1
|
Ulutekin C, Galli E, Schreiner B, Khademi M, Callegari I, Piehl F, Sanderson N, Kirschenbaum D, Mundt S, Filippi M, Furlan R, Olsson T, Derfuss T, Ingelfinger F, Becher B. B cell depletion attenuates CD27 signaling of T helper cells in multiple sclerosis. Cell Rep Med 2024; 5:101351. [PMID: 38134930 PMCID: PMC10829729 DOI: 10.1016/j.xcrm.2023.101351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Whereas T cells are likely the main drivers of disease development, the striking efficacy of B cell-depleting therapies (BCDTs) underscore B cells' involvement in disease progression. How B cells contribute to multiple sclerosis (MS) pathogenesis-and consequently the precise mechanism of action of BCDTs-remains elusive. Here, we analyze the impact of BCDTs on the immune landscape in patients with MS using high-dimensional single-cell immunophenotyping. Algorithm-guided analysis reveals a decrease in circulating T follicular helper-like (Tfh-like) cells alongside increases in CD27 expression in memory T helper cells and Tfh-like cells. Elevated CD27 indicates disrupted CD27/CD70 signaling, as sustained CD27 activation in T cells leads to its cleavage. Immunohistological analysis shows CD70-expressing B cells at MS lesion sites. These results suggest that the efficacy of BCDTs may partly hinge upon the disruption of Th cell and B cell interactions.
Collapse
Affiliation(s)
- Can Ulutekin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Edoardo Galli
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Ilaria Callegari
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Nicholas Sanderson
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit, Neurophysiology Service, and Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Via Olgettina n. 60 - 20132, Italy; Vita-Salute San Raffaele University, Milan, Via Olgettina n. 60 - 20132, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina n. 60 - 20132, Milan, Italy
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Tobias Derfuss
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Wang X, Wei Y, He Z, Wang D, Zhang L, Du J, Zhang M, Jiang M, Chen N, Deng M, Li B, Song C, Chen D, Liu H, Xiao J, Liang H, Zhao H, Kong Y. CD70-induced differentiation of proinflammatory Th1/17/22/GM lymphocytes associated with disease progression and immune reconstitution during HIV infection. Emerg Microbes Infect 2023; 12:2271068. [PMID: 37824079 PMCID: PMC10606822 DOI: 10.1080/22221751.2023.2271068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Immune overactivation is a hallmark of chronic HIV infection, which is critical to HIV pathogenesis and disease progression. The imbalance of helper T cell (Th) differentiation and subsequent cytokine dysregulation are generally considered to be the major drivers of excessive activation and inflammatory disorders in HIV infection. However, the accurate factors driving HIV-associated Th changes remained to be established. CD70, which was a costimulatory molecule, was found to increase on CD4+ T cells during HIV infection. Overexpression of CD70 on CD4+ T cells was recently reported to associate with highly pathogenic proinflammatory Th1/Th17 polarization in multiple sclerosis. Thus, the role of CD70 in the imbalance of Th polarization and immune overactivation during HIV infection needs to be investigated. Here, we found that the elevated frequency of CD70 + CD4+ T cells was negatively correlated with CD4 count and positively associated with immune activation in treatment-naïve people living with HIV (PLWH). More importantly, CD70 expression defined a population of proinflammatory Th1/17/22/GM subsets in PLWH. Blocking CD70 decreased the mRNA expression of subset-specific markers during Th1/17/22/GM polarization. Furthermore, we demonstrated that CD70 influenced the differentiation of these Th cells through STAT pathway. Finally, it was revealed that patients with a high baseline level of CD70 on CD4+ T cells exhibited a greater risk of poor immune reconstitution after antiretroviral therapy (ART) than those with low CD70. In general, our data highlighted the role of CD70 in Th1/17/22/GM differentiation during HIV infection and provided evidence for CD70 as a potential biomarker for predicting immune recovery.
Collapse
Affiliation(s)
- Xinyue Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Zhijiao He
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Leidan Zhang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Na Chen
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Meiju Deng
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Huan Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Jiang Xiao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongyuan Liang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongxin Zhao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Cossu D, Yokoyama K, Sakanishi T, Kuwahara-Arai K, Momotani E, Hattori N. A mucosal immune response induced by oral administration of heat-killed Mycobacterium avium subsp. paratuberculosis exacerbates EAE. J Neuroimmunol 2021; 352:577477. [PMID: 33454553 DOI: 10.1016/j.jneuroim.2021.577477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Findings in humans and animals have demonstrated a potential role for Mycobacterium avium subsp. paratuberculosis (MAP) antigenic components in encephalitogenic T cell activation. Here we reported that oral administration of MAP activates the mucosal immunity and exacerbates active experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice, modulating the immune cell traffic from secondary lymphoid organs to central nervous system. The detection of antigenic mycobacterial components by intestinal antigen-presenting cells may modulate the immune system and the subsequent inflammatory status through various signaling mechanisms, including the synthesis of pro-inflammatory cytokines involved in EAE pathogenesis.
Collapse
Affiliation(s)
- Davide Cossu
- Juntendo University, Department of Neurology, Tokyo 113-8431, Japan; Juntendo University, Advanced Research Institute for Health Science, Tokyo 113-8431, Japan
| | - Kazumasa Yokoyama
- Juntendo University, Department of Neurology, Tokyo 113-8431, Japan.
| | - Tamami Sakanishi
- Juntendo University, Division of Cell Biology, Tokyo 113-8431, Japan
| | | | - Eiichi Momotani
- Comparative Medical Research Institute, Tsukuba 305-0856, Japan
| | - Nobutaka Hattori
- Juntendo University, Department of Neurology, Tokyo 113-8431, Japan
| |
Collapse
|
4
|
Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 2019; 104:102333. [DOI: 10.1016/j.jaut.2019.102333] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
5
|
Dhaeze T, Tremblay L, Lachance C, Peelen E, Zandee S, Grasmuck C, Bourbonnière L, Larouche S, Ayrignac X, Rébillard RM, Poirier J, Lahav B, Duquette P, Girard M, Moumdjian R, Bouthillier A, Larochelle C, Prat A. CD70 defines a subset of proinflammatory and CNS-pathogenic T H1/T H17 lymphocytes and is overexpressed in multiple sclerosis. Cell Mol Immunol 2019; 16:652-665. [PMID: 30635649 DOI: 10.1038/s41423-018-0198-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/16/2018] [Indexed: 12/12/2022] Open
Abstract
CD70 is the unique ligand of CD27 and is expressed on immune cells only upon activation. Therefore, engagement of the costimulatory CD27/CD70 pathway is solely dependent on upregulation of CD70. However, the T cell-intrinsic effect and function of human CD70 remain underexplored. Herein, we describe that CD70 expression distinguishes proinflammatory CD4+ T lymphocytes that display an increased potential to migrate into the central nervous system (CNS). Upregulation of CD70 on CD4+ T lymphocytes is induced by TGF-β1 and TGF-β3, which promote a pathogenic phenotype. In addition, CD70 is associated with a TH1 and TH17 profile of lymphocytes and is important for T-bet and IFN-γ expression by both T helper subtypes. Moreover, adoptive transfer of CD70-/-CD4+ T lymphocytes induced less severe experimental autoimmune encephalomyelitis (EAE) disease than transfer of WT CD4+ T lymphocytes. CD70+CD4+ T lymphocytes are found in the CNS during acute autoimmune inflammation in humans and mice, highlighting CD70 as both an immune marker and an important costimulator of highly pathogenic proinflammatory TH1/TH17 lymphocytes infiltrating the CNS.
Collapse
Affiliation(s)
- Tessa Dhaeze
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada
| | - Laurence Tremblay
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada
| | - Catherine Lachance
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada
| | - Evelyn Peelen
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada
| | - Stephanie Zandee
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada
| | - Camille Grasmuck
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada
| | - Lyne Bourbonnière
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada
| | - Sandra Larouche
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada
| | - Xavier Ayrignac
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montréal, QC, H2X0A9, Canada
| | - Rose-Marie Rébillard
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada
| | - Josée Poirier
- Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montréal, QC, H2X0A9, Canada
| | - Boaz Lahav
- Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montréal, QC, H2X0A9, Canada
| | - Pierre Duquette
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montréal, QC, H2X0A9, Canada
| | - Marc Girard
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montréal, QC, H2X0A9, Canada
| | | | | | - Catherine Larochelle
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montréal, QC, H2X0A9, Canada
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de Recherche du CHUM (CRCHUM), Montréal, QC, H2X0A9, Canada. .,Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montréal, QC, H2X0A9, Canada.
| |
Collapse
|
6
|
T Lymphocytes and Autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:125-168. [DOI: 10.1016/bs.ircmb.2018.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Liu B, Zhong X, Lu Z, Qiu W, Hu X, Wang H. Cerebrospinal Fluid Level of Soluble CD27 Is Associated with Disease Severity in Neuromyelitis Optica Spectrum Disorder. Neuroimmunomodulation 2018; 25:185-192. [PMID: 30423585 DOI: 10.1159/000489561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/11/2018] [Indexed: 01/22/2023] Open
Abstract
OBJECT CD27 belongs to the tumor necrosis factor receptor family and is constitutively expressed on T cells. The concentration of cerebrospinal fluid (CSF) soluble (s)CD27 is elevated in patients with multiple sclerosis (MS). However, whether the level of CSF sCD27 is elevated in neuromyelitis optica spectrum disorder (NMOSD) remains unknown. The aim of this study was to measure the CSF concentration of sCD27 and to determine its relationship with NMOSD disease activity. METHODS CSF CXCL13 was measured by ELISA in neuromyelitis optica (NMO) (n = 31) and MS (n = 23) patients and in controls (CTLs) (n = 22). RESULTS The concentration of sCD27 was higher in the NMO group than in the MS (p = 0.082) and CTL (p = 0.002) groups, and there was a positive correlation with CSF IL-6 (p = 0.000) and a negative correlation with IL-10 (p = 0.073). In the NMO group, patients with higher sCD27 concentrations exhibited worse disease disability in their CSF (p = 0.006). Moreover, the sCD27 concentrations had a significantly positive correlation with the level of CSF total protein (p = 0.030). Furthermore, the patients positive for AQP4-IgG (n = 26) seemed to have higher levels of sCD27 in their CSF (p = 0.069) than those negative for AQP4-IgG (n = 5). CONCLUSIONS We revealed that the level of CSF sCD27 was elevated in NMOSD and correlated with NMOSD disease activity.
Collapse
Affiliation(s)
- Baozhu Liu
- Department of Neurology, Nangfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaonan Zhong
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueqiang Hu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Honghao Wang
- Department of Neurology, Nangfang Hospital of Southern Medical University, Guangzhou, China,
| |
Collapse
|
8
|
Monoclonal Antibodies in Preclinical EAE Models of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2017; 18:ijms18091992. [PMID: 28926943 PMCID: PMC5618641 DOI: 10.3390/ijms18091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
Monoclonal antibodies (mAb) are promising therapeutics in multiple sclerosis and multiple new candidates have been developed, hence increasing the need for some agreement for preclinical mAb studies. We systematically analyzed publications of experimental autoimmune encephalomyelitis (EAE) studies showing effects of monoclonal antibodies. A PubMed search retrieved 570 records, out of which 122 studies with 253 experiments were eligible based on experimental design, number of animals and presentation of time courses of EAE scores. Analysis of EAE models, treatment schedules, single and total doses, routes of administration, and onset of treatment from pre-immunization up to 35 days after immunization revealed high heterogeneity. Total doses ranged from 0.1 to 360 mg/kg for observation times of up to 35 days after immunization. About half of experiments (142/253) used total doses of 10-70 mg/kg. Employing this range, we tested anti-Itga4 as a reference mAb at varying schedules and got no, mild or substantial EAE-score reductions, depending on the mouse strain and onset of the treatment. The result agrees with the range of outcomes achieved in 10 reported anti-Itga4 experiments. Studies comparing low and high doses of various mAbs or early vs. late onset of treatment did not reveal dose-effect or timing-effect associations, with a tendency towards better outcomes with preventive treatments starting within the first week after immunization. The systematic comparison allows for extraction of some "common" design characteristics, which may be helpful to further assess the efficacy of mAbs and role of specific targets in preclinical models of multiple sclerosis.
Collapse
|
9
|
Abstract
The immune system is guided by a series of checks and balances, a major component of which is a large array of co-stimulatory and co-inhibitory pathways that modulate the host response. Although co-stimulation is essential for boosting and shaping the initial response following signaling through the antigen receptor, inhibitory pathways are also critical for modulating the immune response. Excessive co-stimulation and/or insufficient co-inhibition can lead to a breakdown of self-tolerance and thus to autoimmunity. In this review, we will focus on the role of co-stimulatory and co-inhibitory pathways in two systemic (systemic lupus erythematosus and rheumatoid arthritis) and two organ-specific (multiple sclerosis and type 1 diabetes) emblematic autoimmune diseases. We will also discuss how mechanistic analysis of these pathways has led to the identification of potential therapeutic targets and initiation of clinical trials for autoimmune diseases, as well as outline some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| |
Collapse
|
10
|
Leigh ND, O'Neill RE, Du W, Chen C, Qiu J, Ashwell JD, McCarthy PL, Chen GL, Cao X. Host-Derived CD70 Suppresses Murine Graft-versus-Host Disease by Limiting Donor T Cell Expansion and Effector Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:336-347. [PMID: 28550198 DOI: 10.4049/jimmunol.1502181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70-/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70-/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4+ and CD8+ effector T cells is increased in CD70-/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Chuan Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - George L Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
11
|
Grant EJ, Nüssing S, Sant S, Clemens EB, Kedzierska K. The role of CD27 in anti-viral T-cell immunity. Curr Opin Virol 2017; 22:77-88. [PMID: 28086150 DOI: 10.1016/j.coviro.2016.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022]
Abstract
CD27 is a co-stimulatory immune-checkpoint receptor, constitutively expressed on a broad range of T-cells (αβ and γδ), NK-cells and B-cells. Ligation of CD27 with CD70 results in potent co-stimulatory effects. In mice, co-stimulation of CD8+ T-cells through CD27 promotes immune activation and enhances primary, secondary, memory and recall responses towards viral infections. Limited in vitro human studies support mouse experiments and show that CD27 co-stimulation enhances antiviral T-cell immunity. Given the potent co-stimulatory effects of CD27, manipulating CD27 signalling is of interest for viral, autoimmune and anti-tumour immunotherapies. This review focuses on the role of CD27 co-stimulation in anti-viral T-cell immunity and discusses clinical studies utilising the CD27 co-stimulation pathway for anti-viral, anti-tumour and autoimmune immunotherapy.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, VIC, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Simone Nüssing
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, VIC, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, VIC, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, VIC, Australia.
| |
Collapse
|
12
|
Abstract
Death ligands induce apoptosis, which is a cell suicide program leading mainly to selective elimination of an organism's useless cells. Importantly, the dying cell is an active participant in its own demise (“cellular suicide”). Under physiological conditions, apoptosis is most often found during normal cell turnover and tissue homeostasis, embryogenesis, induction and maintenance of immune tolerance, development of the nervous system, and endocrine-dependent tissue atrophy. However, apoptotic processes have also been suggested to contribute to the pathology of the autoimmune demyelinating disease multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis. Here, apoptosis plays a double role. On one hand, impaired apoptosis may result in increased numbers or persistence of activated myelinspecific T cells. On the other hand, local tissue damage involves apoptosis of oligodendrocytes and neurons, leading to the clinical symptoms. In this article, an overview is given of the current knowledge of the roles of apoptosis-mediating and immune regulatory death ligands of the tumor necrosis factor (TNF) family (TNF, lymphotoxin-beta, OX40L [CD134L], CD154 [CD40L], CD95L, CD70 [CD27L], CD153 [CD30L], 4-1BBL [CD137L], TRAIL, TWEAK, BAFF, GITRL) in the pathogenesis of MS and of their implications for related therapeutic strategies.
Collapse
Affiliation(s)
- Orhan Aktas
- Institute of Neuroimmunology, Clinical and Experimental Neuroimmunology, Charité--Universitätsmedizin Berlin, Germany
| | | | | |
Collapse
|
13
|
Riether C, Schürch CM, Flury C, Hinterbrandner M, Drück L, Huguenin AL, Baerlocher GM, Radpour R, Ochsenbein AF. Tyrosine kinase inhibitor-induced CD70 expression mediates drug resistance in leukemia stem cells by activating Wnt signaling. Sci Transl Med 2016. [PMID: 26223302 DOI: 10.1126/scitranslmed.aab1740] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.
Collapse
Affiliation(s)
- Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Christian M Schürch
- Tumor Immunology, Department of Clinical Research, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland. Institute of Pathology, University of Bern, Murtenstrasse 31, 3010 Bern, Switzerland
| | - Christoph Flury
- Tumor Immunology, Department of Clinical Research, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Magdalena Hinterbrandner
- Tumor Immunology, Department of Clinical Research, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Linda Drück
- Tumor Immunology, Department of Clinical Research, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Anne-Laure Huguenin
- Tumor Immunology, Department of Clinical Research, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Gabriela M Baerlocher
- Experimental Hematology, Department of Clinical Research, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland. Department of Hematology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Ramin Radpour
- Tumor Immunology, Department of Clinical Research, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland. Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
14
|
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Clark MP, Leaman DW, Hazelhurst LA, Hwang ES, Quinn A. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis. Int Immunopharmacol 2016; 31:74-87. [DOI: 10.1016/j.intimp.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022]
|
16
|
The CD27–CD70 pathway and pathogenesis of autoimmune disease. Semin Arthritis Rheum 2016; 45:496-501. [DOI: 10.1016/j.semarthrit.2015.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022]
|
17
|
Sonar S, Lal G. Role of Tumor Necrosis Factor Superfamily in Neuroinflammation and Autoimmunity. Front Immunol 2015; 6:364. [PMID: 26257732 PMCID: PMC4507150 DOI: 10.3389/fimmu.2015.00364] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/05/2015] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor superfamily (TNFSF) molecules play an important role in the activation, proliferation, differentiation, and migration of immune cells into the central nervous system (CNS). Several TNF superfamily molecules are known to control alloimmunity, autoimmunity, and immunity. Development of transgenic and gene knockout animals, and monoclonal antibodies against TNFSF molecules have increased our understanding of individual receptor-ligand interactions, and their intracellular signaling during homeostasis and neuroinflammation. A strong clinical association has been observed between TNFSF members and CNS autoimmunity such as multiple sclerosis and also in its animal model experimental autoimmune encephalomyelitis. Therefore, they are promising targets for alternative therapeutic options to control autoimmunity. Although, TNFSF ligands are widely distributed and have diverse functions, we have restricted the discussions in this review to TNFSF receptor-ligand interactions and their role in the pathogenesis of neuroinflammation and CNS autoimmunity.
Collapse
|
18
|
Thude H, Kramer K, Koch M, Peine S, Sterneck M, Nashan B. Lack of association between CD40 polymorphisms and acute rejection in German liver transplant recipients. Hum Immunol 2014; 75:1123-7. [PMID: 25305459 DOI: 10.1016/j.humimm.2014.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 01/15/2023]
Abstract
CD40 and its ligand, CD154, are major costimulatory molecules whose interactions are important in alloreactive transplant rejection. The aim of this study was to examine the association of CD40 polymorphisms with the susceptibility to acute rejection episodes in liver transplantation. In total, 112 liver transplant recipients with biopsy proven acute rejections (BPAR), 97 without BPAR (WBPAR), and 112 healthy control individuals were enrolled in the study. Two single nucleotide polymorphisms (SNPs) of CD40 gene (rs1883832 and rs4810485) were genotyped by polymerase chain reaction-allele specific restriction enzyme analysis (PCR-ASRA). Both SNPs has been tested for a recessive and a dominant model. No significant differences were found in the genotype and allele frequencies of the SNPs rs1883832 and rs4810485 between BPAR liver recipients and WBPAR recipients. Our results do not suggest an important role of tested CD40 SNPs in the susceptibility to acute liver transplant rejection in a Caucasian population.
Collapse
Affiliation(s)
- Hansjörg Thude
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany
| | - Kathrin Kramer
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany
| | - Martina Koch
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany
| | - Sven Peine
- University Medical Center Hamburg-Eppendorf, Institute for Transfusion Medicine, Martinistraße 52, 20246 Hamburg, Germany
| | - Martina Sterneck
- University Medical Center Hamburg-Eppendorf, Department of Medicine, Martinistraße 52, 20246 Hamburg, Germany
| | - Björn Nashan
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
19
|
Abstract
The CD70-CD27 interaction is known to positively regulate T cell expansion and effector function by providing costimulatory signals. In this issue of Immunity, Coquet et al. (2013) show an unexpected T-helper-17-cell-specific negative regulation mediated by CD70-CD27 interaction.
Collapse
|
20
|
Munitic I, Kuka M, Allam A, Scoville JP, Ashwell JD. CD70 deficiency impairs effector CD8 T cell generation and viral clearance but is dispensable for the recall response to lymphocytic choriomeningitis virus. THE JOURNAL OF IMMUNOLOGY 2012; 190:1169-79. [PMID: 23269247 DOI: 10.4049/jimmunol.1202353] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CD27 interactions with its ligand, CD70, are thought to be necessary for optimal primary and memory adaptive immune responses to a variety of pathogens. Thus far, all studies addressing the function of the CD27-CD70 axis have been performed in mice lacking CD27, in those overexpressing CD70, or in those in which these molecules were blocked or mimicked by Abs or recombinant soluble CD70. Because these methods have in some cases led to divergent results, we generated CD70-deficient mice to directly assess its role in vivo. We find that lack of CD70-mediated stimulation during primary responses to lymphocytic choriomeningitis virus lowered the magnitude of CD8 Ag-specific T cell response, resulting in impaired viral clearance, without affecting CD4 T cell responses. Unexpectedly, CD70-CD27 costimulation was not needed for memory CD8 T cell generation or the ability to mount a recall response to lymphocytic choriomeningitis virus. Adoptive transfers of wild-type memory T cells into CD70(-/-) or wild-type hosts also showed no need for CD70-mediated stimulation during the course of the recall response. Moreover, CD70 expression by CD8 T cells could not rescue endogenous CD70(-/-) cells from defective expansion, arguing against a role for CD70-mediated T:T help in this model. Therefore, CD70 appears to be an important factor in the initiation of a robust and effective primary response but dispensable for CD8 T cell memory responses.
Collapse
Affiliation(s)
- Ivana Munitic
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
21
|
Coquet JM, Middendorp S, van der Horst G, Kind J, Veraar EAM, Xiao Y, Jacobs H, Borst J. The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity 2012; 38:53-65. [PMID: 23159439 DOI: 10.1016/j.immuni.2012.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/15/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
T helper 17 (Th17) cells protect against infection but also promote inflammation and autoimmunity. Therefore, the factors that govern Th17 cell differentiation are of special interest. The CD27 and CD70 costimulatory pathway impeded Th17 effector cell differentiation and associated autoimmunity in a mouse model of multiple sclerosis. CD27 or CD70 deficiency exacerbated disease, whereas constitutive CD27 signaling strongly reduced disease incidence and severity. CD27 signaling did not impact master regulators of T helper cell lineage commitment but selectively repressed transcription of the key effector molecules interleukin-17 (IL-17) and the chemokine receptor CCR6 in differentiating Th17 cells. CD27 mediated this repression at least in part via the c-Jun N-terminal kinase (JNK) pathway that restrained IL-17 and CCR6 expression in differentiating Th17 cells. CD27 signaling also resulted in epigenetic silencing of the Il17a gene. Thus, CD27 costimulation via JNK signaling, transcriptional, and epigenetic effects suppresses Th17 effector cell function and associated pathological consequences.
Collapse
Affiliation(s)
- Jonathan M Coquet
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Francosalinas G, Cantaert T, Nolte MA, Tak PP, van Lier RAW, Baeten DL. Enhanced costimulation by CD70+ B cells aggravates experimental autoimmune encephalomyelitis in autoimmune mice. J Neuroimmunol 2012; 255:8-17. [PMID: 23137837 DOI: 10.1016/j.jneuroim.2012.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Assess whether CD70+ B cells contribute to EAE. MATERIALS AND METHODS MOG-specific TCR transgenic mice (2D2) were crossed with mice with constitutive CD70 expression on B cells. The development of EAE and the phenotype of B-T lymphocytes were studied in 2D2xCD70 animals. RESULTS Spontaneous EAE developed in 20% of 2D2xCD70 and 3% of 2D2 mice. EAE was also more severe in 2D2xCD70 versus 2D2 animals upon MOG immunization. The susceptibility of 2D2xCD70 to EAE was associated with fewer FoxP3+ T cells. CONCLUSIONS Expression of CD70 by B cells aggravates EAE possibly by reducing the number of regulatory T cells.
Collapse
Affiliation(s)
- G Francosalinas
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Makino F, Ito J, Abe Y, Harada N, Kamachi F, Yagita H, Takahashi K, Okumura K, Akiba H. Blockade of CD70–CD27 Interaction Inhibits Induction of Allergic Lung Inflammation in Mice. Am J Respir Cell Mol Biol 2012; 47:298-305. [DOI: 10.1165/rcmb.2011-0354oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Gupta A, Probst HC, Vuong V, Landshammer A, Muth S, Yagita H, Schwendener R, Pruschy M, Knuth A, van den Broek M. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. THE JOURNAL OF IMMUNOLOGY 2012; 189:558-66. [PMID: 22685313 DOI: 10.4049/jimmunol.1200563] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy is an important treatment for cancer. The main mode of action is thought to be the irreversible damage to tumor cell DNA, but there is evidence that irradiation mobilizes tumor-specific immunity, and recent studies showed that the efficacy of high-dose radiotherapy depends on the presence of CD8(+) T cells. We show in this study that the efficacy of radiotherapy given as a single, high dose (10 Gy) crucially depends on dendritic cells and CD8(+) T cells, whereas CD4(+) T cells or macrophages are dispensable. We show that local high-dose irradiation results in activation of tumor-associated dendritic cells that in turn support tumor-specific effector CD8(+) T cells, thus identifying the mechanism that underlies radiotherapy-induced mobilization of tumor-specific immunity. We propose that in the absence of irradiation, the activation status of dendritic cells rather than the amount of tumor-derived Ag is the bottleneck, which precludes efficient anti-tumor immunity.
Collapse
Affiliation(s)
- Anurag Gupta
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sammicheli S, Ruffin N, Lantto R, Vivar N, Chiodi F, Rethi B. IL-7 modulates B cells survival and activation by inducing BAFF and CD70 expression in T cells. J Autoimmun 2012; 38:304-14. [DOI: 10.1016/j.jaut.2012.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/13/2012] [Accepted: 01/22/2012] [Indexed: 12/01/2022]
|
26
|
Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin Immunol 2012; 143:39-44. [PMID: 22306512 DOI: 10.1016/j.clim.2012.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/31/2011] [Accepted: 01/10/2012] [Indexed: 11/21/2022]
Abstract
The pathogenesis of systemic sclerosis (SSc) is still unclear. CD70, a B cell costimulatory molecule that interacts with CD27 during B-T cell contact, is overexpressed due to demethylation of its promoter regulatory elements in CD4+ T cells from patients with the following autoimmune diseases, namely systemic lupus erythematosus (SLE), subacute cutaneous lupus erythematosus (SCLE) and primary Sjögren's syndrome (pSS). However, as an autoimmune disease, it is unknown whether aberrant expression and methylation of CD70 occur in SSc CD4+ T cells. We aimed to investigate whether the aberrant expression and methylation status of CD70 occur in CD4+ T cells from patients with SSc. We found that the CD70 is overexpressed and the CD70 promoter region is demethylated in SSc CD4+ T cells. These findings suggest that demethylation of CD70 promoter region contributes to the overexpression of CD70 in CD4+ T cells and may contribute to autoimmune response in SSc.
Collapse
|
27
|
The role of costimulatory receptors of the tumour necrosis factor receptor family in atherosclerosis. J Biomed Biotechnol 2011; 2012:464532. [PMID: 22235167 PMCID: PMC3253462 DOI: 10.1155/2012/464532] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that is mediated by both the innate and adaptive immune responses. T lymphocytes, that together with B cells are the cellular effectors of the adaptive immune system, are currently endowed with crucial roles in the development and progression of atherosclerosis. Costimulatory receptors are a class of molecules expressed by T lymphocytes that regulate the activation of T cells and the generation of effector T-cell responses. In this review we present the roles of costimulatory receptors of the tumour necrosis factor receptor (TNFR) superfamily in atherosclerosis and discuss the implications for future therapies that could be used to specifically modulate the immune response of pathogenic T cells in this disease.
Collapse
|
28
|
Shariff H, Greenlaw RE, Meader L, Gardner N, Yagita H, Coccia M, Mamode N, Jurcevic S. Role of the Fc region in CD70-specific antibody effects on cardiac transplant survival. Transplantation 2011; 92:1194-201. [PMID: 22089665 DOI: 10.1097/tp.0b013e3182347ecd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The role of the CD70-specific antibody and the mechanisms by which it extends transplant survival are not known. METHODS Fully major histocompatibility complex-mismatched heterotopic heart transplantation (BALB/c to C57BL/6) was performed. Treated mice received intraperitoneal injections of wild-type (WT) CD70-specific antibody (FR70) or IgG1 or IgG2a chimeric antibodies on days 0, 2, 4, and 6 posttransplantation. RESULTS WT FR70 antibody significantly extended heart transplant survival to 19 days compared with untreated mice (median survival time [MST]=10 days). Graft survival using the nondepleting IgG1 antibody was significantly shorter (MST=14 days), whereas the survival using depleting IgG2a antibody (MST=18) was similar to that using WT FR70. The FR70 and IgG2a antibodies demonstrated a greater efficiency of fixing mouse complement over the IgG1 variant in vitro. CD4 and CD8 T-cell graft infiltration was reduced with treatment; however, this was most pronounced with WT FR70 and IgG2a antibody therapy compared with the IgG1 chimeric variant. Circulating donor-specific IgG alloantibodies were initially reduced with WT FR70 treatment (day 8 posttransplantation) but increased at days 15 and 20 posttransplantation to the level detected in untreated controls. CONCLUSION We conclude that WT (FR70) and the IgG2a depleting variant of CD70-specific antibody reduce graft infiltrating CD4 and CD8 T cells, transiently reduce serum alloantibody levels, and extend graft survival. In contrast, the nondepleting IgG1 variant of this antibody showed lower efficacy. These data suggest that a depleting mechanism of action and not merely costimulation blockade plays a substantial role in the therapeutic effects of CD70-specific antibody.
Collapse
Affiliation(s)
- Hina Shariff
- Division of Transplantation Immunology and Mucosal Biology, King's College London, Guy's Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Vinay DS, Kwon BS. The tumour necrosis factor/TNF receptor superfamily: therapeutic targets in autoimmune diseases. Clin Exp Immunol 2011; 164:145-57. [PMID: 21401577 DOI: 10.1111/j.1365-2249.2011.04375.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autoimmune diseases are characterized by the body's ability to mount immune attacks on self. This results from recognition of self-proteins and leads to organ damage due to increased production of pathogenic inflammatory molecules and autoantibodies. Over the years, several new potential therapeutic targets have been identified in autoimmune diseases, notable among which are members of the tumour necrosis factor (TNF) superfamily. Here, we review the evidence that certain key members of this superfamily can augment/suppress autoimmune diseases.
Collapse
Affiliation(s)
- D S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | |
Collapse
|
30
|
Denoeud J, Moser M. Role of CD27/CD70 pathway of activation in immunity and tolerance. J Leukoc Biol 2010; 89:195-203. [PMID: 20699361 DOI: 10.1189/jlb.0610351] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The CD70/CD27 axis has gained increasing interest among the immunologists, because of its capacity to regulate immunity versus tolerance. Recent studies clearly show that expression of CD70 may prevent tolerance induced by antigen presentation in the steady-state, i.e., by nonactivated DCs. In addition, CD27 signaling appears critical for T cell expansion and survival and therefore, induction of long-term memory. It contributes to germinal center formation, B cell activation, and production of neutralizing antibodies but can also be subverted by viruses, in particular, during chronic infections. The potential role of the CD27/CD70 pathway in the course of inflammatory diseases, as in EAE, arthritis, and inflammatory bowel disease models, suggests that CD70 may be a target for immune intervention. Conversely, the potency of costimulation through CD27 suggests that the CD27/CD70 axis could be exploited for the design of anti-cancer vaccines.
Collapse
Affiliation(s)
- Julie Denoeud
- Departement de Biologie Moleculaire,Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | | |
Collapse
|
31
|
CD27 costimulation is not critical for the development of asthma and respiratory tolerance in a murine model. Immunol Lett 2010; 133:19-27. [PMID: 20600327 DOI: 10.1016/j.imlet.2010.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/06/2010] [Accepted: 06/14/2010] [Indexed: 11/21/2022]
Abstract
CD27 is a costimulatory molecule of the TNFR family strongly expressed on activated CD4(+) and CD8(+) T lymphocytes. Binding with its ligand CD70, present on lymphocytes and DCs, leads to enhanced T cell activation and proliferation. Several other costimulatory molecules of the TNFR family like CD30, CD134 (OX40) or CD137 (4-1BB) have been shown to be critically involved in the development of asthma and/or respiratory tolerance. However, the role of CD27/CD70 signalling in these disease models has not been studied intensively. The aim of this study was to directly investigate the role of CD27 for the development of asthma and respiratory tolerance by comparative analysis of wild type (WT) and CD27(-/-) mice in the corresponding murine models. Ovalbumin (OVA)-sensitized and challenged CD27(-/-) mice developed comparably increased airway hyperreactivity (AHR), eosinophilic airway inflammation, mucus hypersecretion and elevated OVA-specific serum IgE levels in response to OVA sensitization as WT mice. In addition, Th2 cytokine production in spleen cell culture supernatants and proliferation of splenocytes after in vitro OVA restimulation was equally enhanced when derived from WT and CD27(-/-) mice. Furthermore, the absence of CD27 had no decisive impact on tolerance induction, so that WT and CD27(-/-) mice were comparably protected from asthma development by mucosal antigen application before sensitization. Our results suggest that CD27 costimulation is dispensable for a Th2 cell mediated allergic asthma response and respiratory tolerance induction in murine models.
Collapse
|
32
|
Yanagisawa S, Takeichi N, Kaneyama T, Yagita H, Taniguchi S, Kim BS, Koh CS. Effects of anti-CD70 mAb on Theiler's murine encephalomyelitis virus-induced demyelinating disease. Brain Res 2010; 1317:236-45. [PMID: 20045400 DOI: 10.1016/j.brainres.2009.12.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Ligation of CD27, a member of the tumor necrosis factor (TNF) receptor family, by its ligand CD70 is thought to be important in T cell activation, expansion and survival, B cell activation, and NK cell activation. We examined the role of CD70 in Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) mice. Blocking of CD70 in effector phase by anti-CD70 monoclonal antibody (mAb) suppressed the development of TMEV-IDD. The number of IFN-gamma- or TNF-alpha-producing cells in the spleen and mRNA levels of IFN-gamma and TNF-alpha in spinal cord were decreased in mice treated with anti-CD70 mAb at the effector phase. In contrast, treatment with anti-CD70 mAb in induction phase failed to reduce these responses, compared to nonspecific IgG-treated control mice. These data suggest that CD70 is critically involved in the pathogenesis of TMEV-IDD and that antibodies against CD70 could be a novel therapeutic approach in the clinical treatment of demyelinating diseases such as human multiple sclerosis.
Collapse
Affiliation(s)
- Satoshi Yanagisawa
- Department of Biomedical Laboratory Sciences, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Oflazoglu E, Boursalian TE, Zeng W, Edwards AC, Duniho S, McEarchern JA, Law CL, Gerber HP, Grewal IS. Blocking of CD27-CD70 pathway by anti-CD70 antibody ameliorates joint disease in murine collagen-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2009; 183:3770-7. [PMID: 19710474 DOI: 10.4049/jimmunol.0901637] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by inflammation and cellular proliferation in the synovial lining of joints that result in cartilage and bone destruction. Although the etiology of RA is unclear, activated lymphocytes and proinflammatory molecules, in particular TNF superfamily members, have been implicated in the disease pathology. A TNF superfamily member, CD70, is found on activated lymphocytes and shown to be important in memory and effector responses of lymphocytes. CD70 is expressed at high levels on chronically activated T cells in patients with autoimmune disorders, including RA. The involvement of CD70 in the progression of RA, however, remains unknown. In this study, we report effects of targeting CD70 on disease pathogenesis by using an anti-mouse CD70 Ab in a murine model of collagen-induced arthritis (CIA). In addition to blocking CD70 binding to its receptor CD27, the anti-CD70 Ab used also engages Fc-dependent effector functions including Ab-dependent cellular cytotoxicity, phagocytosis, and complement fixation. Treatment of mice with anti-CD70 Ab both before the onset or after the established disease in CIA model resulted in marked improvements in disease severity and significant reduction in the production of autoantibodies. Histopathological analyses of the joints of mice revealed a substantial reduction of inflammation, and bone and cartilage destruction in response to the anti-CD70 Ab treatment. These results uncover a novel role for CD27-CD70 interactions in the regulation of in vivo inflammatory response leading to arthritis, and provide a molecular basis to support the rationale for anti-CD70 therapy for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Ezogelin Oflazoglu
- Department of Preclinical Therapeutics, Seattle Genetics, Bothell, Washington 98021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nolte MA, van Olffen RW, van Gisbergen KPJM, van Lier RAW. Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol Rev 2009; 229:216-31. [PMID: 19426224 DOI: 10.1111/j.1600-065x.2009.00774.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SUMMARY After binding its natural ligand cluster of differentiation 70 (CD70), CD27, a tumor necrosis factor receptor (TNFR)-associated factor-binding member of the TNFR family, regulates cellular activity in subsets of T, B, and natural killer cells as well as hematopoietic progenitor cells. In normal immune responses, CD27 signaling appears to be limited predominantly by the restricted expression of CD70, which is only transiently expressed by cells of the immune system upon activation. Studies performed in CD27-deficient and CD70-transgenic mice have defined a non-redundant role of this receptor-ligand pair in shaping adaptive T-cell responses. Moreover, adjuvant properties of CD70 have been exploited for the design of anti-cancer vaccines. However, continuous CD27-CD70 interactions may cause immune dysregulation and immunopathology in conditions of chronic immune activation such as during persistent virus infection and autoimmune disease. We conclude that optimal tuning of CD27-CD70 interaction is crucial for the regulation of the cellular immune response. We provide a detailed comparison of costimulation through CD27 with its closely related family members 4-1BB (CD137), CD30, herpes virus entry mediator, OX40 (CD134), and glucocorticoid-induced TNFR family-related gene, and we argue that these receptors do not have a unique function per se but that rather the timing, context, and intensity of these costimulatory signals determine the functional consequence of their activity.
Collapse
Affiliation(s)
- Martijn A Nolte
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Manocha M, Rietdijk S, Svend R, Laouar A, Liao G, Bhan A, Borst J, Borst J, Terhorst C, Manjunath N. Blocking CD27-CD70 costimulatory pathway suppresses experimental colitis. THE JOURNAL OF IMMUNOLOGY 2009; 183:270-6. [PMID: 19525396 DOI: 10.4049/jimmunol.0802424] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pathogenesis of human inflammatory bowel disease (IBD) and most experimental models of IBD is dependent on the activation and expansion of CD4(+) T cells via interaction with mucosal APCs. The costimulatory receptor CD70 is transiently expressed on the surface of conventional dendritic cells, but is constitutively expressed by a unique APC population in the intestinal lamina propria. We used two experimental IBD models to evaluate whether interfering the interaction between CD70 and its T cell ligand CD27 would affect the development of colitis. Adoptive transfer of naive CD27-deficient CD45RB(high) CD4(+) T cells into Rag-1(-/-) mice resulted in significantly less disease than when wild-type CD45RB(high)CD4(+) T cells were used. Moreover, a monoclonal anti-CD70 Ab prevented the disease caused by the transfer of wild-type CD45RB(high) CD4(+) T cells into Rag-1(-/-) mice and the same Ab also ameliorated an established disease. The colitis associated proinflammatory cytokines IL-6, TNF-alpha and IFN-gamma were significantly reduced after anti-CD70 Ab treatment, suggesting an overall reduction in inflammation due to blockade of pathogenic T cell expansion. Anti-CD70 Ab treatment also suppressed trinitrobenzene sulfonic acid-induced colitis in SJL/J mice. Because anti-CD70 Ab treatment suppressed multiple proinflammatory cytokines, this may be a more potent therapeutic approach for IBD than blockade of individual cytokines.
Collapse
Affiliation(s)
- Monika Manocha
- Department of Pediatrics, Immune Disease Institute and Harvard Medical School, Boston, MA 02131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Boursalian TE, McEarchern JA, Law CL, Grewal IS. Targeting CD70 for human therapeutic use. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 647:108-19. [PMID: 19760069 DOI: 10.1007/978-0-387-89520-8_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of CD70, a member of the tumor necrosis factor superfamily, is restricted to activated T-and B-lymphocytes and mature dendritic cells. Binding of CD70 to its receptor, CD27, is important in priming, effector functions, differentiation and memory formation of T-cells as well as plasma and memory B-cell generation. Antibody blockade of CD70-CD27 interaction inhibits the onset of experimental autoimmune encephalomyelits and cardiac allograft rejection in mice. CD70 has been also detected on hematological tumors and on carcinomas. The highly restricted expression pattern of CD70 in normal tissues and its widespread expression in various malignancies as well as its potential role in autoimmune and inflammatory conditions makes it an attractive target for antibody-based therapeutics. This chapter provides an overview of the physiological role of CD70-CD27 interactions and discusses various approaches to target this pathway for therapeutic use in cancers and autoimmunity.
Collapse
Affiliation(s)
- Tamar E Boursalian
- Department of Preclinical Therapeutics, Seattle Genetics, Inc., Bothell, Washington, USA
| | | | | | | |
Collapse
|
37
|
Abstract
T-cell activation and differentiation depend on the signal strength received by the T-cell receptor and on signals provided by co-stimulatory molecules. The most prominent co-stimulatory molecule is CD28, which controls the activation of naïve and memory T cells by antigen presented on professional antigen-presenting cells. Blocking of the CD28-CD80/86 pathway has been an appealing strategy for inducing tolerance in autoimmune diseases where the disease-inducing autoantigens are not known. Although CD28 has maintained its unique position, the past decade has witnessed the recognition that a large number of regulatory molecules on T cells must be stimulated to generate a fully protective immune response. These regulatory receptors differ in their preferential expression on T-cell subsets, in the ligands that they recognize, and in the signaling pathways that they trigger. They have in common the fact that they provide information on the cellular environment in which the T-cell response occurs. By intercepting these signals, we may be able to influence disease-relevant T-cell responses in autoimmune diseases while potentially minimizing broad immunosuppression.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Kathleen B and Mason I Lowance Center for Human Immunology and Rheumatology, Emory University, Woodruff Circle, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
38
|
Meylan F, Davidson TS, Kahle E, Kinder M, Acharya K, Jankovic D, Bundoc V, Hodges M, Shevach EM, Keane-Myers A, Wang EC, Siegel RM. The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity 2008; 29:79-89. [PMID: 18571443 PMCID: PMC2760084 DOI: 10.1016/j.immuni.2008.04.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 03/23/2008] [Accepted: 04/21/2008] [Indexed: 12/13/2022]
Abstract
DR3 (TRAMP, LARD, WSL-1, TNFRSF25) is a death-domain-containing tumor necrosis factor (TNF)-family receptor primarily expressed on T cells. TL1A, the TNF-family ligand for DR3, can costimulate T cells, but the physiological function of TL1A-DR3 interactions in immune responses is not known. Using DR3-deficient mice, we identified DR3 as the receptor responsible for TL1A-induced T cell costimulation and dendritic cells as the likely source for TL1A during T cell activation. Despite its role in costimulation, DR3 was not required for in vivo T cell priming, for polarization into T helper 1 (Th1), Th2, or Th17 effector cell subtypes, or for effective control of infection with Toxoplasma gondii. Instead, DR3 expression was required on T cells for immunopathology, local T cell accumulation, and cytokine production in Experimental Autoimmune Encephalomyelitis (EAE) and allergic lung inflammation, disease models that depend on distinct effector T cell subsets. DR3 could be an attractive therapeutic target for T cell-mediated autoimmune and allergic diseases.
Collapse
Affiliation(s)
| | - Todd S. Davidson
- Cellular Immunology Section, Laboratory of Immunology, NIAID, NIH
| | - Erin Kahle
- Immunoregulation Unit, Autoimmunity Branch, NIAMS, NIH
| | | | | | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH
| | - Virgilio Bundoc
- Allergic Inflammation Section, Laboratory of Allergic Diseases, NIAID, NIH
| | - Marcus Hodges
- Allergic Inflammation Section, Laboratory of Allergic Diseases, NIAID, NIH
| | - Ethan M. Shevach
- Cellular Immunology Section, Laboratory of Immunology, NIAID, NIH
| | - Andrea Keane-Myers
- Allergic Inflammation Section, Laboratory of Allergic Diseases, NIAID, NIH
| | | | | |
Collapse
|
39
|
CD27 and CD70 do not play a critical role in the development of experimental allergic conjunctivitis in mice. Immunol Lett 2008; 119:91-6. [PMID: 18579220 DOI: 10.1016/j.imlet.2008.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/25/2008] [Accepted: 05/15/2008] [Indexed: 02/07/2023]
Abstract
CD27, which belongs to the TNF receptor family, is a costimulatory molecule that participates in T-cell activation. Unlike costimulatory molecules such as OX40 and 4-1BB, little is known about the role CD27 plays a role in the development of experimental diseases. We asked whether CD27 and its ligand CD70 participate in the development of experimental allergic conjunctivitis (EC) in BALB/c mice, which is generated by immunization with ragweed (RW) in alum and challenged 10 days later with RW in eye drops. The roles of CD27 and CD70 were tested by intraperitoneally injecting the mice with anti-CD27, anti-CD70 or a control Ab during the induction or effector phase. Twenty-four hours after challenge, the conjunctivas, blood and spleens were harvested for histological analysis, measuring Ig levels and cytokine analysis, respectively. Regardless of when the mice were treated, anti-CD27 or anti-CD70 Ab treatment did not significantly affect the severity of EC as evaluated by conjunctival eosinophil numbers. However, anti-CD27 or anti-CD70 Ab treatment during the induction phase did significantly modulate systemic humoral and cellular immune responses. In vitro treatment of RW-primed splenocytes with anti-CD27 or anti-CD70 Ab did not affect the EC-inducing capability of the splenocytes. Taken together, CD27 and CD70 do not play a critical role in the development of EC.
Collapse
|
40
|
Abstract
BACKGROUND Expression of CD70, a member of the tumor necrosis factor superfamily, is restricted to activated T and B lymphocytes and mature dendritic cells. CD70 has also been detected on hematological tumors and on carcinomas. The restricted expression pattern of CD70 in normal tissues and its widespread expression in various malignancies makes it an attractive target for antibody-based therapeutics. Investigations to exploit CD70 as a cancer target have lead to the identification of potential antibody-based clinical candidates. Anti-CD70 antibodies for therapeutic use have been developed and used to validate CD70 as a target for cancers. Antibodies are also used as a vehicle to deliver potent cytotoxic drugs to target CD70+ malignant cells. Both unconjugated antibodies and antibody-drug conjugates targeting CD70 have been tested in animal models of human cancers. OBJECTIVE To describe the expression of CD70 in cancer cells and the development of antibody-based therapies against CD70. METHODS A review of the available literature. RESULTS/CONCLUSIONS Humanized anti-CD70 antibodies have shown significant antitumor activity in preclinical xenograft models of cancer. Additionally, anti-CD70 antibody-drug conjugates exhibit potent antitumor activity in solid tumor xenograft models, confirming increased therapeutic efficacy through cytotoxic drug delivery. Thus, preclinical animal models have provided strong evidence that targeting CD70 either with unconjugated antibodies or with antibody-drug conjugates represents a promising approach to treat human malignancies.
Collapse
Affiliation(s)
- Iqbal S Grewal
- Seattle Genetics, Inc., Department of Preclinical Therapeutics, 21823 30th Drive SE, Bothell, Washington 98021, USA.
| |
Collapse
|
41
|
Schildknecht A, Miescher I, Yagita H, van den Broek M. Priming of CD8+ T cell responses by pathogens typically depends on CD70-mediated interactions with dendritic cells. Eur J Immunol 2007; 37:716-28. [PMID: 17295392 DOI: 10.1002/eji.200636824] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The CD27/CD70-interaction has been shown to provide a costimulatory and survival signal for T cells in vitro and in vivo. Recently, CD70 expression by DC was found to be important for the priming of CD8+ T cells. We show here that blocking CD70 interactions has a significant impact on priming of CD8+ T cell responses by vaccinia virus (VV), Listeria monocytogenes and vesicular stomatitis virus (VSV) in mice. However, the priming of specific CD8+ T cells upon infection with lymphocytic choriomeningitis virus (LCMV) was only marginally reduced by CD70-blockade. Blocking of CD70 prevented CD8+ T cell priming in DIETER mice, a model in which presentation of LCMV-derived epitopes can be induced selectively in dendritic cells (DC). In contrast, CD70-CD27 interactions were not important for the priming of VSV-specific CD4+ T cells or class switch of neutralizing antibodies. As we show that priming of CD8+ T cells by the pathogens used here is dependent on antigen presentation by DC and that infection results in up-regulation of CD70 on DC, we conclude that CD70 expression on DC plays an important role in the priming of CD8+ T cells by pathogens. Moreover, the lack of CD70 cannot be completely compensated for by other costimulatory molecules.
Collapse
|
42
|
McEarchern JA, Oflazoglu E, Francisco L, McDonagh CF, Gordon KA, Stone I, Klussman K, Turcott E, van Rooijen N, Carter P, Grewal IS, Wahl AF, Law CL. Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities. Blood 2006; 109:1185-92. [PMID: 17038522 DOI: 10.1182/blood-2006-07-034017] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAntigens expressed on malignant cells in the absence of significant expression on normal tissues are highly desirable targets for therapeutic antibodies. CD70 is a TNF superfamily member whose normal expression is highly restricted but is aberrantly expressed in hematologic malignancies including non-Hodgkin lymphoma (NHL), Hodgkin disease, and multiple myeloma. In addition, solid tumors such as renal cell carcinoma, nasopharyngeal carcinoma, thymic carcinoma, meduloblastoma, and glioblastoma express high levels of this antigen. To functionally target CD70-expressing cancers, a murine anti-CD70 monoclonal antibody was engineered to contain human IgG1 constant domains. The engineered antibody retained the binding specificity of the murine parent monoclonal antibody and was shown to induce Fc-mediated effector functions including antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis in vitro. Further, administration of this antibody significantly prolonged survival of severe combined immunodeficient (SCID) mice bearing CD70+ disseminated human NHL xenografts. Survival of these mice was dependent upon the activity of resident effector cells including neutrophils, macrophages, and natural killer (NK) cells. These data suggest that an anti-CD70 antibody, when engineered to contain human IgG1 constant domains, possesses effector cell–mediated antitumor activity and has potential utility for anticancer therapy.
Collapse
|
43
|
Israel BF, Gulley M, Elmore S, Ferrini S, Feng WH, Kenney SC. Anti-CD70 antibodies: a potential treatment for EBV+ CD70-expressing lymphomas. Mol Cancer Ther 2006; 4:2037-44. [PMID: 16373719 DOI: 10.1158/1535-7163.mct-05-0253] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A monoclonal antibody (Rituximab) directed against the B-cell surface antigen, CD20, is increasingly used as a therapy for B-cell lymphomas. However, CD20 is expressed on all normal mature B cells and hence is not a specific tumor target. In contrast, CD70 is expressed on highly activated lymphocytes as well as on many B-cell and T-cell lymphomas but is not expressed on the great majority of B cells and T cells. In this report, we have explored the potential utility of anti-CD70 monoclonal antibodies for treatment of CD70+ EBV+ B-cell lymphomas. Using two Burkitt's lymphoma lines (Raji and Jijoye) that express surface CD70 and a CD70- Burkitt's lymphoma line (Akata), we show that two different monoclonal antibodies directed against human CD70 allow rabbit and human complement to kill EBV+ B cells in a CD70-dependent manner in vitro. In the absence of complement, neither anti-CD70 antibody induced in vitro killing of CD70+ cell lines. Importantly, i.p. injection of anti-CD70 antibodies also inhibited the growth of CD70+ Burkitt's lymphoma cells in severe combined immunodeficient mice but did not inhibit the growth of CD70- Burkitt's lymphoma cells. These results suggest that anti-CD70 antibodies may be useful for the treatment of CD70+ B-cell lymphomas.
Collapse
Affiliation(s)
- Bruce F Israel
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Several members of the tumor necrosis factor receptor (TNFR) family function after initial T cell activation to sustain T cell responses. This review focuses on CD27, 4-1BB (CD137), OX40 (CD134), HVEM, CD30, and GITR, all of which can have costimulatory effects on T cells. The effects of these costimulatory TNFR family members can often be functionally, temporally, or spatially segregated from those of CD28 and from each other. The sequential and transient regulation of T cell activation/survival signals by different costimulators may function to allow longevity of the response while maintaining tight control of T cell survival. Depending on the disease condition, stimulation via costimulatory TNF family members can exacerbate or ameliorate disease. Despite these complexities, stimulation or blockade of TNFR family costimulators shows promise for several therapeutic applications, including cancer, infectious disease, transplantation, and autoimmunity.
Collapse
Affiliation(s)
- Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
45
|
Abstract
In vitro work has defined the TNF receptor family member CD27 as a T and B cell co-stimulatory molecule. Its activity is governed by the transient availability of its TNF-like ligand CD70 on lymphocytes and dendritic cells. Recent studies, enforcing or abrogating CD27 function by genetic or protein intervention in mouse models have revealed key contributions of the CD27-CD70 system to effector and memory T cell formation, which is probably based on improved cell survival. The stimulatory effects of CD27 on B cell function appear to oppose those of CD70, which also has a signaling role. Targeting CD27-CD70 for therapy is attractive but should take into account the fact that constitutive CD27 stimulation culminates in lethal immunodeficiency.
Collapse
Affiliation(s)
- Jannie Borst
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | |
Collapse
|
46
|
Flórido M, Borges M, Yagita H, Appelberg R. Contribution of CD30/CD153 but not of CD27/CD70, CD134/OX40L, or CD137/4-1BBL to the optimal induction of protective immunity toMycobacterium avium. J Leukoc Biol 2004; 76:1039-46. [PMID: 15316035 DOI: 10.1189/jlb.1103572] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A panel of monoclonal antibodies specific for CD27 ligand (CD70), CD30 ligand (CD153), CD134 ligand (OX40L), and CD137 ligand (4-1BBL) were screened in vivo for their ability to affect the control of Mycobacterium avium infection in C57Bl/6 mice. Only the blocking of CD153 led to increased mycobacterial burdens. We then used CD30-deficient mice and found an increase in the proliferation of two strains of M. avium in these mice as compared with control animals. The increased mycobacterial growth was associated with decreased T cell expansion and reduced interferon-gamma (IFN-gamma) responses as a result of reduced polarization of the antigen-specific, IFN-gamma-producing T cells. At late times but not early in infection, the lymphoid cuff surrounding granulomas was depleted in the CD30-deficient animals. This report expands our knowledge about tumor necrosis factor superfamily members involved in the immune responses to mycobacterial infection by identifying CD30-CD153 interactions as required for optimal immune control of M. avium infection.
Collapse
MESH Headings
- 4-1BB Ligand
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/immunology
- CD27 Ligand
- CD30 Ligand
- Cell Division/immunology
- Cells, Cultured
- Disease Models, Animal
- Female
- Humans
- Immunity, Cellular/immunology
- Interferon-gamma/immunology
- Ki-1 Antigen/genetics
- Ki-1 Antigen/immunology
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/immunology
- Mice
- Mice, Inbred C57BL
- Mycobacterium avium/growth & development
- Mycobacterium avium/immunology
- Mycobacterium avium/pathogenicity
- OX40 Ligand
- Receptors, Nerve Growth Factor/immunology
- Receptors, OX40
- Receptors, Tumor Necrosis Factor/immunology
- T-Lymphocytes/immunology
- Tuberculosis/genetics
- Tuberculosis/immunology
- Tuberculosis/microbiology
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factors
Collapse
Affiliation(s)
- Manuela Flórido
- Laboratory of Microbiology and Immunology of Infection, Institute for Molecular and Cell Biology, Portugal
| | | | | | | |
Collapse
|
47
|
Abstract
The destiny of activated T cells is critical to the ultimate fate of immune response. After encountering antigen, naïve T cells receive signal 1 through the T-cell receptor (TCR)-major histocompatibility complex (MHC) plus antigenic peptide complex and signal 2 through "positive" costimulatory molecules leading to full activation. "Negative" T-cell costimulatory pathways, on the other hand, function to downregulate immune responses. The purpose of this article is to review the current state of knowledge and recent advances in our understanding of the functions of the positive and negative T-cell costimulatory pathways in alloimmune responses. Specifically, we discuss the functions of the CD28:B7 and the tumor necrosis factor receptor (TNFR):tumor necrosis factor (TNF) family of molecules in allograft rejection and tolerance. We address the following important questions: are T-cell costimulatory pathways merely redundant or do they provide distinct and unique functions? What are the important and unique interactions between the various pathways? And, what are the effects and mechanisms of targeting of these pathways in different types and patterns of allograft rejection and tolerance models?
Collapse
|
48
|
Abstract
Interactions between co-stimulatory ligands and their receptors are crucial for the activation of T cells, the prevention of tolerance and the development of T-cell immunity. It is now evident that members of the immunoglobulin-like CD28-B7 co-stimulatory family cannot fully account for an effective long-lasting T-cell response or the generation of memory T cells. Several members of the tumour-necrosis factor receptor (TNFR) superfamily--OX40, 4-1BB, CD27, CD30 and HVEM (herpes-virus entry mediator)--are poised to deliver co-stimulatory signals both early and late after encounter with antigen. The roles of these molecules in initiating and sustaining the T-cell response and in promoting long-lived immunity are discussed.
Collapse
Affiliation(s)
- Michael Croft
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| |
Collapse
|
49
|
Role of novel T-cell costimulatory pathways in transplantation. Curr Opin Organ Transplant 2003. [DOI: 10.1097/00075200-200303000-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Wells AD. T-Cell costimulatory pathways relevant to transplant rejection and tolerance. Transplant Rev (Orlando) 2002. [DOI: 10.1053/trte.2002.129629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|