1
|
Dakhave M, Metkar G, Suryawanshi H. Simultaneous detection and differentiation of dengue and chikungunya viruses for commercial utility. Virusdisease 2023; 34:248-256. [PMID: 37408546 PMCID: PMC10317902 DOI: 10.1007/s13337-023-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/10/2023] [Indexed: 07/07/2023] Open
Abstract
The diagnosis of Dengue and Chikungunya infections during acute phase is a priority considering emerging pattern and increasing trends of their infections. The present study describes the commercial development and validation of RT-PCR test for the simultaneous detection of of DEN and CHIK viral RNA in a single tube from human plasma samples. Multistep one step RT-PCR assay was developed and validated for detection and discrimination of DEN and CHIK along with exogenous internal control. The test was evaluated for commercial use using 3 different lots to determine analytical sensitivity, specificity, precision and stability. The external clinical evaluation was performed at NABL accredited lab with known positive and negative Chikungunya and Dengue specimens and comparator assay method. The findings showed that the test could identify CHIK and DEN viral nucleic acid in clinical samples within 80 min, without any cross-reactivity. The analytical detection limit of the test was 1.56 copies/µl for both. The clinical sensitivity and specificity was ≥ 98% and provide a high-throughput and screen up to 90 samples in a single run. It is available in a freeze-dried format and can be used in both the manual and automated platforms. This unique combo test, PathoDetect™ "CHIK DEN Multiplex PCR Kit" enables simultaneous, sensitive, specific detection of DENV and CHIKV and serves as "ready to use" platform for commercial use. It would aid the differential diagnosis as early as day 1 of the infection and facilitate screen-and-treat approach.
Collapse
Affiliation(s)
- Minal Dakhave
- R&D Department, Mylab Discovery Solutions Pvt. Ltd., Global Innovation Center, Amar Paradigm, Baner, Pune, Maharashtra 411045 India
| | - Gauri Metkar
- R&D Department, Mylab Discovery Solutions Pvt. Ltd., Global Innovation Center, Amar Paradigm, Baner, Pune, Maharashtra 411045 India
| | - Harshada Suryawanshi
- R&D Department, Mylab Discovery Solutions Pvt. Ltd., Global Innovation Center, Amar Paradigm, Baner, Pune, Maharashtra 411045 India
| |
Collapse
|
2
|
Cao X, Qiu X, Shi N, Ha Z, Zhang H, Xie Y, Wang P, Zhu X, Zhao W, Zhao G, Jin N, Lu H. Establishment of a reverse transcription real-time quantitative PCR method for Getah virus detection and its application for epidemiological investigation in Shandong, China. Front Microbiol 2022; 13:1009610. [PMID: 36212868 PMCID: PMC9538719 DOI: 10.3389/fmicb.2022.1009610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Getah virus (GETV) is a mosquito-borne, single-stranded, positive-sense RNA virus belonging to the genus Alphavirus of the family Togaviridae. Natural infections of GETV have been identified in a variety of vertebrate species, with pathogenicity mainly in swine, horses, bovines, and foxes. The increasing spectrum of infection and the characteristic causing abortions in pregnant animals pose a serious threat to public health and the livestock economy. Therefore, there is an urgent need to establish a method that can be used for epidemiological investigation in multiple animals. In this study, a real-time reverse transcription fluorescent quantitative PCR (RT-qPCR) method combined with plaque assay was established for GETV with specific primers designed for the highly conserved region of GETV Nsp1 gene. The results showed that after optimizing the condition of RT-qPCR reaction, the minimum detection limit of the assay established in this study was 7.73 PFU/mL, and there was a good linear relationship between viral load and Cq value with a correlation coefficient (R2) of 0.998. Moreover, the method has good specificity, sensitivity, and repeatability. The established RT-qPCR is 100-fold more sensitive than the conventional RT-PCR. The best cutoff value for the method was determined to be 37.59 by receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC) was 0.956. Meanwhile, we collected 2,847 serum specimens from swine, horses, bovines, sheep, and 17,080 mosquito specimens in Shandong Province in 2022. The positive detection rates by RT-qPCR were 1%, 1%, 0.2%, 0%, and 3%, respectively. In conclusion, the method was used for epidemiological investigation, which has extensive application prospects.
Collapse
Affiliation(s)
- Xinyu Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangshu Qiu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning Shi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuo Ha
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Wenxin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Guanyu Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Ningyi Jin,
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Huijun Lu,
| |
Collapse
|
3
|
The Efficacy of the Traditional Thai Remedy “Ya-Ha-Rak” against Dengue Virus Type 2. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Lee H, Han H, Jeon S. Baleen-Mimicking Virtual Filters for Rapid Detection of Pathogenic Bacteria in Water Using Magnetic Nanoparticle Chains and a Halbach Ring. ACS Sens 2020; 5:3432-3437. [PMID: 33104342 DOI: 10.1021/acssensors.0c01334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a virtual filter that quickly and efficiently captures and detects pathogenic bacteria in large amounts of water. The virtual filter comprised magnetic nanoparticle chains (MNCs) obtained by cross-linking alginate-coated magnetic nanoparticles (MNPs). When the MNC solution in a disposable plastic tube was exposed to an external magnetic field, the MNCs were aligned along the magnetic field lines, forming a filter similar to a whale's baleen filtering system. A Halbach ring that increased the magnetic field inside the ring was used as the source of an external magnetic field. The Halbach ring produced a more uniform and denser alignment of MNCs than any other ring array. To demonstrate the performance of the virtual filter comprising MNCs, Escherichia coli (E. coli) O157-spiked water was injected into the virtual filter comprising polyethyleneimine-coated MNCs, and the concentration of E. coli O157 captured by electrostatic interaction was determined using qPCR analysis. The bacterial capture efficiency using MNCs was 90% at a flow rate of 5 mL/min, and the detection limit after 10 min of preconcentration of bacteria was 10 cfu/mL, which is 100 times lower than that obtained using qPCR alone.
Collapse
Affiliation(s)
- Hyeonjeong Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongbuk, Republic of Korea
| | - Hyunsoo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongbuk, Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongbuk, Republic of Korea
| |
Collapse
|
5
|
Wu CC, Yen HY, Lai LT, Perng GC, Lee CR, Wu SJ. A Label-Free Impedimetric Genosensor for the Nucleic Acid Amplification-Free Detection of Extracted RNA of Dengue Virus. SENSORS 2020; 20:s20133728. [PMID: 32635293 PMCID: PMC7374514 DOI: 10.3390/s20133728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022]
Abstract
Developing rapid and sensitive diagnostic methods for dengue virus (DENV) infection is of prime priority because DENV infection is the most prevalent mosquito-borne viral disease. This work proposes an electrochemical impedance spectroscopy (EIS)-based genosensor for the label-free and nucleic acid amplification-free detection of extracted DENV RNA intended for a sensitive diagnosis of DENV infection. A concentration ratio of 0.04 mM 6-mercaptohexanoic acid (MHA) to 1 mM 6-mercapto-1-hexanol (MCH) was selected to modify thin-film gold electrodes as a link to control the coverage of self-designed probe DNA (pDNA) at a density of 4.5 ± 0.4 × 1011 pDNA/cm2. The pDNA/MHA/MCH-modified genosensors are proven to improve the hybridization efficiency of a synthetic 160-mer target DNA (160mtDNA) with a 140-mer electrode side overhang as compared to other MHA/MCH ratio-modified genosensors. The MHA(0.04 mM)/MCH(1 mM)-modified genosensors also present good hybridization efficiency with the extracted DENV serotype 1 (DENV1) RNA samples, having the same electrode side overhangs with the 160mtDNA, showing a low detection limit of 20 plaque forming units (PFU)/mL, a linear range of 102–105 PFU/mL and good selectivity for DENV1. The pDNA density-controlled method has great promise to construct sensitive genosensors based on the hybridization of extracted DENV nucleic acids.
Collapse
Affiliation(s)
- Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (H.-Y.Y.); (L.-T.L.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
- Correspondence: ; Tel.: +886-4-2285-1268
| | - Hao-Yu Yen
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (H.-Y.Y.); (L.-T.L.)
| | - Lu-Ting Lai
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (H.-Y.Y.); (L.-T.L.)
| | - Guey-Chuen Perng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Rd., Tainan City 701, Taiwan;
| | - Cheng-Rei Lee
- Viral & Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (C.-R.L.); (S.-J.W.)
| | - Shuenn-Jue Wu
- Viral & Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (C.-R.L.); (S.-J.W.)
| |
Collapse
|
6
|
Xu MY, Liu SQ, Deng CL, Zhang QY, Zhang B. Detection of Zika virus by SYBR green one-step real-time RT-PCR. J Virol Methods 2016; 236:93-97. [PMID: 27444120 DOI: 10.1016/j.jviromet.2016.07.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
The ongoing Zika virus (ZIKV) outbreak has rapidly spread to new areas of Americas, which were the first transmissions outside its traditional endemic areas in Africa and Asia. Due to the link with newborn defects and neurological disorder, numerous infected cases throughout the world and various mosquito vectors, the virus has been considered to be an international public health emergency. In the present study, we developed a SYBR Green based one-step real-time RT-PCR assay for rapid detection of ZIKV. Our results revealed that the real-time assay is highly specific and sensitive in detection of ZIKV in cell samples. Importantly, the replication of ZIKV at different time points in infected cells could be rapidly monitored by the real-time RT-PCR assay. Specifically, the real-time RT-PCR showed acceptable performance in measurement of infectious ZIKV RNA. This assay could detect ZIKV at a titer as low as 1PFU/mL. The real-time RT-PCR assay could be a useful tool for further virology surveillance and diagnosis of ZIKV.
Collapse
Affiliation(s)
- Ming-Yue Xu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Qing Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiu-Yan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
7
|
Development and Validation of a Quantitative, One-Step, Multiplex, Real-Time Reverse Transcriptase PCR Assay for Detection of Dengue and Chikungunya Viruses. J Clin Microbiol 2016; 54:1766-1773. [PMID: 27098955 DOI: 10.1128/jcm.00299-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/12/2016] [Indexed: 11/20/2022] Open
Abstract
Dengue virus (DENV) and chikungunya virus (CHIKV) are important human pathogens with common transmission vectors and similar clinical presentations. Patient care may be impacted by the misdiagnosis of DENV and CHIKV in areas where both viruses cocirculate. In this study, we have developed and validated a one-step multiplex reverse transcriptase PCR (RT-PCR) to simultaneously detect, quantify, and differentiate between four DENV serotypes (pan-DENV) and chikungunya virus. The assay uses TaqMan technology, employing two forward primers, three reverse primers, and four fluorophore-labeled probes in a single-reaction format. Coextracted and coamplified RNA was used as an internal control (IC), and in vitro-transcribed DENV and CHIKV RNAs were used to generate standard curves for absolute quantification. The diagnostic 95% limits of detection (LOD) within the linear range were 50 and 60 RNA copies/reaction for DENV (serotypes 1 to 4) and CHIKV, respectively. Our assay was able to detect 53 different strains of DENV, representing four serotypes, and six strains of CHIKV. No cross-reactivity was observed with related flaviviruses and alphaviruses, To evaluate diagnostic sensitivity and specificity, 89 clinical samples positive or negative for DENV (serotypes 1 to 4) and CHIKV by the standard virus isolation method were tested in our assay. The multiplex RT-PCR assay showed 95% sensitivity and 100% specificity for DENV and 100% sensitivity and specificity for CHIKV. With an assay turnaround time of less than 2 h, including extraction of RNA, the multiplex quantitative RT-PCR assay provides rapid diagnosis for the differential detection of two clinically indistinguishable diseases, whose geographical occurrence is increasingly overlapping.
Collapse
|
8
|
Watanabe S, Chan KWK, Dow G, Ooi EE, Low JG, Vasudevan SG. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: The search for a window for potential therapeutic efficacy. Antiviral Res 2016; 127:10-9. [PMID: 26794905 DOI: 10.1016/j.antiviral.2015.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/12/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Although the antiviral drug celgosivir, an α-glucosidase I inhibitor, is highly protective when given twice daily to AG129 mice infected with dengue virus, a similar regimen of twice daily dosing did not significantly reduce serum viral loads in patients in a recent clinical trial. This failure presumably might reflect the initiation of treatment when patients were already viremic. To better mimic the clinical setting, we used viruses isolated from patients to develop new mouse models of DENV1 and DENV2 infection and employed the models to test the twice daily treatment, begun either on the day of infection or on the third day post-infection, when the mice had peak of viremia. We found that, although the treatment started on day 0 was effective on viral load reduction, it provided no benefit when begun on day 3, indicating that in vivo antiviral efficacy becomes less prominent once viremia reaches the peak level. To determine if the therapeutic regimen in humans could be improved, we tested regimen of four-times daily treatment and found that the treatment significantly reduced viremia, suggesting that a similar regimen may be effective in a human clinical trial. A new clinical trial to investigate an altered dosing regimen has been approved (NCT02569827).
Collapse
Affiliation(s)
- Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8-College Road, Singapore 169857
| | - Kitti Wing-Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8-College Road, Singapore 169857
| | - Geoffrey Dow
- 60° Pharmaceuticals LLC, Washington, DC, 20036, USA
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8-College Road, Singapore 169857
| | - Jenny G Low
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore 16985
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8-College Road, Singapore 169857.
| |
Collapse
|
9
|
Tang CT, Li PC, Liu IJ, Liao MY, Chiu CY, Chao DY, Wu HC. An Epitope-Substituted DNA Vaccine Improves Safety and Immunogenicity against Dengue Virus Type 2. PLoS Negl Trop Dis 2015; 9:e0003903. [PMID: 26135599 PMCID: PMC4489899 DOI: 10.1371/journal.pntd.0003903] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/11/2015] [Indexed: 12/30/2022] Open
Abstract
Dengue virus (DENV), a global disease, is divided into four serotypes (DENV1-4). Cross-reactive and non-neutralizing antibodies against envelope (E) protein of DENV bind to the Fcγ receptors (FcγR) of cells, and thereby exacerbate viral infection by heterologous serotypes via antibody-dependent enhancement (ADE). Identification and modification of enhancing epitopes may mitigate enhancement of DENV infection. In this study, we characterized the cross-reactive DB21-6 and DB39-2 monoclonal antibodies (mAbs) against domain I-II of DENV; these antibodies poorly neutralized and potently enhanced DENV infection both in vitro and in vivo. In addition, two enhancing mAbs, DB21-6 and DB39-2, were observed to compete with sera antibodies from patients infected with dengue. The epitopes of these enhancing mAbs were identified using phage display, structural prediction, and mapping of virus-like particle (VLP) mutants. N8, R9, V12, and E13 are the reactive residues of DB21-6, while N8, R9, and E13 are the reactive residues of DB39-2. N8 substitution tends to maintain VLP secretion, and decreases the binding activity of DB21-6 and DB39-2. The immunized sera from N8 substitution (N8R) DNA vaccine exerted greater neutralizing and protective activity than wild-type (WT)-immunized sera, both in vitro and in vivo. Furthermore, treatment with N8R-immunized sera reduced the enhancement of mortality in AG129 mice. These results support identification and substitution of enhancing epitope as a novel strategy for developing safe dengue vaccines. Dengue virus (DENV) infects 390 million humans annually, and is the cause of one of the most important arthropod-borne viral diseases in the world. Currently, there are no available licensed vaccines or antiviral drugs for dengue, so development of safe vaccine and effective therapy is urgently needed. Here, we identified two monoclonal antibodies, DB21-6 and DB39-2, which can enhance DENV1-4 infection and increase virus-induced mortality in AG129 mice. We found that serum samples from patients with severe dengue disease contain higher levels of antibodies against enhancing epitope. We proceeeded to identify enhancing epitope on E protein, and developed DNA vaccines by substitution. The substituted DNA vaccine with mutation at the enhancing epitope demonstrated augmented neutralizing activity against DENV2, and reduced enhancement of mortality as compared to wild type-immunized sera. Our results show that substitution of enhancing epitope can increase the immune response against viral infection, while reducing the potential for antibody-dependent enhancement (ADE). These novel findings may be useful for developing safe and efficacious vaccines against dengue.
Collapse
Affiliation(s)
- Chung-Tao Tang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pi-Chun Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Ying Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chiung-Yi Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Han-Chung Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Chen R, Wang Z, Yang Z, Zhu X, Ji D, Mao Y. Association of IL8 -105G/A with mastitis somatic cell score in Chinese Holstein dairy cows. Anim Biotechnol 2015; 26:143-7. [PMID: 25380467 DOI: 10.1080/10495398.2014.939657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The single nucleotide polymorphisms (SNPs) in the 5' upstream of bovine IL8 gene were investigated in 810 Chinese Holstein cows from 35 bull families in a dairy farm in Shanghai using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique. The Real-time PCR and Western blot were used to detect the mRNA and protein levels of genotype Chinese Holstein dairy cows. The results showed that one SNP -105G>A was detected, designating three genotypes (GG, GA and AA) with respective frequencies of 0.38, 0.46, and 0.16. The significant association of the SNP -105G>A with somatic cell score (SCS) was identified. Genotype GG had a significantly lower SCS than genotype GA or AA (P < 0.01), and the relative mRNA expression and protein level of GG was found to be the highest. These results suggest that the genotype GG may be a useful genetic marker for mastitis resistance selection and breeding in Chinese Holstein dairy cows.
Collapse
Affiliation(s)
- Renjin Chen
- a Laboratory Animal Center , Xuzhou Medical College , Xuzhou , Jiangsu , China
| | | | | | | | | | | |
Collapse
|
11
|
Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice. J Virol 2015; 89:5847-61. [PMID: 25787279 DOI: 10.1128/jvi.00216-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/11/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Severe dengue virus (DENV)-associated diseases can occur in patients who have preexisting DENV antibodies (Abs) through antibody-dependent enhancement (ADE) of infection. It is well established that during ADE, DENV-antibody immune complexes (ICs) infect Fcγ receptor-bearing cells and increase the systemic viral burden that can be measured in the blood. For protection against infection with DENV serotypes 1 to 4, strongly neutralizing Abs must be elicited to overcome the effect of ADE. Clinical observations in infants who have maternal DENV Abs or recent phase II/III clinical trials with a leading tetravalent dengue vaccine suggested a lack of correlation between Ab neutralization and in vivo disease prevention. In addressing this gap in knowledge, we found that inoculation of ICs formed with serotype cross-reactive Abs that are more than 98% neutralized in vitro promotes high mortality in AG129 mice even though peak viremia was lower than that in direct virus infection. This suggests that the serum viremia level is not always correlated with disease severity. We further demonstrated that infection with the ICs resulted in increased vascular permeability, specifically in the small intestine, accompanied with increased tissue viral load and cytokine production, which can be suppressed by anti-tumor necrosis factor alpha (anti-TNF-α) Abs. Flow cytometric analysis identified increased infection in CD11b(int) CD11c(int/hi) CD103(-) antigen-presenting cells by IC inoculation, suggesting that these infected cells may be responsible for the increase in TNF-α production and vascular permeability in the small intestine that lead to mortality in mice. Our findings may have important implications for the development of dengue therapeutics. IMPORTANCE We examined the relationship between the neutralizing level of Abs at the time of infection and subsequent disease progression in a mouse model in order to understand why patients who are shown to have a neutralizing quantity of Abs still allow sufficient DENV replication to induce severe dengue manifestations, which sometimes do not correlate with viremia level. Strikingly, we found that high mortality was induced in AG129 mice by the increase in TNF-α-induced vascular permeability accompanied by an increased viral load, specifically in the small intestine, even when the initial infection level is suppressed to less than 5% and the peak viremia level is not enhanced. This suggests that ADE overcomes the protective efficacy of Abs in a tissue-dependent manner that leads to severe small intestinal pathology. Our findings may serve to address the pathogenic role of Abs on severe dengue disease and also help to develop safe Ab-based therapeutic strategies.
Collapse
|
12
|
Abstract
Validation of a mouse model of dengue virus (DENV) infection relies on verification of viremia and productive replication in mouse tissues following infection. Here, we describe a quantitative assay for determining viral RNA levels in mouse serum and tissues. For the purpose of confirming DENV replication, we outline a fluorescence immunohistochemistry (FIHC) protocol for staining a nonstructural protein of DENV.
Collapse
Affiliation(s)
- Emily Plummer
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | |
Collapse
|
13
|
Althouse BM, Durbin AP, Hanley KA, Halstead SB, Weaver SC, Cummings DAT. Viral kinetics of primary dengue virus infection in non-human primates: a systematic review and individual pooled analysis. Virology 2014; 452-453:237-46. [PMID: 24606701 DOI: 10.1016/j.virol.2014.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/28/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Viremia kinetics directly influence the clinical course and transmission dynamics of DENV, but many aspects of viral dynamics remain unknown. Non-human primates (NHP) have been used as a model system for DENV infection for decades. Here, we identify papers with experimentally-infected NHP and estimate the time to- and duration of viremia as well as estimate associations between these and serotype, inoculating dose, viremia assay, and species of NHP. We estimate the time to viremia in rhesus macaques to range from 2.63 to 3.32 days for DENV-2 and -1 and the duration to range from 3.13 to 5.13 days for DENV-4 and -2. We find no differences between non-human primates for time to viremia or duration, and a significant negative relationship between inoculating dose and duration of viremia. These results aid in understanding the transmission dynamics of sylvatic DENV non-human primates, an issue of growing importance as dengue vaccines become available.
Collapse
Affiliation(s)
| | - Anna P Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
14
|
Frey KG, Herrera-Galeano JE, Redden CL, Luu TV, Servetas SL, Mateczun AJ, Mokashi VP, Bishop-Lilly KA. Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genomics 2014; 15:96. [PMID: 24495417 PMCID: PMC3922542 DOI: 10.1186/1471-2164-15-96] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/24/2014] [Indexed: 12/04/2022] Open
Abstract
Background The introduction of benchtop sequencers has made adoption of whole genome sequencing possible for a broader community of researchers than ever before. Concurrently, metagenomic sequencing (MGS) is rapidly emerging as a tool for interrogating complex samples that defy conventional analyses. In addition, next-generation sequencers are increasingly being used in clinical or related settings, for instance to track outbreaks. However, information regarding the analytical sensitivity or limit of detection (LoD) of benchtop sequencers is currently lacking. Furthermore, the specificity of sequence information at or near the LoD is unknown. Results In the present study, we assess the ability of three next-generation sequencing platforms to identify a pathogen (viral or bacterial) present in low titers in a clinically relevant sample (blood). Our results indicate that the Roche-454 Titanium platform is capable of detecting Dengue virus at titers as low as 1X102.5 pfu/mL, corresponding to an estimated 5.4X104 genome copies/ml maximum. The increased throughput of the benchtop sequencers, the Ion Torrent PGM and Illumina MiSeq platforms, enabled detection of viral genomes at concentrations as low as 1X104 genome copies/mL. Platform-specific biases were evident in sequence read distributions as well as viral genome coverage. For bacterial samples, only the MiSeq platform was able to provide sequencing reads that could be unambiguously classified as originating from Bacillus anthracis. Conclusion The analytical sensitivity of all three platforms approaches that of standard qPCR assays. Although all platforms were able to detect pathogens at the levels tested, there were several noteworthy differences. The Roche-454 Titanium platform produced consistently longer reads, even when compared with the latest chemistry updates for the PGM platform. The MiSeq platform produced consistently greater depth and breadth of coverage, while the Ion Torrent was unequaled for speed of sequencing. None of the platforms were able to verify a single nucleotide polymorphism responsible for antiviral resistance in an Influenza A strain isolated from the 2009 H1N1 pandemic. Overall, the benchtop platforms perform well for identification of pathogens from a representative clinical sample. However, unlike identification, characterization of pathogens is likely to require higher titers, multiple libraries and/or multiple sequencing runs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kimberly A Bishop-Lilly
- Naval Medical Research Center, NMRC-Frederick, 8400 Research Plaza, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
15
|
A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob Agents Chemother 2013; 58:110-9. [PMID: 24145533 DOI: 10.1128/aac.01281-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue virus (DENV) causes disease globally, resulting in an estimated 25 to 100 million new infections per year. No effective DENV vaccine is available, and the current treatment is only supportive. Thus, there is an urgent need to develop therapeutic agents to cure this epidemic disease. In the present study, we identified a potential small-molecule inhibitor, BP13944, via high-throughput screening (HTS) of 60,000 compounds using a stable cell line harboring an efficient luciferase replicon of DENV serotype 2 (DENV-2). BP13944 reduced the expression of the DENV replicon reporter in cells, showing a 50% effective concentration (EC50) of 1.03 ± 0.09 μM. Without detectable cytotoxicity, the compound inhibited replication or viral RNA synthesis in all four serotypes of DENV but not in Japanese encephalitis virus (JEV). Sequencing analyses of several individual clones derived from BP13944-resistant RNAs purified from cells harboring the DENV-2 replicon revealed a consensus amino acid substitution (E66G) in the region of the NS3 protease domain. Introduction of E66G into the DENV replicon, an infectious DENV cDNA clone, and recombinant NS2B/NS3 protease constructs conferred 15.2-, 17.2-, and 3.1-fold resistance to BP13944, respectively. Our results identify an effective small-molecule inhibitor, BP13944, which likely targets the DENV NS3 protease. BP13944 could be considered part of a more effective treatment regime for inhibiting DENV in the future.
Collapse
|
16
|
Sekaran SD, Artsob H. Molecular diagnostics for the detection of human flavivirus infections. ACTA ACUST UNITED AC 2013; 1:521-30. [PMID: 23496358 DOI: 10.1517/17530059.1.4.521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Flaviviruses constitute a genus of viruses that are important etiologic agents of human disease, causing clinical disease ranging from fever to severe manifestations, such as encephalitis and hemorrhagic fever. Serology is presently the most frequently used means of diagnosing flavivirus infections. However, other diagnostic tests may be employed, such as molecular detection, virus isolation and antigen-capture procedures. The applicability of the latter three diagnostic procedures can be expected to vary depending upon the infecting flavivirus, as some flaviviruses, such as dengue, display high and long-term viremias, whereas other flaviviruses produce no, or barely detectable, viremias. Molecular diagnostic techniques have been successfully applied to the diagnosis of flavivirus infections and have the advantage of rapidity, sensitivity and specific identification of the infecting virus. However, it is important to ensure that the right detection tools are employed (for example, appropriate primers and probes to detect the specific virus) and that the laboratory maintains a high proficiency in their testing procedures. Some of the studies that have been employed in the diagnosis of flavivirus infections are reviewed in this article. It seems that there is the potential to develop testing algorithms that successfully employ molecular diagnostics alone or in conjunction with other laboratory techniques for the diagnosis of acute human flavivirus infections.
Collapse
Affiliation(s)
- Shamala Devi Sekaran
- University of Malaya, Department of Medical Microbiology, Faculty of Medicine, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
17
|
Yang CC, Tsai MH, Hu HS, Pu SY, Wu RH, Wu SH, Lin HM, Song JS, Chao YS, Yueh A. Characterization of an efficient dengue virus replicon for development of assays of discovery of small molecules against dengue virus. Antiviral Res 2013; 98:228-41. [PMID: 23499649 DOI: 10.1016/j.antiviral.2013.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/19/2013] [Accepted: 03/01/2013] [Indexed: 01/04/2023]
Abstract
Dengue virus (DENV) is a public health threat to approximately 40% of the global population. At present, neither licensed vaccines nor effective therapies exist, and the mechanism of viral RNA replication is not well understood. Here, we report the development of efficient Renilla luciferase reporter-based DENV replicons that contain the full-length capsid sequence for transient and stable DENV RNA replication. A comparison of the transient and stable expression of this RNA-launched replicon to replicons containing various deletions revealed dengue replicon containing entire mature capsid RNA element has higher replicon activity. An efficient DNA-launched DENV replicon, pCMV-DV2Rep, containing a full-length capsid sequence, was created and successfully applied to evaluate the potency of known DENV inhibitors. Stable cell lines harboring the DENV replicon were easily established by transfecting pCMV-DV2Rep into BHK21 cells. Steady and high replicon reporter signals were observed in the stable DENV replicon cells, even after 30 passages. The stable DENV replicon cells were successfully used to determine the potency of known DENV inhibitors. A high-throughput screening assay based on stable DENV replicon cells was evaluated and shown to have an excellent Z' factor of 0.74. Altogether, the development of our efficient DENV replicon system will facilitate the study of virus replication and the discovery of antiviral compounds.
Collapse
Affiliation(s)
- Chi-Chen Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Prestwood TR, Morar MM, Zellweger RM, Miller R, May MM, Yauch LE, Lada SM, Shresta S. Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/β receptor-deficient mice. J Virol 2012; 86:12561-70. [PMID: 22973027 PMCID: PMC3497655 DOI: 10.1128/jvi.06743-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 08/27/2012] [Indexed: 02/03/2023] Open
Abstract
We previously reported that mice lacking alpha/beta and gamma interferon receptors (IFN-α/βR and -γR) uniformly exhibit paralysis following infection with the dengue virus (DENV) clinical isolate PL046, while only a subset of mice lacking the IFN-γR alone and virtually no mice lacking the IFN-α/βR alone develop paralysis. Here, using a mouse-passaged variant of PL046, strain S221, we show that in the absence of the IFN-α/βR, signaling through the IFN-γR confers approximately 140-fold greater resistance against systemic vascular leakage-associated dengue disease and virtually complete protection from dengue-induced paralysis. Viral replication in the spleen was assessed by immunohistochemistry and flow cytometry, which revealed a reduction in the number of infected cells due to IFN-γR signaling by 2 days after infection, coincident with elevated levels of IFN-γ in the spleen and serum. By 4 days after infection, IFN-γR signaling was found to restrict DENV replication systemically. Clearance of DENV, on the other hand, occurred in the absence of IFN-γR, except in the central nervous system (CNS) (brain and spinal cord), where clearance relied on IFN-γ from CD8(+) T cells. These results demonstrate the roles of IFN-γR signaling in protection from initial systemic and subsequent CNS disease following DENV infection and demonstrate the importance of CD8(+) T cells in preventing DENV-induced CNS disease.
Collapse
Affiliation(s)
- Tyler R Prestwood
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Orozco S, Schmid MA, Parameswaran P, Lachica R, Henn MR, Beatty R, Harris E. Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor. J Gen Virol 2012; 93:2152-2157. [PMID: 22815273 PMCID: PMC3541791 DOI: 10.1099/vir.0.045088-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/12/2012] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) causes dengue fever and dengue haemorrhagic fever/dengue shock syndrome, both considered major public-health problems worldwide. We generated a lethal DENV-2 strain (D220) by 10 additional cycles of subcutaneous inoculation of mice with supernatant from mosquito cells infected with the previously characterized strain D2S10, followed by harvesting of serum. D220 induces mortality at ten-fold lower doses than D2S10 in mice lacking only the alpha/beta interferon (IFN-α/β) receptor in C57BL/6 or 129 backgrounds under both non-enhanced and antibody-enhanced conditions. Sequence analysis of the complete viral genome revealed five amino acid changes between D220 and D2S10, of which two (K122I in envelope and V115A in NS4B) appear to account for the observed phenotypic differences between the viruses. By causing mortality at lower doses in C57BL/6 mice lacking only the IFN-α/β receptor, D220 constitutes an improved tool for study of DENV-induced pathogenesis, as well as for testing potential vaccines and antiviral drugs against DENV.
Collapse
Affiliation(s)
- Susana Orozco
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Michael A. Schmid
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Poornima Parameswaran
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ruben Lachica
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
20
|
Huang Y, Wei H, Wang Y, Shi Z, Raoul H, Yuan Z. Rapid detection of filoviruses by real-time TaqMan polymerase chain reaction assays. Virol Sin 2012; 27:273-7. [PMID: 23001480 DOI: 10.1007/s12250-012-3252-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/06/2012] [Indexed: 11/26/2022] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV) are causative agents of severe hemorrhagic fever with high mortality rates in humans and non-human primates and there is currently no licensed vaccine or therapeutics. To date, there is no specific laboratory diagnostic test in China, while there is a national need to provide differential diagnosis during outbreaks and for instituting acceptable quarantine procedures. In this study, the TaqMan RT-PCR assays targeting the nucleoprotein genes of the Zaire Ebolavirus (ZEBOV) and MARV were developed and their sensitivities and specificities were investigated. Our results indicated that the assays were able to make reliable diagnosis over a wide range of virus copies from 10(3) to 10(9), corresponding to the threshold of a standard RNA transcript. The results showed that there were about 10(10) RNA copies per milliliter of virus culture supernatant, equivalent to 10,000 RNA molecules per infectious virion, suggesting the presence of many non-infectious particles. These data indicated that the TaqMan RT-PCR assays developed in this study will be suitable for future surveillance and specific diagnosis of ZEBOV and MARV in China.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
21
|
Lo CLH, Yip SP, Wei SJ, Levi JE, Leung PHM. A simple and economic quadruplex one-step reverse transcription-PCR assay for detecting and typing dengue viruses. Clin Chim Acta 2011; 412:2008-10. [PMID: 21803032 DOI: 10.1016/j.cca.2011.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
|
22
|
Paudel D, Jarman R, Limkittikul K, Klungthong C, Chamnanchanunt S, Nisalak A, Gibbons R, Chokejindachai W. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2011; 3:478-485. [PMID: 22363089 PMCID: PMC3271430 DOI: 10.4297/najms.2011.3478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman(®) assay and conventional nested PCR assay. AIMS To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). MATERIALS AND METHODS Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR(®) Green assay, real time Taqman(®) assay to compare the sensitivity and specificity. RESULTS Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR(®) green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. CONCLUSION We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus.
Collapse
Affiliation(s)
- Damodar Paudel
- Department of Internal Medicine Nepal Police Hospital, Maharagjung, Kathmandu, Nepal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Thailand
| | | | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Watcharee Chokejindachai
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Thailand
| |
Collapse
|
23
|
Tan IL, Dimamay MPS, Buerano CC, Alfon JAR, Tanig CZ, Matias RR, Natividad FF. Development and evaluation of a fluorogenic real-time RT-PCR for the detection of dengue 3 virus. J Med Virol 2011; 82:2053-63. [PMID: 20981793 DOI: 10.1002/jmv.21853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A dengue-3-specific real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was developed using the novel Light Upon eXtension (LUX™) fluorogenic technology. A labeled forward primer and a standard reverse primer that target a conserved region within the non-structural 1 (NS1) gene of dengue 3 strains were designed. The dengue-3-specific assay did not recognize other dengue serotypes and related flaviviruses. Using a tenfold serial dilution of plasmid DNA containing the dengue 3 NS1 gene as standards, the range of dengue virus detection was determined to be from 10(3) to 10(9) copies/ml or from 80 to 8 × 10(7) copies/reaction with an average correlation coefficient of ≥ 0.99. The mean intra-assay coefficient of variation (CV) at 2.01% and the mean inter-assay CV at 2.68% suggest the repeatability of the procedure. Moreover, the fluorogenic assay was evaluated by using clinical specimens and comparing test results with historical data obtained from conventional RT-PCR, which served as the criterion standard. Using patient sera as test samples, the assay demonstrated 95.45% sensitivity and 100% specificity, respectively. These results reveal that the real-time RT-PCR assay may be utilized as a rapid, convenient, and sensitive tool for the detection of dengue 3 in clinical and laboratory specimens.
Collapse
Affiliation(s)
- Irene L Tan
- Division of Natural Sciences and Mathematics, University of the Philippines Visayas Tacloban College, Tacloban City, Leyte, Philippines
| | | | | | | | | | | | | |
Collapse
|
24
|
Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol 2011; 85:2927-41. [PMID: 21228244 DOI: 10.1128/jvi.01986-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse genetics is a powerful tool to study single-stranded RNA viruses. Despite tremendous efforts having been made to improve the methodology for constructing flavivirus cDNAs, the cause of toxicity of flavivirus cDNAs in bacteria remains unknown. Here we performed mutational analysis studies to identify Escherichia coli promoter (ECP) sequences within nucleotides (nt) 1 to 3000 of the dengue virus type 2 (DENV2) and Japanese encephalitis virus (JEV) genomes. Eight and four active ECPs were demonstrated within nt 1 to 3000 of the DENV2 and JEV genomes, respectively, using fusion constructs containing DENV2 or JEV segments and empty vector reporter gene Renilla luciferase. Full-length DENV2 and JEV cDNAs were obtained by inserting mutations reducing their ECP activity in bacteria without altering amino acid sequences. A severe cytopathic effect occurred when BHK21 cells were transfected with in vitro-transcribed RNAs from either a DENV2 cDNA clone with multiple silent mutations within the prM-E-NS1 region of dengue genome or a JEV cDNA clone with an A-to-C mutation at nt 90 of the JEV genome. The virions derived from the DENV2 or JEV cDNA clone exhibited infectivities similar to those of their parental viruses in C6/36 and BHK21 cells. A cis-acting element essential for virus replication was revealed by introducing silent mutations into the central portion (nt 160 to 243) of the core gene of DENV2 infectious cDNA or a subgenomic DENV2 replicon clone. This novel strategy of constructing DENV2 and JEV infectious clones could be applied to other flaviviruses or pathogenic RNA viruses to facilitate research in virology, viral pathogenesis, and vaccine development.
Collapse
|
25
|
Modhiran N, Kalayanarooj S, Ubol S. Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse. PLoS Negl Trop Dis 2010; 4:e924. [PMID: 21200427 PMCID: PMC3006139 DOI: 10.1371/journal.pntd.0000924] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 11/23/2010] [Indexed: 12/24/2022] Open
Abstract
Background The phenomenon of antibody dependent enhancement as a major determinant that exacerbates disease severity in DENV infections is well accepted. While the detailed mechanism of antibody enhanced disease severity is unclear, evidence suggests that it is associated with both increased DENV infectivity and suppression of the type I IFN and pro-inflammatory cytokine responses. Therefore, it is imperative for us to understand the intracellular mechanisms altered during ADE infection to decipher the mechanism of severe pathogenesis. Methodology/Principal Findings In this present work, qRT-PCR, immunoblotting and gene array analysis were conducted to determine whether DENV-antibody complex infection exerts a suppressive effect on the expression and/or function of the pathogen recognition patterns, focusing on the TLR-signaling pathway. We show here that FcγRI and FcγRIIa synergistically facilitated entry of DENV-antibody complexes into monocytic THP-1 cells. Ligation between DENV-antibody complexes and FcR not only down regulated TLRs gene expression but also up regulated SARM, TANK, and negative regulators of the NF-κB pathway, resulting in suppression of innate responses but increased viral production. These results were confirmed by blocking with anti-FcγRI or anti-FcγRIIa antibodies which reduced viral production, up-regulated IFN-β synthesis, and increased gene expression in the TLR-dependent signaling pathway. The negative impact of DENV-ADE infection on the TLR-dependent pathway was strongly supported by gene array screening which revealed that both MyD88-dependent and –independent signaling molecules were down regulated during DENV-ADE infection. Importantly, the same phenomenon was seen in PBMC of secondary DHF/DSS patients but not in PBMC of DF patients. Conclusions/Significance Our present work demonstrates the mechanism by which DENV uses pre-existing immune mediators to defeat the principal activating pathway of innate defense resulting in suppression of an array of innate immune responses. Interestingly, this phenomenon specifically occurred during the severe form of DENV infection but not in the mild form of disease. Dengue is the most common vector-borne viral disease in humans, with 50–100 million infections per year. The severity of dengue ranges from an acute febrile illness, DF, to a life-threatening vascular leakage syndrome with or without shock, DHF/DSS. Determinants of these syndromes are mainly host factors including non protective but cross reactive antibodies which are known as preexisting enhancing antibodies. These antibodies enhance disease severity through increasing the virus infected cell mass and facilitating intracellular virus replication. Here we demonstrate that DENV exploits preexisting subneutralizing antibodies to defeat the pathogen recognition system and to down regulate the TLR signaling pathway resulting in suppression of an array of innate immune responses. Furthermore, we also show that this phenomenon specifically occurs in the severe form of dengue but not in the mild form of disease.
Collapse
Affiliation(s)
- Naphak Modhiran
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Siripen Kalayanarooj
- WHO Collaborating Centre Case Management of Dengue/DHF/DSS, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
26
|
Chen R, Yang Z, Ji D, Mao Y, Chen Y, Li Y, Wu H, Wang X, Chang L. Polymorphisms of the IL8 gene correlate with milking traits, SCS and mRNA level in Chinese Holstein. Mol Biol Rep 2010; 38:4083-8. [DOI: 10.1007/s11033-010-0528-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022]
|
27
|
Wu R, Smidansky ED, Oh HS, Takhampunya R, Padmanabhan R, Cameron CE, Peterson BR. Synthesis of a 6-methyl-7-deaza analogue of adenosine that potently inhibits replication of polio and dengue viruses. J Med Chem 2010; 53:7958-66. [PMID: 20964406 PMCID: PMC2990348 DOI: 10.1021/jm100593s] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bioisosteric deaza analogues of 6-methyl-9-β-D-ribofuranosylpurine, a hydrophobic analogue of adenosine, were synthesized and evaluated for antiviral activity. Whereas the 1-deaza and 3-deaza analogues were essentially inactive in plaque assays of infectivity, a novel 7-deaza-6-methyl-9-β-D-ribofuranosylpurine analogue, structurally related to the natural product tubercidin, potently inhibited replication of poliovirus (PV) in HeLa cells (IC(50) = 11 nM) and dengue virus (DENV) in Vero cells (IC(50) = 62 nM). Selectivity against PV over cytotoxic effects to HeLa cells was >100-fold after incubation for 7 h. Mechanistic studies of the 5'-triphosphate of 7-deaza-6-methyl-9-β-D-ribofuranosylpurine revealed that this compound is an efficient substrate of PV RNA-dependent RNA polymerase (RdRP) and is incorporated into RNA mimicking both ATP and GTP.
Collapse
Affiliation(s)
- Runzhi Wu
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66047
| | - Eric D. Smidansky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Hyung Suk Oh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Ratree Takhampunya
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington DC 20057
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington DC 20057
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Blake R. Peterson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66047
| |
Collapse
|
28
|
Yauch LE, Prestwood TR, May MM, Morar MM, Zellweger RM, Peters B, Sette A, Shresta S. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5405-16. [PMID: 20870934 PMCID: PMC2962919 DOI: 10.4049/jimmunol.1001709] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The contribution of T cells to the host response to dengue virus (DENV) infection is not well understood. We previously demonstrated a protective role for CD8(+) T cells during primary DENV infection using a mouse-passaged DENV strain and IFN-α/βR(-/-) C57BL/6 mice, which are susceptible to DENV infection. In this study, we examine the role of CD4(+) T cells during primary DENV infection. Four I-A(b)-restricted epitopes derived from three of the nonstructural DENV proteins were identified. CD4(+) T cells expanded and were activated after DENV infection, with peak activation occurring on day 7. The DENV-specific CD4(+) T cells expressed intracellular IFN-γ, TNF, IL-2, and CD40L, and killed peptide-pulsed target cells in vivo. Surprisingly, depletion of CD4(+) T cells before DENV infection had no effect on viral loads. Consistent with this observation, CD4(+) T cell depletion did not affect the DENV-specific IgG or IgM Ab titers or their neutralizing activity, or the DENV-specific CD8(+) T cell response. However, immunization with the CD4(+) T cell epitopes before infection resulted in significantly lower viral loads. Thus, we conclude that whereas CD4(+) T cells are not required for controlling primary DENV infection, their induction by immunization can contribute to viral clearance. These findings suggest inducing anti-DENV CD4(+) T cell responses by vaccination may be beneficial.
Collapse
Affiliation(s)
- Lauren E. Yauch
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Tyler R. Prestwood
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Monica M. May
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Malika M. Morar
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Raphaël M. Zellweger
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Sujan Shresta
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| |
Collapse
|
29
|
Novel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a high-throughput screening assay. Antimicrob Agents Chemother 2010; 55:229-38. [PMID: 20937790 DOI: 10.1128/aac.00855-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) causes disease globally, with an estimated 25 to 100 million new infections per year. At present, no effective vaccine is available, and treatment is supportive. In this study, we identified BP2109, a potent and selective small-molecule inhibitor of the DENV NS2B/NS3 protease, by a high-throughput screening assay using a recombinant protease complex consisting of the central hydrophilic portion of NS2B and the N terminus of the protease domain. BP2109 inhibited DENV (serotypes 1 to 4), but not Japanese encephalitis virus (JEV), replication and viral RNA synthesis without detectable cytotoxicity. The compound inhibited recombinant DENV-2 NS2B/NS3 protease with a 50% inhibitory concentration (IC(50)) of 15.43 ± 2.12 μM and reduced the reporter expression of the DENV-2 replicon with a 50% effective concentration (EC(50)) of 0.17 ± 0.01 μM. Sequencing analyses of several individual clones derived from BP2109-resistant DENV-2 RNAs revealed that two amino acid substitutions (R55K and E80K) are found in the region of NS2B, a cofactor of the NS2B/NS3 protease complex. The introduction of R55K and E80K double mutations into the dengue virus NS2B/NS3 protease and a dengue virus replicon construct conferred 10.3- and 73.8-fold resistance to BP2109, respectively. The E80K mutation was further determined to be the key mutation conferring dengue virus replicon resistance (61.3-fold) to BP2109, whereas the R55K mutation alone did not affect resistance to BP2109. Both the R55K and E80K mutations are located in the central hydrophilic portion of the NS2B cofactor, where extensive interactions with the NS3pro domain exist. Thus, our data provide evidence that BP2109 likely inhibits DENV by a novel mechanism.
Collapse
|
30
|
Ip PP, Liao F. Resistance to dengue virus infection in mice is potentiated by CXCL10 and is independent of CXCL10-mediated leukocyte recruitment. THE JOURNAL OF IMMUNOLOGY 2010; 184:5705-14. [PMID: 20400703 DOI: 10.4049/jimmunol.0903484] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CXCL10 is an IFN-inducible chemokine ligand that binds CXCR3, a receptor that is expressed on lymphocytes; CXCL10 shares the CXCR3 receptor with another two ligands, CXCL9 and CXCL11. Previously, we found that CXCL10(-/-) mice were more susceptible than wild-type (WT) mice to dengue virus (DENV) infection. In this study, we explored the mechanisms underlying this enhanced susceptibility. We found that viral loads were higher in the brains of CXCL10(-/-) mice than in WT mice. Presuming a defect in effector lymphocyte migration, we investigated whether recruitment of effector T cells and Ab-secreting cells to the infected tissues were impaired in CXCL10(-/-) mice. Unexpectedly, compared with WT, CXCL10(-/-) mice had comparable numbers of total infiltrating T cells, higher numbers of CXCR3(+) T cells, and higher numbers of Ab-secreting cells in the brain. Additionally, we found that CXCL10 was induced in neurons following DENV infection and that CXCL10 competed with DENV for binding to cell surface heparan sulfate, a coreceptor for DENV entry, thus inhibiting binding of DENV to neuronal cells. These results demonstrate that the enhanced susceptibility of CXCL10(-/-) mice to DENV infection is not due to a defect in recruitment of effector lymphocytes but rather to an antiviral activity that promotes viral clearance.
Collapse
Affiliation(s)
- Peng-Peng Ip
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
31
|
Onlamoon N, Noisakran S, Hsiao HM, Duncan A, Villinger F, Ansari AA, Perng GC. Dengue virus-induced hemorrhage in a nonhuman primate model. Blood 2010; 115:1823-34. [PMID: 20042723 PMCID: PMC2832810 DOI: 10.1182/blood-2009-09-242990] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 12/10/2009] [Indexed: 11/20/2022] Open
Abstract
Lack of a dengue hemorrhagic animal model recapitulating human dengue virus infection has been a significant impediment in advancing our understanding of the early events involved in the pathogenesis of dengue disease. In efforts to address this issue, a group of rhesus macaques were intravenously infected with dengue virus serotype 2 (strain 16 681) at 1 x 10(7) PFU/animal. A classic dengue hemorrhage developed 3 to 5 days after infection in 6 of 6 animals. Blood chemistry appeared to be normal with exception of creatine phosphokinase, which peaked at 7 days after infection. A modest thrombocytopenia and noticeable neutropenia concomitant with slight decrease of hemoglobin and hematocrit were registered. In addition, the concentration of D-dimer was elevated significantly. Viremia peaked at 3 to 5 days after infection followed by an inverse relationship between T and B lymphocytes and a bimodal pattern for platelet-monocytes and platelet-neutrophil aggregates. Dengue virus containing platelets engulfed by monocytes was noted at 8 or 9 days after infection. Thus, rhesus macaques inoculated intravenously with a high dose of dengue virus produced dengue hemorrhage, which may provide a unique platform to define the early events in dengue virus infection and help identify which blood components contribute to the pathogenesis of dengue disease.
Collapse
Affiliation(s)
- Nattawat Onlamoon
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog 2010; 6:e1000790. [PMID: 20168989 PMCID: PMC2820409 DOI: 10.1371/journal.ppat.1000790] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/26/2010] [Indexed: 12/03/2022] Open
Abstract
Immunity to one of the four dengue virus (DV) serotypes can increase disease severity in humans upon subsequent infection with another DV serotype. Serotype cross-reactive antibodies facilitate DV infection of myeloid cells in vitro by promoting virus entry via Fcγ receptors (FcγR), a process known as antibody-dependent enhancement (ADE). However, despite decades of investigation, no in vivo model for antibody enhancement of dengue disease severity has been described. Analogous to human infants who receive anti-DV antibodies by transplacental transfer and develop severe dengue disease during primary infection, we show here that passive administration of anti-DV antibodies is sufficient to enhance DV infection and disease in mice using both mouse-adapted and clinical DV isolates. Antibody-enhanced lethal disease featured many of the hallmarks of severe dengue disease in humans, including thrombocytopenia, vascular leakage, elevated serum cytokine levels, and increased systemic viral burden in serum and tissue phagocytes. Passive transfer of a high dose of serotype-specific antibodies eliminated viremia, but lower doses of these antibodies or cross-reactive polyclonal or monoclonal antibodies all enhanced disease in vivo even when antibody levels were neutralizing in vitro. In contrast, a genetically engineered antibody variant (E60-N297Q) that cannot bind FcγR exhibited prophylactic and therapeutic efficacy against ADE-induced lethal challenge. These observations provide insight into the pathogenesis of antibody-enhanced dengue disease and identify a novel strategy for the design of therapeutic antibodies against dengue. Dengue is the most common vector-borne viral disease of humans, with over 3 billion people at risk for infection and 50–100 million infections in tropical and subtropical regions each year. Dengue virus (DV) causes a spectrum of clinical disease ranging from an acute debilitating, self-limited febrile illness (DF) to a life-threatening vascular leakage syndrome, referred to as dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). There are four serotypes of DENV; infection with one serotype is thought to protect against re-infection with the same serotype, but may either protect against or enhance infection with one of the other three serotypes. Epidemiological and in vitro data has implicated anti-DENV antibodies in mediating pathogenesis of a second DENV infection. However, it is unclear which antibody conditions are protective and which exacerbate disease in vivo, in part because no animal model of antibody-enhanced dengue disease has been available. Here, we present the first animal model of antibody-enhanced severe DENV infection. Importantly, this model recapitulates many aspects of human disease, including vascular leakage, elevated serum cytokine levels, reduced platelet count, and disseminated infection of tissue phagocytes. Furthermore, we demonstrate the utility of this model by showing that a genetically modified anti-DENV antibody that fails to bind the Fcγ receptor has prophylactic and therapeutic efficacy against lethal DENV challenge in vivo.
Collapse
|
33
|
Yauch LE, Zellweger RM, Kotturi MF, Qutubuddin A, Sidney J, Peters B, Prestwood TR, Sette A, Shresta S. A protective role for dengue virus-specific CD8+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:4865-73. [PMID: 19342665 PMCID: PMC2674070 DOI: 10.4049/jimmunol.0801974] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with one of the four serotypes of dengue virus (DENV1-4) can result in a range of clinical manifestations in humans, from dengue fever to the more serious dengue hemorrhagic fever/dengue shock syndrome. Although T cells have been implicated in the immunopathogenesis of secondary infections with heterologous DENV serotypes, the role of T cells in protection against DENV is unknown. In this study, we used a mouse-passaged DENV2 strain, S221, to investigate the role of CD8(+) T cells in the immune response to primary DENV infection. S221 did not replicate well in wild-type mice, but did induce a CD8(+) T cell response, whereas viral replication and a robust CD8(+) T cell response were observed after infection of IFN-alpha/betaR(-/-) mice. Depletion of CD8(+) T cells from IFN-alpha/betaR(-/-) mice before infection resulted in significantly higher viral loads compared with undepleted mice. Mapping the specificity of the CD8(+) T cell response led to the identification of 12 epitopes derived from 6 of the 10 DENV proteins, with a similar immunodominance hierarchy observed in wild-type and IFN-alpha/betaR(-/-) mice. DENV-specific CD8(+) T cells produced IFN-gamma, TNF-alpha, expressed cell surface CD107a, and exhibited cytotoxic activity in vivo. Finally, immunization with four of the immunodominant CD8(+) T cell epitopes enhanced viral clearance. Collectively, our results reveal an important role for CD8(+) T cells in the host defense against DENV and demonstrate that the anti-DENV CD8(+) T cell response can be enhanced by immunization, providing rationale for designing DENV-specific vaccines that induce cell-mediated immunity.
Collapse
Affiliation(s)
- Lauren E. Yauch
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Raphaël M. Zellweger
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Maya F. Kotturi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Afrina Qutubuddin
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Tyler R. Prestwood
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Sujan Shresta
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
34
|
Padwad YS, Mishra KP, Jain M, Chanda S, Karan D, Ganju L. RNA interference mediated silencing of Hsp60 gene in human monocytic myeloma cell line U937 revealed decreased dengue virus multiplication. Immunobiology 2009; 214:422-9. [PMID: 19261350 DOI: 10.1016/j.imbio.2008.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 01/27/2023]
Abstract
Heat shock proteins (Hsps) or stress proteins are highly conserved molecules and expressed in all cell types under stressful conditions like heat, cold, hypoxia and infections. The objective of the present study was to determine the effect of dengue virus infection on relative expression of stress proteins and their role in the progression of the infection. As macrophages are the primary host for dengue, human promonocytic myeloblastoma U937 cells were infected with dengue virus type 2 New Guinea C strain for the evaluation of Hsps expression. A significant expression of Hsp60 was observed in virally infected U937 cells as compared to controls. In order to determine the correlation between Hsp60 expression and viral multiplication in infected cells, expression of Hsp60 was down regulated by RNA interference. Viral multiplication was determined by quantification of viral RNA copy number using Real Time PCR and plaque formation assay in cellular supernatants of Hsp60 silenced cells. Intracellular quantification of viral load was also determined by flow cytometry. It was observed that down regulation of Hsp60 in virally infected cells resulted into decrease in viral RNA copy number, plaque forming units and intracellular viral load. At the same time down regulation also resulted in increased IFN-alpha level. These observations suggest that, elevated levels of Hsp60 expression in virally infected cells may help in viral multiplication and could be possible therapeutic targets for the management of dengue virus infection.
Collapse
Affiliation(s)
- Y S Padwad
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi 110054, India
| | | | | | | | | | | |
Collapse
|
35
|
Clyde K, Barrera J, Harris E. The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology 2008; 379:314-23. [PMID: 18676000 PMCID: PMC2628549 DOI: 10.1016/j.virol.2008.06.034] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/21/2008] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
Abstract
Dengue virus (DENV) and West Nile virus (WNV) are members of the Flavivirus genus of positive-strand RNA viruses. RNA sequences and structures, primarily in the untranslated regions, have been shown to modulate flaviviral gene expression and genome replication. Previously, we demonstrated that a structure in the DENV coding region (cHP) enhances translation start codon selection and is required for viral replication. Here we further characterize the role of the cHP in the DENV life cycle. We demonstrate that the cHP is required for efficient viral RNA synthesis in a sequence-independent manner. Viruses with a disrupted cHP are rescued by a spontaneous compensatory mutation that restabilizes the structure. Furthermore, the cHP, which is predicted to be conserved among arthropod-borne flaviviruses, is required for WNV replication. We propose that the cHP is a multifunctional determinant of flavivirus replication, functioning in both translation and RNA synthesis.
Collapse
Affiliation(s)
- Karen Clyde
- Division of Infectious Diseases and Immunity, School of Public Health, 1 Barker Hall, University of California, Berkeley, California 94720-7354
| | - Julio Barrera
- Division of Infectious Diseases and Immunity, School of Public Health, 1 Barker Hall, University of California, Berkeley, California 94720-7354
| | - Eva Harris
- Division of Infectious Diseases and Immunity, School of Public Health, 1 Barker Hall, University of California, Berkeley, California 94720-7354
| |
Collapse
|
36
|
A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J Virol 2008; 82:8411-21. [PMID: 18562532 DOI: 10.1128/jvi.00611-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The four serotypes of dengue virus (DENV1 to DENV4) cause extensive morbidity and mortality. A major obstacle to studying disease pathogenesis and developing therapies has been the lack of a small-animal model. We previously reported isolation of a DENV2 strain, obtained by passaging a clinical isolate between mosquito cells and mice, that caused severe DENV disease in mice and contained multiple mutations, including many in domain II of the envelope (E) protein. Here, we describe a recombinant virus, differing from the non-mouse-passaged virus by two mutations in the E protein, that induces vascular leakage and tumor necrosis factor alpha (TNF-alpha)-mediated lethality, while the non-mouse-passaged virus causes paralysis. This recombinant virus has a weaker affinity for heparan sulfate, resulting in an increased serum half-life, higher systemic viral loads, and high levels of TNF-alpha in the serum of infected mice. These results exemplify the role of the E protein in modulating virion clearance and connect the effect of clearance on the systemic viral loads responsible for severe disease manifestations.
Collapse
|
37
|
Ubol S, Chareonsirisuthigul T, Kasisith J, Klungthong C. Clinical isolates of dengue virus with distinctive susceptibility to nitric oxide radical induce differential gene responses in THP-1 cells. Virology 2008; 376:290-6. [PMID: 18455750 DOI: 10.1016/j.virol.2008.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/20/2007] [Accepted: 03/26/2008] [Indexed: 11/18/2022]
Abstract
In the present study, 10 clinical isolates of dengue virus were selected according to their susceptibility to the inhibitory effect of nitric oxide radical, NO. Five of them are nitric oxide-susceptible viruses while the other five are nitric oxide-resistant viruses. These isolates were investigated to identify genetic factors that are responsible for the different phenotypes. Due to the evidence showing that NO suppresses DENV RNA polymerase activity, we, therefore, hypothesized that the RdRp domain of NS5 may responsible for NO inhibition. To answer this question, sequences of NS5 gene of NO-susceptible viruses and NO-resistant viruses were compared. We found that these two groups of viruses contain different amino acid sequence at position 621 to 646 in the active site of NS5. These data suggested that response to the inhibitory effect of nitric oxide radical may, at least in part, be regulated by NS5. The effect of these two different phenotypes of viruses on host cells was studied using cDNA array screening. The cDNA array analysis demonstrated that the nitric oxide-resistant group had a stronger influence on host cells since it induced changes in the expression of a greater number of genes than did the nitric oxide-susceptible group, 97 genes versus 71 genes, respectively. The NO-resistant virus also stimulated cytokines known to be virulent factors, such as IL 6, IL 8, RANTES, and the inflammatory factors. In conclusion, our data demonstrated that dengue viruses isolated from patients show genotypic and phenotypic differences which may correlate with virulence.
Collapse
Affiliation(s)
- Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Ratchatewee, Bangkok 10400, Thailand.
| | | | | | | |
Collapse
|
38
|
Añez M, Putonti C, Fox GE, Fofanov Y, Willson RC. Exhaustive computational identification of pathogen sequences far-distant from background genomes: Identification and experimental verification of human-blind dengue PCR primers. J Biotechnol 2007; 133:267-76. [PMID: 17996971 DOI: 10.1016/j.jbiotec.2007.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/23/2007] [Accepted: 09/05/2007] [Indexed: 01/19/2023]
Abstract
We recently developed novel algorithms for exhaustive identification of all nucleotide subsequences present in a pathogen genome which differ by at least a chosen number of mismatches from the sequences of host/background organisms. This type of exhaustive computational analysis will be useful in reducing false positives and cross-reactivity in PCR and hybridization assays. We present the first experimental test of the method by showing that the subsequences identified when used as 18-mer PCR primers can detect the presence of dengue virus (DENV) even in the presence of a large excess of complex human genomic DNA. From our computations, 715 serotype-specific primer pairs were identified for three different DENV serotypes in which each primer sequence lies at least two mismatches from the nearest human sequence. DNA clones of representative strains of DENV-1, DENV-2, and DENV-4 viruses were subjected to real-time PCR testing using eight primer pairs each. Efficiencies were uniformly very high (mean+/-S.D.=99.6+/-3%), and amplification of human DNA was never observed within 35 cycles, even at a 5.5-fold molar excess of human DNA. Exhaustive primer/probe screening can potentially produce more selective and sensitive diagnostic assays for pathogens, especially in the presence of complex backgrounds.
Collapse
Affiliation(s)
- Mariaclara Añez
- Department of Chemical and Biomolecular Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204-4004, United States
| | | | | | | | | |
Collapse
|
39
|
McAvin JC, Powers MD, Blow JA, Putnam JL, Huff WB, Swaby JA. Deployable, field-sustainable, reverse transcription-polymerase chain reaction assays for rapid screening and serotype identification of dengue virus in mosquitoes. Mil Med 2007; 172:329-34. [PMID: 17436782 PMCID: PMC7110365 DOI: 10.7205/milmed.172.3.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dengue virus universal and serotype 1 to 4 fluorogenic probe hydrolysis, reverse transcription (RT)-polymerase chain reaction (PCR) assays and positive-control RNA template were freeze-dried in a thermally stable, hydrolytic enzyme-resistant format and deployed for testing in a dengue fever-endemic region of Thailand. The study site presented austere testing conditions. Field-collected Aedes aegypti mosquitoes spiked with inoculated A. aegypti mosquitoes and individual and pooled, field-collected, A. aegypti, A. albopictus, and Culex tritaeniorhynchus mosquitoes were used for RT-PCR assay evaluations. For dengue virus-inoculated A. aegypti mosquitoes and spiked samples, in vitro sensitivity and specificity results for all five assays were concordant with indirect fluorescent antibody assay results. A single pool of field-collected, female, A. aegypti mosquitoes was identified as dengue virus positive. Cross-reactivity was not observed across heterologous serotypes, mosquito vectors, or human DNA. The limit of detection was >7 to ≤70 genomic equivalents. Sample processing and analysis required <2 hours. These results show promise of field-formatted RT-PCR reagents for rapid, sensitive, specific dengue virus screening and serotype identification in mosquitoes under field-deployed conditions.
Collapse
Affiliation(s)
- James C McAvin
- U.S. Air Force Institute for Operational Health, Brooks City-Base, San Antonio, TX 78235-5237, USA
| | | | | | | | | | | |
Collapse
|
40
|
Chareonsirisuthigul T, Kalayanarooj S, Ubol S. Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol 2007; 88:365-375. [PMID: 17251552 DOI: 10.1099/vir.0.82537-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The immunopathogenesis of dengue haemorrhagic fever and dengue shock syndrome is thought to be mediated by a variety of host factors. Enhancing antibodies are one of the key regulating molecules. These antibodies, via antibody-dependent enhancement (ADE) of infection, are able to facilitate dengue virus (DENV) growth in Fc-bearing host cells. The mechanism of ADE-enhanced DENV production is believed to be mediated through increasing the infected-cell mass. In the present work, the effect of ADE infection was explored further, focusing on the post-entry events of ADE infection. It was hypothesized that the higher virus production in ADE infection compared with DENV infection may be due to the ability of this infection pathway to suppress key antiviral molecules. Therefore, the influence of ADE infection on pro- and anti-inflammatory cytokines, including interleukin-12 (IL-12), gamma interferon (IFN-gamma), tumour necrosis factor alpha (TNF-alpha), IL-6 and IL-10, was investigated and it was found that DENV infection via the Fc receptor-mediated pathway was able to suppress the transcription and translation of IL-12, IFN-gamma and TNF-alpha. In contrast, infection via this route facilitated expression and synthesis of the anti-inflammatory cytokines IL-6 and IL-10. Moreover, this study demonstrates that the ADE infection pathway also suppresses an innate anti-DENV mediator, nitric oxide radicals, by disrupting the transcription of the iNOS gene transcription factor, IRF-1, and blocking the activation of STAT-1. In conclusion, ADE infection not only facilitates the entry process, but also modifies innate and adaptive intracellular antiviral mechanisms, resulting in unrestricted DENV replication in THP-1 cells.
Collapse
Affiliation(s)
| | - Siripen Kalayanarooj
- WHO Collaborating Centre Case Management of Dengue/DHF/DSS, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
41
|
Chien LJ, Liao TL, Shu PY, Huang JH, Gubler DJ, Chang GJJ. Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. J Clin Microbiol 2006; 44:1295-304. [PMID: 16597854 PMCID: PMC1448645 DOI: 10.1128/jcm.44.4.1295-1304.2006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serotyping dengue virus (DENV) from suspect human specimens is crucial for developing sound epidemiological control measurements early in the transmission season and for effective patient management. We modified DENV consensus D1 (mD1) and serotype-specific TS2 (mTS2) and redesigned serotype-specific TS1 (rTS1) and TS4 (rTS4) as described previously in the conventional capsid and premembrane gene (C-prM) protocol (R. S. Lanciotti, C. H. Calisher, D. J. Gubler, G.-J. Chang, A. V. Vorndam, J. Clin. Microbiol. 30:545-551, 1992). In addition, we designed two new sets of amplimers and probes, located at nonstructural protein 5 (NS5) and the 3' noncoding region (3'NC) of DENV. The NS5 protocol utilizes two flaviviral consensus outer amplimers (mFU1 and CFD2) and four dengue virus serotype-specific TaqMan fluorogenic probes. The 3'NC protocol uses two DENV consensus amplimers, DC10418 and CDC10564. The conventional gel-based, heminested detection method was adapted for the C-prM protocol for detecting and serotyping dengue viruses. In addition, we developed the real-time SYBR green I and postamplification melting temperature curve analysis for the mD1/TS and 3'NC protocols using identical amplification conditions. The NS5 amplimer/probe set was formulated as a one-tube, multiplex, real-time reverse transcriptase PCR for serotype identification. Three sets of amplimers and probes were verified for their specificity in tests with yellow fever, Japanese encephalitis, St. Louis encephalitis, and West Nile viruses; optimized against 109 DENV strains; and validated for detection of the virus in sera from two different panels of acute-phase human dengue serum specimens and one panel of virus isolates from dengue patients' serum specimens. Clinical evaluation by two separate laboratories indicated that the C-prM was more sensitive (100%) than the NS5 (91%) or the 3'NC (91%) protocol.
Collapse
Affiliation(s)
- Li-Jung Chien
- Center for Disease Control--Taiwan, Taipei, Taiwan, Republic of China, Fort Collins, CO 80521, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Takhampunya R, Ubol S, Houng HS, Cameron CE, Padmanabhan R. Inhibition of dengue virus replication by mycophenolic acid and ribavirin. J Gen Virol 2006; 87:1947-1952. [PMID: 16760396 DOI: 10.1099/vir.0.81655-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue viruses (DEN), mosquito-borne members of the family Flaviviridae, are human pathogens of global significance. The effects of mycophenolic acid (MPA) and ribavirin (RBV) on DEN replication in monkey kidney (LLC-MK2) cells were examined. MPA (IC(50)=0.4+/-0.3 microM) and RBV (IC(50)=50.9+/-18 microM) inhibited DEN2 replication. Quantitative real-time RT-PCR of viral RNA and plaque assays of virions from DEN2-infected and MPA (10 microM)- and RBV (> or =200 microM)-treated cells showed a fivefold increase in defective viral RNA production by cells treated with each drug. Moreover, a dramatic reduction of intracellular viral replicase activity was seen by in vitro replicase assays. Guanosine reversed the inhibition of these compounds, suggesting that one mode of antiviral action of MPA and RBV is by inhibition of inosine monophosphate dehydrogenase and thereby depletion of the intracellular GTP pool. In addition, RBV may act by competing with guanine-nucleotide precursors in viral RNA translation, replication and 5' capping.
Collapse
Affiliation(s)
- Ratree Takhampunya
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3900 Reservoir Road, Washington, DC 20057, USA
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - Huo-Shu Houng
- Department of Virus Diseases, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3900 Reservoir Road, Washington, DC 20057, USA
| |
Collapse
|
43
|
Marriott L, Willoughby K, Chianini F, Dagleish MP, Scholes S, Robinson AC, Gould EA, Nettleton PF. Detection of Louping ill virus in clinical specimens from mammals and birds using TaqMan RT-PCR. J Virol Methods 2006; 137:21-8. [PMID: 16814876 DOI: 10.1016/j.jviromet.2006.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 05/18/2006] [Accepted: 05/25/2006] [Indexed: 11/19/2022]
Abstract
The identification of Louping ill virus (LIV) in clinical specimens has been routinely achieved by virus isolation using susceptible pig kidney cells and subsequent serological analysis. While this method is sensitive and detects infectious virus, it is relatively labour intensive and time-consuming. In view of the veterinary and potential medical importance of LIV, a rapid and precise detection method for routine use that employs the TaqMan reverse transcription polymerase chain reaction (RT-PCR) has been developed to detect LIV RNA extracted from field samples. The TaqMan assay was evaluated against virus isolation using 22 cell culture grown LIV isolates, which had previously been partially characterised by sequencing, and material from 63 suspect field cases. Histopathological and/or serological reports were available for 39 of the suspect cases, providing additional diagnostic information to evaluate the results obtained from the TaqMan RT-PCR assay. The TaqMan assay was as sensitive as the cell culture infectious virus assay currently used and had the advantage that it was able to detect LIV in clinical specimens from which infectious virus could not be isolated possibly due to the presence of high levels of LIV antibody.
Collapse
Affiliation(s)
- L Marriott
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Putonti C, Chumakov S, Mitra R, Fox GE, Willson RC, Fofanov Y. Human-blind probes and primers for dengue virus identification. FEBS J 2006; 273:398-408. [PMID: 16403026 DOI: 10.1111/j.1742-4658.2005.05074.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Reliable detection and identification of pathogens in complex biological samples, in the presence of contaminating DNA from a variety of sources, is an important and challenging diagnostic problem for the development of field tests. The problem is compounded by the difficulty of finding a single, unique genomic sequence that is present simultaneously in all genomes of a species of closely related pathogens and absent in the genomes of the host or the organisms that contribute to the sample background. Here we describe 'host-blind probe design'- a novel strategy of designing probes based on highly frequent genomic signatures found in the pathogen genomes of interest but absent from the host genome. Upon hybridization, an array of such informative probes will produce a unique pattern that is a genetic fingerprint for each pathogen strain. This multiprobe approach was applied to 83 dengue virus genome sequences, available in public databases, to design and perform in silico microarray experiments. The resulting patterns allow one to unequivocally distinguish the four major serotypes, and within each serotype to identify the most similar strain among those that have been completely sequenced. In an environment where dengue is indigenous, this would allow investigators to determine if a particular isolate belongs to an ongoing outbreak or is a previously circulating version. Using our probe set, the probability that misdiagnosis at the serotype level would occur is approximately 1 : 10(150).
Collapse
Affiliation(s)
- Catherine Putonti
- Department of Computer Science, University of Houston, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Medin CL, Fitzgerald KA, Rothman AL. Dengue virus nonstructural protein NS5 induces interleukin-8 transcription and secretion. J Virol 2005; 79:11053-61. [PMID: 16103156 PMCID: PMC1193580 DOI: 10.1128/jvi.79.17.11053-11061.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Elevated circulating levels of chemokines have been reported in patients with dengue fever and are proposed to contribute to the pathogenesis of dengue disease. To establish in vitro models for chemokine induction by dengue 2 virus (DEN2V), we studied a variety of human cell lines and primary cells. DEN2V infection of HepG2 and primary dendritic cells induced the production of interleukin-8 (IL-8), RANTES, MIP-1alpha, and MIP-1beta, whereas only IL-8 and RANTES were induced following dengue virus infection of HEK293 cells. Chemokine secretion was accompanied by an increase in steady-state mRNA levels. No chemokine induction was observed in HEK293 cells treated with poly(I:C) or alpha interferon, suggesting a direct effect of virus infection. To determine the mechanism(s) involved in the induction of chemokine production by DEN2V, individual dengue virus genes were cloned into plasmids and expressed in HEK293 cells. Transfection of a plasmid expressing NS5 or a dengue virus replicon induced IL-8 gene expression and secretion. RANTES expression was not induced under these conditions, however. Reporter assays showed that IL-8 induction by NS5 was principally through CAAT/enhancer binding protein, whereas DEN2V infection also induced NF-kappaB. These results indicate a role for the dengue virus NS5 protein in the induction of IL-8 by DEN2V infection. Recruitment and activation of potential target cells to sites of DEN2V replication by virus-induced chemokine production may contribute to viral replication as well as to the inflammatory components of dengue virus disease.
Collapse
Affiliation(s)
- Carey L Medin
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | |
Collapse
|
46
|
Lee CJ, Liao CL, Lin YL. Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol 2005; 79:8388-99. [PMID: 15956583 PMCID: PMC1143730 DOI: 10.1128/jvi.79.13.8388-8399.2005] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 03/07/2005] [Indexed: 01/19/2023] Open
Abstract
Flaviviruses such as dengue virus (DEN) and Japanese encephalitis virus (JEV) are medically important in humans. The lipid kinase, phosphatidylinositol 3-kinase (PI3K) and its downstream target Akt have been implicated in the regulation of diverse cellular functions such as proliferation, and apoptosis. Since JEV and DEN appear to trigger apoptosis in cultured cells at a rather late stage of infection, we evaluated the possible roles of the PI3K/Akt signaling pathway in flavivirus-infected cells. We found that Akt phosphorylation was noticeable in the JEV- and DEN serotype 2 (DEN-2)-infected neuronal N18 cells in an early, transient, PI3K- and lipid raft-dependent manner. Blocking of PI3K activation by its specific inhibitor LY294002 or wortmannin greatly enhanced virus-induced cytopathic effects (CPEs), even at an early stage of infection, but had no effect on virus production. This severe CPE was characterized as apoptotic cell death as evidenced by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining and cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP). Mechanically, the initiator and effector caspases involved are mainly caspase-9 and caspase-6, since only a pan-caspase inhibitor and the inhibitors preferentially target caspase-9 and -6, but not the ones antagonizing caspase-8, -3, or -7 alleviated the levels of PARP cleavage after virus infection and PI3K blockage. Furthermore, Bcl-2 appears to be a crucial mediator downstream of PI3K/Akt signaling, since overexpression of Bcl-2 reduced virus-induced apoptosis even when PI3K activation was repressed. Collectively, our results suggest an anti-apoptotic role for the PI3K/Akt pathway triggered by JEV and DEN-2 to protect infected cells from early apoptotic cell death.
Collapse
Affiliation(s)
- Chyan-Jang Lee
- Graduate Institute of Life Sciences, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
47
|
de Oliveira Poersch C, Pavoni DP, Queiroz MH, de Borba L, Goldenberg S, dos Santos CND, Krieger MA. Dengue virus infections: comparison of methods for diagnosing the acute disease. J Clin Virol 2005; 32:272-7. [PMID: 15780804 DOI: 10.1016/j.jcv.2004.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/22/2004] [Accepted: 08/20/2004] [Indexed: 11/30/2022]
Abstract
BACKGROUND The control of dengue depends solely on the control of the insect vector and efficient diagnosis of human cases as no vaccines or specific treatments are currently available. Existing diagnostic methods for suspected clinical cases are complicated by the short duration of viraemia and by serological cross-reactivity with epitopes from other flaviviruses. OBJECTIVES To evaluate PCR-based tests (nested reverse transcription (RT)-PCR and real-time RT-PCR) for the detection and serotyping of dengue virus and compare the results with those obtained with a widely used immunological test (IgM antibody capture ELISA-MAC-ELISA). RESULTS AND CONCLUSIONS The PCR-based methods were more effective in the first few days of infection, whereas the MAC-ELISA became more sensitive 5 or 6 days after disease onset. These results suggest that the best method for dengue diagnosis is a combination of PCR-based and immunological tests. Real-time RT-PCR was more sensitive than the nested RT-PCR approach. Furthermore, it was rapid, reproducible and highly specific, making it a potential method for the diagnosis of dengue fever.
Collapse
Affiliation(s)
- Celina de Oliveira Poersch
- Instituto de Biologia Molecular do Paraná, IBMP, Rua Prof. Algacyr Munhoz Mader, 3775, 81350-010 Curitiba, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Houng HSH, Norwood D, Ludwig GV, Sun W, Lin M, Vaughn DW. Development and evaluation of an efficient 3'-noncoding region based SARS coronavirus (SARS-CoV) RT-PCR assay for detection of SARS-CoV infections. J Virol Methods 2005; 120:33-40. [PMID: 15234807 PMCID: PMC7119649 DOI: 10.1016/j.jviromet.2004.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/30/2004] [Accepted: 04/01/2004] [Indexed: 02/04/2023]
Abstract
The severe acute respiratory syndrome (SARS) epidemic originating from China in 2002 was caused by a previously uncharacterized coronavirus that could be identified by specific RT-PCR amplification. Efforts to control future SARS outbreaks depend on the accurate and early identification of SARS-CoV infected patients. A real-time fluorogenic RT-PCR assay based on the 3′-noncoding region (3′-NCR) of SARS-CoV genome was developed as a quantitative SARS diagnostic tool. The ideal amplification efficiency of a sensitive SARS-CoV RT-PCR assay should yield an E value (PCR product concentration increase per amplification cycle) equal to 2.0. It was demonstrated that the 3′-NCR SARS-CoV based RT-PCR reactions could be formulated to reach excellent E values of 1.81, or 91% amplification efficacy. The SARS-CoV cDNA preparations derived from viral RNA extract and the cloned recombinant plasmid both exhibit the identical amplification characteristics, i.e. amplification efficacy using the same PCR formulation developed in this study. The viral genomic copy (or genomic equivalences, GE) per infectious unit (GE/pfu) of SARS-CoV used in this study was also established to be approximate 1200–1600:1. The assay’s detection sensitivity could reach 0.005 pfu or 6–8 GE per assay. It was preliminarily demonstrated that the assay could efficiently detect SARS-CoV from clinical specimens of SARS probable and suspected patients identified in Taiwan. The 3′-NCR based SARS-CoV assay demonstrated 100% diagnostic specificity testing samples of patients with acute respiratory disease from a non-SARS epidemic region.
Collapse
Affiliation(s)
- Huo-Shu H Houng
- Department of Virus Diseases, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Towner JS, Rollin PE, Bausch DG, Sanchez A, Crary SM, Vincent M, Lee WF, Spiropoulou CF, Ksiazek TG, Lukwiya M, Kaducu F, Downing R, Nichol ST. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J Virol 2004; 78:4330-41. [PMID: 15047846 PMCID: PMC374287 DOI: 10.1128/jvi.78.8.4330-4341.2004] [Citation(s) in RCA: 366] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The largest outbreak on record of Ebola hemorrhagic fever (EHF) occurred in Uganda from August 2000 to January 2001. The outbreak was centered in the Gulu district of northern Uganda, with secondary transmission to other districts. After the initial diagnosis of Sudan ebolavirus by the National Institute for Virology in Johannesburg, South Africa, a temporary diagnostic laboratory was established within the Gulu district at St. Mary's Lacor Hospital. The laboratory used antigen capture and reverse transcription-PCR (RT-PCR) to diagnose Sudan ebolavirus infection in suspect patients. The RT-PCR and antigen-capture diagnostic assays proved very effective for detecting ebolavirus in patient serum, plasma, and whole blood. In samples collected very early in the course of infection, the RT-PCR assay could detect ebolavirus 24 to 48 h prior to detection by antigen capture. More than 1,000 blood samples were collected, with multiple samples obtained from many patients throughout the course of infection. Real-time quantitative RT-PCR was used to determine the viral load in multiple samples from patients with fatal and nonfatal cases, and these data were correlated with the disease outcome. RNA copy levels in patients who died averaged 2 log(10) higher than those in patients who survived. Using clinical material from multiple EHF patients, we sequenced the variable region of the glycoprotein. This Sudan ebolavirus strain was not derived from either the earlier Boniface (1976) or Maleo (1979) strain, but it shares a common ancestor with both. Furthermore, both sequence and epidemiologic data are consistent with the outbreak having originated from a single introduction into the human population.
Collapse
Affiliation(s)
- Jonathan S Towner
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Over the past 10 years, a number of molecular amplification assays have been developed for the detection of flaviviruses. Most of these assays utilize the reverse transcriptase-polymerase chain reaction (RT-PCR) as the amplification format with detection by either agarose gel electrophoresis and ethidium bromide staining or hybridization with molecular probes. Recently, a modification of the standard RT-PCR using fluorescent-labeled oligonucleotide probes for detection (TaqMan) has been described. As a result, several assays for detecting flaviviruses have been developed using this approach. In addition, another amplification format, nucleic acid sequence based amplification (NASBA), has been developed and utilized for the detection of several flaviviruses. The various assay formats will be described and their utility discussed.
Collapse
Affiliation(s)
- Robert S Lanciotti
- Diagnostic and Reference Laboratory, Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 80521, USA
| |
Collapse
|