1
|
Antar A, Abdel-Rehiem ES, Al-Khalaf AA, Abuelsaad ASA, Abdel-Gabbar M, Shehab GMG, Abdel-Aziz AM. Therapeutic Efficacy of Lavandula dentata's Oil and Ethanol Extract in Regulation of the Neuroinflammation, Histopathological Alterations, Oxidative Stress, and Restoring Balance Treg Cells Expressing FoxP3+ in a Rat Model of Epilepsy. Pharmaceuticals (Basel) 2024; 18:35. [PMID: 39861097 PMCID: PMC11768170 DOI: 10.3390/ph18010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.g., Lavandula dentata L., are rich in phenolic compounds and may provide neuroprotective and anti-inflammatory benefits. However, limited research evaluates their effectiveness in modulating neuroinflammation and histopathological changes in epilepsy models. Therefore, the current study hypothesized that treating Lavandula dentata L. extract or essential oils may reduce neuroinflammatory responses and mitigate histopathological changes in the brain, providing a natural alternative or adjunct therapy for epilepsy management. Methods: Five groups of male Wistar rats were used: control, pilocarpine-treated epileptic, valproic acid (VPA-treated epileptic), L. dentata extract, and essential oils. Numerous electrolyte levels, monoamine levels, neurotransmitter levels, and the mRNA expression of specific gate channel subtypes were evaluated in homogenate brain tissue. Additionally, histological changes in various brain regions were investigated. Results: The investigation revealed that the extract and essential oils obtained from L. dentata L. exhibited the ability to improve the modulation of electrolytes and ions across voltage- and ligand-gated ion channels. Furthermore, it was revealed that they could decrease neuronal excitability by facilitating repolarization. Moreover, L. dentata's oil and ethanol extract re-balances T-reg/Th-17 cytokines, restoring the pro/anti-inflammatory cytokines and Treg markers, e.g., FOXP3 and CTLA-4, to their normal level. Conclusions: The present work confirms that the extract and essential oils of L. dentata L. have different activities to ameliorate the progression of histopathological alterations. Therefore, when used in conjunction with other AEDs, the extract and essential oils of L. dentata can slow the progression of epileptogenesis.
Collapse
Affiliation(s)
- Aziza Antar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Eman S. Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Gaber M. G. Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
2
|
Cadenhead KS, Mirzakhanian H, Achim C, Reyes-Madrigal F, de la Fuente-Sandoval C. Peripheral and central biomarkers associated with inflammation in antipsychotic naïve first episode psychosis: Pilot studies. Schizophr Res 2024; 264:39-48. [PMID: 38091871 PMCID: PMC10932822 DOI: 10.1016/j.schres.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Elevated serum pro-inflammatory molecules have been reported in early psychosis. What is not known is whether peripheral inflammatory biomarkers are associated with CNS biomarkers. In the brain, release of pro-inflammatory molecules by microglial hyperactivity may lead to neuronal apoptosis seen in neurodegenerative disorders and account for loss of brain tissue observed in psychotic disorders. Neurochemical changes, including elevated glutamate levels, are also associated with neuroinflammation, present in early psychosis and change with antipsychotic treatment. METHODS Antipsychotic naïve patients with first episode psychosis (FEP) were studied as part of a collaborative project of neuroinflammation. In Study 1 we explored associations between plasma inflammatory molecules and neurometabolites in the dorsal caudate using magnetic resonance spectroscopy (1H-MRS) in N = 13 FEP participants. Study 2 examined the relationship between inflammatory molecules in the Plasma and CSF in N = 20 FEP participants. RESULTS In Study 1, the proinflammatory chemokine MDC/CCL22 and IL10 were significantly positively correlated with Glutamate and Glx (glutamate + glutamine) levels in the dorsal caudate. In Study 2, plasma inflammatory molecules (MIP1β/CCL4, MCP1/CCL2, Eotaxin-1/CCL11 and TNFα) were significantly correlated with CSF MIP1β/CCL4, IL10, MCP1/CCL2 and Fractalkine/CX3CL1 and symptoms ratings. DISCUSSION Plasma inflammatory biomarkers are elevated in early psychosis, associated with neurochemical markers as well as CSF inflammatory molecules found in neurodegenerative disorders. Future studies are needed that combine both peripheral and central biomarkers in both FEP and HC to better understand a potential neuroinflammatory subtype of psychosis likely to respond to targeted interventions.
Collapse
Affiliation(s)
- Kristin S Cadenhead
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Heline Mirzakhanian
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Cristian Achim
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Francisco Reyes-Madrigal
- Instituto Nacional de Neurología y Neurocirugía (INNN), Insurgentes Sur 3877, Tlalpan, 14269 Mexico City, Mexico.
| | - Camilo de la Fuente-Sandoval
- Instituto Nacional de Neurología y Neurocirugía (INNN), Insurgentes Sur 3877, Tlalpan, 14269 Mexico City, Mexico.
| |
Collapse
|
3
|
Suo Q, Deng L, Chen T, Wu S, Qi L, Liu Z, He T, Tian HL, Li W, Tang Y, Yang GY, Zhang Z. Optogenetic Activation of Astrocytes Reduces Blood-Brain Barrier Disruption via IL-10 In Stroke. Aging Dis 2023; 14:1870-1886. [PMID: 37196130 PMCID: PMC10529757 DOI: 10.14336/ad.2023.0226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/26/2023] [Indexed: 05/19/2023] Open
Abstract
Optogenetics has been used to regulate astrocyte activity and modulate neuronal function after brain injury. Activated astrocytes regulate blood-brain barrier functions and are thereby involved in brain repair. However, the effect and molecular mechanism of optogenetic-activated astrocytes on the change in barrier function in ischemic stroke remain obscure. In this study, adult male GFAP-ChR2-EYFP transgenic Sprague-Dawley rats were stimulated by optogenetics at 24, 36, 48, and 60 h after photothrombotic stroke to activate ipsilateral cortical astrocytes. The effects of activated astrocytes on barrier integrity and the underlying mechanisms were explored using immunostaining, western blotting, RT-qPCR, and shRNA interference. Neurobehavioral tests were performed to evaluate therapeutic efficacy. The results demonstrated that IgG leakage, gap formation of tight junction proteins, and matrix metallopeptidase 2 expression were reduced after optogenetic activation of astrocytes (p<0.05). Moreover, photo-stimulation of astrocytes protected neurons against apoptosis and improved neurobehavioral outcomes in stroke rats compared to controls (p<0.05). Notably, interleukin-10 expression in optogenetic-activated astrocytes significantly increased after ischemic stroke in rats. Inhibition of interleukin-10 in astrocytes compromised the protective effects of optogenetic-activated astrocytes (p<0.05). We found for the first time that interleukin-10 derived from optogenetic-activated astrocytes protected blood-brain barrier integrity by decreasing the activity of matrix metallopeptidase 2 and attenuated neuronal apoptosis, which provided a novel therapeutic approach and target in the acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Qian Suo
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Lidong Deng
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Tingting Chen
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Shengju Wu
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Lin Qi
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Ze Liu
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Tingting He
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Wanlu Li
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Ronström JW, Williams SB, Payne A, Obray DJ, Hafen C, Burris M, Scott Weber K, Steffensen SC, Yorgason JT. Interleukin-10 enhances activity of ventral tegmental area dopamine neurons resulting in increased dopamine release. Brain Behav Immun 2023; 113:145-155. [PMID: 37453452 PMCID: PMC10530119 DOI: 10.1016/j.bbi.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Dopamine transmission from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) regulates important aspects of motivation and is influenced by the neuroimmune system. The neuroimmune system is a complex network of leukocytes, microglia and astrocytes that detect and remove foreign threats like bacteria or viruses and communicate with each other to regulate non-immune (e.g neuronal) cell activity through cytokine signaling. Inflammation is a key regulator of motivational states, though the effects of specific cytokines on VTA circuitry and motivation are largely unknown. Therefore, electrophysiology, neurochemical, immunohistochemical and behavioral studies were performed to determine the effects of the anti-inflammatory cytokine interleukin-10 (IL-10) on mesolimbic activity, dopamine transmission and conditioned behavior. IL-10 enhanced VTA dopamine firing and NAc dopamine levels via decreased VTA GABA currents in dopamine neurons. The IL-10 receptor was localized on VTA dopamine and non-dopamine cells. The IL-10 effects on dopamine neurons required post-synaptic phosphoinositide 3-kinase activity, and IL-10 appeared to have little-to-no efficacy on presynaptic GABA terminals. Intracranial IL-10 enhanced NAc dopamine levels in vivo and produced conditioned place aversion. Together, these studies identify the IL-10R on VTA dopamine neurons as a potential regulator of motivational states.
Collapse
Affiliation(s)
- Joakim W Ronström
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Stephanie B Williams
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Andrew Payne
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Daniel J Obray
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Caylor Hafen
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Matthew Burris
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, United States
| | - K Scott Weber
- Brigham Young University, Department of Microbiology and Molecular Biology, Provo, UT 84602, United States
| | - Scott C Steffensen
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Jordan T Yorgason
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States; Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, United States.
| |
Collapse
|
5
|
Zhou J, Yang F, Li H, Xu P, Wang Z, Shao F, Shao A, Zhang J. Regulatory T Cells Secrete IL10 to Suppress Neuroinflammation in Early Stage after Subarachnoid Hemorrhage. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1317. [PMID: 37512128 PMCID: PMC10383056 DOI: 10.3390/medicina59071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Objective: Accumulating evidence supports neuroprotective effects of regulatory T cells (Tregs) in response to brain injury. However, the precise mechanisms underlying the beneficial effects of Tregs on suppressing neuroinflammation after subarachnoid hemorrhage (SAH) remain unclear. Methods: We performed flow cytometry to detect the infiltration of Tregs into the brain at different time points after SAH. Behavioral tests, including Adhesive and Rotarod, were performed to assess neurological deficits in mice after SAH. Bulk RNA sequencing was used to investigate the transcriptomic change of Tregs infiltrating into the brain after SAH. qPCR was performed to verify the variation of inflammatory cytokines expression in the brain after Tregs exogenous infusion. FoxP3-DTR mice and Il10 gene KO mice were used to explore the mechanism of Tregs inhibiting neuron apoptosis after infiltrating the brain following SAH onset. Results: Peripheral Tregs infiltrated into the brain one day after SAH and gradually accumulated in the hemorrhagic hemisphere. An exogenous infusion of Tregs significantly improved the neurological function of mice after SAH, while poor recovery of neurological function was observed in Tregs depletion mice. Transcriptome sequencing data suggested that the immunosuppressive function of brain-infiltrated Tregs was significantly upregulated. qPCR showed that the expression of pro-inflammatory cytokines decreased in the brain of SAH mice after exogenous Tregs infusion. Bioinformatic analysis revealed that IL-10 and other cytokines secreted by brain-infiltrated Tregs were upregulated after SAH. Moreover, exogenous infusion of Il10 gene KO Tregs did not totally improve neurological function in SAH mice. Conclusions: Tregs infiltrated into the brain in the early stage after SAH and exerted neuroprotective effect by secreting IL-10 to suppress neuroinflammation and reduce neuron apoptosis.
Collapse
Affiliation(s)
- Jingyi Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Fan Yang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Huaming Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Penglei Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Zefeng Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Fangjie Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
- Brain Research Institute, Zhejiang University, Hangzhou 310058, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Qiao Y, Li C, Zhang M, Zhang X, Wei L, Cao K, Zhang X, Bi H, Gao T. Effects of Tibetan medicine metacinnabar (β-HgS) combined with imipramine or sertraline on depression-like symptoms in mice. Front Pharmacol 2022; 13:971243. [PMID: 36120298 PMCID: PMC9478660 DOI: 10.3389/fphar.2022.971243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Depression is a common mood disorder that has exhibited an increased incidence rate worldwide, but the overall clinical efficacy of antidepressants remains unsatisfactory. In traditional Ayurveda and Tibetan medicines, β-HgS-containing medicines have been used to treat neurological diseases for thousands of years, and our previous study found that β-HgS ameliorated depression-like behaviors in chronic restraint stress (CRS)-treated or chronic unpredictable mild stress (CUMS)-treated mice. Hence, present study investigated the effects of β-HgS combined with the clinical first-line antidepressants, imipramine (IMI) and sertraline (SER), on depression-like symptoms in CRS- and CUMS-co-treated mice. Our results revealed that β-HgS promoted the antidepressant effect of SER on depression-like behavior in mice, and enhanced its effects on promoting glucocorticoid receptor (GR) expression and neuronal proliferation in key hippocampal subregions, as well as increasing interleukin 10 (IL-10) levels and decreasing malondialdehyde levels in the sera of stress-stimulated mice. As for IMI, β-HgS enhanced its effects on preventing atrophy and severe structural damage in the hippocampus, as well as in promoting hippocampal GR levels and neuronal proliferation and serum IL-10 and superoxide dismutase (SOD) levels. Additionally, combination therapy resulted in the increased diversity of important intestinal microbiota compared to that of monotherapy, which may help sustain the health of the digestive tract and reduce inflammation to further enhance the antidepressant effects of IMI and SER in mice.
Collapse
Affiliation(s)
- Yajun Qiao
- Department of Psychiatry, The People’s Hospital of Jiangmen, Southern Medical University, Jiangmen, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Ming Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xingfang Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- Medical College, Qinghai University, Xining, China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- *Correspondence: Hongtao Bi, ; Lixin Wei, ; Tingting Gao,
| | - Keshen Cao
- Department of Psychiatry, The People’s Hospital of Jiangmen, Southern Medical University, Jiangmen, China
| | - Xiaoyuan Zhang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- *Correspondence: Hongtao Bi, ; Lixin Wei, ; Tingting Gao,
| | - Tingting Gao
- Department of Psychiatry, The People’s Hospital of Jiangmen, Southern Medical University, Jiangmen, China
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Hongtao Bi, ; Lixin Wei, ; Tingting Gao,
| |
Collapse
|
7
|
Galgani A, Vergallo A, Campese N, Lombardo F, Pavese N, Petrozzi L, LoGerfo A, Franzini M, Cecchetti D, Puglisi-Allegra S, Busceti CL, Siciliano G, Tognoni G, Baldacci F, Lista S, Hampel H, Fornai F, Giorgi FS. Biological determinants of blood-based cytokines in the Alzheimer's Disease clinical continuum. J Neurochem 2022; 163:40-52. [PMID: 35950445 DOI: 10.1111/jnc.15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/31/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Converging translational and clinical research strongly indicates that altered immune and inflammatory homeostasis (neuroinflammation) plays a critical pathophysiological role in Alzheimer's disease (AD), across the clinical continuum. A dualistic role of neuroinflammation may account for a complex biological phenomenon, representing a potential pharmacological target. Emerging blood-based pathophysiological biomarkers, such as cytokines (Cyt) and interleukins (ILs) have been studied as indicators of neuroinflammation in AD. However, inconsistent results have been reported, probably due to lack of standardization of assays with methodological and analytical differences. We used machine-learning and a cross-validation-based statical workflow to explore and analyze the potential impact of key biological factors, such as age, sex, apolipoproteinE (APOE) genotype (the major genetic risk factor for late-onset AD) on Cyt. A set of Cyt was selected based on previous literature, and we investigated any potential association in a pooled cohort of cognitively healthy, mild cognitive impairment (MCI), and AD-like dementia patients. We also performed explorative analyses to extrapolate preliminary clinical insights. We found a robust sex effect on IL12 and an APOE-related difference in IL10, with the latter being also related to the presence of advanced cognitive decline. IL1β was the variable most significantly associated with MCI-to-dementia conversion over a 2.5 year-clinical follow-up. Albeit preliminary, our data support further clinical research to understand whether plasma Cyt may represent reliable and non-invasive tools serving the investigation of neuroimmune and inflammatory dynamics in AD and to foster biomarker-guided pathway-based therapeutic approaches, within the precision medicine development framework.
Collapse
Affiliation(s)
- A Galgani
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - A Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - N Campese
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - F Lombardo
- U.O.C. "Risonanza Magnetica Specialistica e Neuroradiologia", Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | - N Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, UK.,Institute of clinical Medicine, PET Centre, Aarhus University
| | - L Petrozzi
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - A LoGerfo
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - M Franzini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - D Cecchetti
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | | | - G Siciliano
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - G Tognoni
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - F Baldacci
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - S Lista
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.,Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - H Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - F Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - F S Giorgi
- Neurology Unit, Pisa University Hospital, Pisa, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Fu Q, Hu J, Zhang P, Li Y, Zhao S, Cao M, Yang N, Li C. CC and CXC chemokines in turbot (Scophthalmus maximus L.): Identification, evolutionary analyses, and expression profiling after Aeromonas salmonicida infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:82-98. [PMID: 35690275 DOI: 10.1016/j.fsi.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/06/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Chemokines are a superfamily of structurally related cytokines, which exert essential roles in guiding cell migration in development, homeostasis, and immunity. CC and CXC chemokines are the two major subfamilies in teleost species. In this study, a total of seventeen CC and CXC chemokines, with inclusion of twelve CC and five CXC chemokines, were systematically identified from the turbot genome, making turbot the teleost harboring the least number of CC and CXC chemokines among all teleost species ever reported. Phylogeny, synteny, and genomic organization analyses were performed to annotate these genes, and multiple chemokine genes were identified in the turbot genome, due to the tandem duplications (CCL19 and CCL20), the whole genome duplications (CCL20, CCL25, and CXCL12), and the teleost-specific members (CCL34-36, CCL44, and CXCL18). In addition, chemokines were ubiquitously expressed in nine examined healthy tissues, with high expression levels observed in liver, gill, and spleen. Moreover, most chemokines were significantly differentially expressed in gill and spleen after Aeromonas salmonicida infection, and exhibited tissue-specific and time-dependent manner. Finally, protein-protein interaction network (PPI) analysis indicated that turbot chemokines interacted with a few immune-related genes such as interleukins, cathepsins, stats, and TLRs. These results should be valuable for comparative immunological studies and provide insights for further functional characterization of chemokines in teleost.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Hu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Shanaki-Barvasad M, Almolda B, González B, Castellano B. Astrocyte-targeted Overproduction of IL-10 Reduces Neurodegeneration after TBI. Exp Neurobiol 2022; 31:173-195. [PMID: 35786640 PMCID: PMC9272120 DOI: 10.5607/en21035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury is the greatest cause of disability and death in young adults in the developed world. The outcome for a TBI patient is determined by the severity of the injury, not only from the initial insult but, especially, as a product of the secondary injury. It is proposed that this secondary injury is directly linked to neuro-inflammation, with the production of pro-inflammatory mediators, activation of resident glial cells and infiltration of peripheral immune cells. In this context, anti-inflammatory treatments are one of the most promising therapies to dampen the inflammatory response associated with TBI and to reduce secondary injury. In this sense, the main objective of the present study is to elucidate the effect of local production of IL-10 in the neurological outcome after TBI. For this purpose, a cryogenic lesion was caused in transgenic animals overproducing IL-10 under the GFAP promoter on astrocytes (GFAP-IL10Tg mice) and the neuro-protection, microglial activation and leukocyte recruitment were evaluated. Our results showed a protective effect of IL-10 on neurons at early time-points after TBI, in correlation with a shift in the microglial activation profile towards a down-regulating phenotype and lower production of pro-inflammatory cytokines. Concomitantly, we observed a reduction in the BBB leakage together with modifications in leukocyte infiltration into the affected area. In conclusion, local IL-10 production modifies the neuro-inflammatory response after TBI, shifting it to anti-inflammatory and neuro-protective conditions. These results point to IL-10 as a promising candidate to improve neuro-inflammation associated with TBI.
Collapse
Affiliation(s)
- Mahsa Shanaki-Barvasad
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Beatriz Almolda
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,To whom correspondence should be addressed. TEL: 34935811826, FAX: 34935812392, e-mail:
| | - Berta González
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Bernardo Castellano
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
10
|
Carbamate-based N-Substituted Tryptamine Derivatives as Novel Pleiotropic Molecules for Alzheimer's Disease. Bioorg Chem 2022; 125:105844. [DOI: 10.1016/j.bioorg.2022.105844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 04/23/2022] [Indexed: 12/22/2022]
|
11
|
Priming of microglia by type II interferon is lasting and resistant to modulation by interleukin-10 in situ. J Neuroimmunol 2022; 368:577881. [DOI: 10.1016/j.jneuroim.2022.577881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/27/2022]
|
12
|
Alonazi M, Ben Bacha A, Al Suhaibani A, Almnaizel AT, Aloudah HS, El-Ansary A. Psychobiotics improve propionic acid-induced neuroinflammation in juvenile rats, rodent model of autism. Transl Neurosci 2022; 13:292-300. [PMID: 36133749 PMCID: PMC9462542 DOI: 10.1515/tnsci-2022-0226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to evaluate the protective and therapeutic potency of bee pollen and probiotic mixture on brain intoxication caused by propionic acid (PPA) in juvenile rats. Five groups of six animals each, were used: the control group only receiving phosphate-buffered saline; the bee pollen and probiotic-treated group receiving a combination of an equal quantity of bee pollen and probiotic (0.2 kg/kg body weight); the PPA group being treated for 3 days with an oral neurotoxic dose of PPA (0.25 kg/kg body weight); the protective and therapeutic groups receiving bee pollen and probiotic mixture treatment right before and after the neurotoxic dose of PPA, respectively. The levels of interleukin (IL)-1ß, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor α, and interferon γ (IFN-γ) were investigated to evaluate the neuroinflammatory responses in brain tissues from different animal groups. The much higher IL-1β, IL-8, and IFN-γ, as pro-inflammatory cytokines (P < 0.001), together with much lower IL-10, as anti-inflammatory cytokine (P < 0.001) compared to controls clearly demonstrated the neurotoxic effects of PPA. Interestingly, the mixture of bee pollen and probiotics was effective in alleviating PPA neurotoxic effects in both therapeutic and protective groups demonstrating highly significant changes in IL-1β, IL-8, IL-10, and IFN-γ levels together with non-significant reduction in IL-6 levels compared to PPA-treated rats. Overall, our findings demonstrated a new approach to the beneficial use of psychobiotics presenting as bee pollen and probiotic combination in neuroinflammation through cytokine changes as a possible role of glial cells in gut–brain axis.
Collapse
Affiliation(s)
- Mona Alonazi
- Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia.,Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Anwar Al Suhaibani
- Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ahmad T Almnaizel
- Experimental Surgery and Animal Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hisham S Aloudah
- Experimental Surgery and Animal Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Teixeira FC, Soares MSP, Blödorn EB, Domingues WB, Reichert KP, Zago AM, Carvalho FB, Gutierres JM, Gonçales RA, da Cruz Fernandes M, Campos VF, Chitolina MR, Stefanello FM, Spanevello RM. Investigating the Effect of Inosine on Brain Purinergic Receptors and Neurotrophic and Neuroinflammatory Parameters in an Experimental Model of Alzheimer's Disease. Mol Neurobiol 2021; 59:841-855. [PMID: 34792730 DOI: 10.1007/s12035-021-02627-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathology characterized by progressive impairment of memory, associated with neurochemical alterations and limited therapy. The aim of this study was to evaluate the effects of inosine on memory, neuroinflammatory cytokines, neurotrophic factors, expression of purinergic receptors, and morphological changes in the hippocampus and cerebral cortex of the rats with AD induced by streptozotocin (STZ). Male rats were divided into four groups: I, control; II, STZ; III, STZ plus inosine (50 mg/kg); and IV, STZ plus inosine (100 mg/kg). The animals received intracerebroventricular injections of STZ or buffer. Three days after the surgical procedure, animals were treated with inosine (50 mg/kg or 100 mg/kg) for 25 days. Inosine was able to prevent memory deficits and decreased the immunoreactivity of the brain A2A adenosine receptor induced by STZ. Inosine also increased the levels of brain anti-inflammatory cytokines (IL-4 and IL-10) and the expression of brain-derived neurotrophic factor and its receptor. Changes induced by STZ in the molecular layer of the hippocampus were attenuated by treatment with inosine. Inosine also protected against the reduction of immunoreactivity for synaptophysin induced by STZ in CA3 hippocampus region. However, inosine did not prevent the increase in GFAP in animals exposed to STZ. In conclusion, our findings suggest that inosine has therapeutic potential for AD through the modulation of different brain mechanisms involved in neuroprotection.
Collapse
Affiliation(s)
- Fernanda Cardoso Teixeira
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil
| | - Eduardo Bierhaus Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Karine Paula Reichert
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adriana Maria Zago
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano Barbosa Carvalho
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jessie Martins Gutierres
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Maria Rosa Chitolina
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Programa de Pós - Graduação Em Bioquímica E Bioprospecção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
14
|
Li QQ, Li JY, Zhou M, Qin ZH, Sheng R. Targeting neuroinflammation to treat cerebral ischemia - The role of TIGAR/NADPH axis. Neurochem Int 2021; 148:105081. [PMID: 34082063 DOI: 10.1016/j.neuint.2021.105081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/22/2021] [Indexed: 01/30/2023]
Abstract
Cerebral ischemia is a disease of ischemic necrosis of brain tissue caused by intracranial artery stenosis or occlusion and cerebral artery embolization. Neuroinflammation plays an important role in the pathophysiology of cerebral ischemia. Microglia, astrocytes, leukocytes and other cells that release a variety of inflammatory factors involved in neuroinflammation may play a damaging or protective role during the process of cerebral ischemia. TP53-induced glycolysis and apoptotic regulators (TIGAR) may facilitate the production of nicotinamide adenine dinucleotide phosphoric acid (NADPH) via the pentose phosphate pathway (PPP) to inhibit oxidative stress and neuroinflammation. TIGAR can also directly inhibit NF-κB to inhibit neuroinflammation. TIGAR thus protect against cerebral ischemic injury. Exogenous NADPH can inhibit neuroinflammation by inhibiting oxidative stress and regulating a variety of signals. However, since NADPH oxidase (NOX) may use NADPH as a substrate to generate reactive oxygen species (ROS) to mediate neuroinflammation, the combination of NADPH and NOX inhibitors may produce more powerful anti-neuroinflammatory effects. Here, we review the cells and regulatory signals involved in neuroinflammation during cerebral ischemia, and discuss the possible mechanisms of targeting neuroinflammation in the treatment of cerebral ischemia with TIGAR/NADPH axis, so as to provide new ideas for the prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Weston LL, Jiang S, Chisholm D, Jantzie LL, Bhaskar K. Interleukin-10 deficiency exacerbates inflammation-induced tau pathology. J Neuroinflammation 2021; 18:161. [PMID: 34275478 PMCID: PMC8286621 DOI: 10.1186/s12974-021-02211-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The presence of hyperphosphorylated microtubule-associated protein tau is strongly correlated with cognitive decline and neuroinflammation in Alzheimer's disease and related tauopathies. However, the role of inflammation and anti-inflammatory interventions in tauopathies is unclear. Our goal was to determine if removing anti-inflammatory interleukin-10 (IL-10) during an acute inflammatory challenge has any effect on neuronal tau pathology. METHODS We induce systemic inflammation in Il10-deficient (Il10-/-) versus Il10+/+ (Non-Tg) control mice using a single intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) to examine microglial activation and abnormal hyperphosphorylation of endogenous mouse tau protein. Tau phosphorylation was quantified by Western blotting and immunohistochemistry. Microglial morphology was quantified by skeleton analysis. Cytokine expression was determined by multiplex electro chemiluminescent immunoassay (MECI) from Meso Scale Discovery (MSD). RESULTS Our findings show that genetic deletion of Il10 promotes enhanced neuroinflammation and tau phosphorylation. First, LPS-induced tau hyperphosphorylation was significantly increased in Il10-/- mice compared to controls. Second, LPS-treated Il10-/- mice showed signs of neurodegeneration. Third, LPS-treated Il10-/- mice showed robust IL-6 upregulation and direct treatment of primary neurons with IL-6 resulted in tau hyperphosphorylation on Ser396/Ser404 site. CONCLUSIONS These data support that loss of IL-10 activates microglia, enhances IL-6, and leads to hyperphosphorylation of tau on AD-relevant epitopes in response to acute systemic inflammation.
Collapse
Affiliation(s)
- Lea L Weston
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Devon Chisholm
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
- Department of Neurology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
16
|
Rasheed M, Liang J, Wang C, Deng Y, Chen Z. Epigenetic Regulation of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:4956. [PMID: 34066949 PMCID: PMC8125491 DOI: 10.3390/ijms22094956] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is one of the most significant factors involved in the initiation and progression of Parkinson's disease. PD is a neurodegenerative disorder with a motor disability linked with various complex and diversified risk factors. These factors trigger myriads of cellular and molecular processes, such as misfolding defective proteins, oxidative stress, mitochondrial dysfunction, and neurotoxic substances that induce selective neurodegeneration of dopamine neurons. This neuronal damage activates the neuronal immune system, including glial cells and inflammatory cytokines, to trigger neuroinflammation. The transition of acute to chronic neuroinflammation enhances the susceptibility of inflammation-induced dopaminergic neuron damage, forming a vicious cycle and prompting an individual to PD development. Epigenetic mechanisms recently have been at the forefront of the regulation of neuroinflammatory factors in PD, proposing a new dawn for breaking this vicious cycle. This review examined the core epigenetic mechanisms involved in the activation and phenotypic transformation of glial cells mediated neuroinflammation in PD. We found that epigenetic mechanisms do not work independently, despite being coordinated with each other to activate neuroinflammatory pathways. In this regard, we attempted to find the synergic correlation and contribution of these epigenetic modifications with various neuroinflammatory pathways to broaden the canvas of underlying pathological mechanisms involved in PD development. Moreover, this study highlighted the dual characteristics (neuroprotective/neurotoxic) of these epigenetic marks, which may counteract PD pathogenesis and make them potential candidates for devising future PD diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (J.L.); (C.W.); (Y.D.)
| |
Collapse
|
17
|
Jiang Y, Li K, Li X, Xu L, Yang Z. Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem Biol Interact 2021; 341:109452. [PMID: 33785315 DOI: 10.1016/j.cbi.2021.109452] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Current strategies for the treatment of Alzheimer's disease (AD) focus on the pathology in the later stages of disease progression. Early microglia abnormality and β-amyloid (Aβ) deposition trigger disease development before identical symptoms emerge, which leads to poor clinical treatment effects in the later stages. In the early stage of disease progression, microglia in brains of 5XFAD mice have been activated by Aβ plaques to secrete more pro-inflammatory cytokines. In the meantime, these cytokines up-regulate Aβ via increasing the APP processing. Sodium butyrate (NaB), as one of the short chain fatty acid (SCFA) generated by gut microbiota, is the inhibitor of histone deacetylase (HDAC), which reduces the secretion of pro-inflammatory cytokines. In our experiment, 8-week-old 5XFAD mice and their litter WT mice were treated with NaB or normal saline for 2 weeks (WT + Vehicle group, WT + NaB group, AD + Vehicle group and AD + NaB group). After treatment, behavioral tests were carried out. The novel object recognition (NOR) and Morris water maze (MWM) tests demonstrated that there was no significant difference between four groups of mice. The results of long-term potentiation (LTP) and depotentiation (DEP) illustrated that the synaptic plasticity was promoted in 5XFAD mice after treatment with NaB. Compared to the AD + Vehicle group, the dendritic spines were more abundant in other groups of mice. Furthermore, the synapse-associated proteins (PSD-95, SYP, NR2B) were reduced and the pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) were increased in the AD + Vehicle group. These phenomena were reversed after treatment with NaB. Moreover, our results suggested that NaB suppressed the over-activation of microglia and the accumulation of Aβ in AD mice. Altogether, all results illustrated that HDAC inhibitor NaB could ameliorate the synaptic plasticity by reducing neuroinflammation in 5XFAD mice in the early stage of the disease.
Collapse
Affiliation(s)
- Yu Jiang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Kai Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaolin Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lanju Xu
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Giloteaux L, O'Neal A, Castro-Marrero J, Levine SM, Hanson MR. Cytokine profiling of extracellular vesicles isolated from plasma in myalgic encephalomyelitis/chronic fatigue syndrome: a pilot study. J Transl Med 2020; 18:387. [PMID: 33046133 PMCID: PMC7552484 DOI: 10.1186/s12967-020-02560-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease of unknown etiology lasting for a minimum of 6 months but usually for many years, with features including fatigue, cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Dysregulation of cytokine signaling could give rise to many of these symptoms. Cytokines are present in both plasma and extracellular vesicles, but little investigation of EVs in ME/CFS has been reported. Therefore, we aimed to characterize the content of extracellular vesicles (EVs) isolated from plasma (including circulating cytokine/chemokine profiling) from individuals with ME/CFS and healthy controls. METHODS We included 35 ME/CFS patients and 35 controls matched for age, sex and BMI. EVs were enriched from plasma by using a polymer-based precipitation method and characterized by Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM) and immunoblotting. A 45-plex immunoassay was used to determine cytokine levels in both plasma and isolated EVs from a subset of 19 patients and controls. Linear regression, principal component analysis and inter-cytokine correlations were analyzed. RESULTS ME/CFS individuals had significantly higher levels of EVs that ranged from 30 to 130 nm in size as compared to controls, but the mean size for total extracellular vesicles did not differ between groups. The enrichment of typical EV markers CD63, CD81, TSG101 and HSP70 was confirmed by Western blot analysis and the morphology assessed by TEM showed a homogeneous population of vesicles in both groups. Comparison of cytokine concentrations in plasma and isolated EVs of cases and controls yielded no significant differences. Cytokine-cytokine correlations in plasma revealed a significant higher number of interactions in ME/CFS cases along with 13 inverse correlations that were mainly driven by the Interferon gamma-induced protein 10 (IP-10), whereas in the plasma of controls, no inverse relationships were found across any of the cytokines. Network analysis in EVs from controls showed 2.5 times more significant inter-cytokine interactions than in the ME/CFS group, and both groups presented a unique negative association. CONCLUSIONS Elevated levels of 30-130 nm EVs were found in plasma from ME/CFS patients and inter-cytokine correlations revealed unusual regulatory relationships among cytokines in the ME/CFS group that were different from the control group in both plasma and EVs. These disturbances in cytokine networks are further evidence of immune dysregulation in ME/CFS.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Adam O'Neal
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Jesús Castro-Marrero
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
- CFS/ME Unit, Division of Rheumatology, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
19
|
Porro C, Cianciulli A, Panaro MA. The Regulatory Role of IL-10 in Neurodegenerative Diseases. Biomolecules 2020; 10:biom10071017. [PMID: 32659950 PMCID: PMC7407888 DOI: 10.3390/biom10071017] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
IL-10, an immunosuppressive cytokine, is considered an important anti-inflammatory modulator of glial activation, preventing inflammation-mediated neuronal degeneration under pathological conditions. In this narrative review, we summarize recent insights about the role of IL-10 in the neurodegeneration associated with neuroinflammation, in diseases such as Multiple Sclerosis, Traumatic Brain Injury, Amyotrophic lateral sclerosis, Alzheimer’s Disease, and Parkinson’s Disease, focusing on the contribution of this cytokine not only in terms of protective action, but also as possibly responsible for clinical worsening. The knowledge of this double face of the same coin, regarding the biological role of the IL-10, could aid the development of targeted therapies useful for limiting neurodegenerative processes.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
- Correspondence:
| |
Collapse
|
20
|
Zera KA, Buckwalter MS. The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics 2020; 17:414-435. [PMID: 32193840 PMCID: PMC7283378 DOI: 10.1007/s13311-020-00844-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune response to stroke is an exciting target for future stroke therapies. Stroke is a leading cause of morbidity and mortality worldwide, and clot removal (mechanical or pharmacological) to achieve tissue reperfusion is the only therapy currently approved for patient use. Due to a short therapeutic window and incomplete effectiveness, however, many patients are left with infarcted tissue that stimulates inflammation. Although this is critical to promote repair, it can also damage surrounding healthy brain tissue. In addition, acute immunodepression and subsequent infections are common and are associated with worse patient outcomes. Thus, the acute immune response is a major focus of researchers attempting to identify ways to amplify its benefits and suppress its negative effects to improve short-term recovery of patients. Here we review what is known about this powerful process. This includes the role of brain resident cells such as microglia, peripherally activated cells such as macrophages and neutrophils, and activated endothelium. The role of systemic immune activation and subsequent immunodepression in the days after stroke is also discussed, as is the chronic immune responses and its effects on cognitive function. The biphasic role of inflammation, as well as complex timelines of cell production, differentiation, and trafficking, suggests that the relationship between the acute and chronic phases of stroke recovery is complex. Gaining a more complete understanding of this intricate process by which inflammation is initiated, propagated, and terminated may potentially lead to therapeutics that can treat a larger population of stroke patients than what is currently available. The immune response plays a critical role in patient recovery in both the acute and chronic phases after stroke. In patients, the immune response can be beneficial by promoting repair and recovery, and also detrimental by propagating a pro-inflammatory microenvironment. Thus, it is critical to understand the mechanisms of immune activation following stroke in order to successfully design therapeutics.
Collapse
Affiliation(s)
- Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford Univeristy School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Fan X, Li J, Deng X, Lu Y, Feng Y, Ma S, Wen H, Zhao Q, Tan W, Shi T, Wang Z. Design, synthesis and bioactivity study of N-salicyloyl tryptamine derivatives as multifunctional agents for the treatment of neuroinflammation. Eur J Med Chem 2020; 193:112217. [PMID: 32182488 DOI: 10.1016/j.ejmech.2020.112217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Because of the complex etiology in neuroinflammatory process, the design of multifunctional agents is a potent strategy to cure neuroinflammatory diseases including AD and PD. Herein, based on the combination principles, 23 of N-salicyloyl tryptamine derivatives as multifunctional agents were designed and their new application for anti-neuroinflammation was disclosed. In cyclooxygenase assay, two compounds 3 and 16 displayed extremely preferable COX-2 inhibition than N-salicyloyl tryptamine. In LPS-induced C6 and BV2 cell models, some compounds decreased the production of proinflammatory mediators NO, PGE2, TNF-α, iNOS, COX-2 and ROS, while increased the production of IL-10. Among them, compound 3 and 16 showed approximately six-fold better inhibition on nitric oxide production than N-salicyloyl tryptamine in C6. Besides, compounds 3, 13 and 16 attenuated the activation of BV2 and C6 cells. More importantly, in vivo, compounds 3 and 16 reduced GFAP and Iba-1 levels in the hippocampus, and displayed neuroprotection in Nissl staining. Besides, both compounds 3 and 16 had high safety (LD50 > 1000 mg/kg). Longer plasma half-life of compounds 3 and 16 than melatonin supported combination strategy. All these results demonstrated that N-salicyloyl tryptamine derivatives are potential anti-neuroinflammation agents for the treatment of neurodegenerative disorder.
Collapse
Affiliation(s)
- Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shumeng Ma
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huaixiu Wen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Recasens M, Shrivastava K, Almolda B, González B, Castellano B. Astrocyte-targeted IL-10 production decreases proliferation and induces a downregulation of activated microglia/macrophages after PPT. Glia 2018; 67:741-758. [PMID: 30548340 DOI: 10.1002/glia.23573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/03/2023]
Abstract
When central nervous system (CNS) homeostasis is altered, microglial cells become rapidly activated, proliferate and release a broad range of molecules. Among the plethora of molecules involved in the regulation of microglial activation, cytokines are considered crucial. Although production of interleukin-10 (IL-10) has been demonstrated after different types of CNS injuries and associated with protective functions, the specific role played by IL-10 modulating microglial cells remains unclear. Hence, the objective of this study was to evaluate the effects of transgenic astrocyte IL-10 production on microglial activation associated with axonal anterograde degeneration. To address it, the hippocampal area subjected to perforant pathway transection (PPT) was analyzed by immunohistochemistry (IHC), flow cytometry and protein microarray in transgenic (GFAP-IL10Tg) mice and their corresponding wild types (WT) littermates. Our results demonstrated increased microglial/macrophages density in nonlesioned and PPT-lesioned GFAP-IL10Tg animals when compared with nonlesioned and lesioned WT, respectively. This increase was not due to proliferation, as GFAP-IL10Tg mice showed a reduced proliferation of microglial cells, but was related to an increased population of CD11b+/CD45high monocyte/macrophages. Despite this higher number, the microglia/macrophage population in transgenic animals displayed a downregulated phenotype characterized by lower MHCII, ICOSL, and CD11c. Moreover, a sustained T-cell infiltration was found in transgenic animals. We strongly suggest these modifications must be associated with indirect effects derived from the influence of IL-10 on astrocytes and/or neurons, which express IL-10R. We finally suggested that TGF-β produced by astrocytes, along with IL-2 and CXCL10 might be crucial molecules mediating the effects of transgenic IL-10.
Collapse
Affiliation(s)
- Mireia Recasens
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kalpana Shrivastava
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Wu HY, Mao XF, Tang XQ, Ali U, Apryani E, Liu H, Li XY, Wang YX. Spinal interleukin-10 produces antinociception in neuropathy through microglial β-endorphin expression, separated from antineuroinflammation. Brain Behav Immun 2018; 73:504-519. [PMID: 29928964 DOI: 10.1016/j.bbi.2018.06.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin 10 (IL-10) is antinociceptive in various animal models of pain without induction of tolerance, and its mechanism of action was generally believed to be mediated by inhibition of neuroinflammation. Here we reported that intrathecal IL-10 injection dose dependently attenuated mechanical allodynia and thermal hyperalgesiain male and female neuropathic rats, with ED50 values of 40.8 ng and 24 ng, and Emax values of 61.5% MPE and 100% MPE in male rats. Treatment with IL-10 specifically increased expression of the β-endorphin (but not prodynorphin) gene and protein in primary cultures of spinal microglia but not in astrocytes or neurons. Intrathecal injection of IL-10 stimulated β-endorphin expression from microglia but not neurons or astrocytes in both contralateral and ipsilateral spinal cords of neuropathic rats. However, intrathecal injection of the β-endorphin neutralizing antibody, opioid receptor antagonist naloxone, or μ-opioid receptor antagonist CTAP completely blocked spinal IL-10-induced mechanical antiallodynia, while the microglial inhibitor minocycline and specific microglia depletor reversed spinal IL-10-induced β-endorphin overexpression and mechanical antiallodynia. IL-10 treatment increased spinal microglial STAT3 phosphorylation, and the STAT3 inhibitor NSC74859 completely reversed IL-10-increased spinal expression of β-endorphin and neuroinflammatory cytokines and mechanical antiallodynia. Silence of the Bcl3 and Socs3 genes nearly fully reversed IL-10-induced suppression of neuroinflammatory cytokines (but not expression of β-endorphin), although it had no effect on mechanical allodynia. In contrast, disruption of the POMC gene completely blocked IL-10-stimulated β-endorphin expression and mechanical antiallodynia, but had no effect on IL-10 inhibited expression of neuroinflammatory cytokines. Thus this study revealed that IL-10 produced antinociception through spinal microglial β-endorphin expression, but not inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xue-Qi Tang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Usman Ali
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Evhy Apryani
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|
24
|
Gupta N, Shyamasundar S, Patnala R, Karthikeyan A, Arumugam TV, Ling EA, Dheen ST. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opin Ther Targets 2018; 22:765-781. [DOI: 10.1080/14728222.2018.1515917] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Neelima Gupta
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sukanya Shyamasundar
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Radhika Patnala
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aparna Karthikeyan
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eng-Ang Ling
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S. Thameem Dheen
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
Patnala R, Arumugam TV, Gupta N, Dheen ST. HDAC Inhibitor Sodium Butyrate-Mediated Epigenetic Regulation Enhances Neuroprotective Function of Microglia During Ischemic Stroke. Mol Neurobiol 2016; 54:6391-6411. [PMID: 27722928 DOI: 10.1007/s12035-016-0149-z] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia leads to neuroinflammation and activation of microglia which further contribute to stroke pathology. Understanding regulation of microglial activation will aid in the development of therapeutic strategies that mitigate microglia-mediated neurotoxicity in neuropathologies, including ischemia. In this study, we investigated the epigenetic regulation of microglial activation by studying histone modification histone 3-lysine 9-acetylation (H3K9ac) and its regulation by histone deacetylase (HDAC) inhibitors. In vitro analysis of activated microglia showed that HDAC inhibitor, sodium butyrate (SB), alters H3K9ac enrichment and transcription at the promoters of pro-inflammatory (Tnf-α, Nos2, Stat1, Il6) and anti-inflammatory (Il10) genes while inducing the expression of genes downstream of the IL10/STAT3 anti-inflammatory pathway. In an experimental mouse (C57BL/6NTac) model of middle cerebral artery occlusion (MCAO), we observed that SB mediates neuroprotection by epigenetically regulating the microglial inflammatory response, via downregulating the expression of pro-inflammatory mediators, TNF-α and NOS2, and upregulating the expression of anti-inflammatory mediator IL10, in activated microglia. Interestingly, H3K9ac levels were found to be upregulated in activated microglia distributed in the cortex, striatum, and hippocampus of MCAO mice. A similar upregulation of H3K9ac was detected in lipopolysaccharide (LPS)-activated microglia in the Wistar rat brain, indicating that H3K9ac upregulation is consistently associated with microglial activation in vivo. Altogether, these results show evidence of HDAC inhibition being a promising molecular switch to epigenetically modify microglial behavior from pro-inflammatory to anti-inflammatory which could mitigate microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Radhika Patnala
- Department of Anatomy, The Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, The Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117597, Singapore
| | - Neelima Gupta
- Department of Anatomy, The Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore
| | - S Thameem Dheen
- Department of Anatomy, The Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore.
| |
Collapse
|
26
|
Gu J, Crosier PS, Hall CJ, Chen L, Xu X. Inflammatory pathway network-based drug repositioning and molecular phenomics. MOLECULAR BIOSYSTEMS 2016; 12:2777-84. [PMID: 27345454 DOI: 10.1039/c6mb00222f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammation is a protective biological response to body/tissue damage that involves immune cells, blood vessels and molecular mediators. In this work, we constructed the pathway network of inflammation, including 11 sub-pathways of inflammatory factors. Pathway-based network efficiency and network flux were adopted to evaluate drug efficacy. By using approved and experimentally validated anti-inflammatory drugs as training sets, a predictive model was built to screen potential anti-inflammatory drugs from approved drugs in DrugBank. This drug repositioning approach would bring a fast and cheap way to find new indications for approved drugs. Moreover, molecular phenomics profiles of the expression of inflammatory factors will provide new insight into the drug mechanism of action.
Collapse
Affiliation(s)
- Jiangyong Gu
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Material Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
| | - Lirong Chen
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Material Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaojie Xu
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Material Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
27
|
Suryanarayanan A, Carter JM, Landin JD, Morrow AL, Werner DF, Spigelman I. Role of interleukin-10 (IL-10) in regulation of GABAergic transmission and acute response to ethanol. Neuropharmacology 2016; 107:181-188. [PMID: 27016017 PMCID: PMC5076550 DOI: 10.1016/j.neuropharm.2016.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/08/2016] [Accepted: 03/21/2016] [Indexed: 12/27/2022]
Abstract
Mounting evidence indicates that ethanol (EtOH) exposure activates neuroimmune signaling. Alterations in pro-inflammatory cytokines after acute and chronic EtOH exposure have been heavily investigated. In contrast, little is known about the regulation of neurotransmission and/or modulation by anti-inflammatory cytokines in the brain after an acute EtOH exposure. Recent evidence suggests that interleukin-10 (IL-10), an anti-inflammatory cytokine, is upregulated during withdrawal from chronic EtOH exposure. In the present study, we show that IL-10 is increased early (1 h) after a single intoxicating dose of EtOH (5 g/kg, intragastric) in Sprague Dawley rats. We also show that IL-10 rapidly regulates GABAergic transmission in dentate gyrus neurons. In brain slice recordings, IL-10 application dose-dependently decreases miniature inhibitory postsynaptic current (mIPSC) area and frequency, and decreases the magnitude of the picrotoxin sensitive tonic current (Itonic), indicating both pre- and postsynaptic mechanisms. A PI3K inhibitor LY294002 (but not the negative control LY303511) ablated the inhibitory effects of IL-10 on mIPSC area and Itonic, but not on mIPSC frequency, indicating the involvement of PI3K in postsynaptic effects of IL-10 on GABAergic transmission. Lastly, we also identify a novel neurobehavioral regulation of EtOH sensitivity by IL-10, whereby IL-10 attenuates acute EtOH-induced hypnosis. These results suggest that EtOH causes an early release of IL-10 in the brain, which may contribute to neuronal hyperexcitability as well as disturbed sleep seen after binge exposure to EtOH. These results also identify IL-10 signaling as a potential therapeutic target in alcohol-use disorders and other CNS disorders where GABAergic transmission is altered.
Collapse
Affiliation(s)
- A Suryanarayanan
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia College of Pharmacy, Philadelphia, PA 19104, USA.
| | - J M Carter
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, USA
| | - J D Landin
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, USA
| | - A L Morrow
- Departments of Psychiatry and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - D F Werner
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, USA
| | - I Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, 63-078 CHS, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Abstract
Chlamydia species are obligate intracellular parasites which cause usually asymptomatic genital tract infections and also are associated with several complications. Previous studies demonstrated that immune responses to Chlamydia species are different and the diseases will be limited to some cases. Additionally, Chlamydia species are able to modulate immune responses via regulating expression of some immune system molecules including cytokines. IL-10, as the main anti-inflammatory cytokine, plays important roles in the induction of immune-tolerance against self-antigen and also immune-homeostasis after microbe elimination. Furthermore, it has been documented that ectopic expression of IL-10 is associated with several chronic infectious diseases. Therefore, it can be hypothesized that changes in the regulation of this cytokine can be associated with infection with several species of Chlamydia and their associated complications. This review collected the recent information regarding the association and relationship of IL-10 with Chlamydia infections. Another aim of this review article is to address recent data regarding the association of genetic variations (polymorphisms) of IL-10 and Chlamydia infections.
Collapse
|
29
|
Béguelin W, Sawh S, Chambwe N, Chan FC, Jiang Y, Choo JW, Scott DW, Chalmers A, Geng H, Tsikitas L, Tam W, Bhagat G, Gascoyne RD, Shaknovich R. IL10 receptor is a novel therapeutic target in DLBCLs. Leukemia 2015; 29:1684-94. [PMID: 25733167 DOI: 10.1038/leu.2015.57] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 12/30/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogeneous disease with marked genomic instability and variable response to conventional R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone) chemotherapy. More clinically aggressive cases of DLBCLs have high level of circulating interleukin 10 (IL10) cytokine and evidence of activated intracellular STAT3 (signal transducer and activator of transcription 3) signaling. We investigated the role of IL10 and its surface receptor in supporting the neoplastic phenotype of DLBCLs. We determined that IL10RA gene is amplified in 21% and IL10RB gene in 10% of primary DLBCLs. Gene expression of IL10, IL10RA and IL10RB was markedly elevated in DLBCLs. We hypothesized that DLBCLs depend for their proliferation and survival on IL10-STAT3 signaling and that blocking the IL10 receptor (IL10R) would induce cell death. We used anti-IL10R blocking antibody, which resulted in a dose-dependent cell death in all tested activated B-cell-like subtype of DLBCL cell lines and primary DLBCLs. Response of germinal center B-cell-like subtype of DLBCL cell lines to anti-IL10R antibody varied from sensitive to resistant. Cells underwent cell cycle arrest, followed by induction of apoptosis. Cell death depended on inhibition of STAT3 and, to a lesser extent, STAT1 signaling. Anti-IL10R treatment resulted in interruption of IL10-IL10R autostimulatory loop. We thus propose that IL10R is a novel therapeutic target in DLBCLs.
Collapse
Affiliation(s)
- W Béguelin
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - S Sawh
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - N Chambwe
- 1] The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA [2] Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA [3] Tri-Instituitional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, USA
| | - F C Chan
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Y Jiang
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - J-W Choo
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - D W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - A Chalmers
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - H Geng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - L Tsikitas
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - W Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - G Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - R D Gascoyne
- 1] Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada [2] Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - R Shaknovich
- 1] Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA [2] Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
30
|
Almolda B, de Labra C, Barrera I, Gruart A, Delgado-Garcia JM, Villacampa N, Vilella A, Hofer MJ, Hidalgo J, Campbell IL, González B, Castellano B. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun 2015; 45:80-97. [PMID: 25449577 DOI: 10.1016/j.bbi.2014.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/24/2014] [Accepted: 10/25/2014] [Indexed: 12/31/2022] Open
Abstract
Interleukin-10 (IL-10) is a cytokine classically linked with anti-inflammatory and protective functions in the central nervous system (CNS) in different neurodegenerative and neuroinflammatory conditions. In order to study the specific role of local CNS produced IL-10, we have created a new transgenic mouse line with astrocyte-targeted production of IL-10 (GFAP-IL10Tg). In the present study, the effects of local CNS IL-10 production on microglia, astrocytes and neuronal connectivity under basal conditions were investigated using immunohistochemistry, molecular biology techniques, electrophysiology and behavioural studies. Our results showed that, in GFAP-IL10Tg animals, microglia displayed an increase in density and a specific activated phenotype characterised by morphological changes in specific areas of the brain including the hippocampus, cortex and cerebellum that correlated with the level of transgene expressed IL-10 mRNA. Distinctively, in the hippocampus, microglial cells adopted an elongated morphology following the same direction as the dendrites of pyramidal neurons. Moreover, this IL-10-induced microglial phenotype showed increased expression of certain molecules including Iba1, CD11b, CD16/32 and F4/80 markers, "de novo" expression of CD150 and no detectable levels of either CD206 or MHCII. To evaluate whether this specific activated microglial phenotype was associated with changes in neuronal activity, the electrophysiological properties of pyramidal neurons of the hippocampus (CA3-CA1) were analysed in vivo. We found a lower excitability of the CA3-CA1 synapses and absence of long-term potentiation (LTP) in GFAP-IL10Tg mice. This study is the first description of a transgenic mouse with astrocyte-targeted production of the cytokine IL-10. The findings indicate that IL-10 induces a specific activated microglial phenotype concomitant with changes in hippocampal LTP responses. This transgenic animal will be a very useful tool to study IL-10 functions in the CNS, not only under basal conditions, but also after different experimental lesions or induced diseases.
Collapse
Affiliation(s)
- Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Carmen de Labra
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Iliana Barrera
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | | | - Nàdia Villacampa
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Università degli Studi di Modena e Reggio Emilia, 41125, Italy
| | - Markus J Hofer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Juan Hidalgo
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Iain L Campbell
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
31
|
Villacampa N, Almolda B, Vilella A, Campbell IL, González B, Castellano B. Astrocyte-targeted production of IL-10 induces changes in microglial reactivity and reduces motor neuron death after facial nerve axotomy. Glia 2015; 63:1166-84. [PMID: 25691003 DOI: 10.1002/glia.22807] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/28/2015] [Indexed: 12/30/2022]
Abstract
Interleukin-10 (IL-10) is a cytokine that plays a crucial role in regulating the inflammatory response and immune reactions. In the central nervous system (CNS), IL-10 is mainly produced by astrocytes and microglia and it is upregulated after various insults, such as experimental autoimmune encephalomyelitis, middle cerebral artery occlusion, excitotoxicity and traumatic brain injury. To better understand the effects of IL-10 in the normal and injured CNS, we generated transgenic mice (termed GFAP-IL-10Tg) that expressed the murine IL-10 gene under the transcriptional control of the glial fibrillary acidic protein (GFAP) promoter. Previous studies demonstrated marked changes in the microglial phenotype in these mice under basal conditions. The objective of the present study was to investigate the effects of local astrocyte-targeted IL-10 production on glial activation, neuronal degeneration and leukocyte recruitment after axotomy. GFAP-IL-10Tg mice had marked changes in the phenotype of activated microglial cells, as well as in the number of microglial clusters and in microglial cell density. These microglial changes are accompanied by a twofold increase in lymphocyte infiltration in GFAP-IL-10Tg mice and around twofold decrease in neuronal cell death at 21 dpi. Altogether, our findings suggested that astrocyte-targeted production of IL-10 impacted the microglial response and lymphocyte recruitment and culminated in a beneficial effect on neuronal survival.
Collapse
Affiliation(s)
- Nàdia Villacampa
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Sarray S, Saleh LR, Lisa Saldanha F, Al-Habboubi HH, Mahdi N, Almawi WY. Serum IL-6, IL-10, and TNFα levels in pediatric sickle cell disease patients during vasoocclusive crisis and steady state condition. Cytokine 2015; 72:43-7. [PMID: 25569375 DOI: 10.1016/j.cyto.2014.11.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Vaso-occlusive crisis (VOC) is a significant complication of sickle cell disease (SCD), and altered production of pro-inflammatory and anti-inflammatory molecules contributed to its pathogenesis. In view of the association of chronic inflammation with VOC onset, and given the capacity of interleukin (IL)-10 as anti-inflammatory, and IL-6, and TNFα as pro-inflammatory cytokines, we tested the association of altered IL-10, IL-6, and TNFα secretion with VOC pathogenesis and its severity. Study subjects comprised 147 SCD patients with active VOC (VOC Group), and 63 pain-free SCD patients for at least 9 months before blood collection (Steady-state Group). Serum cytokine concentrations were determined by ELISA. IL-10 levels were significantly reduced, while IL-6 levels were increased in VOC compared to Steady-state groups; serum TNFα levels were comparable between both groups. There was enrichment of low IL-10, but high IL-6 and TNFα quartiles in VOC Group, which translated into increased VOC risk. In contrast, high IL-10, but low IL-6 and TNFα quartiles were seen in Steady-state Group. Correlation analysis demonstrated significant association between reduced IL-10 levels and the frequency, type, severity, and duration of VOC and requirement for hydroxyurea treatment, while IL-6 correlated with duration of VOC episodes. Our data support strong association of reduced IL-10 and increased IL-6 levels with VOC, and their modulation of VOC-related parameters.
Collapse
Affiliation(s)
- Sameh Sarray
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain.
| | - Layal R Saleh
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain
| | - F Lisa Saldanha
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain
| | - Hebah H Al-Habboubi
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain
| | - Najat Mahdi
- Department of Pediatrics, Salmaniya Medical Complex, Manama, Bahrain
| | - Wassim Y Almawi
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
33
|
Cheng SB, Sharma S. Interleukin-10: a pleiotropic regulator in pregnancy. Am J Reprod Immunol 2014; 73:487-500. [PMID: 25269386 DOI: 10.1111/aji.12329] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022] Open
Abstract
Pregnancy is a unique and well-choreographed physiological process that involves intricate interplay of inflammatory and anti-inflammatory milieu, hormonal changes, and cellular and molecular events at the maternal-fetal interface. IL-10 is a pregnancy compatible cytokine that plays a vital role in maintaining immune tolerance. A wide array of cell types including both immune and non-immune cells secret IL-10 in an autocrine and paracrine manner. IL-10 binds to a specific receptor complex and activates JAK-STAT and PI3K-Akt signaling pathways while inhibiting NF-κB signaling pathway. IL-10 exerts its anti-inflammatory effects mainly by decreasing pro-inflammatory cytokines such as IL-1, IL-6, IL-12, and TNF-α, by inducing heme oxygenase-1, and by inhibiting antigen presentation via blocking major histocompatibility complex (MHC) class II expression. Prior studies from our group and others have shown that IL-10 also functions as a potent protector against vascular dysfunction, and enhancement of IL-10 may serve as an immunotherapeutic intervention to treat adverse pregnancy outcomes. This review seeks to critically evaluate the archetypal functions of IL-10 as an immune suppressive factor as well as its novel functions as a vascular protector and modulator of endoplasmic reticulum (ER) stress and autophagy in the context of normal and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
34
|
Gouveia TLF, Scorza FA, Iha HA, Frangiotti MIB, Perosa SR, Cavalheiro EA, Silva JA, Feliciano RS, de Almeida AC, Naffah-Mazzacoratti MG. Lovastatin decreases the synthesis of inflammatory mediators during epileptogenesis in the hippocampus of rats submitted to pilocarpine-induced epilepsy. Epilepsy Behav 2014; 36:68-73. [PMID: 24857811 DOI: 10.1016/j.yebeh.2014.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/01/2022]
Abstract
Statins may act on inflammatory responses, decreasing oxidative stress and also reducing brain inflammation in several brain disorders. Epileptogenesis is a process in which a healthy brain becomes abnormal and predisposed to generating spontaneous seizures. We previously reported that lovastatin could prevent neuroinflammation in pilocarpine-induced status epilepticus (SE). In this context, this study investigated the long-lasting effects of lovastatin on mRNA expression of proinflammatory cytokines (interleukin-1β, tumor necrosis factor α, interleukin-6) and the antiinflammatory cytokine IL-10 in the hippocampus during epileptogenesis by immunohistochemistry and real time polymerase chain reaction (RT-PCR) during the latent and chronic phases in the epilepsy model induced by pilocarpine in rats. For these purposes, four groups of rats were employed: saline (CONTROL), lovastatin (LOVA), pilocarpine (PILO), and pilocarpine plus lovastatin (PILO+LOVA). After pilocarpine injection (350mg/kg, i.p.), the rats were treated with 20mg/kg of lovastatin via an esophagic probe 2h after SE onset. All surviving rats were continuously treated during 15days, twice/day. The pilocarpine plus lovastatin group showed a significant decrease in the levels of IL-1β, TNF-α, and IL-6 during the latent phase and a decreased expression of IL-1β and TNF-α in the chronic phase when compared with the PILO group. Moreover, lovastatin treatment also induced an increased expression of the antiinflammatory cytokine, IL-10, in the PILO+LOVA group when compared with the PILO group in the chronic phase. Thus, our data suggest that lovastin may reduce excitotoxicity during epileptogenesis induced by pilocarpine by increasing the synthesis of IL-10 and decreasing proinflammatory cytokines in the hippocampus.
Collapse
Affiliation(s)
- T L F Gouveia
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - F A Scorza
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - H A Iha
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - M I B Frangiotti
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - S R Perosa
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - E A Cavalheiro
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - J A Silva
- Rehabilitation Department, Universidade Nove de Julho, São Paulo, Brazil
| | - R S Feliciano
- Rehabilitation Department, Universidade Nove de Julho, São Paulo, Brazil
| | - A C de Almeida
- Biomedical Engineering Department, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - M G Naffah-Mazzacoratti
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Biochemistry Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
35
|
An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, Leak RK, Gao Y, Sun BL, Zheng P, Chen J. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 2013; 115:6-24. [PMID: 24374228 DOI: 10.1016/j.pneurobio.2013.12.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/28/2013] [Accepted: 12/17/2013] [Indexed: 12/26/2022]
Abstract
Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke.
Collapse
Affiliation(s)
- Chengrui An
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yejie Shi
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ruth A Stetler
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
36
|
Abstract
Over the last 20 years it has become recognized that low-grade inflammation plays a role in cardiovascular disease. More recently, participation of the innate and the adaptive immune response in mechanisms that contribute to inflammation in cardiovascular disease has been reported in atherosclerosis and hypertension. Different subsets of lymphocytes and their cytokines are involved in vascular remodelling in hypertension, chronic kidney disease and heart disease. Effector T-cells include Th1 (interferon-γ-producing) and Th2 (interleukin-4 producing) lymphocytes, as well as Th17 (which produce interleukin-17) and T-suppressor lymphocytes such as T(reg)-cells (regulatory T-cells), which express the transcription factor Foxp3 (forkhead box P3) and participate respectively as pro- and anti-inflammatory cells. Pro-inflammatory T-lymphocytes participate in mechanisms of cardiovascular disease in part by mediating the effects of angiotensin II and mineralocorticoids. Involvement of immune mechanisms in cardiac, vascular and renal changes in hypertension has been demonstrated in many experimental models, an example being the Dahl-salt sensitive rat and the spontaneously hypertensive rat. How activation of immunity is triggered remains unknown, but neo-antigens could be generated by elevated blood pressure through damage-associated molecular pattern receptors or other mechanisms. Once activated, Th1 cells may contribute to blood pressure elevation by affecting the kidney, vascular remodelling of blood vessels directly via the effects of the cytokines produced or through their effects on perivascular fat. T(reg)-cells protect from blood pressure elevation by acting upon similar targets. Recent data suggests that participation of these mechanisms that have been demonstrated already in murine models also occurs in humans. These novel findings may open the way for new therapeutic approaches to improve outcomes in hypertension and cardiovascular disease in humans.
Collapse
|
37
|
Valera E, Ubhi K, Mante M, Rockenstein E, Masliah E. Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of multiple system atrophy. Glia 2013; 62:317-37. [PMID: 24310907 DOI: 10.1002/glia.22610] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/01/2013] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease characterized by the pathological accumulation of alpha-synuclein (α-syn) within oligodendroglial cells. This accumulation is accompanied by neuroinflammation with astrogliosis and microgliosis, that leads to neuronal death and subsequent parkinsonism and dysautonomia. Antidepressants have been explored as neuroprotective agents as they normalize neurotrophic factor levels, increase neurogenesis and reduce neurodegeneration, but their anti-inflammatory properties have not been fully characterized. We analyzed the anti-inflammatory profiles of three different antidepressants (fluoxetine, olanzapine and amitriptyline) in the MBP1-hα-syn transgenic (tg) mouse model of MSA. We observed that antidepressant treatment decreased the number of α-syn-positive cells in the basal ganglia of 11-month-old tg animals. This reduction was accompanied with a similar decrease in the colocalization of α-syn with astrocyte markers in this brain structure. Consistent with these results, antidepressants reduced astrogliosis in the hippocampus and basal ganglia of the MBP1-hα-syn tg mice, and modulated the expression levels of key cytokines that were dysregulated in the tg mouse model, such as IL-1β. In vitro experiments in the astroglial cell line C6 confirmed that antidepressants inhibited NF-κB translocation to the nucleus and reduced IL-1β protein levels. We conclude that the anti-inflammatory properties of antidepressants in the MBP1-hα-syn tg mouse model of MSA might be related to their ability to inhibit α-syn propagation from oligodendrocytes to astroglia and to regulate transcription factors involved in cytokine expression. Our results suggest that antidepressants might be of interest as anti-inflammatory and α-syn-reducing agents for MSA and other α-synucleinopathies.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | | | | | | | | |
Collapse
|
38
|
Sohrabji F, Williams M. Stroke neuroprotection: oestrogen and insulin-like growth factor-1 interactions and the role of microglia. J Neuroendocrinol 2013; 25:1173-81. [PMID: 23763366 PMCID: PMC5630268 DOI: 10.1111/jne.12059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 12/25/2022]
Abstract
Oestrogen has been shown to be neuroprotective for stroke and other neural injury models. Oestrogen promotes a neuroprotective phenotype through myriad actions, including stimulating neurogenesis, promoting neuronal differentiation and survival, suppressing neuroinflammation and maintaining the integrity of the blood-brain barrier. At the molecular level, oestrogen directly modulates genes that are beneficial for repair and regeneration via the canonical oestrogen receptor. Increasingly, evidence indicates that oestrogen acts in concert with growth factors to initiate neuroprotection. Oestrogen and insulin-like growth factor (IGF)-1 act cooperatively to influence cell survival, and combined steroid hormone/growth factor interaction has been well documented in the context of neurones and astrocytes. Here, we summarise the evidence that oestrogen-mediated neuroprotection is critically dependent on IGF-1 signalling, and specifically focus on microglia as the source of IGF-1 and the locus of oestrogen-IGF-1 interactions in stroke neuroprotection.
Collapse
Affiliation(s)
- F Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX, USA
| | | |
Collapse
|
39
|
Burke NN, Geoghegan E, Kerr DM, Moriarty O, Finn DP, Roche M. Altered neuropathic pain behaviour in a rat model of depression is associated with changes in inflammatory gene expression in the amygdala. GENES BRAIN AND BEHAVIOR 2013; 12:705-13. [PMID: 23957449 DOI: 10.1111/gbb.12080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
The association between chronic pain and depression is widely recognized, the comorbidity of which leads to a heavier disease burden, increased disability and poor treatment response. This study examined nociceptive responding to mechanical and thermal stimuli prior to and following L5-L6 spinal nerve ligation (SNL), a model of neuropathic pain, in the olfactory bulbectomized (OB) rat model of depression. Associated changes in the expression of genes encoding for markers of glial activation and cytokines were subsequently examined in the amygdala, a key brain region for the modulation of emotion and pain. The OB rats exhibited mechanical and cold allodynia, but not heat hyperalgesia, when compared with sham-operated counterparts. Spinal nerve ligation induced characteristic mechanical and cold allodynia in the ipsilateral hindpaw of both sham and OB rats. The OB rats exhibited a reduced latency and number of responses to an innocuous cold stimulus following SNL, an effect positively correlated with interleukin (IL)-6 and IL-10 mRNA expression in the amygdala, respectively. Spinal nerve ligation reduced IL-6 and increased IL-10 expression in the amygdala of sham rats. The expression of CD11b (cluster of differentiation molecule 11b) and GFAP (glial fibrillary acidic protein), indicative of microglial and astrocyte activation, and IL-1β in the amygdala was enhanced in OB animals when compared with sham counterparts, an effect not observed following SNL. This study shows that neuropathic pain-related responding to an innocuous cold stimulus is altered in an animal model of depression, effects accompanied by changes in the expression of neuroinflammatory genes in the amygdala.
Collapse
|
40
|
Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 2013; 32:70-85. [PMID: 23454862 PMCID: PMC3694309 DOI: 10.1016/j.bbi.2013.02.005] [Citation(s) in RCA: 512] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022] Open
Abstract
Microglia mediate multiple facets of neuroinflammation, including cytotoxicity, repair, regeneration, and immunosuppression due to their ability to acquire diverse activation states, or phenotypes. Modulation of microglial phenotype is an appealing neurotherapeutic strategy but a comprehensive study of classical and more novel microglial phenotypic markers in vitro is lacking. The aim of this study was to outline the temporal expression of a battery of phenotype markers from polarised microglia to generate an in vitro tool for screening the immunomodulatory potential of novel compounds. We characterised expression of thirty-one macrophage/microglial phenotype markers in primary microglia over time (4, 12, 36, and 72 h), using RT-qPCR or multiplex protein assay. Firstly, we selected Interleukin-4 (IL-4) and lipopolysaccharide (LPS) as the strongest M1-M2 polarising stimuli, from six stimuli tested. At each time point, markers useful to identify that microglia were M1 included iNOS, Cox-2 and IL-6 and a loss of M2a markers. Markers useful for quantifying M2b-immunomodulatory microglia included, increased IL-1RA and SOCS3 and for M2a-repair and regeneration, included increased arginase-1, and a loss of the M1 and M2b markers were discriminatory. Additional markers were regulated at fewer time points, but are still likely important to monitor when assessing the immunomodulatory potential of novel therapies. Further, to facilitate identification of how novel immunomodulatory treatments alter the functional affects of microglia, we characterised how the soluble products from polarised microglia affected the type and rate of neuronal death; M1/2b induced increasing and M2a-induced decreasing neuronal loss. We also assessed any effects of prior activation state, to provide a way to identify how a novel compound may alter phenotype depending on the stage of injury/insult progression. We identified generally that a prior M1/2b reduced the ability of microglia to switch to M2a. Altogether, we have characterised a profile of phenotype markers and a mechanism of assessing functional outcome that we can use as a reference guide for first-line screening of novel immunomodulatory therapies in vitro in the search for viable neuroprotectants.
Collapse
|
41
|
Liu ZG, Lei YY, Li WW, Chen ZG. The co-expression of ERβ2 and IL-12Rβ2 is better prognostic factor in non-small-cell lung cancer progression. Med Oncol 2013; 30:592. [DOI: 10.1007/s12032-013-0592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/25/2013] [Indexed: 11/28/2022]
|
42
|
Sohrabji F, Selvamani A, Balden R. Revisiting the timing hypothesis: biomarkers that define the therapeutic window of estrogen for stroke. Horm Behav 2013; 63:222-30. [PMID: 22728278 PMCID: PMC3483414 DOI: 10.1016/j.yhbeh.2012.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/06/2023]
Abstract
Significantly extended life expectancy coupled with contemporary sedentary lifestyles and poor nutrition has created a global epidemic of cardiovascular disease and stroke. For women, this issue is complicated by the discrepant outcomes of hormone therapy (HT) for stroke incidence and severity as well as the therapeutic complications for stroke associated with advancing age. Here we propose that the impact of estrogen therapy cannot be considered in isolation, but should include age-related changes in endocrine, immune, and nucleic acid mediators that collaborate with estrogen to produce neuroprotective effects commonly seen in younger, healthier demographics. Due to their role as modulators of ischemic cell death, the post-stroke inflammatory response, and neuronal survival and regeneration, this review proposes that Insulin-like Growth Factor (IGF)-1, Vitamin D, and discrete members of the family of non-coding RNA peptides called microRNAs (miRNAs) may be crucial biochemical markers that help determine the neuroprotective "window" of HT. Specifically, IGF-1 confers neuroprotection in concert with, and independently of, estrogen and failure of the insulin/IGF-1 axis is associated with metabolic disturbances that increase the risk for stroke. Vitamin D and miRNAs regulate and complement IGF-1 mediated function and neuroprotective efficacy via modulation of IGF-1 availability and neural stem cell and immune cell proliferation, differentiation and secretions. Together, age-related decline of these factors differentially affects stroke risk, severity, and outcome, and may provide a novel therapeutic adjunct to traditional HT practices.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
43
|
Vidal PM, Lemmens E, Dooley D, Hendrix S. The role of “anti-inflammatory” cytokines in axon regeneration. Cytokine Growth Factor Rev 2013; 24:1-12. [DOI: 10.1016/j.cytogfr.2012.08.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
|
44
|
Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci 2011; 33:199-209. [PMID: 21757877 DOI: 10.1159/000328989] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 05/01/2011] [Indexed: 12/21/2022] Open
Abstract
Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage.
Collapse
Affiliation(s)
- Melinda Czeh
- Department of Pediatric Neurology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
45
|
Hollis JH, Lemus M, Evetts MJ, Oldfield BJ. Central interleukin-10 attenuates lipopolysaccharide-induced changes in food intake, energy expenditure and hypothalamic Fos expression. Neuropharmacology 2009; 58:730-8. [PMID: 20045008 DOI: 10.1016/j.neuropharm.2009.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/13/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Lipopolysaccharide (LPS) is often used to mimic acute infection and induces hypophagia, the selective partitioning of fat for energy, and fever. Interleukin-10 (IL-10) is an anti-inflammatory cytokine expressed in the brain which attenuates LPS-induced hypophagia; however the potential sites of interaction within the brain have not been investigated. Hypothalamic orexin (ORX) and melanin-concentrating hormone (MCH) regulate energy expenditure and food intake although the regulation of these neuropeptides through the interactions between central IL-10 and the inflammatory consequences of peripheral LPS have not been investigated. The present study in the rat investigated during the dark phase of the light-dark cycle the ability of central IL-10 (250 ng, i.c.v.) to attenuate the changes in food intake, energy substrate partitioning, and central Fos expression within the hypothalamus to peripheral LPS (100 microg/kg, i.p.); Fos expression changes specifically within ORX and MCH neurons were also investigated. Central IL-10 attenuated the peripheral LPS-induced hypophagia, reduction in motor activity, fever and reduction in respiratory exchange ratio. Central IL-10 also attenuated peripheral LPS-induced increases in Fos expression within ORX neurons and decreases in Fos expression within unidentified cells of the caudal arcuate nucleus. In contrast, both IL-10 and LPS injection independently decreased Fos expression within MCH neurons. The present study provides further insight into the interactions within the brain between the anti-inflammatory cytokine IL-10, the inflammatory consequences of LPS, and neuropeptides known to regulate energy expenditure and food intake.
Collapse
Affiliation(s)
- Jacob H Hollis
- Department of Physiology, Monash University, Victoria, Australia.
| | | | | | | |
Collapse
|
46
|
Walter L, Neumann H. Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 2009; 31:513-25. [DOI: 10.1007/s00281-009-0180-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 08/13/2009] [Indexed: 01/09/2023]
|
47
|
Interleukin-10: a key cytokine in depression? Cardiovasc Psychiatry Neurol 2009; 2009:187894. [PMID: 19936104 PMCID: PMC2775686 DOI: 10.1155/2009/187894] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/23/2009] [Indexed: 11/18/2022] Open
Abstract
An increasing body of evidence implicates proinflammatory cytokines in psychiatric disorders, namely, in depression. Of notice, recent studies showed that anti-inflammatory cytokines, such as IL-10, also modulate depressive-like behavior. In this article, we propose that the anti-inflammatory cytokine IL-10 is a putative link between two of the most widely reported phenomenon observed in depressed patients: the disruption of the hypothalamic-pituitary-adrenal axis and the imbalanced production of cytokines. If so, IL-10 might represent a novel target for antidepressant therapy.
Collapse
|
48
|
Downer EJ, Cowley TR, Cox F, Maher FO, Berezin V, Bock E, Lynch MA. A synthetic NCAM-derived mimetic peptide, FGL, exerts anti-inflammatory properties via IGF-1 and interferon-γ modulation. J Neurochem 2009; 109:1516-25. [DOI: 10.1111/j.1471-4159.2009.06076.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Biswas SM, Ayachit VM, Sapkal GN, Mahamuni SA, Gore MM. Japanese encephalitis virus produces a CD4+ Th2 response and associated immunoprotection in an adoptive-transfer murine model. J Gen Virol 2009; 90:818-826. [DOI: 10.1099/vir.0.008045-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis is an acute infection of the central nervous system caused by Japanese encephalitis virus (JEV). The importance of an effective humoral response in preventing JEV infection has already been established, although the contribution of cellular immunity remains unclear. This study used an experimental murine model to understand the protective effects of cell-mediated immunity in JEV infection. Fourteen-day-old mice adoptively transferred with JEV-immune splenocytes were found to be protected from peripheral JEV challenge. The survival rate was reduced when transferred cells were depleted of their CD4+ T-cell population. Correspondingly, increased protection was observed when JEV-primed isolated CD4+ T cells were transferred compared with isolated CD8+ T cells. Mice protected from JEV infection by the adoptive transfer of JEV-immune splenocytes had higher levels of immunomodulatory cytokines and decreased expression of pro-inflammatory cytokines. Concurrent with the increase in Th2 cytokines, JEV-specific IgM and IgG1 antibody titres were found to be elevated in protected mice. Taken together, these data indicate a definite role for CD4+ T cells in protection from lethal JEV infection in naïve 14-day-old mice. Induction of a Th2 cytokine response and IgG1 antibody probably achieves an immunomodulatory effect that results in the enhanced survival of these animals.
Collapse
Affiliation(s)
- S. M. Biswas
- National Institute of Virology, Sus Road Campus, Pashan, Pune 411021, Maharashtra, India
| | - V. M. Ayachit
- National Institute of Virology, Sus Road Campus, Pashan, Pune 411021, Maharashtra, India
| | - G. N. Sapkal
- National Institute of Virology, Sus Road Campus, Pashan, Pune 411021, Maharashtra, India
| | - S. A. Mahamuni
- National Institute of Virology, Sus Road Campus, Pashan, Pune 411021, Maharashtra, India
| | - M. M. Gore
- National Institute of Virology, Sus Road Campus, Pashan, Pune 411021, Maharashtra, India
| |
Collapse
|
50
|
Levin SG, Godukhin OV. Protective effects of interleukin-10 on the development of epileptiform activity evoked by transient episodes of hypoxia in rat hippocampal slices. ACTA ACUST UNITED AC 2007; 37:467-70. [PMID: 17505796 DOI: 10.1007/s11055-007-0036-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 12/12/2005] [Indexed: 11/24/2022]
Abstract
The aim of the present work was to study the effects of interleukin-10 at concentrations of 1 and 10 ng/ml on the development of epileptiform discharges evoked in pyramidal neurons in field CA3 in rat hippocampal slices by transient episodes of hypoxia. Three 3-min episodes of hypoxia led to decreases in the generation threshold for evoked trains of population spikes and an increase in the number of population spikes per train in pyramidal neurons of field CA1. Interleukin-10 at a concentration of 1 ng/ml completely eliminated the development of epileptiform activity, while its protective effect was less marked at a concentration of 10 ng/ml. These effects of interleukin-10 on living hippocampal slices in in vitro conditions show that they may be associated with the functions of this cytokine as an intercellular mediator of the central nervous system itself rather than being mediated by the peripheral immune system. The results of these studies provide the first experimental evidence of the action of the anti-inflammatory cytokine interleukin-10 on the development of hypoxia-evoked epileptiform events in the hippocampus.
Collapse
Affiliation(s)
- S G Levin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| | | |
Collapse
|