1
|
Park H, Song J, Jeong HW, Grönloh MLB, Koh BI, Bovay E, Kim KP, Klotz L, Thistlethwaite PA, van Buul JD, Sorokin L, Adams RH. Apelin modulates inflammation and leukocyte recruitment in experimental autoimmune encephalomyelitis. Nat Commun 2024; 15:6282. [PMID: 39060233 PMCID: PMC11282314 DOI: 10.1038/s41467-024-50540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Demyelination due to autoreactive T cells and inflammation in the central nervous system are principal features of multiple sclerosis (MS), a chronic and highly disabling human disease affecting brain and spinal cord. Here, we show that treatment with apelin, a secreted peptide ligand for the G protein-coupled receptor APJ/Aplnr, is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Apelin reduces immune cell entry into the brain, delays the onset and reduces the severity of EAE. Apelin affects the trafficking of leukocytes through the lung by modulating the expression of cell adhesion molecules that mediate leukocyte recruitment. In addition, apelin induces the internalization and desensitization of its receptor in endothelial cells (ECs). Accordingly, protection against EAE major outcomes of apelin treatment are phenocopied by loss of APJ/Aplnr function, achieved by EC-specific gene inactivation in mice or knockdown experiments in cultured primary endothelial cells. Our findings highlight the importance of the lung-brain axis in neuroinflammation and indicate that apelin targets the transendothelial migration of immune cells into the lung during acute inflammation.
Collapse
Affiliation(s)
- Hongryeol Park
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Max L B Grönloh
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Bong Ihn Koh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Esther Bovay
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Kee-Pyo Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Luisa Klotz
- Department of Neurology, University of Münster, Münster, Germany
| | | | - Jaap D van Buul
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| |
Collapse
|
2
|
Greaves RB, Read M, Timmis J, Andrews PS, Butler JA, Gerckens BO, Kumar V. In silico investigation of novel biological pathways: the role of CD200 in regulation of T cell priming in experimental autoimmune encephalomyelitis. Biosystems 2013; 112:107-21. [PMID: 23499816 DOI: 10.1016/j.biosystems.2013.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of simulation to investigate biological domains will inevitably lead to the need to extend existing simulations as new areas of these domains become more fully understood. Such simulation extensions can entail the incorporation of additional cell types, molecules or molecular pathways, all of which can exert a profound influence on the simulation behaviour. Where the biological domain is not well characterised, a structured development methodology must be employed to ensure that the extended simulation is well aligned with its predecessor. We develop and discuss such a methodology, relying on iterative simulation development and sensitivity analysis. The utility of this methodology is demonstrated using a case study simulation of experimental autoimmune encephalomyelitis (EAE), a murine T cell-mediated autoimmune disease model of multiple sclerosis, where it is used to investigate the activity of an additional regulatory pathway. We discuss how application of this methodology guards against creating inappropriate simulation representations of the biology when investigating poorly characterised biological mechanisms.
Collapse
Affiliation(s)
- Richard B Greaves
- Department of Computer Science, Deramore Lane, University of York, UK.
| | | | | | | | | | | | | |
Collapse
|
3
|
Farias AS, Martins-de-Souza D, Guimarães L, Pradella F, Moraes AS, Facchini G, Novello JC, Santos LMB. Proteome analysis of spinal cord during the clinical course of monophasic experimental autoimmune encephalomyelitis. Proteomics 2013; 12:2656-62. [PMID: 22740327 DOI: 10.1002/pmic.201200044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The induction of autoimmune encephalomyelitis (EAE) in Lewis rats results in a period of exacerbation followed by complete recovery. Therefore, this model is widely used for studying the evolution of multiple sclerosis. In the present investigation, differentially expressed proteins in the spinal cord of Lewis rats during the evolution of EAE were assessed using the combination of 2DE and MALDI-TOF MS. The majority of the differentially expressed proteins were identified during the acute phase of EAE, in relation to naïve control animals. On the other hand, recovered rats presented a similar protein expression pattern in comparison with the naïve ones. This observation can be explained, at least in part, by the intense catabolism existent in acute phase due to nervous tissue damage. In recovered rats, we have described the upregulation of proteins that are apparently involved in the recovery of damaged tissue, such as light and medium neurofilaments, glial fibrillary acidic protein, tubulins subunits, and quaking protein. These proteins are involved mainly in cell growth, myelination, and remyelination as well as in astrocyte and oligodendrocyte maturation. The present study has demonstrated that the inflammatory response, characterized by an increase of the proliferative response and infiltration of autoreactive T lymphocytes in the central nervous system, occurs simultaneously with neurodegeneration.
Collapse
Affiliation(s)
- Alessandro S Farias
- Neuroimmunology Unit, Department of Genetics Evolution and Bioagents, University of Campinas, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Lynch MA, Mills KHG. Immunology meets neuroscience--opportunities for immune intervention in neurodegenerative diseases. Brain Behav Immun 2012; 26:1-10. [PMID: 21664452 DOI: 10.1016/j.bbi.2011.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/05/2011] [Accepted: 05/24/2011] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammatory changes are characteristic of many, if not all, neurodegenerative diseases but the extent to which the immune system is involved in the pathogenesis of these diseases is unclear. The findings of several studies during the past decade has established that there is a well-developed communication between the central nervous system (CNS) and the peripheral immune system, but also has revealed that the immune system in the CNS is much more sophisticated that previously acknowledged. In this mini-review, we discuss two major neurodegenerative disorders, Alzheimer's disease (AD) and multiple sclerosis (MS), and consider whether the therapies most likely to succeed are those that are identified by studying the marriage of neuroscience and immunology.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity Institute for Neuroscience, Trinity College, Dublin, Ireland.
| | | |
Collapse
|
5
|
Patti F, Lo Fermo S. Lights and shadows of cyclophosphamide in the treatment of multiple sclerosis. Autoimmune Dis 2011; 2011:961702. [PMID: 21547093 PMCID: PMC3087413 DOI: 10.4061/2011/961702] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/29/2010] [Accepted: 01/19/2011] [Indexed: 11/20/2022] Open
Abstract
Cyclophosphamide (cy) is an alkylating agent used to treat malignancies and immune-mediated inflammatory nonmalignant processes. It has been used as a treatment in cases of worsening multiple sclerosis (MS). Cy is currently used for patients whose disease is not controlled by beta-interferon or glatiramer acetate as well as those with rapidly worsening MS. The most commonly used regimens involve outpatient IV pulse therapy given with or without corticosteroids every 4 to 8 weeks. Side effects include nausea, headache, alopecia, pain, male and women infertility, bladder toxicity, and risk of malignancy. Previous studies suggest that cy is effective in patients in the earlier stages of disease, where inflammation predominates over degenerative processes. Given that early inflammatory events appear to correlate with later disability, a major question is whether strong anti-inflammatory drugs, such as cy, will have an impact on later degenerative changes if given early in the disease to halt inflammation.
Collapse
Affiliation(s)
- Francesco Patti
- Department of Neuroscience, University of Catania, Catania, Italy
| | | |
Collapse
|
6
|
Zierath D, Hadwin J, Savos A, Carter KT, Kunze A, Becker KJ. Anamnestic recall of stroke-related deficits: an animal model. Stroke 2010; 41:2653-60. [PMID: 20947846 DOI: 10.1161/strokeaha.110.592865] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Anamnestic recall of stroke-related deficits is a common clinical observation, especially during periods of systemic infection. The pathophysiology of this transient re-emergence of neurological dysfunction is unknown. METHODS Male Lewis rats underwent 3 hours middle cerebral artery occlusion and were treated with lipopolysaccharide or saline at the time of reperfusion. The delayed-type hypersensitivity (DTH) response to myelin basic protein was examined 28 days after middle cerebral artery occlusion. Changes in behavioral outcomes were assessed after DTH testing and repeat administration of lipopolysaccharide or saline at 34 days. At the time of euthanasia (36 days), the immunologic response of splenocytes to myelin basic protein, neuron-specific enolase, and proteolipid protein was determined by enzyme-linked immunospot assay and the number of lymphocytes in the brain determined by immunocytochemistry. RESULTS Animals treated with lipopolysaccharide at middle cerebral artery occlusion had a greater DTH response to myelin basic protein than animals treated with saline. Among those animals that had fully recovered on a given behavioral test before DTH testing, those treated with lipopolysaccharide at middle cerebral artery occlusion displayed more neurological deterioration after DTH testing and had more CD8(+) lymphocytes within the ischemic core of the brain. Furthermore, the Th1 immune response to brain antigens in the spleen was more robust among those animals that deteriorated after DTH testing and there were more CD4(+) lymphocytes in the penumbral region of animals with a Th1 response to myelin basic protein. CONCLUSIONS Our data suggest that an immune response to the brain contributes to the phenomenon of anamnestic recall of stroke-related deficits after an infection. The contribution of the immune response to this phenomenon deserves further investigation.
Collapse
Affiliation(s)
- Dannielle Zierath
- Department of Neurology, University of Washington School of Medicine, Harborview Medical Center, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
7
|
Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2010; 107:15169-74. [PMID: 20696888 DOI: 10.1073/pnas.1009193107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) proteins are a group of Ca(2+)-regulated transcription factors residing in the cytoplasm of resting cells. Dephosphorylation by calcineurin results in nuclear translocation of NFAT and subsequent expression of target genes; rephosphorylation by kinases, including casein kinase 1 (CK1), restores NFAT to its latent state in the cytoplasm. We engineered a hyperactivable version of NFAT1 with increased affinity for calcineurin and decreased affinity for casein kinase 1. Mice expressing hyperactivable NFAT1 in their T-cell compartment exhibited a dramatically increased frequency of both IL-17- and IL-10-producing cells after differentiation under Th17 conditions-this was associated with direct binding of NFAT1 to distal regulatory regions of Il-17 and Il-10 gene loci in Th17 cells. Despite higher IL-17 production in culture, the mice were significantly less prone to myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis than controls, correlating with increased production of the immunomodulatory cytokine IL-10 and enhanced accumulation of regulatory T cells within the CNS. Thus, NFAT hyperactivation paradoxically leads to decreased susceptibility to experimental autoimmune encephalomyelitis, supporting previous observations linking defects in Ca(2+)/NFAT signaling to lymphoproliferation and autoimmune disease.
Collapse
|
8
|
Blanchfield JL, Mannie MD. A GMCSF-neuroantigen fusion protein is a potent tolerogen in experimental autoimmune encephalomyelitis (EAE) that is associated with efficient targeting of neuroantigen to APC. J Leukoc Biol 2010; 87:509-21. [PMID: 20007248 DOI: 10.1189/jlb.0709520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokine-NAg fusion proteins represent an emerging platform for specific targeting of self-antigen to particular APC subsets as a means to achieve antigen-specific immunological tolerance. This study focused on cytokine-NAg fusion proteins that targeted NAg to myeloid APC. Fusion proteins contained GM-CSF or the soluble extracellular domain of M-CSF as the N-terminal domain and the encephalitogenic 69-87 peptide of MBP as the C-terminal domain. GMCSF-NAg and MCSF-NAg fusion proteins were approximately 1000-fold and 32-fold more potent than NAg in stimulating antigenic proliferation of MBP-specific T cells, respectively. The potentiated antigenic responses required cytokine-NAg covalent linkage and receptor-mediated uptake. That is, the respective cytokines did not potentiate antigenic responses when cytokine and NAg were added as separate molecules, and the potentiated responses were inhibited specifically by the respective free cytokine. Cytokine-dependent targeting of NAg was specific for particular subsets of APC. GMCSF-NAg and MCSF-NAg targeted NAg to DC and macrophages; conversely, IL4-NAg and IL2-NAg fusion proteins, respectively, induced an 1000-fold enhancement in NAg reactivity in the presence of B cell and T cell APC. GMCSF-NAg significantly attenuated severity of EAE when treatment was completed before encephalitogenic challenge or alternatively, when treatment was initiated after onset of EAE. MCSF-NAg also had significant tolerogenic activity, but GMCSF-NAg was substantially more efficacious as a tolerogen. Covalent GMCSF-NAg linkage was required for prevention and treatment of EAE. In conclusion, GMCSF-NAg was highly effective for targeting NAg to myeloid APC and was a potent, antigen-specific tolerogen in EAE.
Collapse
Affiliation(s)
- J Lori Blanchfield
- The Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, North Carolina, USA
| | | |
Collapse
|
9
|
Hiraki K, Park IK, Kohyama K, Matsumoto Y. Characterization of CD8-positive macrophages infiltrating the central nervous system of rats with chronic autoimmune encephalomyelitis. J Neurosci Res 2009; 87:1175-84. [PMID: 18951531 DOI: 10.1002/jnr.21924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CD8+ macrophages appear in the central nervous system (CNS) under various pathological conditions such as trauma and ischemia. Furthermore, macrophages expressing CD8 were found in CNS lesions of chronic, but not acute, experimental autoimmune encephalomyelitis (EAE). To further characterize cells with this phenotype, we examined CD8+ macrophages/monocytes in the CNS and peripheral organs during the course of acute and chronic EAE that had been induced by immunization of rats with myelin basic protein and myelin oligodendrocyte glycoprotein, respectively. Counting CD8+ macrophages in CNS lesions revealed that their numbers increased reaching about 60% of total infiltrating macrophages in chronic EAE, while CD8+ macrophages remained less than 5% throughout the course of acute EAE. Unexpectedly, however, higher abundance of CD8+ monocytes/macrophages in the peripheral blood was found in both acute and chronic EAE. Real-time polymerase chain reaction analysis revealed no significant difference in the levels of chemokines and chemokine receptors of blood CD8+ monocytes between acute and chronic EAE. mRNA expression of perforin, a cytotoxic substance, was up-regulated in CD8+ monocytes compared with that of CD8- monocytes in both acute and chronic EAE. These findings suggest that activated CD8+ macrophages may play a cytotoxic role in chronic EAE lesions and that cells other than CD8+ monocytes/macrophages determined the difference in CNS pathology between acute and chronic EAE. Analysis of CD8+ monocytes/macrophages may provide useful information to permit further dissect the pathomechanisms of multiple sclerosis and to develop effective immunotherapies against autoimmune diseases in the CNS.
Collapse
Affiliation(s)
- Keiko Hiraki
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | |
Collapse
|
10
|
McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007; 8:1390-7. [PMID: 17994024 DOI: 10.1038/ni1539] [Citation(s) in RCA: 1234] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 10/16/2007] [Indexed: 11/09/2022]
Abstract
Studies have shown that transforming growth factor-beta (TGF-beta) and interleukin 6 (IL-6) are required for the lineage commitment of pathogenic IL-17-producing T helper cells (T(H)-17 cells). Unexpectedly, here we found that stimulation of myelin-reactive T cells with TGF-beta plus IL-6 completely abrogated their pathogenic function despite upregulation of IL-17 production. Cells stimulated with TGF-beta plus IL-6 were present in the spleen as well as the central nervous system, but they failed to upregulate the proinflammatory chemokines crucial for central nervous system inflammation. In addition, these cells produced IL-10, which has potent anti-inflammatory activities. In contrast, stimulation with IL-23 promoted expression of IL-17 and proinflammatory chemokines but not IL-10. Hence, TGF-beta and IL-6 'drive' initial lineage commitment but also 'restrain' the pathogenic potential of T(H)-17 cells. Our findings suggest that full acquisition of pathogenic function by effector T(H)-17 cells is mediated by IL-23 rather than by TGF-beta and IL-6.
Collapse
|
11
|
Petersen TR, Lata R, Spittle E, Bäckström BT. A chimeric TCR-β chain confers increased susceptibility to EAE. Mol Immunol 2007; 44:3473-81. [PMID: 17481734 DOI: 10.1016/j.molimm.2007.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/20/2007] [Accepted: 03/21/2007] [Indexed: 01/22/2023]
Abstract
Autoreactive myelin-specific CD4(+) T cells play an important role in CNS demyelination observed in MS and EAE. Consequently, it is important to understand the mechanisms of T cell receptor signalling leading to the activation of autoreactive T cells. We have previously generated a chimeric T cell receptor beta-chain (betaIII) displaying increased antigen sensitivity by exchanging most of the transmembrane and the intracellular domain of the TCR-beta chain with the corresponding TCR-gamma sequence. To investigate the effect of this "super-signalling" TCR in an autoimmune setting, we generated MOG(35-55) specific TCR transgenic mice expressing either the wild-type or the chimeric betaIII TCR-beta chain. We found that naïve transgenic T cells expressing the chimeric betaIII chain proliferated more extensively than wild-type cells in response to MOG(35-55)in vitro. Likewise, betaIII T cells skewed into a TH1 phenotype maintained the proliferative advantage over wild-type TH1 T cells at low antigen concentration. However, when skewed into a TH2 phenotype, there was no difference in proliferation between wild-type and betaIII T cells. Blocking of Fas-mediated cell death evenly affected wild-type and betaIII TH1 T cells and resulted in increased proliferation of both subsets, suggesting that betaIII T cells did not show defective Fas-FasL signalling. Finally, we found that betaIII TCR transgenic mice are more susceptible to EAE than wild-type TCR transgenic mice. We conclude that the change in the transmembrane domain of the TCR-beta chain affects TH1 T cells and the susceptibility to EAE, but does not affect TH2 cells. Investigating the molecular interaction within the TCR complex will help us to identify signalling pathways that can be manipulated to stop the progression of MS.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Proliferation/drug effects
- Cytotoxicity, Immunologic/drug effects
- Disease Susceptibility/immunology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Fas Ligand Protein/immunology
- Female
- Glycoproteins/pharmacology
- Immunization
- Interferon-gamma/biosynthesis
- Interleukin-17/biosynthesis
- Interleukin-4/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/pharmacology
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Recombinant Proteins/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- fas Receptor/immunology
Collapse
Affiliation(s)
- Troels R Petersen
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington South, New Zealand
| | | | | | | |
Collapse
|
12
|
Okuda Y, Apatoff BR, Posnett DN. Apoptosis of T cells in peripheral blood and cerebrospinal fluid is associated with disease activity of multiple sclerosis. J Neuroimmunol 2006; 171:163-70. [PMID: 16290072 DOI: 10.1016/j.jneuroim.2005.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Accepted: 09/30/2005] [Indexed: 12/20/2022]
Abstract
Apoptotic elimination of pathogenic T cells is considered to be one of regulatory mechanisms in multiple sclerosis (MS). To explore the potential relationship between Fas-mediated apoptosis and the disease course of MS, we examined apoptosis, defined by annexin V (AV) binding, and Fas (CD95) expression in CD4+ and in CD8+ T cells in MS patients by using five-color flow cytometry. The percentage of AV+CD4+CD3+ cells and CD95+AV+CD4+CD3+ cells in peripheral blood and cerebrospinal fluid (CSF) were significantly decreased in active MS patients compared with inactive MS patients. A significantly lower proportion of CD95+AV+CD8+CD3+ cells in CSF was observed in active MS patients compared with inactive MS patients, but not in peripheral blood. These results indicate that the resistance of T cells to Fas-mediated apoptosis is involved in exacerbation of MS and/or that Fas-mediated apoptosis of T cells is associated with remission of MS.
Collapse
Affiliation(s)
- Yoshinobu Okuda
- Department of Medicine, Division of Hematology-Oncology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
13
|
Leake JAD, Albani S, Kao AS, Senac MO, Billman GF, Nespeca MP, Paulino AD, Quintela ER, Sawyer MH, Bradley JS. Acute disseminated encephalomyelitis in childhood: epidemiologic, clinical and laboratory features. Pediatr Infect Dis J 2004; 23:756-64. [PMID: 15295226 DOI: 10.1097/01.inf.0000133048.75452.dd] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute disseminated encephalomyelitis (ADEM) is a central nervous system demyelinating disease that usually follows an apparently benign infection in otherwise healthy young persons. The epidemiology, infectious antecedents and pathogenesis of ADEM are poorly characterized, and some ADEM patients are subsequently diagnosed with multiple sclerosis (MS). METHODS We retrospectively (1991-1998) and prospectively (1998-2000) studied all persons aged < 20 years diagnosed with ADEM from the 3 principal pediatric hospitals in San Diego County, CA, during 1991-2000. Acute neurologic abnormalities and imaging evidence of demyelination were required for study inclusion. Epidemiologic variables, risk factors, clinical course, laboratory and radiographic findings, neuropathology and treatment data were analyzed. Interleukin (IL)-12, interferon-gamma (IFN-gamma) and IL-10 were assayed in blinded manner on cerebrospinal fluid (CSF) obtained prospectively from a subset of ADEM cases and compared with CSF from patients with enteroviral (EV) meningoencephalitis confirmed by polymerase chain reaction (PCR) and controls without pleocytosis. RESULTS Data were analyzed on 42 children and adolescents diagnosed with ADEM during 1991-2000, and CSF IL-12, IFN-gamma and IL-10 levels were compared among ADEM (n = 14), EV meningoencephalitis (n = 14) and controls without pleocytosis (n = 28). Overall incidence of ADEM was 0.4/100,000/year; incidence quadrupled during 1998-2000 compared with earlier years. No gender, age stratum, ethnic group or geographic area was disproportionately affected. A total of 4 (9.5%) patients initially diagnosed with ADEM were subsequently diagnosed with MS after multiple episodes of demyelination. Although most children eventually recovered, 2 died, including 1 of the 3 ultimately diagnosed with MS. Magnetic resonance imaging was required for diagnosis among 74% of patients; computerized tomography findings were usually normal. Patients with EV had significantly higher mean CSF IFN-gamma (P = 0.005) and IL-10 (P = 0.05) than patients with ADEM and controls without CSF pleocytosis. CSF from ADEM patients had CSF cytokine values statistically similar to those of 3 patients subsequently diagnosed with MS. CONCLUSIONS ADEM is a potentially severe demyelinating disorder likely to be increasingly diagnosed as more magnetic resonance imaging studies are performed on patients with acute encephalopathy. Further characterization of the central nervous system inflammatory response will be needed to understand ADEM pathogenesis, to improve diagnostic and treatment strategies and to distinguish ADEM from MS.
Collapse
Affiliation(s)
- John A D Leake
- Divisions of Infectious Diseases, Children's Hospital and Health Center, San Diego, CA 92123, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Autoimmune conditions caused by injurious immune responses against self-antigens can be ameliorated if the inappropriate responses to self-components that cause tissue injury can be modulated by regulatory cells or shut off via the induction of anergy or via deletion of pathogenic immune responses. Antigen encounter at the gut mucosa can lead to suppression of injurious immune responses to self-antigen via these mechanisms. This type of immunological event is termed oral tolerance. In this review, we examine the mechanisms behind the induction of oral tolerance and provide findings from its use as a form of treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Henry Yim Wu
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
15
|
Jones RE, Bourdette D, Moes N, Vandenbark A, Zamora A, Offner H. Epitope spreading is not required for relapses in experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1690-8. [PMID: 12574332 DOI: 10.4049/jimmunol.170.4.1690] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sequential emergence of specific T lymphocyte-mediated immune reactivity directed against multiple distinct myelin epitopes (epitope spreading) has been associated with clinical relapses in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Based on this association, an appealing and plausible model for immune-mediated progression of the advancing clinical course in MS and EAE has been proposed in which epitope spreading is the cause of clinical relapses in T cell-mediated CNS inflammatory diseases. However, the observed association between epitope spreading and disease progression is not universal, and absolute requirements for epitope spreading in progressive EAE have not been tested in the absence of multiple T cell specificities, because most prior studies have been conducted in immunocompetent mouse strains that possessed broad TCR repertoires. Consequently, the precise nature of a causal relationship between epitope spreading and disease progression remains uncertain. To determine whether relapsing or progressive EAE can occur in the absence of epitope spreading, we evaluated the course of disease in mice which possessed only a single myelin-specific TCR. These mice (transgenic/SCID +/+) exhibited a progressive and sometimes remitting/relapsing disease course in the absence of immune reactivity to multiple, spreading myelin epitopes. The results provide direct experimental evidence relevant to discussions on the mechanisms of disease progression in MS and EAE.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Convalescence
- Crosses, Genetic
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- H-2 Antigens/biosynthesis
- Lymphocyte Transfusion
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Myelin Basic Protein/administration & dosage
- Myelin Basic Protein/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recurrence
- Spleen/cytology
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Richard E Jones
- Veterans Affairs Medical Center, Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Djerbi M, Abdul-Majid KB, Abedi-Valugerdi M, Olsson T, Harris RA, Grandien A. Expression of the long form of human FLIP by retroviral gene transfer of hemopoietic stem cells exacerbates experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2064-73. [PMID: 12574377 DOI: 10.4049/jimmunol.170.4.2064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Subsidence of inflammation and clinical recovery in experimental autoimmune encephalomyelitis (EAE) is postulated to involve apoptosis of inflammatory cells. To test this concept, we examined the effects of overexpressing the long form of human FLICE-inhibitory protein, a potent inhibitor of death receptor-mediated apoptosis, in myelin oligodendrocyte glycoprotein-induced EAE in DBA/1 mice. We found that overexpression of the long form of human FLICE-inhibitory protein by retroviral gene transfer of hemopoietic stem cells led to a clinically more severe EAE in these mice compared with control mice receiving the retroviral vector alone. The exacerbated disease was evident by an enhanced and prolonged inflammatory reaction in the CNS of these animals compared with control mice. The acute phase of EAE was characterized by a massive infiltration of macrophages and granulocytes and a simultaneous increase in TNF-alpha production in the CNS. In the chronic phase of the disease, there was a prolonged inflammatory response in the form of persistent CD4(+) T and B cells in the CNS and a peripheral Th1 cytokine bias caused by elevated levels of IFN-gamma and reduced levels of IL-4 in the spleen. Our findings demonstrate that death receptor-mediated apoptosis can be important in the pathogenesis of EAE and further emphasize the need for effective apoptotic elimination of inflammatory cells to achieve disease remission.
Collapse
MESH Headings
- Acute Disease
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/toxicity
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Bone Marrow Cells/immunology
- CASP8 and FADD-Like Apoptosis Regulating Protein
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/toxicity
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Chronic Disease
- Cytokines/biosynthesis
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Genetic Vectors
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- Hematopoietic Stem Cell Transplantation/adverse effects
- Hematopoietic Stem Cell Transplantation/methods
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Intracellular Signaling Peptides and Proteins
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred DBA
- Myelin Proteins
- Myelin-Associated Glycoprotein/administration & dosage
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/toxicity
- Retroviridae/genetics
- Retroviridae/immunology
- Stem Cells/immunology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Transduction, Genetic
- Tumor Necrosis Factor-alpha/biosynthesis
- fas Receptor/physiology
Collapse
Affiliation(s)
- Mounira Djerbi
- Department of Immunology, Wenner-Gren Institute, University of Stockholm, S-10691 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Okuda Y, Okuda M, Bernard CCA. The suppression of T cell apoptosis influences the severity of disease during the chronic phase but not the recovery from the acute phase of experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 2002; 131:115-25. [PMID: 12458043 DOI: 10.1016/s0165-5728(02)00267-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The elimination of T cells by apoptosis is considered to be one of the regulatory factors in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To address further the role of apoptotic T cell death in EAE, we investigated myelin oligodendrocyte glycoprotein (MOG)-induced EAE in transgenic mice overexpressing the anti-apoptotic gene, bcl-2, in T cells. During the acute phase of EAE, no significant difference was observed in the clinical course, pathology and T cell response to MOG between bcl-2 transgenic mice and wild-type littermates. While the recovery from the first attack of EAE was not impaired in the bcl-2 transgenic mice, a more severe disease was observed during the chronic phase of the disease even though T and B cell responses to MOG were comparable to those of wild-type littermates. A flow cytometric analysis by Annexin V showed a significant decrease of apoptotic T cells in the central nervous system (CNS) of the bcl-2 transgenic mice with EAE compared with controls during the chronic as well as the acute phase of disease. These results suggest that while T cell apoptosis in the CNS may play a regulatory role in EAE, the spontaneous recovery from acute EAE cannot solely be explained by T cell apoptosis.
Collapse
MESH Headings
- Acute Disease
- Animals
- Apoptosis
- Cells, Cultured
- Chronic Disease
- Cytokines/biosynthesis
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Genes, bcl-2
- Humans
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Nitrites/analysis
- Spinal Cord/pathology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Yoshinobu Okuda
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia.
| | | | | |
Collapse
|
18
|
Massey EJ, Sundstedt A, Day MJ, Corfield G, Anderton S, Wraith DC. Intranasal peptide-induced peripheral tolerance: the role of IL-10 in regulatory T cell function within the context of experimental autoimmune encephalomyelitis. Vet Immunol Immunopathol 2002; 87:357-72. [PMID: 12072259 DOI: 10.1016/s0165-2427(02)00068-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated autoimmune disease commonly employed as a model for multiple sclerosis. Extensive studies have demonstrated that EAE may be prevented or ameliorated by the intranasal administration of soluble peptides representing encephalitogenic epitopes. There is increasing evidence that this peptide administration may function via the generation of regulatory cells. The mechanism of action of these cells remains controversial and it seems likely that it may vary between experimental models. At present the majority of work on regulatory cells has centred on characterising naturally occurring regulators, or those generated artificially ex vivo, and less is known about induced regulatory cells produced following peptide administration. This report aims to briefly outline the evidence for the existence of natural regulatory T cells and to introduce the sub-types of induced regulatory T cells now recognised. In several of these regulatory cell systems investigated to date, interleukin-10 (IL-10) has been shown to be important in cell function. This has not been directly investigated in a model employing peptide therapy to induce peripheral tolerance, hence the purpose of this study was to investigate the role of IL-10 in the generation of these regulatory cells. This work has employed both a TCR transgenic mouse system, for predominantly in vitro studies of cell function, and an IL-10 knock-out mouse strain to investigate in vivo disease protection. The results summarised in this report demonstrate that IL-10 is fundamentally important in the generation of disease protection following intranasal peptide therapy.
Collapse
Affiliation(s)
- Emma J Massey
- Department of Small Animal Clinical Studies, Veterinary College, University College Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
19
|
Gimsa U, Wolf SA, Haas D, Bechmann I, Nitsch R. Th2 cells support intrinsic anti-inflammatory properties of the brain. J Neuroimmunol 2001; 119:73-80. [PMID: 11525802 DOI: 10.1016/s0165-5728(01)00343-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In experimental autoimmune encephalomyelitis (EAE), Th1 cells are responsible for disease induction while Th2 cells can be protective. To address the mechanisms of this differential behavior, we utilized organotypic murine entorhinal-hippocampal slice cultures to analyze interactions between myelin basic protein-specific Th1 and Th2 cells with microglial cells. While both Th1 and Th2 cells induced CD40 expression, only Th1 cells induced intercellular adhesion molecule-1 (ICAM-1) expression on microglia. Moreover, Th2 cells prevented or even reversed Th1-induced ICAM-1 upregulation. Evidently, Th2 cells could diminish Th1-induced inflammatory reactions and actively support the resting state of microglia, which could be one mechanism of Th2-mediated remission of neuroinflammation during EAE.
Collapse
Affiliation(s)
- U Gimsa
- Department of Cell and Neurobiology, Institute of Anatomy, Humboldt-University Clinic Charité, D-10098, Berlin, Germany.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Hilliard B, Wilmen A, Seidel C, Liu TS, Göke R, Chen Y. Roles of TNF-related apoptosis-inducing ligand in experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1314-9. [PMID: 11145715 DOI: 10.4049/jimmunol.166.2.1314] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TRAIL, the TNF-related apoptosis-inducing ligand, induces apoptosis of tumor cells, but not normal cells; the roles of TRAIL in nontransformed tissues are unknown. Using a soluble TRAIL receptor, we examined the consequences of TRAIL blockade in an animal model of multiple sclerosis. We found that chronic TRAIL blockade in mice exacerbated experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. The exacerbation was evidenced primarily by increases in disease score and degree of inflammation in the CNS. Interestingly, the degree of apoptosis of inflammatory cells in the CNS was not affected by TRAIL blockade, suggesting that TRAIL may not regulate apoptosis of inflammatory cells in experimental autoimmune encephalomyelitis. By contrast, myelin oligodendrocyte glycoprotein-specific Th1 and Th2 cell responses were significantly enhanced in animals treated with the soluble TRAIL receptor. Based on these observations, we conclude that unlike TNF, which promotes autoimmune inflammation, TRAIL inhibits autoimmune encephalomyelitis and prevents activation of autoreactive T cells.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Apoptosis Regulatory Proteins
- Cells, Cultured
- Cytokines/biosynthesis
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Humans
- Injections, Subcutaneous
- Jurkat Cells
- K562 Cells
- Ligands
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Associated Glycoprotein/toxicity
- Myelin-Oligodendrocyte Glycoprotein
- Oligodendroglia/immunology
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/administration & dosage
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/pharmacology
- Solubility
- Spinal Cord/immunology
- Spinal Cord/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- B Hilliard
- Department of Molecular and Cellular Engineering, Institute for Human Gene Therapy, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chang JR, Zaczynska E, Katsetos CD, Platsoucas CD, Oleszak EL. Differential expression of TGF-beta, IL-2, and other cytokines in the CNS of Theiler's murine encephalomyelitis virus-infected susceptible and resistant strains of mice. Virology 2000; 278:346-60. [PMID: 11118358 DOI: 10.1006/viro.2000.0646] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracranial inoculation of susceptible SJL mice with Theiler's murine encephalomyelitis virus (TMEV) results in biphasic disease consisting of early acute disease, followed by late chronic demyelinating disease, associated with mononuclear infiltrates and demyelinating lesions. In contrast, resistant C57BL/6 (B6) mice develop only early acute disease. We employed cytokine-specific RT-PCR to determine the expression of cytokine transcripts in the CNS of TMEV-infected SJL and B6 mice. During early acute disease, we have found a strong proinflammatory (Th1) cytokine response in the CNS of both TMEV-infected SJL and B6 mice, demonstrated by the expression of transcripts for IFN-gamma, IL-1, IL-6, IL-12p40, and TNF-alpha. At 8 days postinfection (p.i.), TGF-beta1 and TNF-alpha transcripts were present at significantly higher levels (P < 0.01) in the CNS of SJL susceptible mice in comparison to those found in the CNS of B6 mice. Immunohistochemical staining revealed that TGF-beta protein was expressed in leptomeningeal mononuclear inflammatory cell infiltrates in the brain of SJL mice but not in B6 mice, at 8 days p.i. TGF-beta may be responsible for the failure of SJL mice to develop an effective anti-TMEV CTL response. During late chronic demyelinating disease, high levels of proinflammatory Th1 cytokines were found in the CNS of SJL mice, but not B6 mice. Significantly higher levels (P < 0.01) of anti-inflammatory cytokine transcripts (IL-4, IL-5, and IL-10 (Th2 cytokines) and TGF-beta) were found in the spinal cord of TMEV-infected SJL mice with chronic demyelinating disease than in the spinal cord of B6 mice during the same time period (39 or 60 days p.i.). These anti-inflammatory cytokines may contribute to the downregulation of the proinflammatory response in SJL mice. High levels of IL-2 transcripts and protein appeared transiently in the spinal cord of TMEV-infected SJL mice before the onset of demyelinating disease and coincided with an influx of new T cells into the CNS and/or expansion of remaining T cells that have not been eliminated after viral clearance.
Collapse
Affiliation(s)
- J R Chang
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
23
|
Sharief MK. Increased cellular expression of the caspase inhibitor FLIP in intrathecal lymphocytes from patients with multiple sclerosis. J Neuroimmunol 2000; 111:203-9. [PMID: 11063839 DOI: 10.1016/s0165-5728(00)00310-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Failure of Fas-mediated apoptosis of potentially pathogenic, autoreactive T lymphocytes may be involved in the pathogenesis of multiple sclerosis. The intracellular protein FLIP, a naturally occurring caspase-antagonist, is a potent inhibitor of the Fas signalling pathway that may block Fas-mediated apoptosis of activated lymphocytes. This study reports specific overexpression of both long and short forms of FLIP in intrathecal lymphocytes from patients with multiple sclerosis. The overexpression of FLIP is independent of cellular expressions of Fas receptor or the anti-apoptotic protein Bcl-2. These results provide a better understanding of some of the intrinsic immunoregulatory mechanisms that are involved in multiple sclerosis.
Collapse
Affiliation(s)
- M K Sharief
- Department of Neuroimmunology, Guy's, King's and St. Thomas' School of Medicine, Hodgkin Building, Guy's Hospital, SE1 9RT, London, UK.
| |
Collapse
|
24
|
Yoshitomi T, Matsubara T, Nishikawa M, Katayama K, Ichiyama T, Hayashi T, Furukawa S. Increased peripheral blood interferon gamma-producing T cells in acute disseminated encephalomyelitis. J Neuroimmunol 2000; 111:224-8. [PMID: 11063842 DOI: 10.1016/s0165-5728(00)00358-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There have been few reports on immunological studies in patients with acute disseminated encephalomyelitis (ADEM). We investigated the immunological features of ADEM using flow cytometry to examine interferon gamma (IFN-gamma)-and interleukin 4 (IL-4)-producing peripheral blood CD3+T cells from four patients with ADEM, three other neurological disorders (Fisher syndrome, epilepsy and aseptic meningitis) and 10 healthy children. IFN-gamma-producing CD3+T cells were increased in ADEM during the acute stage. In a relapsing case of ADEM, the percentages of IFN-gamma-producing CD3+T cells correlated with disease activity. There were no significant changes of IL-4-producing CD3+T cells in ADEM during the acute and convalescent stages. In conclusion, peripheral blood IFN-gamma-producing T cells are related to the pathogenesis at the early phase of the acute ADEM.
Collapse
Affiliation(s)
- T Yoshitomi
- Department of Pediatrics, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Yamaguchi, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Liu TS, Hilliard B, Samoilova EB, Chen Y. Differential roles of Fas ligand in spontaneous and actively induced autoimmune encephalomyelitis. Clin Immunol 2000; 95:203-11. [PMID: 10866127 DOI: 10.1006/clim.2000.4861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the roles of Fas/Fas ligand (FasL) in autoimmunity, we studied spontaneous and actively induced autoimmune encephalomyelitis in 541 myelin basic protein-specific T cell receptor transgenic mice. We found that spontaneous autoimmune encephalomyelitis, which was initiated by unidentified microbial factors, was dramatically exacerbated in mice carrying Fas or FasL gene mutation. The exacerbation of autoimmune encephalomyelitis was reflected primarily by an increase in disease incidence and a decrease in spontaneous disease recovery. By contrast, actively induced encephalomyelitis, which was initiated by pertussis toxin, was significantly inhibited by Fas or FasL gene mutation. These results suggest that environmental factors that trigger autoimmune disease may determine not only whether disease will occur but also whether an immune molecule such as FasL will promote or inhibit the autoimmune process.
Collapse
Affiliation(s)
- T S Liu
- Institute for Human Gene Therapy and Department of Molecular and Cellular Engineering, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
26
|
Issazadeh S, Abdallah K, Chitnis T, Chandraker A, Wells AD, Turka LA, Sayegh MH, Khoury SJ. Role of passive T-cell death in chronic experimental autoimmune encephalomyelitis. J Clin Invest 2000; 105:1109-16. [PMID: 10772655 PMCID: PMC300830 DOI: 10.1172/jci8607] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 03/07/2000] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of chronic disease and recovery from relapses in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, are unknown. Deletion of myelin-specific lymphocytes by apoptosis may play a role in termination of the inflammatory response. One pathway of apoptosis is the passive cell death or "cell death by neglect" pathway, which is under the control of the Bcl family of genes. To investigate the role of passive cell death pathway in EAE, we used mice with transgenic expression of the long form of the bcl-x gene (Bcl-x(L)) targeted to the T-cell lineage. We found that mice transgenic for Bcl-x(L) have an earlier onset and a more chronic form of EAE induced by myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 compared with wild-type littermate mice. This was not due to an expanded autoreactive cell repertoire. Primed peripheral lymphocytes from Bcl-x(L) transgenic mice showed increased proliferation and cytokine production to MOG peptide in vitro compared with lymphocytes from wild-type animals. Immunohistologic studies demonstrated increased cellular infiltrates, immunoglobulin precipitation, and demyelination in the Bcl-x(L) transgenic central nervous system (CNS) compared with controls. There was also a decreased number of apoptotic cells in the CNS of Bcl-x(L) transgenic mice when compared with littermates at all time points tested. This is the first report of an autoimmune disease model in Bcl-x(L) transgenic mice. Our data indicate that the passive cell death pathway is important in the pathogenesis of chronic EAE. These findings have implications for understanding the pathogenesis of multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- S Issazadeh
- Center for Neurologic Diseases, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Prud'homme GJ, Piccirillo CA. The inhibitory effects of transforming growth factor-beta-1 (TGF-beta1) in autoimmune diseases. J Autoimmun 2000; 14:23-42. [PMID: 10648114 DOI: 10.1006/jaut.1999.0339] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The importance of transforming growth factor-beta-1 (TGF-beta1) in immunoregulation and tolerance has been increasingly recognized. It is now proposed that there are populations of regulatory T cells (T-reg), some designated T-helper type 3 (Th3), that exert their action primarily by secreting this cytokine. Here, we emphasize the following concepts: (1) TGF-beta1 has multiple suppressive actions on T cells, B cells, macrophages, and other cells, and increased TGF-beta1 production correlates with protection and/or recovery from autoimmune diseases; (2) TGF-beta1 and CTLA-4 are molecules that work together to terminate immune responses; (3) Th0, Th1 and Th2 clones can all secrete TGF-beta1 upon cross-linking of CTLA-4 (the functional significance of this in autoimmune diseases has not been reported, but TGF-beta1-producing regulatory T-cell clones can produce type 1 inflammatory cytokines); (4) TGF-beta1 may play a role in the passage from effector to memory T cells; (5) TGF-beta1 acts with some other inhibitory molecules to maintain a state of tolerance, which is most evident in immunologically privileged sites, but may also be important in other organs; (6) TGF-beta1 is produced by many cell types, is always present in the plasma (in its latent form) and permeates all organs, binding to matrix components and creating a reservoir of this immunosuppressive molecule; and (7) TGF-beta1 downregulates adhesion molecules and inhibits adhesion of leukocytes to endothelial cells. We propose that rather than being passive targets of autoimmunity, tissues and organs actively suppress autoreactive lymphocytes. We review the beneficial effects of administering TGF-beta1 in several autoimmune diseases, and show that it can be effectively administered by a somatic gene therapy approach, which results in depressed inflammatory cytokine production and increased endogenous regulatory cytokine production.
Collapse
Affiliation(s)
- G J Prud'homme
- Department of Pathology, McGill University, 3775 University St., Room B13, Montreal, Quebéc, H3A 2B4, Canada.
| | | |
Collapse
|
28
|
Suvannavejh GC, Dal Canto MC, Matis LA, Miller SD. Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis. J Clin Invest 2000; 105:223-31. [PMID: 10642601 PMCID: PMC377433 DOI: 10.1172/jci8561] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PLP139-51-induced experimental autoimmune encephalomyelitis (R-EAE) displays a relapsing-remitting paralytic course in female SJL mice. We investigated the role of apoptosis/activation-induced cell death (AICD) in the spontaneous recovery from acute disease. Clinical EAE was significantly enhanced in Fas (CD95/APO-1)-deficient SJL lpr/lpr mice, which displayed significantly increased mean peak clinical scores, reduced remission rates, and increased mortality when compared with their SJL +/lpr littermates. PLP139-151-specific proliferative responses were fairly equivalent in the 2 groups, but draining lymph node T cells from SJL lpr/lpr mice produced dramatically increased levels of IFN-gamma. Central nervous system (CNS) Fas and FasL mRNA levels in wild-type SJL (H-2(s)) mice peaked just before spontaneous disease remission and gradually declined as disease remitted. We applied the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay to detect apoptosis in situ in spinal cords of mice at various clinical stages of EAE. Most TUNEL(+) cells were found during active periods of inflammation: the acute, peak, and relapse time points. Significantly fewer apoptotic cells were observed at preclinical and remission time points. Collectively, these findings indicate that Fas-mediated apoptosis/AICD plays a major role in the spontaneous remission after the initial acute inflammatory episode and represents an important intrinsic mechanism in regulation of autoimmune responses.
Collapse
Affiliation(s)
- G C Suvannavejh
- Department of Microbiology-Immunology, Interdepartmental Immunobiology Center, Northwestern University Medical School and the Northwestern University Institute for Neuroscience, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
29
|
Wong FS, Dittel BN, Janeway CA. Transgenes and knockout mutations in animal models of type 1 diabetes and multiple sclerosis. Immunol Rev 1999; 169:93-104. [PMID: 10450511 DOI: 10.1111/j.1600-065x.1999.tb01309.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this article, we will examine the roles of transgenic and knockout animals that aid us in understanding two autoimmune diseases-type 1 (insulin-dependent) diabetes and multiple sclerosis. The first sections will focus on studies in type 1 diabetes to show how genetically altered animals have given insight into the role of various immune cell types, autoantigens, co-stimulatory molecules, cytokines and, finally, the role of various effector pathways in the pathogenesis of diabetes. The second section concentrating on the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), will show how animals that express a T-cell receptor derived from a clone able to cause disease have given insight into the pathogenesis of EAE.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Autoantigens
- B-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Humans
- Islets of Langerhans/immunology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Mutation
- Myelin Basic Protein/immunology
Collapse
Affiliation(s)
- F S Wong
- Section of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | |
Collapse
|
30
|
Weiner HL. Oral tolerance with copolymer 1 for the treatment of multiple sclerosis. Proc Natl Acad Sci U S A 1999; 96:3333-5. [PMID: 10097037 PMCID: PMC34268 DOI: 10.1073/pnas.96.7.3333] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Affiliation(s)
- G Garcia
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
32
|
Pohl-Koppe A, Burchett SK, Thiele EA, Hafler DA. Myelin basic protein reactive Th2 T cells are found in acute disseminated encephalomyelitis. J Neuroimmunol 1998; 91:19-27. [PMID: 9846815 DOI: 10.1016/s0165-5728(98)00125-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute disseminated encephalomyelitis (ADEM), a postinfectious illness of the central nervous system (CNS), is thought to be an autoimmune disease. Here, we characterized the cytokines secreted by myelin-reactive T cells generated from patients with ADEM. The frequency of MBP-reactive T cell lines was ten-fold higher in patients with ADEM compared to patients with encephalitis and normal subjects. Whereas there was no significant IFN-gamma secretion, the predominant cytokine secreted by MBP-reactive T cell lines was IL-4 in patients with ADEM. In contrast, IL-4 secretion was only rarely detected in the controls. The presence of high frequencies of MBP-reactive IL-4 secreting T cells in subjects with ADEM during their recovery phase may be similar to myelin reactive IL-4 secreting T cells observed during the spontaneous recovery of animals with EAE.
Collapse
Affiliation(s)
- A Pohl-Koppe
- Center for Neurologic Diseases, Department of Neurology, Brigham and Womens's Hospital, Harvard Medical School, Boston, MA 02115-5817, USA
| | | | | | | |
Collapse
|
33
|
Kuchroo VK, Weiner HL. Antigen-driven regulation of experimental autoimmune encephalomyelitis. RESEARCH IN IMMUNOLOGY 1998; 149:759-71; discussion 842-3, 855-60. [PMID: 9923631 DOI: 10.1016/s0923-2494(99)80003-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- V K Kuchroo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
34
|
Inobe J, Slavin AJ, Komagata Y, Chen Y, Liu L, Weiner HL. IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur J Immunol 1998; 28:2780-90. [PMID: 9754565 DOI: 10.1002/(sici)1521-4141(199809)28:09<2780::aid-immu2780>3.0.co;2-j] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that following oral administration of myelin basic protein (MBP), regulatory T cells are generated from gut-associated lymphoid tissue and that these cells suppress experimental allergic encephalomyelitis (EAE). These regulatory T cells produce transforming growth factor-beta (TGF-beta) with various amounts of IL-4 and IL-10 and these TGF-beta-secreting T cells have been termed Th3 cells. T cells in lymphoid organs drained by mucosal sites secrete IL-4 as a primary T cell growth factor. In the present study, we examined the role of IL-4 on oral tolerance and in the generation of TGF-beta secreting cells. Treatment of (PLJ x SJL)F1 mice with intraperitoneal (i. p.) IL-4 and low-dose oral MBP (0.5 mg) given three times reduced the severity of EAE, whereas i.p. injection of IL-4 alone or oral MBP alone given in these suboptimal doses, showed no protection. Spleen cells from protected mice produced increased amounts of TGF-beta and reduced IFN-gamma upon stimulation with MBP in vitro. Mucosal MBP-specific IgA production was significantly increased in IL-4 plus MBP fed animals. Moreover, oral administration of IL-4 (1 microg per feeding) also enhanced the suppression of EAE by oral MBP and this protective effect was reversed by administration of anti-TGF-beta antibody in vivo. Reverse transcription-PCR showed enhanced suppression of IFN-gamma in Peyer's patch in animals fed MBP and IL-4 versus those fed MBP alone. We then investigated the role of IL-4 in the generation of TGF-beta-secreting cells using MBP Ac1-11 TCR transgenic animals. Cells were cultured with IL-2, IL-4, or IFN-gamma in the presence of MBP and limiting dilution analysis for cytokine-secreting cells performed. We found that IL-4, but not IL-2 or IFN-gamma, generated TGF-beta-secreting T cells from naive splenic T cells and that these cells provided help for IgA production. These findings demonstrate that IL-4 is a differentiation factor for TGF-beta-secreting Th3 cells and oral IL-4 has a synergistic effect on low-dose oral tolerance that is associated with increased TGF-beta secretion.
Collapse
Affiliation(s)
- J Inobe
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Comabella M, Balashov K, Issazadeh S, Smith D, Weiner HL, Khoury SJ. Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy. J Clin Invest 1998; 102:671-8. [PMID: 9710434 PMCID: PMC508928 DOI: 10.1172/jci3125] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis is postulated to be a Th1-type cell-mediated autoimmune disease. We investigated cytokine profiles in patients with progressive multiple sclerosis by using intracytoplasmic staining. We found increased IL-12 production by monocytes and increased IFN-gamma production by T cells in untreated patients as compared with controls. In patients treated with methotrexate, methylprednisolone, or cyclophosphamide/methylprednisolone (CY/MP), only CY/MP treatment normalized the elevated IL-12 production. Furthermore, CY/MP-treated patients had decreased IFN-gamma and increased IL-4, IL-5, and TGF-beta expression. Patients followed prospectively before and after starting CY/MP treatment showed a gradual decrease in IL-12 and IFN-gamma production and an increase in IL-4 and IL-5. In vitro, addition of 4-hydroperoxycyclophosphamide, a metabolite of cyclophosphamide decreased IL-12 production in mononuclear cell cultures. When patients were classified as having active or stable disease, IL-12 production correlated with disease activity. In summary, our results demonstrate a Th1-type cytokine bias in peripheral blood mononuclear cells of untreated progressive MS patients that is reversed by CY/MP treatment and is associated with Th2 and TGF-beta (Th3) type responses. These findings provide a basis for immune monitoring of patients with MS and suggest that treatments that downregulate IL-12 may prove to be beneficial in progressive MS.
Collapse
Affiliation(s)
- M Comabella
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Multiple sclerosis (MS) is postulated to be a cell mediated autoimmune disease directed against central nervous system myelin components. Our understanding of the disease has been enhanced by a number of factors: 1) advances in our understanding of the immune system; 2) clinical trials which are beginning to identify treatments which can affect MS; 3) a better understanding of the clinical features of MS; and 4) advances in MRI imaging of the brain. Based on the current state of knowledge, this paper proposes a 21 point unifying hypothesis on the etiology and treatment of the disease. This hypothesis makes a series of assumptions, many of which are unproven, and is presented as a framework from which to investigate and treat the disease, not as a established biology. It is hypothesized that the underlying pathogenesis of MS is related to an inappropriate class of immune response against myelin antigens favoring proinflammatory Th1 versus anti-inflammatory Th2 or Th3 type responses. Environmental and genetic factors predispose toward MS by affecting the class of response and effectiveness of treatment is also related to how it impacts on this common final pathway. Because of epitope spreading, there is not one autoantigen involved in MS and the progressive form of MS differs immunologically from the relapsing remitting form. Viruses trigger and perpetuate MS, although MS is not related to a persistent viral infection. Because MS is a multifactorial disease, there are clinical and perhaps immunological subtypes of MS and a single type of treatment is unlikely to control the disease in all patients. Thus, there will be responders and non-responders to each effective therapy and ultimately combination therapy will be required to cure the disease.
Collapse
Affiliation(s)
- H L Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA 02115, USA
| |
Collapse
|