1
|
Thipparthy KR, Kollu A, Kulkarni C, Dutta AK, Doshi H, Kashyap A, Sinha KP, Kondaveeti SB, Gupta R. Discrete variational autoencoders BERT model-based transcranial focused ultrasound for Alzheimer's disease detection. J Neurosci Methods 2025; 416:110386. [PMID: 39909160 DOI: 10.1016/j.jneumeth.2025.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
RESEARCH BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative condition marked by symptoms including aphasia and diminished verbal fluency. Researchers have employed phonetic attributes, fluency, pauses, and various paralinguistic traits, or derived aspects from transcribed text, to identify Alzheimer's disease. METHODS AND METHODOLOGY Nevertheless, conventional acoustic feature-based detection techniques are constrained in their ability to capture semantic information, and the process of transcribing speech into text is both time-consuming and labour-intensive. Non-invasive brain stimulation (NBS), encompassing methods such as transcranial magnetic stimulation (TMS) and Transcranial focused ultrasound (tFUS), has been investigated as a potential intervention to enhance cognitive functions and communication in Alzheimer's patients, demonstrating efficacy in modulating brain activity and promoting neuroplasticity. This research utilises Discrete Variational Autoencoders to transform speech into pseudo-phoneme sequences, subsequently applying the BERT (Bidirectional Encoder Representations from Transformers) model to analyse the relationships among these pseudo-phoneme sequences. This research proposes a tFUS-BERT model to encapsulate the linguistic representations of audio. RESULT ANALYSIS The proposed tFUS-BERT model demonstrated its effectiveness with an accuracy of 76.06 % when combined with Wav2vec 2.0 and 71.83 % with Hu-BERT, outperforming the baseline by 5.63 % on the ADReSSo dataset. Additionally, the model exhibited superior performance in capturing linguistic representations compared to traditional acoustic methods, showcasing its potential for accurate and scalable Alzheimer's detection. COMPARISON WITH PREVIOUS STUDIES The model attains an accuracy of 70.42 % on the ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech Only) dataset, reflecting a 5.63 % enhancement compared to the baseline system.
Collapse
Affiliation(s)
| | - Archana Kollu
- Department of Computer Engineering, PCET Pimpri Chinchwad College of Engineering and Research, Pune, India.
| | - Chaitanya Kulkarni
- Department of Computer Engineering, VPKBIET, Baramati, Maharashtra, India.
| | - Ashit Kumar Dutta
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh 13713, Kingdom of Saudi Arabia.
| | - Hardik Doshi
- Marwadi University Research Center, Department of Computer Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot, Gujarat 360003, India.
| | - Aditya Kashyap
- Department of Computer Science and Engineering, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India.
| | - Kumari Priyanka Sinha
- Department of Computer Science and Engineering, Nalanda College of Engineering, Chandi Bihar Engineering University, Patna, India.
| | - Suresh Babu Kondaveeti
- Dept of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed University), Pune, India.
| | - Rupesh Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Luo S, Wang Y, Hisatsune T. P2Y1 receptor in Alzheimer's disease. Neural Regen Res 2025; 20:440-453. [PMID: 38819047 PMCID: PMC11317937 DOI: 10.4103/nrr.nrr-d-23-02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer's disease treatments in the last decades. However, existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic, necessitating the exploration of alternative therapeutic strategies. Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer's disease patients, with dysregulated astrocytic purinergic receptors, particularly the P2Y1 receptor, all of which constitute the pathophysiology of Alzheimer's disease. These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer's disease. This review delves into recent insights into the association between P2Y1 receptor and Alzheimer's disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer's disease by mitigating neuroinflammation, thus offering promising avenues for developing drugs for Alzheimer's disease and potentially contributing to the development of more effective treatments.
Collapse
Affiliation(s)
- Shan Luo
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Yifei Wang
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
3
|
Subramanian V, Juhr D, Johnson LS, Yem JB, Giansanti P, Grumbach IM. Changes in the Proteome of the Circle of Willis during Aging Reveal Signatures of Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4887877. [PMID: 38962180 PMCID: PMC11221951 DOI: 10.1155/2024/4887877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Approximately 70% of all strokes occur in patients over 65 years old, and stroke increases the risk of developing dementia. The circle of Willis (CoW), the ring of arteries at the base of the brain, links the intracerebral arteries to one another to maintain adequate cerebral perfusion. The CoW proteome is affected in cerebrovascular and neurodegenerative diseases, but changes related to aging have not been described. Here, we report on a quantitative proteomics analysis comparing the CoW from five young (2-3-month-old) and five aged male (18-20-month-old) mice using gene ontology (GO) enrichment, ingenuity pathway analysis (IPA), and iPathwayGuide tools. This revealed 242 proteins that were significantly dysregulated with aging, among which 189 were upregulated and 53 downregulated. GO enrichment-based analysis identified blood coagulation as the top biological function that changed with age and integrin binding and extracellular matrix constituents as the top molecular functions. Consistent with these findings, iPathwayGuide-based impact analysis revealed associations between aging and the complement and coagulation, platelet activation, ECM-receptor interaction, and metabolic process pathways. Furthermore, IPA analysis revealed the enrichment of 97 canonical pathways that contribute to inflammatory responses, as well as 59 inflammation-associated upstream regulators including 39 transcription factors and 20 cytokines. Thus, aging-associated changes in the CoW proteome in male mice demonstrate increases in metabolic, thrombotic, and inflammatory processes.
Collapse
Affiliation(s)
- Vikram Subramanian
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Denise Juhr
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Lydia S. Johnson
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Justin B. Yem
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Piero Giansanti
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS@MRI)Technical University of Munich, Munich, Germany
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Free Radical and Radiation Biology ProgramDepartment of Radiation OncologyCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
4
|
Stanton AE, Bubnys A, Agbas E, James B, Park DS, Jiang A, Pinals RL, Liu L, Truong N, Loon A, Staab C, Cerit O, Wen HL, Kellis M, Blanchard JW, Langer R, Tsai LH. Engineered 3D Immuno-Glial-Neurovascular Human miBrain Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553453. [PMID: 37645757 PMCID: PMC10461996 DOI: 10.1101/2023.08.15.553453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Patient-specific, human-based cellular models integrating a biomimetic blood-brain barrier (BBB), immune, and myelinated neuron components are critically needed to enable accelerated, translationally relevant discovery of neurological disease mechanisms and interventions. By engineering a novel brain-mimicking 3D hydrogel and co-culturing all six major brain cell types derived from patient iPSCs, we have constructed, characterized, and utilized a multicellular integrated brain (miBrain) immuno-glial-neurovascular model with in vivo- like hallmarks inclusive of neuronal activity, functional connectivity, barrier function, myelin-producing oligodendrocyte engagement with neurons, multicellular interactions, and transcriptomic profiles. We implemented the model to study Alzheimer's Disease pathologies associated with APOE4 genetic risk. APOE4 miBrains differentially exhibit amyloid aggregation, tau phosphorylation, and astrocytic GFAP. Unlike the co-emergent fate specification of glia and neurons in organoids, miBrains integrate independently differentiated cell types, a feature we harnessed to identify that APOE4 in astrocytes promotes neuronal tau pathogenesis and dysregulation through crosstalk with microglia.
Collapse
|
5
|
Chandra PK, Panner Selvam MK, Castorena-Gonzalez JA, Rutkai I, Sikka SC, Mostany R, Busija DW. Fibrinogen in mice cerebral microvessels induces blood-brain barrier dysregulation with aging via a dynamin-related protein 1-dependent pathway. GeroScience 2024; 46:395-415. [PMID: 37897653 PMCID: PMC10828490 DOI: 10.1007/s11357-023-00988-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023] Open
Abstract
We previously reported evidence that oxidative stress during aging leads to adverse protein profile changes of brain cortical microvessels (MVs: end arterioles, capillaries, and venules) that affect mRNA/protein stability, basement membrane integrity, and ATP synthesis capacity in mice. As an extension of our previous study, we also found that proteins which comprise the blood-brain barrier (BBB) and regulate mitochondrial quality control were also significantly decreased in the mice's cortical MVs with aging. Interestingly, the neuroinflammatory protein fibrinogen (Fgn) was increased in mice brain MVs, which corresponds with clinical reports indicating that the plasma Fgn concentration increased progressively with aging. In this study, protein-protein interaction network analysis indicated that high expression of Fgn is linked with downregulated expression of both BBB- and mitochondrial fission/fusion-related proteins in mice cortical MVs with aging. To investigate the mechanism of Fgn action, we observed that 2 mg/mL or higher concentration of human plasma Fgn changed cell morphology, induced cytotoxicity, and increased BBB permeability in primary human brain microvascular endothelial cells (HBMECs). The BBB tight junction proteins were significantly decreased with increasing concentration of human plasma Fgn in primary HBMECs. Similarly, the expression of phosphorylated dynamin-related protein 1 (pDRP1) and other mitochondrial fission/fusion-related proteins were also significantly reduced in Fgn-treated HBMECs. Interestingly, DRP1 knockdown by shRNA(h) resulted in the reduction of both BBB- and mitochondrial fission/fusion-related proteins in HBMECs. Our results suggest that elevated Fgn downregulates DRP1, leading to mitochondrial-dependent endothelial and BBB dysfunction in the brain microvasculature.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA.
| | - Manesh Kumar Panner Selvam
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Jorge A Castorena-Gonzalez
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| |
Collapse
|
6
|
Yamashima T, Seike T, Mochly-Rosen D, Chen CH, Kikuchi M, Mizukoshi E. Implication of the cooking oil-peroxidation product "hydroxynonenal" for Alzheimer's disease. Front Aging Neurosci 2023; 15:1211141. [PMID: 37693644 PMCID: PMC10486274 DOI: 10.3389/fnagi.2023.1211141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that reduces cell injuries via detoxification of lipid-peroxidation product, 4-hydroxy-2-nonenal (hydroxynonenal). It is generated exogenously via deep-frying of linoleic acid-rich cooking oils and/or endogenously via oxidation of fatty acids involved in biomembranes. Although its toxicity for human health is widely accepted, the underlying mechanism long remained unknown. In 1998, Yamashima et al. have formulated the "calpain-cathepsin hypothesis" as a molecular mechanism of ischemic neuronal death. Subsequently, they found that calpain cleaves Hsp70.1 which became vulnerable after the hydroxynonenal-induced carbonylation at the key site Arg469. Since it is the pivotal aberration that induces lysosomal membrane rupture, they suggested that neuronal death in Alzheimer's disease similarly occurs by chronic ischemia via the calpain-cathepsin cascade triggered by hydroxynonenal. For nearly three decades, amyloid β (Aβ) peptide was thought to be a root substance of Alzheimer's disease. However, because of both the insignificant correlations between Aβ depositions and occurrence of neuronal death or dementia, and the negative results of anti-Aβ medicines tested so far in the patients with Alzheimer's disease, the strength of the "amyloid cascade hypothesis" has been weakened. Recent works have suggested that hydroxynonenal is a mediator of programmed cell death not only in the brain, but also in the liver, pancreas, heart, etc. Increment of hydroxynonenal was considered an early event in the development of Alzheimer's disease. This review aims at suggesting ways out of the tunnel, focusing on the implication of hydroxynonenal in this disease. Herein, the mechanism of Alzheimer neuronal death is discussed by focusing on Hsp70.1 with a dual function as chaperone protein and lysosomal stabilizer. We suggest that Aβ is not a culprit of Alzheimer's disease, but merely a byproduct of autophagy/lysosomal failure resulting from hydroxynonenal-induced Hsp70.1 disorder. Enhancing ALDH2 activity to detoxify hydroxynonenal emerges as a promising strategy for preventing and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
7
|
Kelly L, Sharp MM, Thomas I, Brown C, Schrag M, Antunes LV, Solopova E, Martinez-Gonzalez J, Rodríguez C, Carare RO. Targeting lysyl-oxidase (LOX) may facilitate intramural periarterial drainage for the treatment of Alzheimer's disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100171. [PMID: 37457664 PMCID: PMC10338210 DOI: 10.1016/j.cccb.2023.100171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease is the commonest form of dementia. It is likely that a lack of clearance of amyloid beta (Aβ) results in its accumulation in the parenchyma as Aβ oligomers and insoluble plaques, and within the walls of blood vessels as cerebral amyloid angiopathy (CAA). The drainage of Aβ along the basement membranes of blood vessels as intramural periarterial drainage (IPAD), could be improved if the driving force behind IPAD could be augmented, therefore reducing Aβ accumulation. There are alterations in the composition of the vascular basement membrane in Alzheimer's disease. Lysyl oxidase (LOX) is an enzyme involved in the remodelling of the extracellular matrix and its expression and function is altered in various disease states. The expression of LOX is increased in Alzheimer's disease, but it is unclear whether this is a contributory factor in the impairment of IPAD in Alzheimer's disease. The pharmacological inhibition of LOX may be a strategy to improve IPAD and reduce the accumulation of Aβ in the parenchyma and within the walls of blood vessels.
Collapse
Affiliation(s)
- Louise Kelly
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom, UK
| | | | | | - Christopher Brown
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom, UK
| | - Matthew Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Lissa Ventura Antunes
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Solopova
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - José Martinez-Gonzalez
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | | |
Collapse
|
8
|
Zhang R, Zhang Y, Wu T, Tian W, Luo J, Shi Y, Su D, Shu H, Tian J. Bibliometric analysis of research topics on blood-brain barrier breakdown and cognitive function over the last two decades (2000-2021). Front Aging Neurosci 2023; 15:1108561. [PMID: 37323140 PMCID: PMC10268002 DOI: 10.3389/fnagi.2023.1108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Blood-brain barrier (BBB) breakdown is closely associated with cognitive dysfunction. This study aimed to categorize and summarize research topics on the correlation between BBB breakdown and its effects on cognitive function. Methods Bibliometric analysis methods were used to quantitatively and qualitatively assess research progress and predict future research hotspots. Relevant publications from the Web of the Science Core Collection were extracted on November 5, 2022 and analyzed to predict trends and hotspots in the field. Results We identified 5518 articles published from 2000 to 2021 about the BBB and cognition. The number of manuscripts on this topic increased steadily during this time period, especially after 2013. We found that the number of articles published in China increased gradually and is in second place behind the United States of America (USA). In the research field of BBB breakdown and cognitive function, the USA is still far ahead. Keyword burst detection suggested that cognitive impairment, neurodegeneration disease and neuroinflammation are emerging research hotspots. Discussion The mechanisms of BBB integrity breakdown and its effects on the deterioration of cognitive function are complex, and clinical treatment of the affected diseases has been a hot topic in the field over the past 22 years. Looking forward, this body of research is aimed at improving or maintaining patients' cognitive abilities, by finding preventive measures and to provide a basis for finding new treatments of cognitive disorders.
Collapse
|
9
|
Tarawneh R. Microvascular Contributions to Alzheimer Disease Pathogenesis: Is Alzheimer Disease Primarily an Endotheliopathy? Biomolecules 2023; 13:830. [PMID: 37238700 PMCID: PMC10216678 DOI: 10.3390/biom13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer disease (AD) models are based on the notion that abnormal protein aggregation is the primary event in AD, which begins a decade or longer prior to symptom onset, and culminates in neurodegeneration; however, emerging evidence from animal and clinical studies suggests that reduced blood flow due to capillary loss and endothelial dysfunction are early and primary events in AD pathogenesis, which may precede amyloid and tau aggregation, and contribute to neuronal and synaptic injury via direct and indirect mechanisms. Recent data from clinical studies suggests that endothelial dysfunction is closely associated with cognitive outcomes in AD and that therapeutic strategies which promote endothelial repair in early AD may offer a potential opportunity to prevent or slow disease progression. This review examines evidence from clinical, imaging, neuropathological, and animal studies supporting vascular contributions to the onset and progression of AD pathology. Together, these observations support the notion that the onset of AD may be primarily influenced by vascular, rather than neurodegenerative, mechanisms and emphasize the importance of further investigations into the vascular hypothesis of AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
10
|
Lee JH, Stefan S, Walek K, Nie J, Min K, Yang TD, Lee J. Investigating the correlation between early vascular alterations and cognitive impairment in Alzheimer's disease in mice with SD-OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:1494-1508. [PMID: 37078054 PMCID: PMC10110305 DOI: 10.1364/boe.481826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Vascular alterations have recently gained some attention with their strong association with Alzheimer's disease (AD). We conducted a label-free in vivo optical coherence tomography (OCT) longitudinal imaging using an AD mouse model. We achieved the tracking of the same individual vessels over time and conducted an in-depth analysis of temporal dynamics in vasculature and vasodynamics using OCT angiography and Doppler-OCT. The AD group showed an exponential decay in both vessel diameter and blood flow change with the critical timepoint before 20 weeks of age, which precedes cognitive decline observed at 40 weeks of age. Interestingly, for the AD group, the diameter change showed the dominance in arterioles over venules, but no such influence was found in blood flow change. Conversely, three mice groups with early vasodilatory intervention did not show any significant change in both vascular integrity and cognitive function compared to the wild-type group. We found early vascular alterations and confirmed their correlation with cognitive impairment in AD.
Collapse
Affiliation(s)
- Jang-Hoon Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Sabina Stefan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Konrad Walek
- Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jiarui Nie
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Kyounghee Min
- University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Taeseok Daniel Yang
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Jonghwan Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
11
|
Wang C, Reid G, Mackay CE, Hayes G, Bulte DP, Suri S. A Systematic Review of the Association Between Dementia Risk Factors and Cerebrovascular Reactivity. Neurosci Biobehav Rev 2023; 148:105140. [PMID: 36944391 DOI: 10.1016/j.neubiorev.2023.105140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Cumulative evidence suggests that impaired cerebrovascular reactivity (CVR), a regulatory response critical for maintaining neuronal health, is amongst the earliest pathological changes in dementia. However, we know little about how CVR is affected by dementia risk, prior to disease onset. Understanding this relationship would improve our knowledge of disease pathways and help inform preventative interventions. This systematic review investigates 59 studies examining how CVR (measured by magnetic resonance imaging) is affected by modifiable, non-modifiable, and clinical risk factors for dementia. We report that non-modifiable risk (older age and apolipoprotein ε4), some modifiable factors (diabetes, traumatic brain injury, hypertension) and some clinical factors (stroke, carotid artery occlusion, stenosis) were consistently associated with reduced CVR. We also note a lack of conclusive evidence on how other behavioural factors such as physical inactivity, obesity, or depression, affect CVR. This review explores the biological mechanisms underpinning these brain- behaviour associations, highlights evident gaps in the literature, and identifies the risk factors that could be managed to preserve CVR in an effort to prevent dementia.
Collapse
Affiliation(s)
- Congxiyu Wang
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Graham Reid
- Department of Psychiatry, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Clare E Mackay
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Genevieve Hayes
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Daniel P Bulte
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.
| |
Collapse
|
12
|
Extra-Virgin Olive Oil Enhances the Blood-Brain Barrier Function in Mild Cognitive Impairment: A Randomized Controlled Trial. Nutrients 2022; 14:nu14235102. [PMID: 36501136 PMCID: PMC9736478 DOI: 10.3390/nu14235102] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mild cognitive impairment (MCI) and early Alzheimer's disease (AD) are characterized by blood-brain barrier (BBB) breakdown leading to abnormal BBB permeability ahead of brain atrophy or dementia. Previous findings in AD mouse models have reported the beneficial effect of extra-virgin olive oil (EVOO) against AD, which improved BBB and memory functions and reduced brain amyloid-β (Aβ) and related pathology. This work aimed to translate these preclinical findings to humans in individuals with MCI. We examined the effect of daily consumption of refined olive oil (ROO) and EVOO for 6 months in MCI subjects on BBB permeability (assessed by contrast-enhanced MRI), and brain function (assessed using functional-MRI) as the primary outcomes. Cognitive function and AD blood biomarkers were also assessed as the secondary outcomes. Twenty-six participants with MCI were randomized with 25 participants completed the study. EVOO significantly improved clinical dementia rating (CDR) and behavioral scores. EVOO also reduced BBB permeability and enhanced functional connectivity. While ROO consumption did not alter BBB permeability or brain connectivity, it improved CDR scores and increased functional brain activation to a memory task in cortical regions involved in perception and cognition. Moreover, EVOO and ROO significantly reduced blood Aβ42/Aβ40 and p-tau/t-tau ratios, suggesting that both altered the processing and clearance of Aβ. In conclusion, EVOO and ROO improved CDR and behavioral scores; only EVOO enhanced brain connectivity and reduced BBB permeability, suggesting EVOO biophenols contributed to such an effect. This proof-of-concept study justifies further clinical trials to assess olive oil's protective effects against AD and its potential role in preventing MCI conversion to AD and related dementias.
Collapse
|
13
|
Tarawneh R, Kasper RS, Sanford J, Phuah C, Hassenstab J, Cruchaga C. Vascular endothelial-cadherin as a marker of endothelial injury in preclinical Alzheimer disease. Ann Clin Transl Neurol 2022; 9:1926-1940. [PMID: 36342663 PMCID: PMC9735377 DOI: 10.1002/acn3.51685] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Endothelial dysfunction is an early and prevalent pathology in Alzheimer disease (AD). We here investigate the value of vascular endothelial-cadherin (VEC) as a cerebrospinal fluid (CSF) marker of endothelial injury in preclinical AD. METHODS Cognitively normal participants (Clinical Dementia Rating [CDR] 0) from the Knight Washington University-ADRC were included in this study (n = 700). Preclinical Alzheimer's Cognitive Composite (PACC) scores, CSF VEC, tau, p-tau181, Aβ42/Aβ40, neurofilament light-chain (NFL) levels, and magnetic resonance imaging (MRI) assessments of white matter injury (WMI) were obtained from all participants. A subset of participants underwent brain amyloid imaging using positron emission tomography (amyloid-PET) (n = 534). Linear regression examined associations of CSF VEC with PACC and individual cognitive scores in preclinical AD. Mediation analyses examined whether CSF VEC mediated effects of CSF amyloid and tau markers on cognition in preclinical AD. RESULTS CSF VEC levels significantly correlated with PACC and individual cognitive scores in participants with amyloid (A+T±N±; n = 558) or those with amyloid and tau pathologies (A+T+N±; n = 259), after adjusting for covariates. CSF VEC also correlated with CSF measures of amyloid, tau, and neurodegeneration and global amyloid burden on amyloid-PET scans in our cohort. Importantly, our findings suggest that CSF VEC mediates associations of CSF Aβ42/Aβ40, p-tau181, and global amyloid burden with cognitive outcomes in preclinical AD. INTERPRETATION Our results support the utility of CSF VEC as a marker of endothelial injury in AD and highlight the importance of endothelial injury as an early pathology that contributes to cognitive impairment in even the earliest preclinical stages.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Center for Memory and AgingUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Rachel S. Kasper
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Jessie Sanford
- Department of PsychiatryWashington University in St LouisSt. LouisMissouriUSA
- NeuroGenomics and Informatics CenterWashington University in St LouisMissouriUSA
| | - Chia‐Ling Phuah
- NeuroGenomics and Informatics CenterWashington University in St LouisMissouriUSA
- Department of NeurologyWashington University in St LouisSt. LouisMissouriUSA
| | - Jason Hassenstab
- Department of PsychologyWashington University in St LouisSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St LouisSt. LouisMissouriUSA
- NeuroGenomics and Informatics CenterWashington University in St LouisMissouriUSA
| |
Collapse
|
14
|
Littau JL, Velilla L, Hase Y, Villalba‐Moreno ND, Hagel C, Drexler D, Osorio Restrepo S, Villegas A, Lopera F, Vargas S, Glatzel M, Krasemann S, Quiroz YT, Arboleda‐Velasquez JF, Kalaria R, Sepulveda‐Falla D. Evidence of beta amyloid independent small vessel disease in familial Alzheimer's disease. Brain Pathol 2022; 32:e13097. [PMID: 35695802 PMCID: PMC9616091 DOI: 10.1111/bpa.13097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
We studied small vessel disease (SVD) pathology in Familial Alzheimer's disease (FAD) subjects carrying the presenilin 1 (PSEN1) p.Glu280Ala mutation in comparison to those with sporadic Alzheimer's disease (SAD) as a positive control for Alzheimer's pathology and Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) bearing different NOTCH3 mutations, as positive controls for SVD pathology. Upon magnetic resonance imaging (MRI) in life, some FAD showed mild white matter hyperintensities and no further radiologic evidence of SVD. In post-mortem studies, total SVD pathology in cortical areas and basal ganglia was similar in PSEN1 FAD and CADASIL subjects, except for the feature of arteriosclerosis which was higher in CADASIL subjects than in PSEN1 FAD subjects. Further only a few SAD subjects showed a similar degree of SVD pathology as observed in CADASIL. Furthermore, we found significantly enlarged perivascular spaces in vessels devoid of cerebral amyloid angiopathy in FAD compared with SAD and CADASIL subjects. As expected, there was greater fibrinogen-positive perivascular reactivity in CADASIL but similar reactivity in PSEN1 FAD and SAD groups. Fibrinogen immunoreactivity correlated with onset age in the PSEN1 FAD cases, suggesting increased vascular permeability may contribute to cognitive decline. Additionally, we found reduced perivascular expression of PDGFRβ AQP4 in microvessels with enlarged PVS in PSEN1 FAD cases. We demonstrate that there is Aβ-independent SVD pathology in PSEN1 FAD, that was marginally lower than that in CADASIL subjects although not evident by MRI. These observations suggest presence of covert SVD even in PSEN1, contributing to disease progression. As is the case in SAD, these consequences may be preventable by early recognition and actively controlling vascular disease risk, even in familial forms of dementia.
Collapse
Affiliation(s)
- Jessica Lisa Littau
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Lina Velilla
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| | - Yoshiki Hase
- Neurovascular Research GroupTranslational and Clinical Research Institute, Newcastle UniversityNewcastle upon Tyne
| | | | - Christian Hagel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Drexler
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Andres Villegas
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| | | | - Sergio Vargas
- Department of Radiology, Neuroradiology SectionUniversidad de AntioquiaMedellínColombia
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Susanne Krasemann
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Yakeel T. Quiroz
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph F. Arboleda‐Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical SchoolBostonMassachusetts
| | - Rajesh Kalaria
- Neurovascular Research GroupTranslational and Clinical Research Institute, Newcastle UniversityNewcastle upon Tyne
| | - Diego Sepulveda‐Falla
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| |
Collapse
|
15
|
Deshpande A, Elliott J, Kari N, Jiang B, Michel P, Toosizadeh N, Fahadan PT, Kidwell C, Wintermark M, Laksari K. Novel imaging markers for altered cerebrovascular morphology in aging, stroke, and Alzheimer's disease. J Neuroimaging 2022; 32:956-967. [PMID: 35838658 PMCID: PMC9474631 DOI: 10.1111/jon.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Altered brain vasculature is a key phenomenon in several neurologic disorders. This paper presents a quantitative assessment of the anatomical variations in the Circle of Willis (CoW) and vascular morphology in healthy aging, acute ischemic stroke (AIS) and Alzheimer's Disease (AD). METHODS We used our novel automatic method to segment and extract geometric features of the cerebral vasculature from MR angiography scans of 175 healthy subjects, which were used to create a probabilistic atlas of cerebrovasculature and to study normal aging and intersubject variations in CoW anatomy. Subsequently, we quantified and analyzed vascular alterations in 45AIS and 50 AD patients, two prominent cerebrovascular and neurodegenerative disorders. RESULTS In the sampled cohort, we determined that the CoW is fully formed in only 35% of healthy adults and found significantly (p < .05) increased tortuosity and fractality, with increasing age and also with disease in both AIS and AD. We also found significantly lower vessel length, volume, and number of branches in AIS patients, as expected. The AD cerebral vessels exhibited significantly smaller diameter and more complex branching patterns, compared to age-matched healthy adults. These changes were significantly heightened (p < .05) among healthy, early onset mild AD, and moderate/severe dementia groups. CONCLUSION Although our study does not include longitudinal data due to paucity of such datasets, the specific geometric features and quantitative comparisons demonstrate the potential for using vascular morphology as a noninvasive imaging biomarker for neurologic disorders.
Collapse
Affiliation(s)
| | - Jordan Elliott
- Department of Biomedical Engineering, University of Arizona
| | - Nitya Kari
- Department of Biomedical Engineering, University of Arizona
| | - Bin Jiang
- Department of Radiology, Stanford University
| | - Patrik Michel
- Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona
- Arizona Center on Aging, Department of Medicine, University of Arizona
| | - Pouya Tahsili Fahadan
- Neuroscience Intensive Care Unit, Medical Critical Care Service and Department of Medical Education, University of Virginia School of Medicine, Inova Fairfax Medical Campus
- Departments of Neurology, Johns Hopkins University School of Medicine
| | | | | | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona
- Department of Aerospace and Mechanical Engineering, University of Arizona
| |
Collapse
|
16
|
Liu H, Xu Q, Xiang X, Liu D, Si S, Wang L, Lv Y, Liao Y, Yang H. Case Report: Passive Handstand Promotes Cerebrovascular Elasticity Training and Helps Delay the Signs of Aging: A 40-Year Follow-Up Investigation. Front Med (Lausanne) 2022; 9:752076. [PMID: 35559343 PMCID: PMC9086612 DOI: 10.3389/fmed.2022.752076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThere are no long-term (>10 years) follow-up evaluations of the effects of handstand exercise or studies on the use of equipment for passive handstand exercise.ObjectiveTo report a 40-year follow-up investigation of a Chinese man who has been practicing passive handstand for 40 years.DesignThis observational investigation was conducted in Guizhou Province, China.ParticipantA (currently) 66-year-old Chinese man who had been practicing passive handstand exercise for 40 years was followed up.InterventionsPhysical and auxiliary examinations were carried out to determine the effects of long-term passive handstand exercise on the human body.Main MeasuresThe participant’s cerebrovascular, spinal health, mental health, and visual acuity as well as the presence of facial aging were examined.Key ResultsHis cerebral vessels were healthy, he appeared younger than his peers, his cervical spondylosis improved, and his mental state and cognitive function were good.ConclusionLong-term passive handstand exercise can promote cerebrovascular elasticity training and delay signs of aging. We recommend promoting this passive handstand exercise to the public.
Collapse
Affiliation(s)
- Haonan Liu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Xu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xiang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Danan Liu
- Institute of Medical Science, Guizhou Medical University, Guiyang, China
| | - Shengyong Si
- Institute of Medical Science, Guizhou Medical University, Guiyang, China
| | - Lan Wang
- Institute of Medical Science, Guizhou Medical University, Guiyang, China
| | - Ying Lv
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yidong Liao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Hua Yang,
| |
Collapse
|
17
|
Renke MB, Marcinkowska AB, Kujach S, Winklewski PJ. A Systematic Review of the Impact of Physical Exercise-Induced Increased Resting Cerebral Blood Flow on Cognitive Functions. Front Aging Neurosci 2022; 14:803332. [PMID: 35237146 PMCID: PMC8882971 DOI: 10.3389/fnagi.2022.803332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Brain perfusion declines with aging. Physical exercise represents a low-cost accessible form of intervention to increase cerebral blood flow; however, it remains unclear if exercise-induced amelioration of brain perfusion has any impact on cognition. We aimed to provide a state-of-the art review on this subject. A comprehensive search of the PubMed (MEDLINE) database was performed. On the basis of the inclusion and exclusion criteria, 14 studies were included in the analysis. Eleven of the studies conducted well-controlled exercise programs that lasted 12–19 weeks for 10–40 participants and two studies were conducted in much larger groups of subjects for more than 5 years, but the exercise loads were indirectly measured, and three of them were focused on acute exercise. Literature review does not show a direct link between exercise-induced augmentation of brain perfusion and better cognitive functioning. However, in none of the reviewed studies was such an association the primary study endpoint. Carefully designed clinical studies with focus on cognitive and perfusion variables are needed to provide a response to the question whether exercise-induced cerebral perfusion augmentation is of clinical importance.
Collapse
Affiliation(s)
- Maria B. Renke
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gdańsk, Poland
- *Correspondence: Maria B. Renke
| | - Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Physiology, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Paweł J. Winklewski
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
18
|
Batson C, Stein KY, Gomez A, Sainbhi AS, Froese L, Alizadeh A, Mathieu F, Zeiler FA. Intracranial Pressure-Derived Cerebrovascular Reactivity Indices, Chronological Age, and Biological Sex in Traumatic Brain Injury: A Scoping Review. Neurotrauma Rep 2022; 3:44-56. [PMID: 35112107 PMCID: PMC8804238 DOI: 10.1089/neur.2021.0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To date, there has been limited literature exploring the association between age and sex with cerebrovascular reactivity (CVR) in moderate/severe traumatic brain injury (TBI). Given the known link between age, sex, and cerebrovascular function, knowledge of the impacts on continuously assessed CVR is critical for the development of future therapeutics. We conducted a scoping review of the literature for studies that had a direct statistical interrogation of the relationship between age, sex, and continuous intracranial pressure (ICP)-based indices of CVR in moderate/severe TBI. The ICP-based indices researched included: pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC. MEDLINE, BIOSIS, EMBASE, SCOPUS, Global Health, and the Cochrane library were searched from inception to June 2021 for relevant articles. A total of 10 original studies fulfilled our inclusion criteria. Nine of the articles documented a correlation between advanced age and worse CVR, with eight using PRx (2192 total patients), three using PAx (978 total patients), and one using RAC (358 total patients), p < 0.05; R ranging from 0.17 to 0.495 for all indices across all studies. Three articles (1256 total patients) displayed a correlation between biological sex and PRx, with females trending towards higher PRx values (p < 0.05) in the limited available literature. However, no literature exists comparing PAx or RAC with biological sex. Findings showed that aging was associated with impaired CVR. We observed a trend between female sex and worse PRx values, but the literature was limited and statistical significance was borderline. The identified studies were few in number, carried significant population heterogeneity, and utilized grand averaging of large epochs of physiology during statistical comparisons with age and biological sex. Because of the heterogeneous nature of TBI populations and limited focus on the effects of age and sex on outcomes in TBI, it is challenging to highlight the differences between the indices and patient age groups and sex. The largest study showing an association between PRx and age was done by Zeiler and colleagues, where 165 patients were studied noting that patients with a mean PRx value above zero had a mean age above 51.4 years versus a mean age of 41.4 years for those with a mean PRx value below zero (p = 0.0007). The largest study showing an association between PRx and sex was done by Czosnyka and colleagues, where 469 patients were studied noting that for patients <50 years of age, PRx was worse in females (0.11 ± 0.047) compared to males (0.044 ± 0.031), p < 0.05. The findings from these 10 studies provide preliminary data, but are insufficient to definitively characterize the impact of age and sex on CVR in moderate/severe TBI. Future work in the field should focus on the impact of age and sex on multi-modal cerebral physiological monitoring.
Collapse
Affiliation(s)
- Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francois Mathieu
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Rastogi R, Morgan BJ, Badr MS, Chowdhuri S. Hypercapnia-induced vasodilation in the cerebral circulation is reduced in older adults with sleep-disordered breathing. J Appl Physiol (1985) 2022; 132:14-23. [PMID: 34709067 PMCID: PMC8721948 DOI: 10.1152/japplphysiol.00347.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The prevalence of sleep-disordered breathing (SDB) is higher in older adults compared with younger individuals. The increased propensity for ventilatory control instability in older adults may contribute to the increased prevalence of central apneas. Reductions in the cerebral vascular response to CO2 may exacerbate ventilatory overshoots and undershoots during sleep. Thus, we hypothesized that hypercapnia-induced cerebral vasodilation (HCVD) will be reduced in older compared with younger adults. In 11 older and 10 younger adults with SDB, blood flow velocity in the middle cerebral artery (MCAV) was measured using Doppler transcranial ultrasonography during multiple steady-state hyperoxic hypercapnic breathing trials while awake, interspersed with room air breathing. Changes in ventilation, MCAV, and mean arterial pressure (MAP) via finger plethysmography during the trials were compared with baseline eupneic values. For each hyperoxic hypercapnic trial, the change (Δ) in MCAV for a corresponding change in end-tidal CO2 and the HCVD or the change in cerebral vascular conductance (MCAV divided by MAP) for a corresponding change in end-tidal CO2 was determined. The hypercapnic ventilatory response was similar between the age groups, as was ΔMCAV/Δ[Formula: see text]. However, compared with young, older adults had a significantly smaller HCVD (1.3 ± 0.7 vs. 2.1 ± 0.6 units/mmHg, P = 0.004). Multivariable analyses demonstrated that age and nadir oxygen saturation during nocturnal polysomnography were significant predictors of HCVD. Thus, our data indicate that older age and SDB-related hypoxia are associated with diminished HCVD. We hypothesize that this impairment in vascular function may contribute to breathing instability during sleep in these individuals.NEW & NOTEWORTHY This study demonstrates, for the first time, in individuals with sleep-disordered breathing (SDB) that aging is associated with decreased hypercapnia-induced cerebral vasodilation (HCVD). In addition to advanced age, the magnitude of nocturnal oxygen desaturation due to SDB is an equal independent predictor of HCVD.
Collapse
Affiliation(s)
- R. Rastogi
- 1Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan,2Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - B. J. Morgan
- 3Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - M. S. Badr
- 1Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan,2Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - S. Chowdhuri
- 1Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan,2Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
20
|
Near-Lifespan Tracking of Cerebral Microvascular Degeneration in Aging to Alzheimer’s Continuum. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2022; 4. [PMID: 35466329 PMCID: PMC9022674 DOI: 10.20900/agmr20220003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting millions of people worldwide and is currently incurable. As the population ages, AD and related dementia are becoming the biggest epidemic in medical history: the number of people aged 65 and older with AD is projected to increase between two- and three-fold by 2050. Imaging and biomarker studies suggest that the pathophysiological processes of AD begin more than a decade before the diagnosis of dementia, opening the possibility of early, preemptive prediction. For accurate prediction, it is important although challenging to fully understand how multiple etiologies and age-related prodromal processes contribute to the onset of Alzheimer’s continuum, across a long period comparable to the lifespan. Addressing this challenge was one of the overarching transformative concepts at the 2015 AD Research Summit, “to develop new programs on systems biology and integrative physiology to gain a deeper understanding of the complex biology of the disease.” Among other factors, cerebral microvascular degeneration (CMD) may play a key role in the onset and development of Alzheimer’s continuum, potentially prior to, along with, or independently of the beta-amyloid (Aβ) accumulation. Despite its importance for early detection and as a therapeutic target for early intervention, it is unknown whether CMD is a causal factor for AD pathogenesis or an early consequence of multifactorial conditions that lead to AD at a later stage. Here, this Viewpoint suggests that we should fill two critical knowledge gaps: (1) Temporal relationships between various CMDs and other key factors before/during/after the onset of Alzheimer’s continuum have not been established; (2) Little integrative study down to the capillary vessel level has been conducted on how individual defects in various microvascular structural and flow properties distinctly correlate with and/or contribute to neuronal degeneration. As the first step toward filling these gaps, I propose utilizing recent advances in microscopic imaging and image analysis techniques to longitudinally track a comprehensive set of CMDs over the lifespan in model animals, along with Aβ, tau, neuronal degeneration, and cognitive impairment when possible.
Collapse
|
21
|
McLarnon JG. A Leaky Blood–Brain Barrier to Fibrinogen Contributes to Oxidative Damage in Alzheimer’s Disease. Antioxidants (Basel) 2021; 11:antiox11010102. [PMID: 35052606 PMCID: PMC8772934 DOI: 10.3390/antiox11010102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
The intactness of blood–brain barrier (BBB) is compromised in Alzheimer’s disease (AD). Importantly, evidence suggests that the perturbation and abnormalities appearing in BBB can manifest early in the progression of the disease. The disruption of BBB allows extravasation of the plasma protein, fibrinogen, to enter brain parenchyma, eliciting immune reactivity and response. The presence of amyloid-β (Aβ) peptide leads to the formation of abnormal aggregates of fibrin resistant to degradation. Furthermore, Aβ deposits act on the contact system of blood coagulation, altering levels of thrombin, fibrin clots and neuroinflammation. The neurovascular unit (NVU) comprises an ensemble of brain cells which interact with infiltrating fibrinogen. In particular, interaction of resident immune cell microglia with fibrinogen, fibrin and Aβ results in the production of reactive oxygen species (ROS), a neurotoxic effector in AD brain. Overall, fibrinogen infiltration through a leaky BBB in AD animal models and in human AD tissue is associated with manifold abnormalities including persistent fibrin aggregation and clots, microglial-mediated production of ROS and diminished viability of neurons and synaptic connectivity. An objective of this review is to better understand how processes associated with BBB leakiness to fibrinogen link vascular pathology with neuronal and synaptic damage in AD.
Collapse
Affiliation(s)
- James G McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| |
Collapse
|
22
|
Harraz OF, Jensen LJ. Vascular calcium signalling and ageing. J Physiol 2021; 599:5361-5377. [PMID: 34705288 PMCID: PMC9002240 DOI: 10.1113/jp280950] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Changes in cellular Ca2+ levels have major influences on vascular function and blood pressure regulation. Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) orchestrate vascular activity in distinct ways, often involving highly specific fluctuations in Ca2+ signalling. Ageing is a major risk factor for cardiovascular diseases, but the impact of ageing per se on vascular Ca2+ signalling has received insufficient attention. We reviewed the literature for age-related changes in Ca2+ signalling in relation to vascular structure and function. Vascular tone dysregulation in several vascular beds has been linked to abnormal expression or activity of SMC voltage-gated Ca2+ channels, Ca2+ -activated K+ channels or TRPC6 channels. Some of these effects were linked to altered caveolae density, microRNA expression or 20-HETE abundance. Intracellular store Ca2+ handling was suppressed in ageing mainly via reduced expression of intracellular Ca2+ release channels, and Ca2+ reuptake or efflux pumps. An increase in mitochondrial Ca2+ uptake, leading to oxidative stress, could also play a role in SMC hypercontractility and structural remodelling in ageing. In ECs, ageing entailed diverse effects on spontaneous and evoked Ca2+ transients, as well as structural changes at the EC-SMC interface. The concerted effects of altered Ca2+ signalling on myogenic tone, endothelium-dependent vasodilatation, and vascular structure are likely to contribute to blood pressure dysregulation and blood flow distribution deficits in critical organs. With the increase in the world's ageing population, future studies should be directed at solving specific ageing-induced Ca2+ signalling deficits to combat the imminent accelerated vascular ageing and increased risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA,Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA
| | - Lars Jørn Jensen
- Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
23
|
Effects of aging on protein expression in mice brain microvessels: ROS scavengers, mRNA/protein stability, glycolytic enzymes, mitochondrial complexes, and basement membrane components. GeroScience 2021; 44:371-388. [PMID: 34708300 PMCID: PMC8811117 DOI: 10.1007/s11357-021-00468-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Differentially expressed (DE) proteins in the cortical microvessels (MVs) of young, middle-aged, and old male and female mice were evaluated using discovery-based proteomics analysis (> 4,200 quantified proteins/group). Most DE proteins (> 90%) showed no significant differences between the sexes; however, some significant DE proteins showing sexual differences in MVs decreased from young (8.3%), to middle-aged (3.7%), to old (0.5%) mice. Therefore, we combined male and female data for age-dependent comparisons but noted sex differences for examination. Key proteins involved in the oxidative stress response, mRNA or protein stability, basement membrane (BM) composition, aerobic glycolysis, and mitochondrial function were significantly altered with aging. Relative abundance of superoxide dismutase-1/-2, catalase and thioredoxin were reduced with aging. Proteins participating in either mRNA degradation or pre-mRNA splicing were significantly increased in old mice MVs, whereas protein stabilizing proteins decreased. Glycolytic proteins were not affected in middle age, but the relative abundance of these proteins decreased in MVs of old mice. Although most of the 41 examined proteins composing mitochondrial complexes I–V were reduced in old mice, six of these proteins showed a significant reduction in middle-aged mice, but the relative abundance increased in fourteen proteins. Nidogen, collagen, and laminin family members as well as perlecan showed differing patterns during aging, indicating BM reorganization starting in middle age. We suggest that increased oxidative stress during aging leads to adverse protein profile changes of brain cortical MVs that affect mRNA/protein stability, BM integrity, and ATP synthesis capacity.
Collapse
|
24
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
25
|
Bandyopadhyay S. Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Front Aging Neurosci 2021; 13:653334. [PMID: 34211387 PMCID: PMC8239194 DOI: 10.3389/fnagi.2021.653334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloidogenicity and vascular dysfunction are the key players in the pathogenesis of Alzheimer’s disease (AD), involving dysregulated cellular interactions. An intricate balance between neurons, astrocytes, microglia, oligodendrocytes and vascular cells sustains the normal neuronal circuits. Conversely, cerebrovascular diseases overlap neuropathologically with AD, and glial dyshomeostasis promotes AD-associated neurodegenerative cascade. While pathological hallmarks of AD primarily include amyloid-β (Aβ) plaques and neurofibrillary tangles, microvascular disorders, altered cerebral blood flow (CBF), and blood-brain barrier (BBB) permeability induce neuronal loss and synaptic atrophy. Accordingly, microglia-mediated inflammation and astrogliosis disrupt the homeostasis of the neuro-vascular unit and stimulate infiltration of circulating leukocytes into the brain. Large-scale genetic and epidemiological studies demonstrate a critical role of cellular crosstalk for altered immune response, metabolism, and vasculature in AD. The glia associated genetic risk factors include APOE, TREM2, CD33, PGRN, CR1, and NLRP3, which correlate with the deposition and altered phagocytosis of Aβ. Moreover, aging-dependent downregulation of astrocyte and microglial Aβ-degrading enzymes limits the neurotrophic and neurogenic role of glial cells and inhibits lysosomal degradation and clearance of Aβ. Microglial cells secrete IGF-1, and neurons show a reduced responsiveness to the neurotrophic IGF-1R/IRS-2/PI3K signaling pathway, generating amyloidogenic and vascular dyshomeostasis in AD. Glial signals connect to neural stem cells, and a shift in glial phenotype over the AD trajectory even affects adult neurogenesis and the neurovascular niche. Overall, the current review informs about the interaction of neuronal and glial cell types in AD pathogenesis and its critical association with cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
26
|
Abstract
An aging-related reduction in the brain's functional reserve may explain why delirium is more frequent in the elderly than in younger people insofar as the reserve becomes inadequate to cover the metabolic requirements that are critically increased by stressors. The aim of this paper is to review the normal aging-related changes that theoretically compromise complex mental activities, neuronal and synaptic densities, and the neurocomputational flexibility of the functional reserve. A pivotal factor is diminished connectivity, which is substantially due to the loss of synapses and should specifically affect association systems and cholinergic fibres in delirious patients. However, micro-angiopathy with impaired blood flow autoregulation, increased blood/brain barrier permeability, changes in cerebrospinal fluid dynamics, weakened mitochondrial performance, and a pro-inflammatory involution of the immune system may also jointly affect neurons and their synaptic assets, and even cause the progression of delirium to dementia regardless of the presence of co-existing plaques, tangles, or other pathological markers. On the other hand, the developmental growth in functional reserve during childhood and adolescence makes the brain increasingly resistant to delirium, and residual reserve can allow the elderly to recover. These data support the view that functional reserve is the variable that confronts stressors and governs the risk and intensity of and recovery from delirium. Although people of any age are at risk of delirium, the elderly are at greater risk because aging and age-dependent structural changes inevitably affect the brain's functional reserve.
Collapse
|
27
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. Molecular Pathobiology of the Cerebrovasculature in Aging and in Alzheimers Disease Cases With Cerebral Amyloid Angiopathy. Front Aging Neurosci 2021; 13:658605. [PMID: 34079449 PMCID: PMC8166206 DOI: 10.3389/fnagi.2021.658605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular dysfunction and cerebral amyloid angiopathy (CAA) are hallmark features of Alzheimer's disease (AD). Molecular damage to cerebrovessels in AD may result in alterations in vascular clearance mechanisms leading to amyloid deposition around blood vessels and diminished neurovascular-coupling. The sequelae of molecular events leading to these early pathogenic changes remains elusive. To address this, we conducted a comprehensive in-depth molecular characterization of the proteomic changes in enriched cerebrovessel fractions isolated from the inferior frontal gyrus of autopsy AD cases with low (85.5 ± 2.9 yrs) vs. high (81 ± 4.4 yrs) CAA score, aged-matched control (87.4 ± 1.5 yrs) and young healthy control (47 ± 3.3 yrs) cases. We employed a 10-plex tandem isobaric mass tag approach in combination with our ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method. Enriched cerebrovascular fractions showed very high expression levels of proteins specific to endothelial cells, mural cells (pericytes and smooth muscle cells), and astrocytes. We observed 150 significantly regulated proteins in young vs. aged control cerebrovessels. The top pathways significantly modulated with aging included chemokine, reelin, HIF1α and synaptogenesis signaling pathways. There were 213 proteins significantly regulated in aged-matched control vs. high CAA cerebrovessels. The top three pathways significantly altered from this comparison were oxidative phosphorylation, Sirtuin signaling pathway and TCA cycle II. Comparison between low vs. high CAA cerebrovessels identified 84 significantly regulated proteins. Top three pathways significantly altered between low vs. high CAA cerebrovessels included TCA Cycle II, Oxidative phosphorylation and mitochondrial dysfunction. Notably, high CAA cases included more advanced AD pathology thus cerebrovascular effects may be driven by the severity of amyloid and Tangle pathology. These descriptive proteomic changes provide novel insights to explain the age-related and AD-related cerebrovascular changes contributing to AD pathogenesis. Particularly, disturbances in energy bioenergetics and mitochondrial biology rank among the top AD pathways altered in cerebrovessels. Targeting these failed mechanisms in endothelia and mural cells may provide novel disease modifying targets for developing therapeutic strategies against cerebrovascular deterioration and promoting cerebral perfusion in AD. Our future work will focus on interrogating and validating these novel targets and pathways and their functional significance.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | | | | | - James Evans
- Roskamp Institute, Sarasota, FL, United States
| | - Benjamin Shackleton
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Maximillian Eisenbaum
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Charis Ringland
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | | | - Michael Mullan
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Corbin Bachmeier
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
- Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
28
|
Unzeta M, Hernàndez-Guillamon M, Sun P, Solé M. SSAO/VAP-1 in Cerebrovascular Disorders: A Potential Therapeutic Target for Stroke and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22073365. [PMID: 33805974 PMCID: PMC8036996 DOI: 10.3390/ijms22073365] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
The semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1) or primary amine oxidase (PrAO), is a deaminating enzyme highly expressed in vessels that generates harmful products as a result of its enzymatic activity. As a multifunctional enzyme, it is also involved in inflammation through its ability to bind and promote the transmigration of circulating leukocytes into inflamed tissues. Inflammation is present in different systemic and cerebral diseases, including stroke and Alzheimer’s disease (AD). These pathologies show important affectations on cerebral vessels, together with increased SSAO levels. This review summarizes the main roles of SSAO/VAP-1 in human physiology and pathophysiology and discusses the mechanisms by which it can affect the onset and progression of both stroke and AD. As there is an evident interrelationship between stroke and AD, basically through the vascular system dysfunction, the possibility that SSAO/VAP-1 could be involved in the transition between these two pathologies is suggested. Hence, its inhibition is proposed to be an interesting therapeutical approach to the brain damage induced in these both cerebral pathologies.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Auònoma de Barcelona, 08193 Barcelona, Spain;
| | - Mar Hernàndez-Guillamon
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Correspondence: ; Tel.: +34-934-896-766
| | - Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| |
Collapse
|
29
|
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) from unregulated exposure to the blood and its contents. The BBB also controls the blood-to-brain and brain-to-blood permeation of many substances, resulting in nourishment of the CNS, its homeostatic regulation and communication between the CNS and peripheral tissues. The cells forming the BBB communicate with cells of the brain and in the periphery. This highly regulated interface changes with healthy aging. Here, we review those changes, starting with morphology and disruption. Transporter changes include those for amyloid beta peptide, glucose and drugs. Brain fluid dynamics, pericyte health and basement membrane and glycocalyx compositions are all altered with healthy aging. Carrying the ApoE4 allele leads to an acceleration of most of the BBB's age-related changes. We discuss how alterations in the BBB that occur with healthy aging reflect adaptation to the postreproductive phase of life and may affect vulnerability to age-associated diseases.
Collapse
|
30
|
Cohen AD, Jagra AS, Visser NJ, Yang B, Fernandez B, Banerjee S, Wang Y. Improving the Breath-Holding CVR Measurement Using the Multiband Multi-Echo EPI Sequence. Front Physiol 2021; 12:619714. [PMID: 33716769 PMCID: PMC7953053 DOI: 10.3389/fphys.2021.619714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/20/2021] [Indexed: 02/04/2023] Open
Abstract
Blood oxygen level-dependent (BOLD) functional MRI (fMRI) is commonly used to measure cerebrovascular reactivity (CVR), which can convey insightful information about neurovascular health. Breath-holding (BH) has been shown to be a practical vasodilatory stimulus for measuring CVR in clinical settings. The conventional BOLD fMRI approach has some limitations, however, such as susceptibility-induced signal dropout at air tissue interfaces and low BOLD sensitivity especially in areas of low T 2 * . These drawbacks can potentially be mitigated with multi-echo sequences, which acquire several images at different echo times in one shot. When combined with multiband techniques, high temporal resolution images can be acquired. This study compared an advanced multiband multi-echo (MBME) echo planar imaging (EPI) sequence with an existing multiband single-echo (MB) sequence to evaluate the repeatability and sensitivity of BH activation and CVR mapping. Images were acquired from 28 healthy volunteers, of which 18 returned for repeat imaging. Both MBME and MB data were pre-processed using both standard and advanced denoising techniques. The MBME data was further processed by combining echoes using a T 2 * -weighted approach and denoising using multi-echo independent component analysis. BH activation was calculated using a general linear model and the respiration response function. CVR was computed as the percent change related to the activation. To account for differences in CVR related to TE, relative CVR (rCVR) was computed and normalized to the mean gray matter CVR. Test-retest metrics were assessed with the Dice coefficient, rCVR difference, within subject coefficient of variation, and the intraclass correlation coefficient. Our findings demonstrate that rCVR for MBME scans were significantly higher than for MB scans across most of the gray matter. In areas of high susceptibility-induced signal dropout, however, MBME rCVR was significantly less than MB rCVR due to artifactually high rCVR for MB scans in these regions. MBME rCVR showed improved test-retest metrics compared with MB. Overall, the MBME sequence displayed superior BOLD sensitivity, improved specificity in areas of signal dropout on MBME scans, enhanced reliability, and reduced variability across subjects compared with MB acquisitions. Our results suggest that the MBME EPI sequence is a promising tool for imaging CVR.
Collapse
Affiliation(s)
- Alexander D. Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Nicholas J. Visser
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | | | | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Yang Wang,
| |
Collapse
|
31
|
Young KZ, Xu G, Keep SG, Borjigin J, Wang MM. Overlapping Protein Accumulation Profiles of CADASIL and CAA: Is There a Common Mechanism Driving Cerebral Small-Vessel Disease? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:1871-1887. [PMID: 33387456 DOI: 10.1016/j.ajpath.2020.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral amyloid angiopathy (CAA) are two distinct vascular angiopathies that share several similarities in clinical presentation and vascular pathology. Given the clinical and pathologic overlap, the molecular overlap between CADASIL and CAA was explored. CADASIL and CAA protein profiles from recently published proteomics-based and immuno-based studies were compared to investigate the potential for shared disease mechanisms. A comparison of affected proteins in each disease highlighted 19 proteins that are regulated in both CADASIL and CAA. Functional analysis of the shared proteins predicts significant interaction between them and suggests that most enriched proteins play roles in extracellular matrix structure and remodeling. Proposed models to explain the observed enrichment of extracellular matrix proteins include both increased protein secretion and decreased protein turnover by sequestration of chaperones and proteases or formation of stable protein complexes. Single-cell RNA sequencing of vascular cells in mice suggested that the vast majority of the genes accounting for the overlapped proteins between CADASIL and CAA are expressed by fibroblasts. Thus, our current understanding of the molecular profiles of CADASIL and CAA appears to support potential for common mechanisms underlying the two disorders.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gang Xu
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Simon G Keep
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Jimo Borjigin
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan.
| |
Collapse
|
32
|
Higher level of acute serum VEGF and larger infarct volume are more frequently associated with post-stroke cognitive impairment. PLoS One 2020; 15:e0239370. [PMID: 33017430 PMCID: PMC7535035 DOI: 10.1371/journal.pone.0239370] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background Serum vascular endothelial growth factor (VEGF) and infarct volume detected by brain imaging have been associated with stroke outcome. However, the relationship of these two variables with post-stroke cognitive impairment (PSCI) remains unclear. We aimed to investigate the association between acute serum VEGF levels and infarct volume with PSCI in ischemic stroke patients. Methods Fifty-six first-ever ischemic stroke patients who were hospitalized in Dr. Sardjito General Hospital Yogyakarta, Indonesia were prospectively recruited. Serum VEGF level was taken on day 5 of stroke onset and measured by ELISA. Infarct volume was calculated manually from head CT scan by expert radiologist. PSCI was assessed after 3 months follow up by using Montreal Cognitive Assessment-Indonesian version (MoCA-INA). We performed a ROC curve analysis to determine the cut-off point of VEGF level and infarct volume. Multivariate logistic regression analysis was performed to measure the contribution of VEGF level and infarct volume to PSCI after controlling covariates (demographic and clinical data). Results The mean age of PSCI and non-PSCI patients was 61.63% ± 8.47 years and 58.67% ± 9.01 years, respectively (p = 0.221). No differences observed for vascular risk factors, infarct location, and NIHSS in both groups. Multivariate logistic regression showed that patients with higher VEGF level alone (≥519.8 pg/ml) were 4.99 times more likely to have PSCI than those with lower VEGF level (OR = 4.99, 95% CI = 1.01–24.7, p = 0.048). In addition, patients with larger infarct volume alone (≥0.054 ml) were also more frequently associated with PSCI (OR = 7.71, 95% CI = 1.39–42.91, p = 0.019). Conclusions Acute ischemic stroke patients with higher serum VEGF level (≥519.8 pg/ml) and larger infarct volume (≥0.054 ml) were more likely to have PSCI 3 months after stroke. These findings may contribute to predict PSCI earlier and thus better prevention strategy could be made.
Collapse
|
33
|
Miceli V, Russelli G, Iannolo G, Gallo A, Lo Re V, Agnese V, Sparacia G, Conaldi PG, Bulati M. Role of non-coding RNAs in age-related vascular cognitive impairment: An overview on diagnostic/prognostic value in Vascular Dementia and Vascular Parkinsonism. Mech Ageing Dev 2020; 191:111332. [PMID: 32805261 DOI: 10.1016/j.mad.2020.111332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Age is the pivotal risk factor for different common medical conditions such as cardiovascular diseases, cancer and dementia. Among age-related disorders, cardiovascular and cerebrovascular diseases, represent the leading causes of premature mortality strictly related to vascular ageing, a pathological condition characterized by endothelial dysfunction, atherosclerosis, hypertension, heart disease and stroke. These features negatively impact on the brain, owing to altered cerebral blood flow, neurovascular coupling and impaired endothelial permeability leading to cerebrovascular diseases (CVDs) as Vascular Dementia (VD) and Parkinsonism (VP). It is an increasing opinion that neurodegenerative disorders and cerebrovascular diseases are associated from a pathogenetic point of view, and in this review, we discuss how cerebrovascular dysfunctions, due to epigenetic alterations, are linked with neuronal degeneration/dysfunction that lead to cognitive impairment. The relation between neurodegenerative and cerebrovascular diseases are reviewed with a focus on role of ncRNAs in age-related vascular diseases impairing the endothelium in the blood-brain barrier with consequent dysfunction of cerebral blood flow. In this review we dissert about different regulatory mechanisms of gene expression implemented by ncRNAs in the pathogenesis of age-related neurovascular impairment, aiming to highlight the potential use of ncRNAs as biomarkers for diagnostic/prognostic purposes as well as novel therapeutic targets.
Collapse
Affiliation(s)
- V Miceli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Russelli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Iannolo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - A Gallo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - V Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - V Agnese
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Sparacia
- Radiology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - P G Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - M Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy.
| |
Collapse
|
34
|
De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, Millan F, Salvador-Pascual A, García-Lucerga C, Blasco-Lafarga C, Garcia-Dominguez E, Carretero A, Correas AG, Viña J, Gomez-Cabrera MC. Physical exercise in the prevention and treatment of Alzheimer's disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:394-404. [PMID: 32780691 PMCID: PMC7498620 DOI: 10.1016/j.jshs.2020.01.004] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 05/02/2023]
Abstract
Dementia is one of the greatest global challenges for health and social care in the 21st century. Alzheimer's disease (AD), the most common type of dementia, is by no means an inevitable consequence of growing old. Several lifestyle factors may increase, or reduce, an individual's risk of developing AD. Much has been written over the ages about the benefits of exercise and physical activity. Among the risk factors associated with AD is a low level of physical activity. The relationship between physical and mental health was established several years ago. In this review, we discuss the role of exercise (aerobic and resistance) training as a therapeutic strategy for the treatment and prevention of AD. Older adults who exercise are more likely to maintain cognition. We address the main protective mechanism on brain function modulated by physical exercise by examining both human and animal studies. We will pay especial attention to the potential role of exercise in the modulation of amyloid β turnover, inflammation, synthesis and release of neurotrophins, and improvements in cerebral blood flow. Promoting changes in lifestyle in presymptomatic and predementia disease stages may have the potential for delaying one-third of dementias worldwide. Multimodal interventions that include the adoption of an active lifestyle should be recommended for older populations.
Collapse
Affiliation(s)
- Adrian De la Rosa
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Coralie Arc-Chagnaud
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain; INRA, UMR866 Muscle dynamics and metabolism, University of Montpellier, F-34060, Montpellier, France
| | - Fernando Millan
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Andrea Salvador-Pascual
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | | | | | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Aitor Carretero
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Angela G Correas
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain.
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain.
| |
Collapse
|
35
|
Royea J, Hamel E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer's disease therapeutic targets. GeroScience 2020; 42:1237-1256. [PMID: 32700176 DOI: 10.1007/s11357-020-00231-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is multifactorial in nature. Yet, despite being the most common form of dementia in the elderly, AD's primary cause remains unknown. As such, there is currently little to offer AD patients as the vast majority of recently tested therapies have either failed in well-controlled clinical trials or inadequately treat AD. Recently, emerging preclinical and clinical evidence has associated the brain renin angiotensin system (RAS) to AD pathology. Accordingly, various components of the brain RAS were shown to be altered in AD patients and mouse models, including the angiotensin II type 1 (AT1R), angiotensin IV receptor (AT4R), and Mas receptors. Collectively, the changes observed within the RAS have been proposed to contribute to many of the neuropathological hallmarks of AD, including the neuronal, cognitive, and vascular dysfunctions. Accumulating evidence has additionally identified antihypertensive medications targeting the RAS, particularly angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), to delay AD onset and progression. In this review, we will discuss the emergence of the RAS's involvement in AD and highlight putative mechanisms of action underlying ARB's beneficial effects that may explain their ability to modify the risk of developing AD or AD progression. The RAS may provide novel molecular targets for recovering memory pathways, cerebrovascular function, and other pathological landmarks of AD.
Collapse
Affiliation(s)
- Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
36
|
Zhang L, Pasha EP, Liu J, Xing CY, Cardim D, Tarumi T, Womack K, Hynan LS, Cullum CM, Zhang R. Steady-state cerebral autoregulation in older adults with amnestic mild cognitive impairment: linear mixed model analysis. J Appl Physiol (1985) 2020; 129:377-385. [PMID: 32614686 DOI: 10.1152/japplphysiol.00193.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We examined whether the efficacy of steady-state cerebral autoregulation (CA) is reduced in older adults with amnestic mild cognitive impairment (aMCI), a prodromal stage of clinical Alzheimer disease (AD). Forty-two patients with aMCI and 24 cognitively normal older adults (NC) of similar age, sex, and education underwent stepwise decreases and increases in mean arterial pressure (MAP) induced by intravenous infusion of sodium nitroprusside and phenylephrine, respectively. Changes in cerebral blood flow (CBF) were measured repeatedly in the internal carotid and vertebral artery. Linear mixed modeling, including random effects of both individual intercept and regression slope, was used to quantify the MAP-CBF relationship accounting for nonindependent, repeated CBF measures. Changes in end-tidal CO2 (EtCO2) associated with changes in MAP were also included in the model to account for their effects on CBF. Marginal mean values of MAP were reduced by 13-14 mmHg during sodium nitroprusside and increased by 20-24 mmHg during phenylephrine infusion in both groups with similar doses of drug infusion. A steeper slope of changes in CBF in response to changes in MAP was observed in aMCI relative to NC, indicating reduced efficacy of CA (MAP × Group, P = 0.040). These findings suggest that cerebrovascular dysfunction may occur early in the development of AD.NEW & NOTEWORTHY Cerebral autoregulation is a fundamental regulatory mechanism to protect brain perfusion against changes in blood pressure that, if impaired, may contribute to the development of Alzheimer's disease. Using a linear mixed model, we demonstrated that the efficacy of cerebral autoregulation, assessed during stepwise changes in arterial pressure, was reduced in individuals with amnestic mild cognitive impairment, a prodromal stage of Alzheimer's disease. These findings support the hypothesis that cerebrovascular dysfunction may be an important underlying pathophysiological mechanism for the development of clinical Alzheimer's disease.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Ultrasound Diagnostics, Tangdu Hospital, Xi'an, China
| | - Evan P Pasha
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jie Liu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chang-Yang Xing
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Ultrasound Diagnostics, Tangdu Hospital, Xi'an, China
| | - Danilo Cardim
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kyle Womack
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Linda S Hynan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - C Munro Cullum
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
37
|
Nielsen RB, Parbo P, Ismail R, Dalby R, Tietze A, Brændgaard H, Gottrup H, Brooks DJ, Østergaard L, Eskildsen SF. Impaired perfusion and capillary dysfunction in prodromal Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12032. [PMID: 32490139 PMCID: PMC7241262 DOI: 10.1002/dad2.12032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cardiovascular disease increases the risk of developing Alzheimer's disease (AD), and growing evidence suggests an involvement of cerebrovascular pathology in AD. Capillary dysfunction, a condition in which capillary flow disturbances rather than arterial blood supply limit brain oxygen extraction, could represent an overlooked vascular contributor to neurodegeneration. We examined whether cortical capillary transit-time heterogeneity (CTH), an index of capillary dysfunction, is elevated in amyloid-positive patients with mild cognitive impairment (prodromal AD [pAD]). METHODS We performed structural and perfusion weighted MRI in 22 pAD patients and 21 healthy controls. RESULTS We found hypoperfusion, reduced blood volume, and elevated CTH in the parietal and frontal cortices of pAD-patients compared to controls, while only the precuneus showed focal cortical atrophy. DISCUSSION We propose that microvascular flow disturbances antedate cortical atrophy and may limit local tissue oxygenation in pAD. We speculate that capillary dysfunction contributes to the development of neurodegeneration in AD.
Collapse
Affiliation(s)
- Rune B. Nielsen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| | - Peter Parbo
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Rikke Dalby
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of NeuroradiologyAarhus University HospitalAarhusDenmark
| | - Anna Tietze
- Charité, UniversitätsmedizinInstitute of NeuroradiologyBerlinGermany
| | - Hans Brændgaard
- Dementia ClinicDepartment of NeurologyAarhus University HospitalAarhusDenmark
| | - Hanne Gottrup
- Dementia ClinicDepartment of NeurologyAarhus University HospitalAarhusDenmark
| | - David J. Brooks
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
- Division of NeuroscienceDepartment of MedicineImperial College LondonLondonUK
- Division of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Leif Østergaard
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Simon F. Eskildsen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
38
|
Liao X, Cai F, Sun Z, Zhang Y, Wang J, Jiao B, Guo J, Li J, Liu X, Guo L, Zhou Y, Wang J, Yan X, Jiang H, Xia K, Li J, Tang B, Shen L, Song W. Identification of Alzheimer's disease-associated rare coding variants in the ECE2 gene. JCI Insight 2020; 5:135119. [PMID: 32102983 DOI: 10.1172/jci.insight.135119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 11/17/2022] Open
Abstract
Accumulation of amyloid β protein (Aβ) due to increased generation and/or impaired degradation plays an important role in Alzheimer's disease (AD) pathogenesis. In this report, we describe the identification of rare coding mutations in the endothelin-converting enzyme 2 (ECE2) gene in 1 late-onset AD family, and additional case-control cohort analysis indicates ECE2 variants associated with the risk of developing AD. The 2 mutations (R186C and F751S) located in the peptidase domain in the ECE2 protein were found to severely impair the enzymatic activity of ECE2 in Aβ degradation. We further evaluated the effect of the R186C mutation in mutant APP-knockin mice. Overexpression of wild-type ECE2 in the hippocampus reduced amyloid load and plaque formation, and improved learning and memory deficits in the AD model mice. However, the effect was abolished by the R186C mutation in ECE2. Taken together, the results demonstrated that ECE2 peptidase mutations contribute to AD pathogenesis by impairing Aβ degradation, and overexpression of ECE2 alleviates AD phenotypes. This study indicates that ECE2 is a risk gene for AD development and pharmacological activation of ECE2 could be a promising strategy for AD treatment.
Collapse
Affiliation(s)
- Xinxin Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada.,National Clinical Research Center for Geriatric Disorders
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Zhanfang Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Kun Xia
- School of Life Sciences, and
| | | | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis 2020; 11:98. [PMID: 32029735 PMCID: PMC7005019 DOI: 10.1038/s41419-020-2288-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/18/2023]
Abstract
Amyloid beta peptides (Aβ) proteins play a key role in vascular pathology in Alzheimer’s Disease (AD) including impairment of the blood–brain barrier and aberrant angiogenesis. Although previous work has demonstrated a pro-angiogenic role of Aβ, the exact mechanisms by which amyloid precursor protein (APP) processing and endothelial angiogenic signalling cascades interact in AD remain a largely unsolved problem. Here, we report that increased endothelial sprouting in human-APP transgenic mouse (TgCRND8) tissue is dependent on β-secretase (BACE1) processing of APP. Higher levels of Aβ processing in TgCRND8 tissue coincides with decreased NOTCH3/JAG1 signalling, overproduction of endothelial filopodia and increased numbers of vascular pericytes. Using a novel in vitro approach to study sprouting angiogenesis in TgCRND8 organotypic brain slice cultures (OBSCs), we find that BACE1 inhibition normalises excessive endothelial filopodia formation and restores NOTCH3 signalling. These data present the first evidence for the potential of BACE1 inhibition as an effective therapeutic target for aberrant angiogenesis in AD.
Collapse
|
40
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
41
|
Chen L, Sun J, Hippe DS, Balu N, Yuan Q, Yuan I, Zhao X, Li R, He L, Hatsukami TS, Hwang JN, Yuan C. Quantitative assessment of the intracranial vasculature in an older adult population using iCafe. Neurobiol Aging 2019; 79:59-65. [PMID: 31026623 PMCID: PMC6591051 DOI: 10.1016/j.neurobiolaging.2019.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 01/11/2023]
Abstract
Comprehensive quantification of intracranial artery features may help us assess and understand variations of blood supply during brain development and aging. We analyzed vasculature features of 163 participants (age 56-85 years, mean of 71) from a community study to investigate if any of the features varied with age. Three-dimensional time-of-flight magnetic resonance angiography images of these participants were processed in IntraCranial artery feature extraction technique (a recently developed technique to obtain quantitative features of arteries) to divide intracranial vasculatures into anatomical segments and generate 8 morphometry and intensity features for each segment. Overall, increase in age was found negatively associated with number of branches and average order of intracranial arteries while positively associated with tortuosity, which remained after adjusting for cardiovascular risk factors. The associations with number of branches and average order were consistently found between 3 main intracranial artery regions, whereas the association with tortuosity appeared to be present only in middle cerebral artery/distal arteries. The combination of time-of-flight magnetic resonance angiography and IntraCranial artery feature extraction technique may provide an effective way to study vascular conditions and changes in the aging brain.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Quan Yuan
- Department of Neurology, Xuanwu hospital, Capital Medical University, Beijing, China
| | | | - Xihai Zhao
- Biomedical Engineering, Tsinghua University, Beijing, China
| | - Rui Li
- Biomedical Engineering, Tsinghua University, Beijing, China
| | - Le He
- Biomedical Engineering, Tsinghua University, Beijing, China
| | | | - Jenq-Neng Hwang
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
Abstract
Proper functioning of the brain is dependent on integrity of the cerebral vasculature. During ageing, a number of factors including aortic or arterial stiffness, autonomic dysregulation, neurovascular uncoupling and blood-brain barrier (BBB) damage will define the dynamics of brain blood flow and local perfusion. The nature and extent of ageing-related cerebrovascular changes, the degree of involvement of the heart and extracranial vessels and the consequent location of tissue pathology may vary considerably. Atheromatous disease retarding flow is a common vascular insult, which increases exponentially with increasing age. Arteriolosclerosis characterized as a prominent feature of small vessel disease is one of the first changes to occur during the natural history of cerebrovascular pathology. At the capillary level, the cerebral endothelium, which forms the BBB undergoes changes including reduced cytoplasm, fewer mitochondria, loss of tight junctions and thickened basement membranes with collagenosis. Astrocyte end-feet protecting the BBB retract as part of the clasmatodendrotic response whereas pericyte coverage is altered. The consequences of these microvascular changes are lacunar infarcts, cortical and subcortical microinfarcts, microbleeds and diffuse white matter disease, which involves myelin loss and axonal abnormalities. The deeper structures are particularly vulnerable because of the relatively reduced density of the microvascular network formed by perforating and penetrating end arteries. Ultimately, the integrity of both the neurovascular and gliovascular units is compromised such that there is an overall synergistic effect reflecting on ageing associated cerebral perfusion and permeability. More than one protagonist appears to be involved in ageing-related cognitive dysfunction characteristically associated with the neurocognitive disorders.
Collapse
|
43
|
Haft-Javaherian M, Fang L, Muse V, Schaffer CB, Nishimura N, Sabuncu MR. Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models. PLoS One 2019; 14:e0213539. [PMID: 30865678 PMCID: PMC6415838 DOI: 10.1371/journal.pone.0213539] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/22/2019] [Indexed: 11/20/2022] Open
Abstract
The health and function of tissue rely on its vasculature network to provide reliable blood perfusion. Volumetric imaging approaches, such as multiphoton microscopy, are able to generate detailed 3D images of blood vessels that could contribute to our understanding of the role of vascular structure in normal physiology and in disease mechanisms. The segmentation of vessels, a core image analysis problem, is a bottleneck that has prevented the systematic comparison of 3D vascular architecture across experimental populations. We explored the use of convolutional neural networks to segment 3D vessels within volumetric in vivo images acquired by multiphoton microscopy. We evaluated different network architectures and machine learning techniques in the context of this segmentation problem. We show that our optimized convolutional neural network architecture with a customized loss function, which we call DeepVess, yielded a segmentation accuracy that was better than state-of-the-art methods, while also being orders of magnitude faster than the manual annotation. To explore the effects of aging and Alzheimer's disease on capillaries, we applied DeepVess to 3D images of cortical blood vessels in young and old mouse models of Alzheimer's disease and wild type littermates. We found little difference in the distribution of capillary diameter or tortuosity between these groups, but did note a decrease in the number of longer capillary segments (>75μm) in aged animals as compared to young, in both wild type and Alzheimer's disease mouse models.
Collapse
Affiliation(s)
- Mohammad Haft-Javaherian
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Linjing Fang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Victorine Muse
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Mert R. Sabuncu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
44
|
Wright ME, Wise RG. Can Blood Oxygenation Level Dependent Functional Magnetic Resonance Imaging Be Used Accurately to Compare Older and Younger Populations? A Mini Literature Review. Front Aging Neurosci 2018; 10:371. [PMID: 30483117 PMCID: PMC6243068 DOI: 10.3389/fnagi.2018.00371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
A wealth of research has investigated the aging brain using blood oxygenation level dependent functional MRI [Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI)]. However, many studies do not consider the aging of the cerebrovascular system, which can influence the BOLD signal independently from neural activity, limiting what can be inferred when comparing age groups. Here, we discuss the ways in which the aging neurovascular system can impact BOLD fMRI, the consequences for age-group comparisons and possible strategies for mitigation. While BOLD fMRI is a valuable tool in this context, this review highlights the importance of consideration of vascular confounds.
Collapse
Affiliation(s)
- Melissa E Wright
- Cardiff University Brain Imaging Research Center, School of Psychology, Cardiff University, Cardiff, United Kingdom.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Richard G Wise
- Cardiff University Brain Imaging Research Center, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
45
|
McKetton L, Sobczyk O, Duffin J, Poublanc J, Sam K, Crawley AP, Venkatraghavan L, Fisher JA, Mikulis DJ. The aging brain and cerebrovascular reactivity. Neuroimage 2018; 181:132-141. [DOI: 10.1016/j.neuroimage.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/24/2022] Open
|
46
|
Berthiaume AA, Hartmann DA, Majesky MW, Bhat NR, Shih AY. Pericyte Structural Remodeling in Cerebrovascular Health and Homeostasis. Front Aging Neurosci 2018; 10:210. [PMID: 30065645 PMCID: PMC6057109 DOI: 10.3389/fnagi.2018.00210] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
The biology of brain microvascular pericytes is an active area of research and discovery, as their interaction with the endothelium is critical for multiple aspects of cerebrovascular function. There is growing evidence that pericyte loss or dysfunction is involved in the pathogenesis of Alzheimer’s disease, vascular dementia, ischemic stroke and brain injury. However, strategies to mitigate or compensate for this loss remain limited. In this review, we highlight a novel finding that pericytes in the adult brain are structurally dynamic in vivo, and actively compensate for loss of endothelial coverage by extending their far-reaching processes to maintain contact with regions of exposed endothelium. Structural remodeling of pericytes may present an opportunity to foster pericyte-endothelial communication in the adult brain and should be explored as a potential means to counteract pericyte loss in dementia and cerebrovascular disease. We discuss the pathophysiological consequences of pericyte loss on capillary function, and the biochemical pathways that may control pericyte remodeling. We also offer guidance for observing pericytes in vivo, such that pericyte structural remodeling can be more broadly studied in mouse models of cerebrovascular disease.
Collapse
Affiliation(s)
- Andrée-Anne Berthiaume
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - David A Hartmann
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Mark W Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.,Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, United States
| | - Narayan R Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Andy Y Shih
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
47
|
Catchlove SJ, Parrish TB, Chen Y, Macpherson H, Hughes ME, Pipingas A. Regional Cerebrovascular Reactivity and Cognitive Performance in Healthy Aging. J Exp Neurosci 2018; 12:1179069518785151. [PMID: 30013388 PMCID: PMC6043917 DOI: 10.1177/1179069518785151] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/03/2018] [Indexed: 12/21/2022] Open
Abstract
Cerebrovascular reactivity (CVR) reflects the response of brain blood vessels to vasoactive stimuli, such as neural activity. The current research assessed age-related changes in regional CVR to 5% CO2 inhalation in younger (n = 30, range: 21-45 years) and older (n = 29, range: 55-75 years) adults, and the contribution of regional CVR to cognitive performance using blood-oxygen-level dependent contrast imaging (BOLD) functional magnetic resonance imaging (fMRI) at 3T field strength. CVR was measured by inducing hypercapnia using a block-design paradigm under physiological monitoring. Memory and attention were assessed with a comprehensive computerized aging battery. MRI data analysis was conducted using MATLAB® and SPM12. Memory and attention performance was positively associated with CVR in the temporal cortices. Temporal lobe CVR influenced memory performance independently of age, gender, and education level. When analyzing age groups separately, CVR in the hippocampus contributed significantly to memory score in the older group and was also related to subjective memory complaints. No associations between CVR and cognition were observed in younger adults. Vascular responsiveness in the brain has consequences for cognition in cognitively healthy people. These findings may inform other areas of research concerned with vaso-protective approaches for prevention or treatment of neurocognitive decline.
Collapse
Affiliation(s)
- Sarah J Catchlove
- Centre for Human Psychopharmacology,
Swinburne University, Hawthorn, VIC, Australia
| | - Todd B Parrish
- Feinberg School of Medicine,
Northwestern University, Chicago, IL, USA
| | - Yufen Chen
- Feinberg School of Medicine,
Northwestern University, Chicago, IL, USA
| | - Helen Macpherson
- Institute for Physical Activity and
Nutrition, Deakin University, Geelong, VIC, Australia
| | - Matthew E Hughes
- Centre for Mental Health, Swinburne
University, Hawthorn, VIC, Australia
- Australian National Imaging Facility, St
Lucia, QLD, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology,
Swinburne University, Hawthorn, VIC, Australia
| |
Collapse
|
48
|
Moeini M, Lu X, Avti PK, Damseh R, Bélanger S, Picard F, Boas D, Kakkar A, Lesage F. Compromised microvascular oxygen delivery increases brain tissue vulnerability with age. Sci Rep 2018; 8:8219. [PMID: 29844478 PMCID: PMC5974237 DOI: 10.1038/s41598-018-26543-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022] Open
Abstract
Despite the possible role of impaired cerebral tissue oxygenation in age-related cognition decline, much is still unknown about the changes in brain tissue pO2 with age. Using a detailed investigation of the age-related changes in cerebral tissue oxygenation in the barrel cortex of healthy, awake aged mice, we demonstrate decreased arteriolar and tissue pO2 with age. These changes are exacerbated after middle-age. We further uncovered evidence of the presence of hypoxic micro-pockets in the cortex of awake old mice. Our data suggests that from young to middle-age, a well-regulated capillary oxygen supply maintains the oxygen availability in cerebral tissue, despite decreased tissue pO2 next to arterioles. After middle-age, due to decreased hematocrit, reduced capillary density and higher capillary transit time heterogeneity, the capillary network fails to compensate for larger decreases in arterial pO2. The substantial decrease in brain tissue pO2, and the presence of hypoxic micro-pockets after middle-age are of significant importance, as these factors may be related to cognitive decline in elderly people.
Collapse
Affiliation(s)
- Mohammad Moeini
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Xuecong Lu
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Pramod K Avti
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rafat Damseh
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Samuel Bélanger
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Frédéric Picard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (IUCPQ), Québec, QC, Canada
| | - David Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Biomedical Engineering Department, College of Engineering, Boston University, Boston, MA, USA
| | - Ashok Kakkar
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Frédéric Lesage
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada. .,Research Center of Montreal Heart Institute, Montréal, QC, Canada.
| |
Collapse
|
49
|
Bronzwaer ASGT, Verbree J, Stok WJ, Daemen MJAP, van Buchem MA, van Osch MJP, van Lieshout JJ. Aging modifies the effect of cardiac output on middle cerebral artery blood flow velocity. Physiol Rep 2018; 5:5/17/e13361. [PMID: 28912128 PMCID: PMC5599856 DOI: 10.14814/phy2.13361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022] Open
Abstract
An association between cerebral blood flow (CBF) and cardiac output (CO) has been established in young healthy subjects. As of yet it is unclear how this association evolves over the life span. To that purpose, we continuously recorded mean arterial pressure (MAP; finger plethysmography), CO (pulse contour; CO‐trek), mean blood flow velocity in the middle cerebral artery (MCAV; transcranial Doppler ultrasonography), and end‐tidal CO2 partial pressure (PetCO2) in healthy young (19–27 years), middle‐aged (51–61 years), and elderly subjects (70–79 years). Decreases and increases in CO were accomplished using lower body negative pressure and dynamic handgrip exercise, respectively. Aging in itself did not alter dynamic cerebral autoregulation or cerebrovascular CO2 reactivity. A linear relation between changes in CO and MCAVmean was observed in middle‐aged (P < 0.01) and elderly (P = 0.04) subjects but not in young (P = 0.45) subjects, taking concurrent changes in MAP and PetCO2 into account. These data imply that with aging, brain perfusion becomes increasingly dependent on CO.
Collapse
Affiliation(s)
- Anne-Sophie G T Bronzwaer
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jasper Verbree
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim J Stok
- Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Johannes J van Lieshout
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands .,Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
50
|
Martins IV, Rivers-Auty J, Allan SM, Lawrence CB. Mitochondrial Abnormalities and Synaptic Loss Underlie Memory Deficits Seen in Mouse Models of Obesity and Alzheimer's Disease. J Alzheimers Dis 2018; 55:915-932. [PMID: 27802235 PMCID: PMC5278950 DOI: 10.3233/jad-160640] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is associated with impaired memory in humans, and obesity induced by high-fat diets leads to cognitive deficits in rodents and in mouse models of Alzheimer's disease (AD). However, it remains unclear how high-fat diets contribute to memory impairment. Therefore, we tested the effect of a high-fat diet on memory in male and female control non-transgenic (Non-Tg) and triple-transgenic AD (3xTgAD) mice and determined if a high-fat diet caused similar ultrastructural abnormalities to those observed in AD. Behavior was assessed in mice on control or high-fat diet at 4, 8, or 14 months of age and ultrastructural analysis at 8 months of age. A high-fat diet increased body weight, fat weight, and insulin levels with some differences in these metabolic responses observed between Non-Tg and 3xTgAD mice. In both sexes, high-fat feeding caused memory impairments in Non-Tg mice and accelerated memory deficits in 3xTgAD mice. In 3xTgAD mice, changes in hippocampal mitochondrial morphology were observed in capillaries and brain neuropil that were accompanied by a reduction in synapse number. A high-fat diet also caused mitochondria abnormalities and a reduction in synapse number in Non-Tg mice, but did not exacerbate the changes seen in 3xTgAD mice. Our data demonstrate that a high-fat diet affected memory in Non-Tg mice and produced similar impairments in mitochondrial morphology and synapse number comparable to those seen in AD mice, suggesting that the detrimental effects of a high-fat diet on memory might be due to changes in mitochondrial morphology leading to a reduction in synaptic number.
Collapse
Affiliation(s)
| | | | | | - Catherine B. Lawrence
- Correspondence to: Catherine B. Lawrence, PhD, Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. Tel.: +44 161 275 5253; E-mail:
| |
Collapse
|