hapten phosphonate diester devoid of gp120 inhibited the catalytic activity with exceptional potency, confirming that the reaction proceeds via a serine protease mechanism. Irreversible binding of the hapten phosphonate diester by polyclonal IgG from mice immunized with gp120 covalently reactive analog was increased compared with similar preparations from animals immunized with control gp120, indicating induction of Ab nucleophilicity. These findings suggest the feasibility of raising antigen-specific proteolytic antibodies on demand by covalent immunization.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology Research Center, Department of Pathology, University of Texas, Houston Medical School, 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bangale Y, Karle S, Planque S, Zhou YX, Taguchi H, Nishiyama Y, Li L, Kalaga R, Paul S. VIPase autoantibodies in Fas-defective mice and patients with autoimmune disease. FASEB J 2003; 17:628-35. [PMID: 12665475 DOI: 10.1096/fj.02-0475com] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The immunoregulatory neuropeptide vasoactive intestinal peptide (VIP) was cleaved by purified IgG from Fas-defective C3H/gld mice, lupus patients, and autoimmune thyroiditis patients. No VIPase activity was detected in IgG from control mice and humans. Kinetic analyses of VIPase IgG preparations suggested low-affinity recognition of VIP. Yet the VIPase activity was VIP selective, judged by lack of correlation with other protease activities expressed by the IgG and by noninterference of unrelated peptides in the activity. Recombinant Fv constructs selected from a human lupus phage show library displayed VIPase activity, confirming that the active site is located in the V domains. Inhibition of the VIPase activity by di-isopropylfluorophosphate suggested a serine protease-like mechanism of catalysis. Irreversible binding of a biotinyated phosphonate diester by the IgG and Fv preparations was observed, consistent with the presence of activated nucleophiles similar to those in enzymes capable of covalent catalysis. These observations show that VIP is a target for specific catalytic autoantibodies in autoimmune disease.
Collapse
Affiliation(s)
- Yogesh Bangale
- Chemical Immunology Research Center, Department of Pathology, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhou YX, Karle S, Taguchi H, Planque S, Nishiyama Y, Paul S. Prospects for immunotherapeutic proteolytic antibodies. J Immunol Methods 2002; 269:257-68. [PMID: 12379366 DOI: 10.1016/s0022-1759(02)00236-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Monoclonal antibodies are suitable for therapeutic applications by virtue of their excellent target binding characteristics (specificity, affinity) and long half-life in vivo. Catalytic antibodies (CAbs) potentially represent a new generation of therapeutics with enhanced antigen inactivation capability. Here, we describe prospects for development of therapeutic CAbs to the envelope protein gp120 of HIV. The strategy consists of exploiting the natural tendency of the immune system to synthesize germline-encoded, serine protease-like CAbs. Lupus patients were found to develop antibodies to a conserved component of the CD4 binding site of gp120, potentially offering a means to obtain human antibodies expressing broad reactivity with various HIV strains. Covalently reactive antigen analogs (CRAs) capable of selective recognition of nucleophilic Abs were synthesized and applied to isolate Fv and L chain catalysts from lupus phage repertoires. CRA binding by the recombinant Ab fragments was statistically correlated with catalytic cleavage of model peptide substrates. A peptidyl CRA composed of residues 421-431 with a phosphonate diester moiety at its C terminus was validated as a reagent that combines noncovalent and covalent binding interactions in recognition of a gp120ase L chain. A general challenge in the field is the apparent instability of the catalytic conformation of the Abs. In reference to therapy of HIV infection, assurance is required that the Abs recognize the native conformation of gp120 expressed as a trimer on the virus surface.
Collapse
Affiliation(s)
- Yong-Xin Zhou
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Cross SSJ, Brady K, Stevenson JD, Sackin JR, Kenward N, Dietel A, Thomas NR. New variation on a theme: structure and mechanism of action of hydrolytic antibody 7F11, an aspartate rich relation of catalytic antibodies 17E8 and 29G11. J Immunol Methods 2002; 269:173-95. [PMID: 12379361 DOI: 10.1016/s0022-1759(02)00232-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A computer model, based on homology, of the catalytic antibody 7F11 that catalyses the decomposition of the benzoate ester of a dioxetane resulting in chemiluminescence is reported. Antibody 7F11 has 89% identity in the V(L) domain, and 72% identity in the V(H) domain with hydrolytic antibodies 17E8 and 29G11 previously reported by Scanlan et al. These were also raised against a phosphonate containing hapten. The antigen-binding site of antibody 7F11 whilst similar to that of 17E8 has aspartic acids at positions 33H and 35H, reminiscent in position of the catalytic residues found in aspartate proteinases such as pepsin. AutoDock 3.0 has been used to identify the best binding mode for the hapten. Molecular dynamic simulations have also been undertaken to examine any major conformational changes induced by hapten binding. A mechanism for benzoate ester hydrolysis involving the aspartic acid side-chains is proposed. Construction of a single-chain variable fragment (scFv) of 7F11 is also reported.
Collapse
Affiliation(s)
- Simon S J Cross
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
In patients with autoimmune diseases, anti-idiotypic antibodies directed to nucleoprotein complexes, DNA, and enzymes that participate in nucleic acid metabolism may be induced spontaneously by primary antigens and can have characteristics of the primary antigen, including catalytic activity. The first natural catalytic antibody, now termed abzyme, which hydrolyzes intestinal vasoactive peptide, was discovered by Paul et al. [Science 244 (1989) 1158]. Subsequently, other abzymes able to hydrolyze proteins, DNA, RNA, or polysaccharides have been found in the sera of patients with autoimmune and also viral pathologies. Further, we have discovered in the milk of healthy human mothers antibodies that catalyze the hydrolysis of RNA, DNA, nucleotides, and the phosphorylation of lipids and proteins. The phenomenon of catalysis by autoantibodies is extremely interesting and can potentially be applied to many different objectives including new types of efficient catalysts, evaluation of the functional roles of abzymes in innate and adaptive immunity, and understanding of certain aspects of self-tolerance and of the destructive responses in autoimmune diseases. In this review, we collate methods for purifying and characterizing natural abzymes especially those catalyzing DNA and RNA hydrolysis. We also describe new methods that we have developed to provide rigorous criteria that catalytic activity is an intrinsic property of some antibodies. Some major current themes are discussed as well as potential applications of abzymes in scientific, medical, and biotechnological fields.
Collapse
Affiliation(s)
- Georgy A Nevinsky
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Lavrentieva Ave. 8, Novosibirsk 630090, Russia.
| | | |
Collapse
|
40
|
Hifumi E, Mitsuda Y, Ohara K, Uda T. Targeted destruction of the HIV-1 coat protein gp41 by a catalytic antibody light chain. J Immunol Methods 2002; 269:283-98. [PMID: 12379368 DOI: 10.1016/s0022-1759(02)00242-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Generation of antibodies with the ability to destroy targeted viral coat proteins or tumor antigens is an important aim in current research aimed at developing superior catalytic antibodies. To this end, we raised a monoclonal antibody against a discrete sequence of the envelope gp41, RGPDRPEGIEEEGGERDRD, which is a highly conserved sequence in many human immunodeficiency virus (HIV)-1 strains. The light chain subunit of this antibody catalytically decomposed the targeted peptide antigen. The degradation of the immunized peptide antigen by the light chain was initiated by the hydrolytic scission of the peptide bond between Glu12-Gly13, followed by the successive cleavage reactions of the additional peptic bonds into small peptides and amino acids. The decomposition by the light chain obeyed Michaelis-Menten kinetics (k(cat)/K(m) = 2. 8 x 10(5) M(-1) min(-1)). A characteristic feature of the reaction was a slow initial degradation step, followed by an increase in the rate of catalysis. Removal of the light chain by immunoadsorption at either stage of the reaction resulted in recession of catalysis. The light chain also cleaved recombinant gp41 molecule, but did not degrade proteins unrelated in the sequence to the peptide immunogen (bovine and human serum albumins).
Collapse
Affiliation(s)
- Emi Hifumi
- School of Biosciences, Hiroshima Prefectural University, Shobara, Hiroshima-ken 727-0023, Japan
| | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
In this review, we explore recent developments in the generation of catalytic antibodies and their potential in therapy.
Collapse
Affiliation(s)
- C Tellier
- FRE-CNRS n (degree). 2230 Biocatalyze, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes, France.
| |
Collapse
|
43
|
Paul S, Tramontano A, Gololobov G, Zhou YX, Taguchi H, Karle S, Nishiyama Y, Planque S, George S. Phosphonate ester probes for proteolytic antibodies. J Biol Chem 2001; 276:28314-20. [PMID: 11346653 DOI: 10.1074/jbc.m102530200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reactivity of phosphonate ester probes with several available proteolytic antibody (Ab) fragments was characterized. Irreversible, active site-directed inhibition of the peptidase activity was evident. Stable phosphonate diester-Ab adducts were resolved by column chromatography and denaturing electrophoresis. Biotinylated phosphonate esters were applied for chemical capture of phage particles displaying Fv and light chain repertoires. Selected Ab fragments displayed enriched catalytic activity inhibitable by the selection reagent. Somewhat unexpectedly, a phosphonate monoester also formed stable adducts with the Abs. Improved catalytic activity of phage Abs selected by monoester binding was evident. Turnover values (kcat) for a selected Fv construct and a light chain against their preferred model peptide substrates were 0.5 and 0.2 min(-1), respectively, and the corresponding Michaelis-Menten constants (Km) were 10 and 8 microm. The covalent reactivity of Abs with phosphonate esters suggests their ability to recapitulate the catalytic mechanism utilized by classical serine proteases.
Collapse
Affiliation(s)
- S Paul
- Department of Pathology and Laboratory Medicine, Chemical Immunology and Therapeutics Research Center, University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|