1
|
Ma X, Vuyyuru H, Munsch T, Endres T, Lessmann V, Meis S. ProBDNF Dependence of LTD and Fear Extinction Learning in the Amygdala of Adult Mice. Cereb Cortex 2021; 32:1350-1364. [PMID: 34470044 DOI: 10.1093/cercor/bhab265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Neurotrophins are secreted proteins that control survival, differentiation, and synaptic plasticity. While mature neurotrophins regulate these functions via tyrosine kinase signaling (Trk), uncleaved pro-neurotrophins bind preferentially to the p75 neurotrophin receptor (p75NTR) and often exert opposite effects to those of mature neurotrophins. In the amygdala, brain-derived neurotrophic factor (BDNF) enables long-term potentiation as well as fear and fear extinction learning. In the present study, we focused on the impact of mature BDNF and proBDNF signaling on long-term depression (LTD) in the lateral amygdala (LA). Hence, we conducted extracellular field potential recordings in an in vitro slice preparation and recorded LTD in cortical and thalamic afferents to the LA. LTD was unchanged by acute block of BDNF/TrkB signaling. In contrast, LTD was inhibited by blocking p75NTR signaling, by disinhibition of the proteolytic cleavage of proBDNF into mature BDNF, and by preincubation with a function-blocking anti-proBDNF antibody. Since LTD-like processes in the amygdala are supposed to be related to fear extinction learning, we locally inhibited p75NTR signaling in the amygdala during or after fear extinction training, resulting in impaired fear extinction memory. Overall, these results suggest that in the amygdala proBDNF/p75NTR signaling plays a pivotal role in LTD and fear extinction learning.
Collapse
Affiliation(s)
- Xiaoyun Ma
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Harish Vuyyuru
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Thomas Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| |
Collapse
|
2
|
Meis S, Endres T, Munsch T, Lessmann V. The Relation Between Long-Term Synaptic Plasticity at Glutamatergic Synapses in the Amygdala and Fear Learning in Adult Heterozygous BDNF-Knockout Mice. Cereb Cortex 2019; 28:1195-1208. [PMID: 28184413 DOI: 10.1093/cercor/bhx032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 01/21/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) heterozygous knockout mice (BDNF+/- mice) show fear learning deficits from 3 months of age onwards. Here, we addressed the question how this learning deficit correlates with altered long-term potentiation (LTP) in the cortical synaptic input to the lateral amygdala (LA) and at downstream intra-amygdala synapses in BDNF+/- mice. Our results reveal that the fear learning deficit in BDNF+/- mice was not paralleled by a loss of LTP, neither at cortical inputs to the LA nor at downstream intra-amygdala glutamatergic synapses. As we did observe early fear memory (30 min after training) in BDNF+/- mice while long-term memory (24 h post-training) was absent, the stable LTP in cortico-LA and downstream synapses is in line with the intact acquisition of fear memories. Ex vivo recordings in acute slices of fear-conditioned wildtype (WT) mice revealed that fear learning induces long-lasting changes at cortico-LA synapses that occluded generation of LTP 4 and 24 h after training. Overall, our data show that the intact LTP in the tested amygdala circuits is consistent with intact acquisition of fear memories in both WT and BDNF+/- mice. In addition, the lack of learning-induced long-term changes at cortico-LA synapses in BDNF+/- mice parallels the observed deficit in fear memory consolidation.
Collapse
Affiliation(s)
- S Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - T Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - T Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - V Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| |
Collapse
|
3
|
Dorris DM, Hauser CA, Minnehan CE, Meitzen J. An aerator for brain slice experiments in individual cell culture plate wells. J Neurosci Methods 2014; 238:1-10. [PMID: 25256645 DOI: 10.1016/j.jneumeth.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ex vivo acute living brain slices are a broadly employed and powerful experimental preparation. Most new technology regarding this tissue has involved the chamber used when performing electrophysiological experiments. Alternatively we instead focus on the creation of a simple, versatile aerator designed to allow maintenance and manipulation of acute brain slices and potentially other tissue in a multi-well cell culture plate. NEW METHOD Here we present an easily manufactured aerator designed to fit into a 24-well cell culture plate. It features a nylon mesh and a single microhole to enable gas delivery without compromising tissue stability. The aerator is designed to be individually controlled, allowing both high throughput and single well experiments. RESULTS The aerator was validated by testing material leach, dissolved oxygen delivery, brain slice viability and neuronal electrophysiology. Example experiments are also presented, including a test of whether β1-adrenergic receptor activation regulates gene expression in ex vivo dorsal striatum using qPCR. COMPARISON WITH EXISTING METHODS Key differences include enhanced control over gas delivery to individual wells containing brain slices, decreased necessary volume, a sample restraint to reduce movement artifacts, the potential to be sterilized, the avoidance of materials that absorb water and small biological molecules, minimal production costs, and increased experimental throughput. CONCLUSION This new aerator is of high utility and will be useful for experiments involving brain slices and other potentially tissue samples in 24-well cell culture plates.
Collapse
Affiliation(s)
- David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Caitlin A Hauser
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Caitlin E Minnehan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA; W.M. Keck Center for Behavioral Biology, Center for Human Health and the Environment, and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Novel osmotin attenuates glutamate-induced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain. Cell Death Dis 2014; 5:e1026. [PMID: 24481440 PMCID: PMC4040667 DOI: 10.1038/cddis.2013.538] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/21/2013] [Accepted: 12/02/2013] [Indexed: 02/01/2023]
Abstract
The glutamate-induced excitotoxicity pathway has been reported in several neurodegenerative diseases. Molecules that inhibit the release of glutamate or cause the overactivation of glutamate receptors can minimize neuronal cell death in these diseases. Osmotin, a homolog of mammalian adiponectin, is a plant protein from Nicotiana tabacum that was examined for the first time in the present study to determine its protective effects against glutamate-induced synaptic dysfunction and neurodegeneration in the rat brain at postnatal day 7. The results indicated that glutamate treatment induced excitotoxicity by overactivating glutamate receptors, causing synaptic dysfunction and neuronal apoptosis after 4 h in the cortex and hippocampus of the postnatal brain. In contrast, post-treatment with osmotin significantly reversed glutamate receptor activation, synaptic deficit and neuronal apoptosis by stimulating the JNK/PI3K/Akt intracellular signaling pathway. Moreover, osmotin treatment abrogated glutamate-induced DNA damage and apoptotic cell death and restored the localization and distribution of p53, p-Akt and caspase-3 in the hippocampus of the postnatal brain. Finally, osmotin inhibited glutamate-induced PI3K-dependent ROS production in vitro and reversed the cell viability decrease, cytotoxicity and caspase-3/7 activation induced by glutamate. Taken together, these results suggest that osmotin might be a novel neuroprotective agent in excitotoxic diseases.
Collapse
|
5
|
Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T. Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 2011; 31:6956-62. [PMID: 21562257 PMCID: PMC3140051 DOI: 10.1523/jneurosci.5761-10.2011] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/24/2011] [Accepted: 03/21/2011] [Indexed: 11/21/2022] Open
Abstract
Sleep deprivation (SD) can have a negative impact on cognitive function, but the mechanism(s) by which SD modulates memory remains unclear. We have previously shown that astrocyte-derived adenosine is a candidate molecule involved in the cognitive deficits following a brief period of SD (Halassa et al., 2009). In this study, we examined whether genetic disruption of soluble N-ethylmaleimide-sensitive factor attached protein (SNARE)-dependent exocytosis in astrocytes (dnSNARE mice) or pharmacological blockade of A1 receptor signaling using an adenosine A1 receptor (A1R) antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT), could prevent the negative effects of 6 h of SD on hippocampal late-phase long-term potentiation (L-LTP) and hippocampus-dependent spatial object recognition memory. We found that SD impaired L-LTP in wild-type mice but not in dnSNARE mice. Similarly, this deficit in L-LTP resulting from SD was prevented by a chronic infusion of CPT. Consistent with these results, we found that hippocampus-dependent memory deficits produced by SD were rescued in dnSNARE mice and CPT-treated mice. These data provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of SD on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the hippocampus-related cognitive deficits induced by sleep loss.
Collapse
Affiliation(s)
- Cédrick Florian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Michael M. Halassa
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Boston, Massachusetts 02139, and
| | - Philip G. Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
6
|
Hill MRH, Greenfield SA. The membrane chamber: a new type of in vitro recording chamber. J Neurosci Methods 2010; 195:15-23. [PMID: 21075142 DOI: 10.1016/j.jneumeth.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/11/2010] [Accepted: 10/24/2010] [Indexed: 11/26/2022]
Abstract
In vitro brain slice electrophysiology is a powerful and highly successful technique where a thin slice is cut from the brain and kept alive artificially in a recording chamber. The design of this recording chamber is pivotal to the success and the quality of such experiments. Most often one of two types of chambers is used today, the interface chamber or the submerged chamber. These chambers, however, have the disadvantage that they are limited in either their experimental or their physiological properties respectively. Here we present a new working principle for an in vitro chamber design which aims at combining the advantages of the classical designs whilst overcoming their disadvantages. This is achieved by using a semipermeable membrane on which the slice is placed. The membrane allows for a fast flow of artificial cerebrospinal fluid of up to at least 17 ml/min. Due to a Bernoulli effect, this high speed flow also causes a 64% increase in flow of solution across the membrane on which the slice rests. The fact that the membrane is transparent introduces the possibility of wide field inverted optical imaging to brain slice electrophysiology. The utility of this setup was demonstrated in the recording of local field potential, single cell and voltage sensitive dye imaging data simultaneously from an area smaller then 1/8mm(2). The combination of all these features in the membrane chamber make it a versatile and promising device for many current and future in vitro applications, especially in the regard to optical imaging.
Collapse
Affiliation(s)
- M R H Hill
- Dept. of Pharmacology, University of Oxford, Mansfield Road, Oxford, United Kingdom.
| | | |
Collapse
|
7
|
Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, Huang T, Brown KM, Li XY, Descalzi G, Kim SS, Chen T, Shang YZ, Zhuo M, Houslay MD, Abel T. Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 2009; 461:1122-5. [PMID: 19847264 PMCID: PMC2783639 DOI: 10.1038/nature08488] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 09/01/2009] [Indexed: 01/01/2023]
Abstract
Millions of people regularly obtain insufficient sleep1. Given the impact of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to produce memory deficits in learning paradigms that are dependent on the hippocampus2–5. In this study, we have identified a molecular mechanism by which brief sleep deprivation alters hippocampal function. Sleep deprivation selectively impaired cAMP/PKA-dependent forms of synaptic plasticity6 in the hippocampus, reduced cAMP signaling, and increased activity and protein levels of phosphodiesterase-4 (PDE4), an enzyme that degrades cAMP. Treatment with PDE inhibitors rescued the sleep deprivation-induced deficits in cAMP signaling, synaptic plasticity, and hippocampus-dependent memory. These findings demonstrate that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signaling through increased PDE4 activity. Thus drugs that enhance cAMP signaling may provide a novel therapeutic approach to counteract the cognitive effects of sleep deprivation.
Collapse
Affiliation(s)
- Christopher G Vecsey
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Blake AJ, Pearce TM, Rao NS, Johnson SM, Williams JC. Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment. LAB ON A CHIP 2007; 7:842-9. [PMID: 17594002 PMCID: PMC2556125 DOI: 10.1039/b704754a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel three-layer microfluidic polydimethylsiloxane (PDMS) device was constructed with two fluid chambers that holds a brain slice in place with microposts while maintaining laminar perfusate flow above and below the slice. Our fabrication technique permits rapid production of PDMS layers that can be applied to brain slices of different shapes and sizes. In this study, the device was designed to fit the shape and thickness (530-700 microm) of a medullary brain slice taken from P0-P4 neonatal rats. Medullary slices in this chamber spontaneously produced rhythmic, respiratory-related motor output for up to 3 h, thereby demonstrating that brain slice viability was maintained for prolonged periods. This design is unique in that it achieves independent control of fluids through multiple channels in two separate fluid chambers. The laminar flow exhibited by the microfluidic chamber allows controlled solutions to target specific areas of the brain slice based on the input flow rates. To demonstrate this capability, a stream of Na(+)-free solution was focused on one half of a medullary slice to abolish spontaneous neural activity in only that half of the brain slice, while the other half remained active. We also demonstrated that flow of different solutions can be focused over the midline of the brain slice. The multilayer brain slice chamber design can integrate several traditional types of electrophysiology tools that are commonly used to measure neurophysiological properties of brain slices. Thus, this new microfluidic chamber is advantageous for experiments that involve controlled drug or solution delivery at high spatiotemporal resolution.
Collapse
Affiliation(s)
- A J Blake
- University of Wisconsin-Madison, Department of Biomedical Engineering, 1550 Engineering Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
9
|
Szegő ÉM, Barabás K, Balog J, Szilágyi N, Korach KS, Juhász G, Ábrahám IM. Estrogen induces estrogen receptor alpha-dependent cAMP response element-binding protein phosphorylation via mitogen activated protein kinase pathway in basal forebrain cholinergic neurons in vivo. J Neurosci 2006; 26:4104-10. [PMID: 16611827 PMCID: PMC6673875 DOI: 10.1523/jneurosci.0222-06.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In addition to classical genomic mechanisms, estrogen also exerts nonclassical effects via a signal transduction system on neurons. To study whether estrogen has a nonclassical effect on basal forebrain cholinergic system, we measured the intensity of cAMP response element-binding protein (CREB) phosphorylation (pCREB) in cholinergic neurons after administration of 17beta-estradiol to ovariectomized (OVX) mice. A significant time-dependent increase in the number of pCREB-positive cholinergic cells was detected after estrogen administration in the medial septum-diagonal band (MS-DB) and the substantia innominata (SI). The increase was first observed 15 min after estrogen administration. The role of classical estrogen receptors (ERs) was evaluated using ER knock-out mice in vivo. The estrogen-induced CREB phosphorylation in cholinergic neurons was present in ERbeta knock-out mice but completely absent in ERalpha knock-out mice in MS-DB and SI. A series of in vitro studies demonstrated that estrogen acted directly on cholinergic neurons. Selective blockade of the mitogen activated protein kinase (MAPK) pathway in vivo completely prevented estrogen-induced CREB phosphorylation in cholinergic neurons in MS-DB and SI. In contrast, blockade of protein kinase A (PKA) was effective only in SI. Finally, studies in intact female mice revealed levels of CREB phosphorylation within cholinergic neurons that were similar to those of estrogen-treated OVX mice. These observations demonstrate an ERalpha-mediated nonclassical effect of estrogen on the cholinergic neurons and that these actions are present under physiological conditions. They also reveal the role of MAPK and PKA-MAPK pathway activation in nonclassical estrogen signaling in the basal forebrain cholinergic neurons in vivo.
Collapse
|
10
|
Leutgeb JK, Frey JU, Behnisch T. Single cell analysis of activity-dependent cyclic AMP-responsive element-binding protein phosphorylation during long-lasting long-term potentiation in area CA1 of mature rat hippocampal-organotypic cultures. Neuroscience 2005; 131:601-10. [PMID: 15730866 DOI: 10.1016/j.neuroscience.2004.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
Phosphorylation of the transcription factor cyclic AMP (cAMP)-response element-binding protein (CREB) has been implicated in long-term synaptic plasticity and memory, and its activation has been proposed to be required for the maintenance of long-term potentiation (LTP). The previously described temporal dynamics of CREB phosphorylation during the maintenance of LTP showed differences between experimental models. In the present study the level of CREB phosphorylation was evaluated in organotypic hippocampal slices from young adult rats (P25-30) after long-lasting LTP was induced. Immunohistochemistry and confocal imaging were used to determine the ratio between non-phosphorylated and phosphorylated CREB at a single cell resolution, revealing not only the temporal dynamics but also the extent of CREB phosphorylation. The activation of CREB after LTP-induction was compared with cAMP-activation after bath application of forskolin. An increase in cAMP by forskolin resulted in a persistent, uniform increase of the phosphorylated CREB (pCREB/CREB immunofluorescence ratio) in all hippocampal principal neurons. In contrast, the induction of long-lasting LTP in CA1 was accompanied by a local increase in the pCREB/CREB ratio. Both CREB activation and LTP induction in mature cultured slices required N-methyl-D-aspartate (NMDA) receptor activation. CREB phosphorylation continued to increase for 4 h during LTP maintenance. This sustained activation is in contrast to previous observations in acutely prepared slices and supports the hypothesis that CREB plays an important role during the late phases of LTP.
Collapse
Affiliation(s)
- J K Leutgeb
- Department of Neurophysiology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | | | | |
Collapse
|
11
|
Brodie CR, Khaliq M, Yin JCP, Brent Clark H, Orr HT, Boland LM. Overexpression of CREB reduces CRE-mediated transcription: behavioral and cellular analyses in transgenic mice. Mol Cell Neurosci 2004; 25:602-11. [PMID: 15080890 DOI: 10.1016/j.mcn.2003.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 11/18/2003] [Accepted: 11/19/2003] [Indexed: 11/18/2022] Open
Abstract
The CREB transcription factor mediates neuronal plasticity in many systems, but the relationship between CREB levels and CRE-mediated transcription in individual neurons in vivo is unclear. In FVB/N nontransgenic mice, we observed that Purkinje cells showed low basal levels of Ser(133)-phosphorylated CREB protein yet displayed strong CRE-directed transcription. Transgenic mice overexpressing CREB in Purkinje cells and dentate gyrus granule cells showed a decreased CRE-lacZ signal in the same cells, indicating repression of ATF/CREB family function. Dentate region long-term potentiation was not altered by these changes in CREB expression. CREB transgenic mice demonstrated an inability to perform the rotarod task, without signs of overt ataxia. Our results demonstrate that the level of phosphorylated CREB protein is not a reliable indicator of CRE-mediated function. Furthermore, we conclude that CRE-mediated transcription may be linked to only a subset of cerebellum-mediated motor behaviors and may not be universally required for long-lasting synaptic potentiation.
Collapse
Affiliation(s)
- Christopher R Brodie
- Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
Collapse
Affiliation(s)
- M A Lynch
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
13
|
Stopps M, Allen N, Barrett R, Choudhury HI, Jarolimek W, Johnson M, Kuenzi FM, Maubach KA, Nagano N, Seabrook GR. Design and application of a novel brain slice system that permits independent electrophysiological recordings from multiple slices. J Neurosci Methods 2004; 132:137-48. [PMID: 14706711 DOI: 10.1016/j.jneumeth.2003.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a novel brain slice system 'SliceMaster' that allows electrophysiological recordings from eight brain slices independently. The system consists of two autonomous units each supporting four modular brain slice chambers enabling high signal-to-noise ratio recordings, each chamber has one stimulation electrode, one recording electrode, a twin camera system and a solution application system. The positioning of both electrodes and cameras are controlled from a remote user console. The software both acquires and performs on-line analysis of the data. We have demonstrated utility of this system in obtaining recordings of spontaneous firing activity and evoked synaptic activity from mouse hippocampal slices, with reduced variability within and between experiments. Furthermore, we show recordings of population spikes from the perirhinal cortex, indicating applicability of this system for further brain regions. In addition, stable recordings could be maintained until recording was terminated after 3 h, permitting investigation of the induction and maintenance of synaptic plasticity. Recordings of spontaneous and synaptic activity, and effects of pharmacological and electrophysiological manipulation, were consistent with reports using conventional methods. However, the described system permits concurrent and independent recordings from eight brain slices, thus improving throughput, statistical design, and reducing animal use.
Collapse
Affiliation(s)
- M Stopps
- Merck Sharp and Dohme, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu TP, Lester HA, Davidson N. Requirement of a critical period of GABAergic receptor blockade for induction of a cAMP-mediated long-term depression at CA3-CA1 synapses. Synapse 2003; 49:12-9. [PMID: 12710011 DOI: 10.1002/syn.10207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous reports show that bath application of the adenosine 3' : 5'-cyclic monophosphate (cAMP) analog, Sp-cAMPS, induces a protein kinase A (PKA)-dependent and protein synthesis-dependent long-term potentiation (LTP) at hippocampal CA3-CA1 synapses. Recently, we reported a novel form of long-term depression (LTD) induced by concurrent application of Sp-cAMPS and picrotoxin, the gamma-aminobutyric acid type A (GABA(A)) receptor antagonist. In the present study, we further investigated the mechanisms underlying such cAMP-mediated LTD. Synaptically connected CA3 and CA1 cells of hippocampal slice cultures were impaled by sharp electrodes. Excitatory postsynaptic potentials recorded from a CA1 pyramidal cell were evoked by single action potentials in a CA3 cell. Picrotoxin was applied to slices at various time points after Sp-cAMPS was perfused. We found that Sp-cAMPS-induced potentiation could be converted to depression when picrotoxin was applied within 30 min after perfusion of Sp-cAMPS. Picrotoxin applied 1 h after perfusion of Sp-cAMPS had no effect on Sp-cAMPS-induced synaptic potentiation. Once LTP was induced by Sp-cAMPS and expressed for 1 h, the subsequent application of Sp-cAMPS and picrotoxin produced no new changes in synaptic strength. Also, once LTD was induced and expressed for 1 h, subsequent Sp-cAMPS produced no new changes in synaptic strength. These findings suggest that a synapse is committed irreversibly to cAMP-mediated LTP or LTD during a critical period and that later signals cannot interconvert these two fates.
Collapse
Affiliation(s)
- Tzu-Ping Yu
- Division of Biology, 1200 E. California Blvd., California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
15
|
Yoshida Y, Yamada T, Sakaguchi H. Activation of protein kinase C by the error signal from a basal ganglia-forebrain circuit in the zebra finch song control nuclei. Neuroreport 2003; 14:645-9. [PMID: 12657904 DOI: 10.1097/00001756-200303240-00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An error signal from the anterior forebrain pathway (AFP) in the songbird brain is necessary for juvenile song learning and adult song maintenance. It induces the expression of protein kinase C (PKC) which is related to the plasticity in the robust nucleus of the archistriatum (RA), one of the song control nuclei in the forebrain. The glutamatergic inputs from the AFP activate mainly the NMDA receptors of the RA neurons. In order to clarify the molecular mechanism of error signal-induced PKC activation, two experiments were carried out. First, Ca2+ concentration was measured in a brain slice preparation from zebra finches using the fluorescent Ca2+ indicator Fura 2-AM. Glutamate increased the intracellular Ca2+ concentration ([Ca2+](i)) in RA neurons. This increase was inhibited by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (AP5). Second, we examined the expression of PKC in the RA slice preparation after stimulation with glutamate for 10 min using PKCbeta1 fluorescence immunohistochemistry. Glutamate induced the activation of PKC as the translocation from the cytosol to the cell membrane, and the translocation was inhibited by AP5. These results indicate that the translocation of the PKC caused by the [Ca2+](i) elevation through NMDA receptors is concerned with the initial stage of error signal-induced plasticity in the RA.
Collapse
Affiliation(s)
- Yumi Yoshida
- Department of Physis, Faculty of Science, Tokyo University, Tokyo 162-8601, Japan
| | | | | |
Collapse
|
16
|
Casey M, Maguire C, Kelly A, Gooney MA, Lynch MA. Analysis of the presynaptic signaling mechanisms underlying the inhibition of LTP in rat dentate gyrus by the tyrosine kinase inhibitor, genistein. Hippocampus 2002; 12:377-85. [PMID: 12099488 DOI: 10.1002/hipo.10036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A great deal of recent evidence points to a role for tyrosine kinase in expression of LTP. Data have been presented that are consistent with the idea that tyrosine phosphorylation of proteins occurs in both the presynaptic and postsynaptic areas. In this study, we set out to investigate the role that tyrosine kinase might play presynaptically to modulate release of glutamate in an effort to understand the mechanism underlying the persistent increase in release that accompanies LTP in perforant path-granule cell synapses. We report that LTP was associated with increased calcium influx and glutamate release. LTP was also associated with an increase in phosphorylation of the alpha-subunit of calcium channels and ERK in synaptosomes prepared from dentate gyrus, and these effects were inhibited when LTP was blocked by the tyrosine kinase inhibitor, genistein. LTP was accompanied by increased protein synthesis and increased phosphorylation of CREB in entorhinal cortex, effects that were also blocked by genistein. We conclude that tetanic stimulation leads to enhanced tyrosine phosphorylation of certain presynaptically located proteins that modulate glutamate release and contribute to expression of LTP.
Collapse
Affiliation(s)
- M Casey
- Physiology Department, Trinity College, Dublin, Ireland
| | | | | | | | | |
Collapse
|
17
|
Lu YF, Hawkins RD. Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J Neurophysiol 2002; 88:1270-8. [PMID: 12205148 DOI: 10.1152/jn.2002.88.3.1270] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously found that the nitric oxide (NO)-cGMP-cGMP-dependent protein kinase (PKG) signaling pathway acts in parallel with the cAMP-cAMP-dependent protein kinase (PKA) pathway to produce protein and RNA synthesis-dependent late-phase long-term potentiation (L-LTP) and cAMP response element-binding protein (CREB) phosphorylation in the CA1 region of mouse hippocampus. We have now investigated the possible involvement of a downstream target of PKG, ryanodine receptors. L-LTP can be induced by either multiple-train tetanization, NO or 8-Br-cGMP paired with one-train tetanization, or the cAMP activator forskolin, and all three types of potentiation are accompanied by an increase in phospho-CREB immunofluorescence in the CA1 cell body area. Both the potentiation and the increase in phospho-CREB immunofluorescence induced by multiple-train tetanization or 8-Br-cGMP paired with one-train tetanization are reduced by prolonged perfusion with ryanodine, which blocks Ca(2+) release from ryanodine-sensitive Ca(2+) stores. By contrast, neither the potentiation nor the increase in immunofluorescence induced by forskolin are reduced by depletion of ryanodine and inositol-1,4,5-triphosphate (IP3)-sensitive Ca(2+) stores. These results suggest that NO, cGMP, and PKG cause release of Ca(2+) from ryanodine-sensitive stores, which in turn causes phosphorylation of CREB in parallel with PKA during the induction of L-LTP.
Collapse
Affiliation(s)
- Yun-Fei Lu
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
18
|
Abstract
CREB and its close relatives are now widely accepted as prototypical stimulus-inducible transcription factors. In many cell types, these factors function as effector molecules that bring about cellular changes in response to discrete sets of instructions. In neurons, a wide range of extracellular stimuli are capable of activating CREB family members, and CREB-dependent gene expression has been implicated in complex and diverse processes ranging from development to plasticity to disease. In this review, we focus on the current level of understanding of where, when, and how CREB family members function in the nervous system.
Collapse
Affiliation(s)
- Bonnie E Lonze
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
19
|
Dudek SM, Fields RD. Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc Natl Acad Sci U S A 2002; 99:3962-7. [PMID: 11891337 PMCID: PMC122631 DOI: 10.1073/pnas.062510599] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A question of critical importance confronting neuroscientists today is how biochemical signals initiated at a synapse are conveyed to the nucleus. This problem is particularly relevant to the generation of the late phases of long-term potentiation (LTP). Here we provide evidence that some signaling pathways previously associated with late-LTP can be activated in hippocampal CA1 neurons without synaptic activity; somatic action potentials, induced by backfiring the cells, were found to be sufficient for phosphorylation of extracellular signal-regulated kinase-1/2 and cAMP response element-binding protein, as well as for induction of zif268. Furthermore, such antidromic stimulation was adequate to rescue "tagged" synapses (early-LTP) from decay. These results show that a synapse-to-nucleus signal is not necessary for late-phase LTP-associated signaling cascades in the regulation of gene expression.
Collapse
Affiliation(s)
- Serena M Dudek
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
20
|
Li J, Pelletier MR, Perez Velazquez JL, Carlen PL. Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol Cell Neurosci 2002; 19:138-51. [PMID: 11860268 DOI: 10.1006/mcne.2001.1085] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lack of expression of the fragile X mental retardation protein (FMRP), due to silencing of the FMR1 gene, causes the Fragile X syndrome. Although FMRP was characterized previously to be an RNA binding protein, little is known about its function or the mechanisms underlying the Fragile X syndrome. Here we report that the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit, GluR1, was decreased in the cortical synapses, but not in the hippocampus or cerebellum, of FMR1 gene knockout mice. Reduced long-term potentiation (LTP) was also found in the cortex but not in the hippocampus. Another RNA binding protein, FXR; the N-methyl-D-aspartate receptor subunit, NR2; and other learning-related proteins including c-fos, synapsin, myelin proteolipid protein, and cAMP response element binding protein were not different between FMR1 gene knockout and wild-type mice. These findings suggest that the depressed cortical GluR1 expression and LTP associated with FMRP deficiency could contribute to the Fragile X phenotype.
Collapse
Affiliation(s)
- Jianxue Li
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | | | | | |
Collapse
|
21
|
Gooney M, Lynch MA. Long-term potentiation in the dentate gyrus of the rat hippocampus is accompanied by brain-derived neurotrophic factor-induced activation of TrkB. J Neurochem 2001; 77:1198-207. [PMID: 11389170 DOI: 10.1046/j.1471-4159.2001.00334.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A role for neurotrophic factors, in particular brain-derived neurotrophic factor (BDNF), in modulating synaptic plasticity in the adult brain has been described in recent years by several laboratories. A great deal of emphasis has been placed on establishing its precise role in the expression of long-term potentiation (LTP) in the hippocampus. Here we attempt to address this question by investigating, first, its release following induction of LTP in perforant path-granule cell synapses and, second, the signalling events which follow activation of the BDNF receptor, TrkB, in the presynaptic terminal. We report that BDNF release is increased from slices of dentate gyrus following tetanic stimulation of the perforant path and that TrkB activation is increased in synaptosomes prepared from tetanized dentate gyrus. These changes are accompanied by increased activation of one member of the family of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and the data indicate that these events play a role in modulating release of glutamate from perforant path-granule cell synapses, because the Trk inhibitor K252a and the ERK inhibitor, UO126, both inhibited the BDNF-induced enhancement of release. We propose that the increase in phosphorylation of the transcription factor cAMP response element binding protein and in protein synthesis might underlie the more persistent components of LTP in dentate gyrus.
Collapse
Affiliation(s)
- M Gooney
- Department of Physiology, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | | |
Collapse
|
22
|
Tanaka K, Nogawa S, Nagata E, Ito D, Suzuki S, Dembo T, Kosakai A, Fukuuchi Y. Persistent CREB phosphorylation with protection of hippocampal CA1 pyramidal neurons following temporary occlusion of the middle cerebral artery in the rat. Exp Neurol 2000; 161:462-71. [PMID: 10686068 DOI: 10.1006/exnr.1999.7313] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of the DNA-binding transcription factor, cyclic AMP response element binding protein (CREB), was immunohistochemically examined in rat brain hippocampal CA1 in order to examine the ischemic vulnerability of this region from the viewpoint of CREB activation. The rat brain had been subjected to 90-min focal ischemia followed by various periods of recirculation. Focal ischemia was induced by occlusion of the middle cerebral artery using the intraluminal suture method. CA1 pyramidal neurons in the sham animals showed definite immunoreactivity with anti-CREB antibody, which binds to both unphosphorylated and phosphorylated CREB, while reactivity with anti-phosphorylated CREB antibody was barely detectable in these neurons. In contrast, at 3.5 h of recirculation, a significant increase in the number of phosphorylated CREB-positive neurons was noted in the CA1 on both sides, and the increase continued until 48 h of recirculation with a tendency for gradual decline. At each period, the ischemic side showed a more marked increase in the number of immunoreactive cells as compared to the nonischemic side. Cresyl violet staining revealed CA1 pyramidal neurons to be maintained intact until 14 day of recirculation, at which time CREB phosphorylation has returned to the control level. Transient global ischemia is known to induce only mild CREB phosphorylation in the CA1 followed by a frank neuronal loss in this region. These data suggest that CREB phosphorylation can be persistently activated in CA1 neurons after focal ischemia and that this phenomenon may be closely associated with protection of these neurons.
Collapse
Affiliation(s)
- K Tanaka
- Department of Neurology, Keio University, Tokyo, 160-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 1999. [PMID: 10575022 DOI: 10.1523/jneurosci.19-23-10250.1999] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) in the hippocampus has an early phase (E-LTP) that can be induced by one- or two-train tetanization, lasts approximately 1 hr, and is cAMP-dependent protein kinase (PKA) and protein synthesis independent and a late phase (L-LTP) that can be induced by three- or four-train tetanization, lasts >3 hr, and is reduced by inhibitors of PKA and of protein or RNA synthesis. Nitric oxide (NO) is thought to be involved in E-LTP, but until now there has been no information about the role of the NO-signaling pathway in L-LTP. We examined this question at the Schaffer collateral-CA1 synapses in slices of mouse hippocampus. An inhibitor of NO synthase blocked L-LTP induced by three-train tetanization and reduced L-LTP induced by four-train tetanization, whereas an inhibitor of PKA was more effective in blocking four-train L-LTP than three-train L-LTP. Three-train L-LTP was also blocked by inhibitors of guanylyl cyclase or cGMP-dependent protein kinase (PKG). Conversely, either NO or cGMP analogs paired with one-train tetanization produced late-phase potentiation, and the cGMP-induced potentiation was blocked by inhibitors of protein or RNA synthesis and an inhibitor of PKG, but not by an inhibitor of PKA. To test a possible downstream target of PKG, we examined changes in phospho-CRE-binding protein (phospho-CREB) immunofluorescence in the CA1 cell body area and obtained results similar to those of the electrophysiology experiments. These results suggest that NO contributes to L-LTP by stimulating guanylyl cyclase and cGMP-dependent protein kinase, which acts in parallel with PKA to increase phosphorylation of the transcription factor CREB.
Collapse
|
24
|
McLean JH, Harley CW, Darby-King A, Yuan Q. pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training. Learn Mem 1999; 6:608-18. [PMID: 10641765 PMCID: PMC311313 DOI: 10.1101/lm.6.6.608] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early olfactory preference learning in rat pups occurs when novel odors are paired with tactile stimulation, for example stroking. cAMP-triggered phosphorylation of cAMP response element binding protein (pCREB) has been implicated as a mediator of learning and memory changes in various animals (Frank and Greenberg 1994). In the present study we investigate whether CREB is phosphorylated in response to conditioned olfactory training as might be predicted given the proposed role of the phosphorylated protein in learning. On postnatal day 6, pups were trained for 10 min using a standard conditioned olfactory learning paradigm in which a conditioned stimulus, Odor, was either used alone or paired with an unconditioned stimulus, Stroking (using a fine brush to stroke the pup). In some instances stroking only was used. The pups were sacrificed at 0, 10, 30, or 60 min after the training. Using Western blot analysis, we observed that the majority of olfactory bulbs in conditioned pups (Odor + Stroking) had a greater increase in pCREB activation at 10 min after training than pups given nonlearning training (Odor only or Stroking only). The phosphorylated protein levels were low at 0 min and at 60 min after training. This is in keeping with the slightly delayed and short-lived activation period for this protein. The localization of pCREB increases within the olfactory bulb as seen by immunocytochemistry. Naive pups were not exposed to odor or training. There was a significantly higher level of label in mitral cell nuclei within the dorsolateral quadrant of the bulb of pups undergoing odor-stroke pairing. No significant differences were observed among nonlearning groups (Naive, Odor only, or Stroking only) or among any training groups in the granule or periglomerular cells of the dorsolateral region. The localized changes in the nuclear protein are consistent with studies showing localized changes in the bulb in response to a learned familiar odor. The present study demonstrates that selective increases in pCREB occur as an early step following pairing procedures that normally lead to the development of long-term olfactory memories in rat pups. These results support the hypothesized link between pCREB and memory formation.
Collapse
Affiliation(s)
- J H McLean
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Canada.
| | | | | | | |
Collapse
|
25
|
Walton M, Henderson C, Mason-Parker S, Lawlor P, Abraham W, Bilkey D, Dragunow M. Immediate early gene transcription and synaptic modulation. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<96::aid-jnr10>3.0.co;2-n] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo. J Neurosci 1999. [PMID: 10377374 DOI: 10.1523/jneurosci.19-13-05683.1999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphorylation of the transcription factor cAMP responsive element-binding protein (CREB) is thought to play a key role in synaptic plasticity and long-term memory. However, direct evidence for CREB phosphorylation during hippocampal long-term potentiation (LTP) in vivo is sparse. Here, we show that, in the intact animal, CREB is rapidly phosphorylated in response to high-frequency stimulation but not low-frequency stimulation of the perforant pathway. CREB phosphorylation occurred in a biphasic manner, with a first peak at 30 min and a second long-lasting peak beginning 2 hr after tetanic stimulation and lasting for at least 24 hr. Only stimuli that generated nondecremental LTP promoted a sustained hyperphosphorylation of CREB but not stimuli that produced decremental LTP. CREB phosphorylation was specifically triggered in the dentate gyrus, as well as the CA1, but not the CA3, hippocampal region. Pretreatment with the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate completely prevented activation of CREB. Together, we have resolved the spatial and temporal dynamics of CREB phosphorylation during hippocampal LTP, showing that the transcription factor CREB is specifically recruited at two distinct time points in some forms of hippocampal synaptic plasticity in vivo.
Collapse
|
27
|
Buonanno A, Fields RD. Gene regulation by patterned electrical activity during neural and skeletal muscle development. Curr Opin Neurobiol 1999; 9:110-20. [PMID: 10072371 DOI: 10.1016/s0959-4388(99)80014-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patterned neural activity modifies central synapses during development and the physiological properties of skeletal muscle by selectively repressing or stimulating transcription of distinct genes. The effects of neural activity are mostly mediated by calcium. Of particular interest are the cellular mechanisms that may be used to sense and convert changes in calcium into specific alterations in gene expression. Recent studies have addressed the importance of spatial heterogeneity or of temporal changes in calcium levels for the regulation of gene expression.
Collapse
Affiliation(s)
- A Buonanno
- Unit on Molecular Neurobiology Laboratory on Developmental Neurobiology Unit on Molecular Neurobiology Building 49 Room 5A-38 National Institutes of Health Bethesda Maryland 20892 USA.
| | | |
Collapse
|