1
|
Gunasekera S, Thierry B, King B, Monis P, Carr JM, Chopra A, Watson M, O’Dea M, Cheah E, Ram R, Clode PL, Hijjawi N, Ryan U. Microphysiological gut-on-chip enables extended in vitro development of Cryptosporidium hominis. Front Cell Infect Microbiol 2025; 15:1564806. [PMID: 40343058 PMCID: PMC12058726 DOI: 10.3389/fcimb.2025.1564806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/17/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Cryptosporidium hominis is the dominant Cryptosporidium species infecting humans, but most advances in developing robust in vitro culturing platforms for Cryptosporidium have utilised C. parvum. Consequently, there is relatively little available information specific to the biology and life cycle of C. hominis. The present study utilised a pumpless and tubeless gut-on-chip to generate a physiologically relevant in vitro environment by applying a constant fluid shear stress of 0.02 dyn cm-2 to HCT-8 cells. Methods Gut-on-chips were fabricated using standard soft lithography. C. hominis oocysts isolated from human pathology samples were used to infect the human ileocecal colorectal adenocarcinoma (HCT-8) cell line under a constant fluid shear stress of 0.02 dyn cm-2. Parasite growth was assessed using a C. hominis-specific quantitative PCR, a Cryptosporidium genus-specific immunofluorescence assay, and scanning electron microscopy. Differences in the HCT-8 transcriptome with and without fluid shear stress, and the host-parasite interaction, were both assessed using bulk transcriptomics. Results Transcriptomic analysis of the HCT-8 cell line cultured within the gut-on-chip demonstrated a metabolic shift towards oxidative phosphorylation when compared to the same cell line cultured under static conditions. Extended C. hominis (subtype IdA15G1) cultures were sustained for up to 10 days within the gut-on-chip as shown by a C. hominis-specific qPCR and a Cryptosporidium genus-specific immunofluorescence assay, which demonstrated ~30-fold amplification in the gut-on-chip over the duration of the experiment. Scanning electron microscopy of infected monolayers identified trophozoites, meronts, merozoites, macrogamonts, microgamonts, and possible gamont-like stages at 48 h post-infection. The potential role of gamonts in the Cryptosporidium life cycle remains unclear and warrants further investigation. Transcriptomes of HCT-8 cells infected with C hominis revealed upregulation of biological processes associated with cell cycle regulation and cell signalling in C. hominis-infected cells under fluid shear stress compared to static culture. Conclusions These data demonstrate that bioengineered gut-on-chip models support extended C. hominis growth and can be used to interrogate responses of host cells to infection. Owing to its relative simplicity, the pumpless and tubeless gut-on-chip can be accessible to most laboratories with established HCT-8 infection models for Cryptosporidium culture.
Collapse
Affiliation(s)
- Samantha Gunasekera
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Brendon King
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA, Australia
| | - Jillian M. Carr
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Abha Chopra
- Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Mark Watson
- Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Mark O’Dea
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Edward Cheah
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Ramesh Ram
- Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Peta L. Clode
- Centre for Microscopy, Characterisation, and Analysis and School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Una Ryan
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
2
|
Widmer G, Köster PC, Carmena D. Cryptosporidium hominis infections in non-human animal species: revisiting the concept of host specificity. Int J Parasitol 2020; 50:253-262. [PMID: 32205089 DOI: 10.1016/j.ijpara.2020.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Parasites in the genus Cryptosporidium, phylum Apicomplexa, are found worldwide in the intestinal tract of many vertebrate species and in the environment. Driven by sensitive PCR methods, and the availability of abundant sequence data and reference genomes, the taxonomic complexity of the genus has steadily increased; 38 species have been named to date. Due to its public health importance, Cryptosporidium hominis has long attracted the interest of the research community. This species was initially described as infectious to humans only. This perception has persisted in spite of an increasing number of observations of natural and experimental infections of animals with this species. Here we summarize and discuss this literature published since 2000 and conclude that the host range of C. hominis is broader than originally described. The evolving definition of the C. hominis host range raises interesting questions about host specificity and the evolution of Cryptosporidium parasites.
Collapse
Affiliation(s)
- Giovanni Widmer
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, United States
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
3
|
Sateriale A, Šlapeta J, Baptista R, Engiles JB, Gullicksrud JA, Herbert GT, Brooks CF, Kugler EM, Kissinger JC, Hunter CA, Striepen B. A Genetically Tractable, Natural Mouse Model of Cryptosporidiosis Offers Insights into Host Protective Immunity. Cell Host Microbe 2019; 26:135-146.e5. [PMID: 31231045 PMCID: PMC6617386 DOI: 10.1016/j.chom.2019.05.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Cryptosporidium is a leading cause of diarrheal disease and an important contributor to early childhood mortality, malnutrition, and growth faltering. Older children in high endemicity regions appear resistant to infection, while previously unexposed adults remain susceptible. Experimental studies in humans and animals support the development of disease resistance, but we do not understand the mechanisms that underlie protective immunity to Cryptosporidium. Here, we derive an in vivo model of Cryptosporidium infection in immunocompetent C57BL/6 mice by isolating parasites from naturally infected wild mice. Similar to human cryptosporidiosis, this infection causes intestinal pathology, and interferon-γ controls early infection while T cells are critical for clearance. Importantly, mice that controlled a live infection were resistant to secondary challenge and vaccination with attenuated parasites provided protection equal to live infection. Both parasite and host are genetically tractable and this in vivo model will facilitate mechanistic investigation and rational vaccine design.
Collapse
Affiliation(s)
- Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA 19104, USA
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Rodrigo Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Julie B Engiles
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA 19104, USA
| | - Jodi A Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA 19104, USA
| | - Gillian T Herbert
- Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Carrie F Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Emily M Kugler
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA 19104, USA
| | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA 19104, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
5
|
New Tools for Cryptosporidium Lead to New Hope for Cryptosporidiosis. Trends Parasitol 2017; 33:662-664. [DOI: 10.1016/j.pt.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
|
6
|
Ryan U, Paparini A, Monis P, Hijjawi N. It's official - Cryptosporidium is a gregarine: What are the implications for the water industry? WATER RESEARCH 2016; 105:305-313. [PMID: 27639055 DOI: 10.1016/j.watres.2016.09.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Parasites of the genus Cryptosporidium are a major cause of diarrhoea and ill-health in humans and animals and are frequent causes of waterborne outbreaks. Until recently, it was thought that Cryptosporidium was an obligate intracellular parasite that only replicated within a suitable host, and that faecally shed oocysts could survive in the environment but could not multiply. In light of extensive biological and molecular data, including the ability of Cryptosporidium to complete its life cycle in the absence of a host and the production of novel extracellular stages, Cryptosporidium has been formally transferred from the Coccidia, to a new subclass, Cryptogregaria, with gregarine parasites. In this review, we discuss the close relationship between Cryptosporidium and gregarines and discuss the implications for the water industry.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water, Adelaide, Australia
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, PO Box 150459, Zarqa, 13115, Jordan
| |
Collapse
|
7
|
Schomberg DT, Tellez A, Meudt JJ, Brady DA, Dillon KN, Arowolo FK, Wicks J, Rousselle SD, Shanmuganayagam D. Miniature Swine for Preclinical Modeling of Complexities of Human Disease for Translational Scientific Discovery and Accelerated Development of Therapies and Medical Devices. Toxicol Pathol 2016; 44:299-314. [PMID: 26839324 DOI: 10.1177/0192623315618292] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Noncommunicable diseases, including cardiovascular disease, diabetes, chronic respiratory disease, and cancer, are the leading cause of death in the world. The cost, both monetary and time, of developing therapies to prevent, treat, or manage these diseases has become unsustainable. A contributing factor is inefficient and ineffective preclinical research, in which the animal models utilized do not replicate the complex physiology that influences disease. An ideal preclinical animal model is one that responds similarly to intrinsic and extrinsic influences, providing high translatability and concordance of preclinical findings to humans. The overwhelming genetic, anatomical, physiological, and pathophysiological similarities to humans make miniature swine an ideal model for preclinical studies of human disease. Additionally, recent development of precision gene-editing tools for creation of novel genetic swine models allows the modeling of highly complex pathophysiology and comorbidities. As such, the utilization of swine models in early research allows for the evaluation of novel drug and technology efficacy while encouraging redesign and refinement before committing to clinical testing. This review highlights the appropriateness of the miniature swine for modeling complex physiologic systems, presenting it as a highly translational preclinical platform to validate efficacy and safety of therapies and devices.
Collapse
Affiliation(s)
- Dominic T Schomberg
- Biomedical & Genomic Research Group, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Jennifer J Meudt
- Biomedical & Genomic Research Group, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | - Folagbayi K Arowolo
- Biomedical & Genomic Research Group, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joan Wicks
- Alizée Pathology, LLC, Thurmont, Maryland, USA
| | | | | |
Collapse
|
8
|
Hadfield SJ, Pachebat JA, Swain MT, Robinson G, Cameron SJ, Alexander J, Hegarty MJ, Elwin K, Chalmers RM. Generation of whole genome sequences of new Cryptosporidium hominis and Cryptosporidium parvum isolates directly from stool samples. BMC Genomics 2015; 16:650. [PMID: 26318339 PMCID: PMC4552982 DOI: 10.1186/s12864-015-1805-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
Background Whole genome sequencing (WGS) of Cryptosporidium spp. has previously relied on propagation of the parasite in animals to generate enough oocysts from which to extract DNA of sufficient quantity and purity for analysis. We have developed and validated a method for preparation of genomic Cryptosporidium DNA suitable for WGS directly from human stool samples and used it to generate 10 high-quality whole Cryptosporidium genome assemblies. Our method uses a combination of salt flotation, immunomagnetic separation (IMS), and surface sterilisation of oocysts prior to DNA extraction, with subsequent use of the transposome-based Nextera XT kit to generate libraries for sequencing on Illumina platforms. IMS was found to be superior to caesium chloride density centrifugation for purification of oocysts from small volume stool samples and for reducing levels of contaminant DNA. Results The IMS-based method was used initially to sequence whole genomes of Cryptosporidium hominis gp60 subtype IbA10G2 and Cryptosporidium parvum gp60 subtype IIaA19G1R2 from small amounts of stool left over from diagnostic testing of clinical cases of cryptosporidiosis. The C. parvum isolate was sequenced to a mean depth of 51.8X with reads covering 100 % of the bases of the C. parvum Iowa II reference genome (Bioproject PRJNA 15586), while the C. hominis isolate was sequenced to a mean depth of 34.7X with reads covering 98 % of the bases of the C. hominis TU502 v1 reference genome (Bioproject PRJNA 15585). The method was then applied to a further 17 stools, successfully generating another eight new whole genome sequences, of which two were C. hominis (gp60 subtypes IbA10G2 and IaA14R3) and six C. parvum (gp60 subtypes IIaA15G2R1 from three samples, and one each of IIaA17G1R1, IIaA18G2R1, and IIdA22G1), demonstrating the utility of this method to sequence Cryptosporidium genomes directly from clinical samples. This development is especially important as it reduces the requirement to propagate Cryptosporidium oocysts in animal models prior to genome sequencing. Conclusion This represents the first report of high-quality whole genome sequencing of Cryptosporidium isolates prepared directly from human stool samples.
Collapse
Affiliation(s)
- Stephen J Hadfield
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| | - Justin A Pachebat
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Martin T Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| | - Simon Js Cameron
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Jenna Alexander
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Matthew J Hegarty
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Kristin Elwin
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| |
Collapse
|
9
|
Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, Saalmüller A, Summerfield A, Gerdts V, Wilson HL, Meurens F. The porcine innate immune system: an update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:321-43. [PMID: 24709051 PMCID: PMC7103209 DOI: 10.1016/j.dci.2014.03.022] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 05/21/2023]
Abstract
Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease.
Collapse
Affiliation(s)
- K H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - C Sedlak
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - T Käser
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - A Pasternak
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - B Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - W Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Summerfield
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - V Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - H L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - F Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
10
|
Abstract
Easy access to next generation sequencing has enabled the rapid analysis of complex microbial populations. To take full advantage of these technologies, animal models enabling the manipulation of human microbiomes and the study of the impact of such perturbations on the host are needed. To this aim we are developing experimentally tractable and clinically relevant pig models of the human adult and infant gastro-intestinal tract. The intestine of germ-free piglets was populated with human adult or infant fecal microbial populations, and the piglets were maintained on solid or milk diet, respectively. Amplicons of 16S rRNA V6 region were deep-sequenced to monitor to what extent the transplanted human microbiomes changed in the pig. Within 24 h of transfer of human fecal microbiome to pigs, bacterial microbiomes rich in Proteobacteria emerged. These populations evolved toward a more diverse composition rich in Bacteroidetes and Firmicutes. In the experiment where infant microbiome was used, the phylogenetic composition of the transplanted bacterial population converged toward that of the human inoculum. A majority of sequences belonged to a relatively small number of operational taxonomic units, whereas at the other end of the abundance spectrum, a large number of rare and transient OTUs were detected. Analysis of fecal and colonic microbiomes originating from the same animal indicate that feces closely replicate the colonic microbiome. We conclude that the pig intestine can be colonized with human fecal microbiomes to generate a realistic model of the human GI tract.
Collapse
|
11
|
Díaz-Lee A, Mercado R, Onuoha EO, Ozaki LS, Muñoz P, Muñoz V, Martínez FJ, Fredes F. Cryptosporidium parvum in diarrheic calves detected by microscopy and identified by immunochromatographic and molecular methods. Vet Parasitol 2010; 176:139-44. [PMID: 21109352 DOI: 10.1016/j.vetpar.2010.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 11/30/2022]
Abstract
Cryptosporidium is an important protozoan parasite that causes diarrhea in neonates and young bovines. The objective of the present study was to determine the frequency of Cryptosporidium infection in animals of dairy farms of the Metropolitan Region (Santiago), Chile. Fecal samples of 205 newborn calves with diarrhea were studied and used for comparing the efficiency of two microscopic staining methods for diagnosis of the parasite, the auramine (AU) and a modified Ziehl-Neelsen (ZN) procedure. Out of the 205 fecal samples, we detected oocysts in 115 (56.1%) with AU and 102 (49.8%) with ZN. Comparison of results obtained with the two microscopic techniques showed significant difference (p<0.05), AU being more sensitive. On the other hand, concordance between the two methods was almost perfect (kappa value of 0.83). The results with these two operator dependent methods were confirmed using an operator independent immunochromatographic (IC) method. The IC method also enabled us to determine the identity of the parasite species as that of Cryptosporidium parvum. Identification of the parasite species was further corroborated by performing a Cryptosporidium species-specific polymerase chain reaction (PCR) test on few samples taken at random. Overall, the results showed a high number of infected animals suggesting the parasite C. parvum as a major parasitic disease agent of neonatal calves with diarrhea in dairy farms of the Metropolitan Region (Santiago) of Chile.
Collapse
Affiliation(s)
- A Díaz-Lee
- Laboratory of Parasitology, Department of Animal Preventive Medicine, College of Veterinary Sciences, University of Chile, Avenida Santa Rosa 11,735, La Pintana, 8820808 Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hijjawi N, Estcourt A, Yang R, Monis P, Ryan U. Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Vet Parasitol 2010; 169:29-36. [DOI: 10.1016/j.vetpar.2009.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/02/2009] [Accepted: 12/14/2009] [Indexed: 11/17/2022]
|
13
|
Featherstone CA, Marshall JA, Giles M, Sayers AR, Pritchard GC. Cryptosporidium species infection in pigs in East Anglia. Vet Rec 2010; 166:51-2. [PMID: 20064979 DOI: 10.1136/vr.b4771] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- C A Featherstone
- Veterinary Laboratories Agency-Thirsk, West House, Station Road, Thirsk, North Yorkshire.
| | | | | | | | | |
Collapse
|
14
|
Gómez-Couso H, Fontán-Sainz M, McGuigan KG, Ares-Mazás E. Effect of the radiation intensity, water turbidity and exposure time on the survival of Cryptosporidium during simulated solar disinfection of drinking water. Acta Trop 2009; 112:43-8. [PMID: 19539587 DOI: 10.1016/j.actatropica.2009.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 05/28/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The solar disinfection (SODIS) technique is a highly effective process that makes use of solar energy to inactivate pathogenic microorganisms in drinking water in developing countries. The pathogenic protozoan parasite Cryptosporidium parvum is often found in surface waters and is associated with waterborne outbreaks of cryptosporidiosis. In the present study, a complete multi-factorial mathematical model was used to investigate the combined effects of the intensity of solar radiation (200, 600 and 900W/m(2) in the 320nm to 10microm range), water turbidity (5, 100 and 300 NTU) and exposure time (4, 8 and 12h) on the viability and infectivity of C. parvum oocysts during simulated SODIS procedures at a constant temperature of 30 degrees C. All three factors had significant effects (p<0.05) on C. parvum survival, as did the interactions of water turbidity with radiation intensity and radiation intensity with exposure time. However, the parameter with the greatest effect was the intensity of radiation; levels > or =600W/m(2) and times of exposure between 8 and 12h were required to reduce the oocyst infectivity in water samples with different degrees of turbidity.
Collapse
|
15
|
Plutzer J, Karanis P. Genetic polymorphism in Cryptosporidium species: an update. Vet Parasitol 2009; 165:187-99. [PMID: 19660869 DOI: 10.1016/j.vetpar.2009.07.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/29/2009] [Accepted: 07/02/2009] [Indexed: 11/17/2022]
Abstract
Cryptosporidia, widely distributed protozoan parasites of vertebrates, have attracted increasing interest due to several serious waterborne outbreaks, the life-threatening nature of infection in immunocompromised patients, and the realization of economic losses caused by these pathogens in livestock. Genetic polymorphism within Cryptosporidium species is being detected at a continuously growing rate, owing to the widespread use of modern molecular techniques. The aim of this paper is to review the current status of taxonomy, genotyping and molecular phylogeny of Cryptosporidium species. To this date, 20 Cryptosporidium species have been recognized. Two named species of Cryptosporidium have been found in fish, 1 in amphibians, 2 in reptiles, 3 in birds, and 12 in mammals. Nearly 61 Cryptosporidium genotypes with uncertain species status have been found based on SSUrRNA sequences. The gp-60 gene showed a high degree of sequence polymorphism among isolates of Cryptosporidium species and several subtype groups and subgenotypes have been identified, of which the Cryptosporidium parvum IIa and IId subtype groups were found to be zoonotic. This review describes considerable progress in the identification, genetic characterization, and strain differentiation of Cryptosporidium over the last 20 years. All the valid species, genotypes and zoonotic subtypes of Cryptosporidium reported in the international literature are included in this paper with respect to the taxonomy, epidemiology, transmission and morphologic-genetic information for each species.
Collapse
Affiliation(s)
- Judit Plutzer
- National Institute of Environmental Health, Department of Water Hygiene, Gyáli ut 2-6, Budapest H-1096, Hungary.
| | | |
Collapse
|
16
|
Garcés-Sanchez G, Wilderer PA, Munch JC, Horn H, Lebuhn M. Evaluation of two methods for quantification of hsp70 mRNA from the waterborne pathogen Cryptosporidium parvum by reverse transcription real-time PCR in environmental samples. WATER RESEARCH 2009; 43:2669-2678. [PMID: 19401258 DOI: 10.1016/j.watres.2009.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 03/09/2009] [Accepted: 03/16/2009] [Indexed: 05/27/2023]
Abstract
We optimized and evaluated two mRNA extraction methods to quantify induced hsp70 mRNA from viable and injured Cryptosporidium parvum oocysts by reverse transcription quantitative real-time PCR (RT-qPCR) in raw and treated manure. Methods based on guanidinium isothiocyanate/phenol/chloroform (GITC-PC) purification and direct mRNA extraction with magnetic oligo(dT)25-coated beads were evaluated for applicability and sensitivity. Both methods proved to be suitable for processing manure samples. With washed manure samples and oocyst disruption by bead beating for 165 s in time intervals with cumulative pooling of the lysate fractions, optimum RT-qPCR results were achieved. On average, 2.6 times more hsp70 mRNA was detected with the oligo(dT)25 method in comparison to the GITC-PC based method using fresh oocysts, whereas less mRNA was detected in aged oocysts. For fresh oocysts, analytical and method detection limits for the oligo(dT)25 based method were 1.7 cDNA copies/qPCR reaction and 5150 oocysts/mL manure, and for the GITC-PC based method 17 cDNA copies/qPCR reaction and 4950 oocysts/mL, respectively. In 12 months old oocysts with reduced viability, mRNA was occasionally detected only by the GITC-PC based method. Failure of or reduced detection with the oligo(dT)25 based method was apparently a result of weakened oocyst walls leading to quicker release of mRNA and therefore mRNA shredding by bead beating in the relatively long stretch between the capture sequence and the RT-qPCR target sites.
Collapse
Affiliation(s)
- Gabriela Garcés-Sanchez
- Institute of Water Quality Control, Technische Universität München, Am Coulombwall, 85748 Garching, Germany.
| | | | | | | | | |
Collapse
|
17
|
Rouchka EC, Krushkal J. Proceedings of the Eighth Annual UT-ORNL-KBRIN Bioinformatics Summit 2009. BMC Bioinformatics 2009. [PMCID: PMC3313273 DOI: 10.1186/1471-2105-10-s7-i1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Giles M, Chalmers R, Pritchard G, Elwin K, Mueller-Doblies D, Clifton-Hadley F. Cryptosporidium hominis in a goat and a sheep in the UK. Vet Rec 2009; 164:24-5. [PMID: 19122222 DOI: 10.1136/vr.164.1.24] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- M Giles
- Food and Environmental Safety Department, Veterinary Laboratories Agency - Weybridge, Surrey, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Jothikumar N, da Silva AJ, Moura I, Qvarnstrom Y, Hill VR. Detection and differentiation of Cryptosporidium hominis and Cryptosporidium parvum by dual TaqMan assays. J Med Microbiol 2008; 57:1099-1105. [PMID: 18719179 DOI: 10.1099/jmm.0.2008/001461-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapid identification of the two major species of Cryptosporidium associated with human infections, Cryptosporidium hominis and Cryptosporidium parvum, is important for investigating outbreaks of cryptosporidiosis. This study reports the development and validation of a real-time PCR TaqMan procedure for detection of Cryptosporidium species and identification of C. hominis and C. parvum in stool specimens. This procedure comprised a generic TaqMan assay targeting the 18S rRNA for sensitive detection of Cryptosporidium species, as well as two other TaqMan assays for identification of C. hominis and C. parvum. The generic Cryptosporidium species assay can be duplexed with the C. parvum-specific assay. The generic Cryptosporidium species assay was able to detect ten Cryptosporidium species and did not cross-react with a panel of ten other protozoan parasites. The generic Cryptosporidium species assay could detect 1-10 oocysts in a 300 microl stool specimen, whilst each of the species-specific TaqMan assays had detection sensitivities that were approximately tenfold higher. The 18S rRNA assay was found to detect Cryptosporidium species in 49/55 DNA extracts from stool specimens containing either C. hominis or C. parvum. The C. hominis TaqMan assay correctly identified C. hominis in 24/31 validation panel specimens containing this species. The C. parvum-specific assay correctly identified C. parvum in 21/24 validation panel specimens containing this species. This real-time PCR procedure was used to detect and identify C. hominis and C. parvum in stool specimens from outbreak investigations in the USA and Botswana, resulting in identification of C. hominis and/or C. parvum in 66/67 stool specimens shown to be positive for these species using other techniques. From the outbreak specimens tested, the TaqMan procedure was found to have a specificity of 94%. This TaqMan PCR procedure should be a valuable tool for the laboratory diagnosis of cryptosporidiosis caused by C. hominis and C. parvum during outbreak investigations.
Collapse
Affiliation(s)
- N Jothikumar
- Centers for Disease Control and Prevention (CDC), National Center for Zoonotic, Vector-borne, and Enteric Diseases, Division of Parasitic Diseases, Atlanta, GA 30341, USA
| | - A J da Silva
- Centers for Disease Control and Prevention (CDC), National Center for Zoonotic, Vector-borne, and Enteric Diseases, Division of Parasitic Diseases, Atlanta, GA 30341, USA
| | - I Moura
- Atlanta Research and Education Foundation, Decatur, GA, USA.,Centers for Disease Control and Prevention (CDC), National Center for Zoonotic, Vector-borne, and Enteric Diseases, Division of Parasitic Diseases, Atlanta, GA 30341, USA
| | - Y Qvarnstrom
- Centers for Disease Control and Prevention (CDC), National Center for Zoonotic, Vector-borne, and Enteric Diseases, Division of Parasitic Diseases, Atlanta, GA 30341, USA
| | - V R Hill
- Centers for Disease Control and Prevention (CDC), National Center for Zoonotic, Vector-borne, and Enteric Diseases, Division of Parasitic Diseases, Atlanta, GA 30341, USA
| |
Collapse
|
20
|
Jex AR, Smith HV, Monis PT, Campbell BE, Gasser RB. Cryptosporidium--biotechnological advances in the detection, diagnosis and analysis of genetic variation. Biotechnol Adv 2008; 26:304-17. [PMID: 18430539 DOI: 10.1016/j.biotechadv.2008.02.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/29/2008] [Accepted: 02/14/2008] [Indexed: 11/19/2022]
Abstract
Cryptosporidiosis is predominantly a gastrointestinal disease of humans and other animals, caused by various species of protozoan parasites representing the genus Cryptosporidium. This disease, transmitted mainly via the faecal-oral route (in water or food), is of major socioeconomic importance worldwide. The diagnosis and genetic characterization of the different species and population variants (usually recognised as "genotypes" or "subgenotypes") of Cryptosporidium is central to the prevention, surveillance and control of cryptosporidiosis, particularly given that there is presently no broadly applicable treatment regimen for this disease. Although traditional phenotypic techniques have had major limitations in the specific diagnosis of cryptosporidiosis, there have been major advances in the development of molecular analytical and diagnostic tools. This article provides a concise account of Cryptosporidium and cryptosporidiosis, and focuses mainly on recent advances in nucleic acid-based approaches for the diagnosis of cryptosporidiosis and analysis of genetic variation within and among species of Cryptosporidium. These advances represent a significant step toward an improved understanding of the epidemiology as well as the prevention and control of cryptosporidiosis.
Collapse
Affiliation(s)
- A R Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia.
| | | | | | | | | |
Collapse
|
21
|
Ryu H, Gerrity D, Crittenden JC, Abbaszadegan M. Photocatalytic inactivation of Cryptosporidium parvum with TiO(2) and low-pressure ultraviolet irradiation. WATER RESEARCH 2008; 42:1523-1530. [PMID: 18037465 DOI: 10.1016/j.watres.2007.10.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/16/2007] [Accepted: 10/23/2007] [Indexed: 05/25/2023]
Abstract
This study investigated the efficacy of low-pressure ultraviolet (UV) irradiation and the synergistic effect of UV/titanium dioxide (TiO(2)) photocatalysis on Cryptosporidium parvum oocyst inactivation. At UV doses of 2.7, 8.0, and 40mJ/cm(2), oocyst inactivation was 1.3, 2.6, and 3.3log(10), respectively. Reactive oxygen species (ROS) generated by longwave UV radiation (>315nm) and TiO(2) achieved less than 0.28-log inactivation. However, the synergistic effect of germicidal (254nm) UV and TiO(2) resulted in 2-log and 3-log oocyst inactivation with 4.0 and 11.0mJ/cm(2), respectively. Therefore, using TiO(2) in combination with UV reduced the dose requirement for 3-log inactivation by 56%. An approximate 1-log decrease in inactivation of oocysts was observed with nanopure water in comparison to buffered water, whereas changes in pH from 6 to 8 had little effect on the photocatalytic inactivation of oocysts in either matrix (P>0.1).
Collapse
Affiliation(s)
- Hodon Ryu
- Department of Civil and Environmental Engineering, National Science Foundation Water Quality Center, Arizona State University, ECG 252, Tempe, AZ 85287-5306, USA
| | | | | | | |
Collapse
|
22
|
Mercado R, Buck GA, Manque PA, Ozaki LS. Cryptosporidium hominis infection of the human respiratory tract. Emerg Infect Dis 2007; 13:462-4. [PMID: 17552101 PMCID: PMC2725888 DOI: 10.3201/eid1303.060394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cryptosporidium oocysts, observed in a natural sputum sample of a patient with HIV, were further studied by using DNA markers to determine the species of the parasite. C. hominis was identified as the species infecting the patient’s respiratory tract, a finding that strengthens evidence regarding this pathogen’s role in human disease.
Collapse
Affiliation(s)
- Rubén Mercado
- Unidad Docente de Parasitologia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
23
|
Bukhari Z, Holt DM, Ware MW, Schaefer FW. Blind trials evaluating in vitro infectivity ofCryptosporidiumoocysts using cell culture immunofluorescence. Can J Microbiol 2007; 53:656-63. [PMID: 17668024 DOI: 10.1139/w07-032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An optimized cell culture immunofluorescence (IFA) procedure, using the HCT-8 cell line, was evaluated in blind trials to determine the sensitivity and reproducibility of measuring the infectivity of flow-cytometry-prepared inocula of Cryptosporidium parvum oocysts. In separate trials, suspensions consisting of between 0% and 100% viable oocysts were prepared at the US Environmental Protection Agency, shipped to the American Water Laboratory, and analyzed blindly by cell culture IFA. Data indicated the control (100% live) oocyst suspensions yielded statistically similar results to cell culture dose–response curve data developed previously at the American Water Laboratory. For test samples containing oocyst suspensions of unknown infectivity, cell culture IFA analyses indicated a high degree of correlation (r2= 0.89; n = 26) with the values expected by the US Environmental Protection Agency. Cell culture infectivity correlates well with neonatal mouse infectivity assays, and these blind validation trials provide credibility for the cell culture IFA procedure as a cost-effective and expedient alternative to mouse infectivity assays for determining in vitro infectivity of C. parvum oocysts.
Collapse
Affiliation(s)
- Zia Bukhari
- American Water, 1025 Laurel Oak Road, Voorhees, NJ 08043, USA.
| | | | | | | |
Collapse
|
24
|
Molini U, Traversa D, Ceschia G, Iorio R, Boffo L, Zentilin A, Capelli G, Giangaspero A. Temporal occurrence of Cryptosporidium in the Manila clam Ruditapes philippinarum in northern Adriatic Italian lagoons. J Food Prot 2007; 70:494-9. [PMID: 17340889 DOI: 10.4315/0362-028x-70.2.494] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to evaluate the temporal occurrence of Cryptosporidium oocysts in Ruditapes philippinarum clams bred along the northeastern Italian Adriatic coast and molecularly characterize the isolates, 2,160 specimens (180 clams per month) were collected from three clam farms from January to December 2004. Two farms (sites A and B) were located in Venice (Chioggia, Veneto region) and one (site C) in the Marano Lagoons (Friuli Venezia Giulia region). Clams from 36 pools (i.e., one pool of 60 clams per month per site) were subjected to a high-sensitivity seminested PCR assay specific for a 360-bp diagnostic region internal to the Cryptosporidium spp. outer wall protein gene. Positive amplicons were sequenced and analyzed. Cryptosporidium DNA was found in clams from seven pools (sites A and B) during 1 month of sampling at site A and 6 months of sampling at site B, with Cryptosporidium hominis and Cryptosporidium parvum being detected. The expected infection rate of the clams was 0.36%. Site B showed a significantly higher expected infection rate (1.15%) than did the other sites (A = 0.14% and C = 0%). Given its high sensitivity and specificity, this seminested PCR assay can be considered a reliable tool for detecting and distinguishing species within the Cryptosporidium genus. The seasonal pattern of contamination and the related public health risks are of particular concern.
Collapse
Affiliation(s)
- Umberto Molini
- Dipartimento di Scienze Biomediche Comparate, Università degli Studi di Teramo, Piazza Aldo Moro, 45 64100, Teramo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Al-Adhami BH, Nichols RAB, Kusel JR, O'Grady J, Smith HV. Detection of UV-induced thymine dimers in individual Cryptosporidium parvum and Cryptosporidium hominis oocysts by immunofluorescence microscopy. Appl Environ Microbiol 2006; 73:947-55. [PMID: 17012589 PMCID: PMC1800761 DOI: 10.1128/aem.01251-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.
Collapse
Affiliation(s)
- B H Al-Adhami
- Scottish Parasite Diagnostic Laboratory, Stobhill Hospital, Glasgow G21 3UW, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Tanriverdi S, Markovics A, Arslan MO, Itik A, Shkap V, Widmer G. Emergence of distinct genotypes of Cryptosporidium parvum in structured host populations. Appl Environ Microbiol 2006; 72:2507-13. [PMID: 16597950 PMCID: PMC1449037 DOI: 10.1128/aem.72.4.2507-2513.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium parvum is an apicomplexan parasite that infects humans and ruminants. C. parvum isolated from cattle in northeastern Turkey and in Israel was genotyped using multiple polymorphic genetic markers, and the two populations were compared to assess the effect of cattle husbandry on the parasite's population structure. Dairy herds in Israel are permanently confined with essentially no opportunity for direct herd-to-herd transmission, whereas in Turkey there are more opportunities for transmission as animals range over wider areas and are frequently traded. A total of 76 C. parvum isolates from 16 locations in Israel and seven farms in the Kars region in northeastern Turkey were genotyped using 16 mini- and microsatellite markers. Significantly, in both countries distinct multilocus genotypes confined to individual farms were detected. The number of genotypes per farm was higher and mixed isolates were more frequent in Turkey than in Israel. As expected from the presence of distinct multilocus genotypes in individual herds, linkage disequilibrium among loci was detected in Israel. Together, these observations show that genetically distinct populations of C. parvum can emerge within a group of hosts in a relatively short time. This may explain the frequent detection of host-specific genotypes with unknown taxonomic status in surface water and the existence of geographically restricted C. hominis genotypes in humans.
Collapse
Affiliation(s)
- Sultan Tanriverdi
- Division of Infectious Diseases, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | | | | | | | | | | |
Collapse
|
27
|
Park JH, Guk SM, Han ET, Shin EH, Kim JL, Chai JY. Genotype analysis of Cryptosporidium spp. prevalent in a rural village in Hwasun-gun, Republic of Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2006; 44:27-33. [PMID: 16514279 PMCID: PMC2532641 DOI: 10.3347/kjp.2006.44.1.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two species of Cryptosporidium are known to infect man; C. hominis which shows anthroponotic transmission between humans, and C. parvum which shows zoonotic transmission between animals or between animals and man. In this study, we focused on identifying genotypes of Cryptosporidium prevalent among inhabitants and domestic animals (cattle and goats), to elucidate transmittal routes in a known endemic area in Hwasun-gun, Jeollanam-do, Republic of Korea. The existence of Cryptosporidium oocysts was confirmed using a modified Ziehl-Neelsen stain. Human infections were found in 7 (25.9%) of 27 people examined. Cattle cryptosporidiosis cases constituted 7 (41.2%) of 17 examined, and goat cases 3 (42.9%) of 7 examined. Species characterizations were performed on the small subunit of the rRNA gene using both PCR-RFLP and sequence analysis. Most of the human isolates were mixtures of C. hominis and C. parvum genotypes and similar PCR-RFLP patterns were observed in cattle and goat isolates. However, sequence analyses identified only C. hominis in all isolates examined. The natural infection of cattle and goats with C. hominis is a new and unique finding in the present study. It is suggested that human cryptosporidiosis in the studied area is caused by mixtures of C. hominis and C. parvum oocysts originating from both inhabitants and domestic animals.
Collapse
Affiliation(s)
- Jae-Hwan Park
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Tanriverdi S, Widmer G. Differential evolution of repetitive sequences in Cryptosporidium parvum and Cryptosporidium hominis. INFECTION GENETICS AND EVOLUTION 2006; 6:113-22. [PMID: 16503512 DOI: 10.1016/j.meegid.2005.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 02/16/2005] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
Cryptosporidium parvum and Cryptosporidium hominis are two morphologically identical species of Apicomplexan protozoa infecting humans. Although the genomes of these species are 97% identical, their host range is strikingly different. C. parvum infects humans and animals and is primarily a zoonotic infection, whereas C. hominis is typically not detected in animals. The extent of genetic polymorphism in both species has been surveyed locally, but not on a larger geographical scale. Herein, a collection of unrelated C. parvum and C. hominis isolates was genotyped using multiple, randomly distributed micro- and minisatellites. In average, minisatellites, consisting of tandemly repeated sequence motifs of 6-24 basepair, were more polymorphic than microsatellites. When the average number of micro- and minisatellite alleles per locus was used as a measure of heterogeneity, no difference between C. parvum and C. hominis was found. However, the frequency distribution of alleles in both species was significantly different and in 6 of the 14 loci the size of the C. parvum and C. hominis repeats did not overlap. Assuming that C. parvum and C. hominis evolved from a common ancestor, these observations suggest a differential evolution of repeat length at these loci.
Collapse
Affiliation(s)
- Sultan Tanriverdi
- Tufts University School of Veterinary Medicine, Division of Infectious Diseases, 200 Westborough Road, North Grafton, MA 01536, USA
| | | |
Collapse
|
29
|
Fayer R, Santín M, Xiao L. Cryptosporidium bovis n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus). J Parasitol 2005; 91:624-9. [PMID: 16108557 DOI: 10.1645/ge-3435] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A new species of Cryptosporidium, C. bovis, is described. Oocysts of C. bovis, previously identified as Cryptosporidium genotype Bovine B (GenBank AY120911), are morphologically indistinguishable from those of C. parvum. They are excreted fully sporulated and contain 4 sporozoites, but lack sporocysts. Oocysts measure 4.76-5.35 microm (mean = 4.89 microm) x 4.17-4.76 microm (mean = 4.63 microm), with a length-to-width ratio of 1.06 (n = 50). Oocysts were not infectious for neonatal BALB/ c mice, but were infectious for 2 calves that were previously infected with C. parvum. Oocysts were not infectious for 2 experimentally exposed lambs less than 1 wk of age and were not detected in 42 lambs 2-3 mo of age, but were detected in a 2-wk-old lamb. In an earlier study, 79 of 840 calves on 14 dairy farms in 7 states were found infected with the new species. Most calves were 2-7 mo of age and none exhibited signs of diarrhea. This new species has been found in 10 of 162 calves aged 9 to 11 mo on a beef farm in Maryland. Fragments of the 18S rDNA, HSP-70, and actin genes were amplified by PCR, and purified PCR products were sequenced. Multilocus analysis of the 3 unlinked loci demonstrated the new species to be distinct from C. parvum and also demonstrated a lack of recombination, providing further evidence of species status. Based on these biological and molecular data, we consider this highly prevalent Cryptosporidium that infects primarily postweaned calves to be a new species and propose the name Cryptosporidium bovis n. sp. for this parasite.
Collapse
Affiliation(s)
- Ronald Fayer
- Environmental Microbial Safety Laboratory, Animal and Natural Resources Institute Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | |
Collapse
|
30
|
Baishanbo A, Gargala G, Delaunay A, François A, Ballet JJ, Favennec L. Infectivity of Cryptosporidium hominis and Cryptosporidium parvum genotype 2 isolates in immunosuppressed Mongolian gerbils. Infect Immun 2005; 73:5252-5. [PMID: 16041051 PMCID: PMC1201256 DOI: 10.1128/iai.73.8.5252-5255.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One-month-old dexamethasone-immunosuppressed Mongolian gerbils were challenged with 1 oocyst to 2 x 10(5) oocysts from two isolates genotyped as Cryptosporidium hominis and C. parvum (genotype 2), respectively. A similar dose-dependent gut infection was obtained, and the initial genotype maintained for 21 to 22 days. The data suggest that immunosuppressed gerbils provide a reliable rodent model of persistent C. hominis infection.
Collapse
Affiliation(s)
- Asiya Baishanbo
- Laboratoire d'Immunologie et d'Immunopathologie, CHU Clemenceau, 14033 Caen Cedex, France
| | | | | | | | | | | |
Collapse
|
31
|
Johnson AM, Linden K, Ciociola KM, De Leon R, Widmer G, Rochelle PA. UV inactivation of Cryptosporidium hominis as measured in cell culture. Appl Environ Microbiol 2005; 71:2800-2. [PMID: 15870378 PMCID: PMC1087588 DOI: 10.1128/aem.71.5.2800-2802.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 12/09/2005] [Indexed: 11/20/2022] Open
Abstract
The Cryptosporidium spp. UV disinfection studies conducted to date have used Cryptosporidium parvum oocysts. However, Cryptosporidium hominis predominates in human cryptosporidiosis infections, so there is a critical need to assess the efficacy of UV disinfection of C. hominis. This study utilized cell culture-based methods to demonstrate that C. hominis oocysts displayed similar levels of infectivity and had the same sensitivity to UV light as C. parvum. Therefore, the water industry can be confident about extrapolating C. parvum UV disinfection data to C. hominis oocysts.
Collapse
Affiliation(s)
- Anne M Johnson
- The Metropolitan Water District of Southern California, Water Quality Laboratory, 700 Moreno Avenue, La Verne, CA 91750, USA
| | | | | | | | | | | |
Collapse
|
32
|
Rochelle PA, Fallar D, Marshall MM, Montelone BA, Upton SJ, Woods K. Irreversible UV inactivation of Cryptosporidium spp. despite the presence of UV repair genes. J Eukaryot Microbiol 2005; 51:553-62. [PMID: 15537090 DOI: 10.1111/j.1550-7408.2004.tb00291.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet light is being considered as a disinfectant by the water industry because it appears to be very effective for inactivating pathogens, including Cryptosporidium parvum. However, many organisms have mechanisms for repairing ultraviolet light-induced DNA damage, which may limit the utility of this disinfection technology. Inactivation of C. parvum was assessed by measuring infectivity in cells of the human ileocecal adenocarcinoma HCT-8 cell line, with an assay targeting a heat shock protein gene and using a reverse transcriptase polymerase chain reaction to detect infections. Oocysts of five different isolates displayed similar sensitivity to ultraviolet light. An average dosage of 7.6 mJ/cm2 resulted in 99.9% inactivation, providing the first evidence that multiple isolates of C. parvum are equally sensitive to ultraviolet disinfection. Irradiated oocysts were unable to regain pre-irradiation levels of infectivity, following exposure to a broad array of potential repair conditions, such as prolonged incubation, pre-infection excystation triggers, and post-ultraviolet holding periods. A combination of data-mining and sequencing was used to identify genes for all of the major components of a nucleotide excision repair complex in C. parvum and Cryptosporidium hominis. The average similarity between the two organisms for the various genes was 96.4% (range, 92-98%). Thus, while Cryptosporidum spp. may have the potential to repair ultraviolet light-induced damage, oocyst reactivation will not occur under the standard conditions used for storage and distribution of treated drinking water.
Collapse
Affiliation(s)
- Paul A Rochelle
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Of 155 species of mammals reported to be infected with Cryptosporidium parvum or C. parvum-like organisms most animals are found in the Orders Artiodactyla, Primates, and Rodentia. Because Cryptosporidium from most of these animals have been identified by oocyst morphology alone with little or no host specificity and/or molecular data to support identification it is not known how many of the reported isolates are actually C. parvum or other species. Cryptosporidiosis is a cause of morbidity and mortality in animals and humans, resulting primarily in diarrhea, and resulting in the most severe infections in immune-compromised individuals. Of 15 named species of Cryptosporidium infectious for nonhuman vertebrate hosts C. baileyi, C. canis, C. felis, C. hominis, C. meleagridis, C. muris, and C. parvum have been reported to also infect humans. Humans are the primary hosts for C. hominis, and except for C. parvum, which is widespread amongst nonhuman hosts and is the most frequently reported zoonotic species, the remaining species have been reported primarily in immunocompromised humans. The oocyst stage can remain infective under cool, moist conditions for many months, especially where water temperatures in rivers, lakes, and ponds remain low but above freezing. Surveys of surface water, groundwater, estuaries, and seawater have dispelled the assumption that Cryptosporidium oocysts are present infrequently and in geographically isolated locations. Numerous reports of outbreaks of cryptosporidiosis related to drinking water in North America, the UK, and Japan, where detection methods are in place, indicate that water is a major vehicle for transmission of cryptosporidiosis.
Collapse
Affiliation(s)
- Ronald Fayer
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| |
Collapse
|
34
|
Hashim A, Clyne M, Mulcahy G, Akiyoshi D, Chalmers R, Bourke B. Host cell tropism underlies species restriction of human and bovine Cryptosporidium parvum genotypes. Infect Immun 2004; 72:6125-31. [PMID: 15385517 PMCID: PMC517554 DOI: 10.1128/iai.72.10.6125-6131.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It has been recognized recently that human cryptosporidiosis is usually caused by Cryptosporidium parvum genotype I ("human" C. parvum), which is not found in animals. Compared to C. parvum genotype II, little is known of the biology of invasion of the human-restricted C. parvum genotype I. The aims of the present study were (i) to explore and compare with genotype II the pathogenesis of C. parvum genotype I infection by using an established in vitro model of infection and (ii) to examine the possibility that host-specific cell tropism determines species restriction among C. parvum genotypes by using a novel ex vivo small intestinal primary cell model of infection. Oocysts of C. parvum genotypes I and II were used to infect HCT-8 cells and primary intestinal epithelial cells in vitro. Primary cells were harvested from human endoscopic small-bowel biopsies and from bovine duodenum postmortem. C. parvum genotype I infected HCT-8 cells with lower efficiency than C. parvum genotype II. Actin colocalization at the host parasite interface and reduction in levels of invasion after treatment with microfilament inhibitors (cytochalasin B and cytochalasin D) were observed for both genotypes. C. parvum genotype II invaded primary intestinal epithelial cells, regardless of the species of origin. In contrast, C. parvum genotype I invaded only human small-bowel cells. The pathogenesis of C. parvum genotype I differs from C. parvum genotype II. C parvum genotype I does not enter primary bovine intestinal cells, suggesting that the species restriction of this genotype is due to host tissue tropism of the infecting isolate.
Collapse
Affiliation(s)
- Amna Hashim
- The Children's Research Centre, Our Lady's Hospital for Sick Children, Crumlin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
35
|
Putignani L, Tait A, Smith HV, Horner D, Tovar J, Tetley L, Wastling JM. Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology 2004; 129:1-18. [PMID: 15267107 DOI: 10.1017/s003118200400527x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cryptosporidium parvum is a protozoan parasite that causes widespread diarrhoeal disease in humans and other animals and is responsible for large waterborne outbreaks of cryptosporidiosis. Unlike many organisms belonging to the phylum Apicomplexa, such as Plasmodium spp. and Toxoplasma gondii, there is no clinically proven drug treatment against this parasite. Aspects of the basic biology of C. parvum remain poorly understood, including a detailed knowledge of key metabolic pathways, its genome organization and organellar complement. Previous studies have proposed that C. parvum lacks a relic plastid organelle, or 'apicoplast', but that it may possess a mitochondrion. Here we characterize a mitochondrion-like organelle in C. parvum by (i) ultrastructural and morphological description (ii) localization of heterologous mitochondrial chaperonin antibody probes (iii) phylogenetic analysis of genes encoding mitochondrial transport proteins (iv) identification and analysis of mitochondrion-associated gene sequences. Our descriptive morphological analysis was performed by energy-filtering transmission electron microscopy (EFTEM) of C. hominis and C. parvum. The 'mitochondrion-like' organelle was characterized by labelling the structure with a heterologous mitochondrial chaperonin probe (hsp60) both in immunoelectron microscopy (IMEM) and immunofluorescence (IMF). Phylogenetic analysis of the mitochondrial import system and housekeeping components (hsp60 and hsp70-dnaK) suggested that the C. parvum mitochondrion-like organelle is likely to have descended from a common ancestral apicomplexan mitochondrion. We also identified a partial cDNA sequence coding for an alternative oxidase (AOX) gene, a component of the electron transport chain which can act as an alternative to the terminal mitochondrial respiratory complexes III and IV, which has not yet been reported in any other member of this phylum. Degenerate primers developed to identify selected mitochondrial genes failed to identify either cytochrome oxidase subunit I, or cytochrome b. Taken together, our data aim to provide new insights into the characterization of this Cryptosporidium organelle and a logical framework for future functional investigation.
Collapse
Affiliation(s)
- L Putignani
- Division of Infection and Immunity, Institute of Biomedical and Life Science, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Guk SM, Yong TS, Park SJ, Park JH, Chai JY. Genotype and animal infectivity of a human isolate of Cryptosporidium parvum in the Republic of Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2004; 42:85-9. [PMID: 15181350 PMCID: PMC2717348 DOI: 10.3347/kjp.2004.42.2.85] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cryptosporidium parvum oocysts were isolated from a child suffering from acute gastroenteritis and successfully passaged in a calf and mice (designated hereafter SNU-H1) in the Republic of Korea; its molecular genotype has been analyzed. The GAG microsatellite region was amplified by a polymerase chain reaction (PCR), with a 238 base pair product, which is commonly displayed in C. parvum. The isolate was shown to be a mixture of the genotypes 1 (anthroponotic) and 2 (zoonotic). To study its infectivity in animals, 2 calves and 3 strains of mice were infected with the SNU-H1; in these animals, the propagation of both genotypes was successful. In immunosuppressed (ImSP) BALB/c and C57BL/6 mice the number of oocysts decreased after day 10 post-infection (PI); but in ImSP ICR mice, they remained constant until day 27 PI. The results show that both the C. parvum genotypes 1 and 2 can be propagated in calves and ImSP mice.
Collapse
Affiliation(s)
- Sang-Mee Guk
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Korea
| | | | | | | | | |
Collapse
|
37
|
Matsubayashi M, Abe N, Takami K, Kimata I, Iseki M, Nakanishi T, Tani H, Sasai K, Baba E. First record of Cryptosporidium infection in a raccoon dog (Nyctereutes procyonoides viverrinus). Vet Parasitol 2004; 120:171-5. [PMID: 15041092 DOI: 10.1016/j.vetpar.2004.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2004] [Indexed: 10/26/2022]
Abstract
Cryptosporidium species have been found in more than 150 species of mammals, but there has been no report in raccoon dogs. Here we found the Cryptosporidium organism in a raccoon dog, Nyctereutes procyonoides viverrinus, and identified this isolate using PCR-based diagnostic methods. Cryptosporidium diagnostic fragments of the 18S ribosomal RNA, Cryptosporidium oocyst wall protein and 70-kDa heat shock protein genes were amplified from the isolate and sequenced to reveal the phylogenetic relationships between it and other Cryptosporidium species or genotypes reported previously. The results showed that the raccoon dog isolate represented the C. parvum cattle genotype which could be a causative agent in human cryptosporidiosis.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Department of Food and Nutrition, Osaka Joshi-Gakuen Junior College, Tennoji-ku, Osaka 543-0073, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xiao L, Fayer R, Ryan U, Upton SJ. Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev 2004; 17:72-97. [PMID: 14726456 PMCID: PMC321466 DOI: 10.1128/cmr.17.1.72-97.2004] [Citation(s) in RCA: 558] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There has been an explosion of descriptions of new species of Cryptosporidium during the last two decades. This has been accompanied by confusion regarding the criteria for species designation, largely because of the lack of distinct morphologic differences and strict host specificity among Cryptosporidium spp. A review of the biologic species concept, the International Code of Zoological Nomenclature (ICZN), and current practices for Cryptosporidium species designation calls for the establishment of guidelines for naming Cryptosporidium species. All reports of new Cryptosporidium species should include at least four basic components: oocyst morphology, natural host specificity, genetic characterizations, and compliance with the ICZN. Altogether, 13 Cryptosporidium spp. are currently recognized: C. muris, C. andersoni, C. parvum, C. hominis, C. wrairi, C. felis, and C. cannis in mammals; C. baïleyi, C. meleagridis, and C. galli in birds; C. serpentis and C. saurophilum in reptiles; and C. molnari in fish. With the establishment of a framework for naming Cryptosporidium species and the availability of new taxonomic tools, there should be less confusion associated with the taxonomy of the genus Cryptosporidium. The clarification of Cryptosporidium taxonomy is also useful for understanding the biology of Cryptosporidium spp., assessing the public health significance of Cryptosporidium spp. in animals and the environment, characterizing transmission dynamics, and tracking infection and contamination sources.
Collapse
Affiliation(s)
- Lihua Xiao
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Chamblee, Georgia 30341, USA.
| | | | | | | |
Collapse
|
39
|
Puiu D, Enomoto S, Buck GA, Abrahamsen MS, Kissinger JC. CryptoDB: the Cryptosporidium genome resource. Nucleic Acids Res 2004; 32:D329-31. [PMID: 14681426 PMCID: PMC308784 DOI: 10.1093/nar/gkh050] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CryptoDB (http://CryptoDB.org) represents a collaborative effort to locate all genome data for the apicomplexan parasite Cryptosporidium parvum in a single user-friendly database. CryptoDB currently houses the genomic sequence data for both the human type 1 H strain and the bovine type 2 IOWA strain in addition to all other available EST and GSS sequences obtained from public repositories. All data are available for data mining via BLAST, keyword searches of pre-computed BLASTX results and user-defined or PROSITE motif pattern searches. Release 1.0 of CryptoDB contains approximately 19 million bases of genome sequence for the H and IOWA strains and an additional approximately 24 million bases of GSS and EST sequence obtained from other sources. Open reading frames greater than 50 and 100 amino acids have been generated for all sequences and all data are available for bulk download. This database, like other apicomplexan parasite databases, has been built utilizing the PlasmoDB model.
Collapse
Affiliation(s)
- Daniela Puiu
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
40
|
Tanriverdi S, Arslan MO, Akiyoshi DE, Tzipori S, Widmer G. Identification of genotypically mixed Cryptosporidium parvum populations in humans and calves. Mol Biochem Parasitol 2003; 130:13-22. [PMID: 14550892 DOI: 10.1016/s0166-6851(03)00138-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genotypic analyses of Cryptosporidium parvum oocysts have divided the species into two genotypes, referred to as type 1 and type 2. Although humans are susceptible to both types, mixed type 1/type 2 infections have rarely been identified. The paucity of mixed infections could be explained by the predominance of one type over the other in mixed infections, or by the poor sensitivity of restriction fragment length polymorphism (RFLP) analyses for detecting subpopulations. Using a type-specific real-time PCR assay capable of detecting type 1 or type 2 constituting as little as 0.01% of the population, archived and new isolates of human, bovine, and mouse origin were genotyped. Mixed type 1/type 2 infections were identified in humans and calves, including in samples previously found to be homogeneous by RFLP. Isopycnic fractionation of mixed isolates revealed that type 1 and type 2 oocysts differ in their sedimentation properties. The detection of a type 1 subpopulation in serially-propagated bovine isolates indicates that type 1 and type 2 are stably maintained during long-term passage. Together with recently reported experimental bovine and ovine type 1 infections, the persistence of type 1 subpopulation in experimentally infected animals suggests that animals may play a previously unrecognized role in the maintenance of C. parvum type 1.
Collapse
|
41
|
Akiyoshi DE, Mor S, Tzipori S. Rapid displacement of Cryptosporidium parvum type 1 by type 2 in mixed infections in piglets. Infect Immun 2003; 71:5765-71. [PMID: 14500498 PMCID: PMC201101 DOI: 10.1128/iai.71.10.5765-5771.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 06/27/2003] [Accepted: 07/03/2003] [Indexed: 11/20/2022] Open
Abstract
Genotypes 1 and 2 of Cryptosporidium parvum are the primary types associated with infections in humans, with type 1 being by far the predominant genotype. The frequency of mixed infection with both genotypes in humans is relatively rare, while type 1, which experimentally infects other mammals, has been found to naturally infect almost exclusively humans. One possible explanation for the absence of type 1 in other mammals and the low frequency of mixed infections in humans is the inability of type 1 to compete with type 2 in nature when both occur simultaneously. To investigate this, we challenged gnotobiotic piglets with equal number of oocysts of type 1 and type 2, given either simultaneously or with type 2 given 24 or 48 h after type 1. The genotype of the oocysts excreted in feces and the relative distribution of each of the genotypes throughout the gut at necropsy were determined. Regardless of the time interval between challenges with the two genotypes, type 2 invariably displaced type 1. The rate of displacement was rapid when both genotypes were given simultaneously, after which no traces of type 1 were detected in the feces or in gut sections by PCR. Infection with type 1 24 or 48 h before challenge with type 2, while permitting type 1 to become established, was still rapidly eliminated within 3 days after challenge with type 2. These observations have major implications regarding the relative perpetuation and survival of these two genotypes in mammals.
Collapse
Affiliation(s)
- Donna E Akiyoshi
- Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | | | | |
Collapse
|
42
|
Ebeid M, Mathis A, Pospischil A, Deplazes P. Infectivity of Cryptosporidium parvum genotype I in conventionally reared piglets and lambs. Parasitol Res 2003; 90:232-5. [PMID: 12783313 DOI: 10.1007/s00436-003-0839-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Accepted: 01/15/2003] [Indexed: 11/26/2022]
Abstract
Parasites of the genus Cryptosporidium are intracellular parasites that occur throughout the animal kingdom and have been reported in many species of mammals, including human. Most infections in humans are caused by two C. parvum genotypes, genotype I and genotype II; these are the human and the bovine (zoonotic) genotypes, respectively. Successful experimental infection of Cryptosporidium parvum genotype I "human genotype" is described in four conventionally reared piglets and in a lamb. The inoculum was originally obtained from two diarrheic children, and the Cryptosporidium genotypes were determined by PCR and rDNA sequencing. The infective dose was between 10(6) and 2 x 10(6) oocysts. No clinical signs were observed in the infected animals, except in a piglet that showed watery diarrhea. The oocyst shedding period in positive animals ranged between 4 and 10 days. Histopathologic examination of the gastrointestinal tract of two positive piglets revealed shortening of the villi and denudation of the villous tips of the jejunum. In one piglet, the colon mucosa revealed numerous Cryptosporidium oocysts. The storage time of the inocula (< or =3 weeks in PBS at 4 degrees C) and the age of the animal (newborn) were important for the successful induction of infection.
Collapse
Affiliation(s)
- M Ebeid
- Institute of Parasitology, University of Zurich, Winterthurerstr. 266a, 8057, Zurich, Switzerland
| | | | | | | |
Collapse
|
43
|
Tsushima Y, Karanis P, Kamada T, Xuan X, Makala LHC, Tohya Y, Akashi H, Nagasawa H. Viability and infectivity of Cryptosporidium parvum oocysts detected in river water in Hokkaido, Japan. J Vet Med Sci 2003; 65:585-9. [PMID: 12808210 DOI: 10.1292/jvms.65.585] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The viability and infectivity of Cryptosporidium parvum (C. parvum) oocysts, detected in water samples collected from river water in Hokkaido, were investigated using Severe Combined Immunodeficient (SCID) mice. The water samples collected from September 27 through October 10, 2001 by filtration using Cuno cartridge filters were purified and concentrated by the discontinuous centrifugal flotation method. From 1.2 x 10 (5) liters of the raw river water, approximately 2 x 10(4) oocysts were obtained and designated as Hokkaido river water 1 isolate (HRW-1). Oocyst identification was carried out using microscopic and immunological methods. Six 8-week-old female SCID mice were each inoculated orally with 1 x 10 (3) oocysts. Infection was successfully induced, resulting in fecal oocyst shedding. Oocysts were then maintained by sub-inoculation into SCID mice every 3 months. Infectivity was evaluated by making comparisons with two known C. parvum stocks, HNJ-1 and TK-1, which were bovine genotypes detected in fecal samples from a cryptosporidiosis patient and young cattle raised in Tokachi, Hokkaido respectively. The oocyst genotypes were determined from a small subunit ribosomal RNA (SSU-rRNA) gene by polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) analysis. No significant differences were observed in the average number of oocysts per gram of feces (OPG) in any of the isolates. Our data indicates that the C. parvum oocysts detected in the sampled river water were of C. parvum genotype 2. Moreover, our data on the continued isolation, detection and identification of the C. parvum isolates is consistent with the available epidemiological data for the Tokachi area.
Collapse
Affiliation(s)
- Yoshinori Tsushima
- National Research Center for Protozoan Diseases, Obihiro University, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Keegan AR, Fanok S, Monis PT, Saint CP. Cell culture-Taqman PCR assay for evaluation of Cryptosporidium parvum disinfection. Appl Environ Microbiol 2003; 69:2505-11. [PMID: 12732515 PMCID: PMC154491 DOI: 10.1128/aem.69.5.2505-2511.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Accepted: 01/28/2003] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium parvum represents a challenge to the water industry and a threat to public health. In this study, we developed a cell culture-quantitative PCR assay to evaluate the inactivation of C. parvum with disinfectants. The assay was validated by using a range of disinfectants in common use in the water industry, including low-pressure UV light (LP-UV), ozone, mixed oxidants (MIOX), and chlorine. The assay was demonstrated to be reliable and sensitive, with a lower detection limit of a single infectious oocyst. Effective oocyst inactivation was achieved (>2 log(10) units) with LP-UV (20 mJ/cm(2)) or 2 mg of ozone/liter (for 10 min). MIOX and chlorine treatments of oocysts resulted in minimal effective disinfection, with <0.1 log(10) unit being inactivated. These results demonstrate the inability of MIOX to inactivate Cryptosporidium. The assay is a valuable tool for the evaluation of disinfection systems for drinking water and recycled water.
Collapse
Affiliation(s)
- Alexandra R Keegan
- The Co-operative Research Centre for Water Quality and Treatment, Australian Water Quality Centre, Microbiology R&D, PMB 3, South Australian Water Corporation, Salisbury, South Australia 5108, Australia.
| | | | | | | |
Collapse
|
45
|
Sturbaum GD, Jost BH, Sterling CR. Nucleotide changes within three Cryptosporidium parvum surface protein encoding genes differentiate genotype I from genotype II isolates. Mol Biochem Parasitol 2003; 128:87-90. [PMID: 12706801 DOI: 10.1016/s0166-6851(03)00017-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Gregory D Sturbaum
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, AZ 24061, USA
| | | | | |
Collapse
|
46
|
Morgan-Ryan UM, Fall A, Ward LA, Hijjawi N, Sulaiman I, Fayer R, Thompson RCA, Olson M, Lal A, Xiao L. Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens. J Eukaryot Microbiol 2002; 49:433-40. [PMID: 12503676 DOI: 10.1111/j.1550-7408.2002.tb00224.x] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure and infectivity of the oocysts of a new species of Cryptosporidium from the feces of humans are described. Oocysts are structurally indistinguishable from those of Cryptosporidium parvum. Oocysts of the new species are passed fully sporulated, lack sporocysts. and measure 4.4-5.4 microm (mean = 4.86) x 4.4-5.9 microm (mean = 5.2 microm) with a length to width ratio 1.0-1.09 (mean 1.07) (n = 100). Oocysts were not infectious for ARC Swiss mice, nude mice. Wistar rat pups, puppies, kittens or calves, but were infectious to neonatal gnotobiotic pigs. Pathogenicity studies in the gnotobiotic pig model revealed significant differences in parasite-associated lesion distribution (P = 0.005 to P = 0.02) and intensity of infection (P = 0.04) between C. parvum and this newly described species from humans. In vitro cultivation studies have also revealed growth differences between the two species. Multi-locus analysis of numerous unlinked loci, including a preliminary sequence scan of the entire genome demonstrated this species to be distinct from C. parvum and also demonstrated a lack of recombination, providing further support for its species status. Based on biological and molecular data, this Cryptosporidium infecting the intestine of humans is proposed to be a new species Cryptosporidium hominis n. sp.
Collapse
Affiliation(s)
- Una M Morgan-Ryan
- Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Akiyoshi DE, Feng X, Buckholt MA, Widmer G, Tzipori S. Genetic analysis of a Cryptosporidium parvum human genotype 1 isolate passaged through different host species. Infect Immun 2002; 70:5670-5. [PMID: 12228296 PMCID: PMC128364 DOI: 10.1128/iai.70.10.5670-5675.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Revised: 06/20/2002] [Accepted: 06/28/2002] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium parvum TU502, a genotype 1 isolate of human origin, was passaged through three different mammalian hosts, including humans, pigs, and calves. It was confirmed to be genotype 1 by PCR-restriction fragment length polymorphism analysis of the Cryptosporidium oocyst wall protein gene, direct sequencing of PCR fragments of the small subunit rRNA and beta-tubulin genes, and microsatellite analysis. This isolate was shown to be genetically stable when passaged through the three mammalian species, with no evidence of the emergence of new subpopulations as observed by a genotype-specific PCR assay. TU502 oocysts from different sources failed to infect gamma interferon knockout mice, a characteristic of genotype 1 isolates. The genotypic and phenotypic characterization of TU502 is significant since it is the isolate selected to sequence the genome of C. parvum genotype 1 and is currently used in several research projects including human volunteer studies.
Collapse
Affiliation(s)
- D E Akiyoshi
- Division of Infectious Diseases, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA.
| | | | | | | | | |
Collapse
|
48
|
Rochelle PA, Marshall MM, Mead JR, Johnson AM, Korich DG, Rosen JS, De Leon R. Comparison of in vitro cell culture and a mouse assay for measuring infectivity of Cryptosporidium parvum. Appl Environ Microbiol 2002; 68:3809-17. [PMID: 12147476 PMCID: PMC124000 DOI: 10.1128/aem.68.8.3809-3817.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Accepted: 05/17/2002] [Indexed: 11/20/2022] Open
Abstract
In vitro cell cultures were compared to neonatal mice for measuring the infectivity of five genotype 2 isolates of Cryptosporidium parvum. Oocyst doses were enumerated by flow cytometry and delivered to animals and cell monolayers by using standardized procedures. Each dose of oocysts was inoculated into up to nine replicates of 9 to 12 mice or 6 to 10 cell culture wells. Infections were detected by hematoxylin and eosin staining in CD-1 mice, by reverse transcriptase PCR in HCT-8 and Caco-2 cells, and by immunofluorescence microscopy in Madin-Darby canine kidney (MDCK) cells. Infectivity was expressed as a logistic transformation of the proportion of animals or cell culture wells that developed infection at each dose. In most instances, the slopes of the dose-response curves were not significantly different when we compared the infectivity models for each isolate. The 50% infective doses for the different isolates varied depending on the method of calculation but were in the range from 16 to 347 oocysts for CD-1 mice and in the ranges from 27 to 106, 31 to 629, and 13 to 18 oocysts for HCT-8, Caco-2, and MDCK cells, respectively. The average standard deviations for the percentages of infectivity for all replicates of all isolates were 13.9, 11.5, 13.2, and 10.7% for CD-1 mice, HCT-8 cells, Caco-2 cells, and MDCK cells, respectively, demonstrating that the levels of variability were similar in all assays. There was a good correlation between the average infectivity for HCT-8 cells and the results for CD-1 mice across all isolates for untreated oocysts (r = 0.85, n = 25) and for oocysts exposed to ozone and UV light (r = 0.89, n = 29). This study demonstrated that in vitro cell culture was equivalent to the "gold standard," mouse infectivity, for measuring the infectivity of C. parvum and should therefore be considered a practical and accurate alternative for assessing oocyst infectivity and inactivation. However, the high levels of variability displayed by all assays indicated that infectivity and disinfection experiments should be limited to discerning relatively large differences.
Collapse
Affiliation(s)
- Paul A Rochelle
- Water Quality Laboratory, Metropolitan Water District of Southern California, La Verne, California 91750, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Widmer G, Lin L, Kapur V, Feng X, Abrahamsen MS. Genomics and genetics of Cryptosporidium parvum: the key to understanding cryptosporidiosis. Microbes Infect 2002; 4:1081-90. [PMID: 12191658 DOI: 10.1016/s1286-4579(02)01632-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This paper focuses on recent advances in the genetics and genomics of Cryptosporidium parvum. The approach to and the relevance of sequencing the genomes of C. parvum type 1 and type 2 are discussed, as well as new insights into the genetic heterogeneity of this species.
Collapse
Affiliation(s)
- Giovanni Widmer
- Tufts University School of Veterinary Medicine, Division of Infectious Diseases, 200 Westboro Road, North Grafton, MA 01536, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
The in vitro cultivation of protozoan parasites of the genus Cryptosporidium has advanced significantly in recent years. These obligate, intracellular parasites colonize the epithelium of the digestive and respiratory tracts, are often difficult to obtain in significant numbers, produce durable oocysts that defy conventional chemical disinfection methods, and are persistently infectious when stored at refrigerated temperatures (4 to 8 degrees C). While continuous culture and efficient life cycle completion (oocyst production) have not yet been achieved in vitro, routine methods for parasite preparation and cell culture infection and assays for parasite life cycle development have been established. Parasite yields may be limited, but in vitro growth is sufficient to support a variety of research studies, including assessing potential drug therapies, evaluating oocyst disinfection methods, and characterizing life cycle stage development and differentiation.
Collapse
Affiliation(s)
- Michael J Arrowood
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia 30341, USA.
| |
Collapse
|