1
|
Miao G, Yang Y, Yang X, Chen D, Liu L, Lei X. The multifaceted potential of TPT1 as biomarker and therapeutic target. Heliyon 2024; 10:e38819. [PMID: 39397949 PMCID: PMC11471257 DOI: 10.1016/j.heliyon.2024.e38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Protein Translationally-Controlled 1 (TPT1) is a highly conserved gene found across eukaryotic species. The protein encoded by TPT1 is ubiquitously expressed both intracellularly and extracellularly across various tissues, and its levels are influenced by various external factors. TPT1 interacts with several key proteins, including p53, MCL1, and immunoglobulins, highlighting its crucial role in cellular processes. The dysregulation of TPT1 expression has been documented in a wide range of diseases, indicating its potential as a valuable biomarker. Additionally, targeting TPT1 presents a promising approach for treating and preventing various conditions. This review will assess the potential of TPT1 as a biomarker and evaluate the effectiveness of current strategies designed to inhibit TPT1 in disease contexts.
Collapse
Affiliation(s)
- Gelan Miao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yulian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xuelian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Dexiu Chen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
2
|
Sun M, Wu F, Xu Z, Wang Y, Cao J, Zhou Y, Zhou J, Zhang H, Xu Q. The TCTP is essential for ovarian development and oviposition of Rhipicephalus haemaphysaloides. Vet Parasitol 2024; 329:110212. [PMID: 38781831 DOI: 10.1016/j.vetpar.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Tick infestations transmit various infectious agents and result in significant socioeconomic consequences. Currently, the primary focus of tick control efforts is identifying potential targets for immune intervention. In a previous study, we identified a highly conserved protein abundant in tick haemolymph extracellular vesicles (EVs) known as translationally controlled tumour protein (TCTP). We have found that native TCTP is present in various tissues of the Rhipicephalus haemaphysaloides tick, including salivary glands, midgut, ovary, and fat body. Notably, TCTP is particularly abundant in the tick ovary and its levels increase progressively from the blood-feeding stage to engorgement. When the TCTP gene was knocked down by RNAi, there was a noticeable delay in ovarian development, and the reproductive performance, in terms of egg quantity and survival, was also hindered. Our investigations have revealed that the observed effects in ovary and eggs in dsRNA-treated ticks are not attributable to cell death mechanisms like apoptosis and autophagy but rather to the reduction in the expression of vitellogenin (Vg1, Vg2, and Vg3) and ferritin (ferritin 1 and ferritin 2) proteins crucial for ovarian development and embryo survival in ticks. Additionally, phylogenetic analysis and structural comparisons of RhTCTP and its orthologues across various tick species, vertebrate hosts, and humans have shown that TCTP is conserved in ticks but differs significantly between ticks and their hosts, particularly in the TCTP_1 and TCTP_2 domains. Overall, TCTP plays a vital role in tick reproductive development and presents itself as a potential target for tick control in both humans and animals.
Collapse
Affiliation(s)
- Meng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fei Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Guo B, Lin B, Huang Q, Li Z, Zhuo K, Liao J. A nematode effector inhibits plant immunity by preventing cytosolic free Ca 2+ rise. PLANT, CELL & ENVIRONMENT 2022; 45:3070-3085. [PMID: 35880644 DOI: 10.1111/pce.14406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The Meloidogyne enterolobii effector MeTCTP is a member of the translationally controlled tumour protein (TCTP) family, involved in M. enterolobii parasitism. In this study, we found that MeTCTP forms homodimers and, in this form, binds calcium ions (Ca2+ ). At the same time, Ca2+ could induce homodimerization of MeTCTP. We further identified that MeTCTP inhibits the increase of cytosolic free Ca2+ concentration ([Ca2+ ]cyt ) in plant cells and suppresses plant immune responses. This includes suppression of reactive oxygen species burst and cell necrosis, further promoting M. enterolobii parasitism. Our results have elucidated that the effector MeTCTP can directly target Ca2+ by its homodimeric form and prevent [Ca2+ ]cyt rise in plant roots, revealing a novel mechanism utilized by plant pathogens to suppress plant immunity.
Collapse
Affiliation(s)
- Bin Guo
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Qiuling Huang
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhiwen Li
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jinling Liao
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Vocational College of Ecological Engineering, Guangzhou, China
| |
Collapse
|
4
|
Bhoj P, Togre N, Khatri V, Goswami K. Harnessing Immune Evasion Strategy of Lymphatic Filariae: A Therapeutic Approach against Inflammatory and Infective Pathology. Vaccines (Basel) 2022; 10:vaccines10081235. [PMID: 36016123 PMCID: PMC9415972 DOI: 10.3390/vaccines10081235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human lymphatic filariae have evolved numerous immune evasion strategies to secure their long-term survival in a host. These strategies include regulation of pattern recognition receptors, mimicry with host glycans and immune molecules, manipulation of innate and adaptive immune cells, induction of apoptosis in effector immune cells, and neutralization of free radicals. This creates an anti-inflammatory and immunoregulatory milieu in the host: a modified Th2 immune response. Therefore, targeting filarial immunomodulators and manipulating the filariae-driven immune system against the filariae can be a potential therapeutic and prophylactic strategy. Filariae-derived immunosuppression can also be exploited to treat other inflammatory diseases and immunopathologic states of parasitic diseases, such as cerebral malaria, and to prevent leishmaniasis. This paper reviews immunomodulatory mechanisms acquired by these filariae for their own survival and their potential application in the development of novel therapeutic approaches against parasitic and inflammatory diseases. Insight into the intricate network of host immune-parasite interactions would aid in the development of effective immune-therapeutic options for both infectious and immune-pathological diseases.
Collapse
Affiliation(s)
| | - Namdev Togre
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
- Correspondence: (N.T.); (K.G.)
| | | | - Kalyan Goswami
- All India Institute of Medical Sciences, Saguna, Kalyani 741245, India
- Correspondence: (N.T.); (K.G.)
| |
Collapse
|
5
|
Lagunas-Rangel FA. Sequence Analysis and Comparison of TCTP Proteins from Human Protozoan Parasites. Acta Parasitol 2022; 67:1024-1031. [PMID: 35138574 PMCID: PMC9165267 DOI: 10.1007/s11686-022-00521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Purpose Translational controlled tumor protein (TCTP) is a functionally important protein in most eukaryotes because it participates in a wide variety of processes, the most representative being proliferation, differentiation, histamine release, cell death, protein synthesis and response to stress conditions. In the present work, we analyze the sequence, structure and phylogeny of TCTP orthologs in a group of human parasitic protozoan species. Methods The complete sequences of TCTP orthologs in protozoan parasites were identified with the NCBI BLAST tool in the database of the EuPathDB Bioinformatics Resource Center. The sequences were aligned and important regions of the protein were identified, and later phylogenetic trees and 3D models were built with different bioinformatic tools. Results Our results show evolutionarily and structurally conserved sites that could be exploited to create new therapeutic strategies given the increase in the number of strains resistant to current drugs. Conclusion TCTP orthologs in protozoan parasites have been little studied but have been shown to be important in parasite growth, proliferation, reproduction, and response to changes in the environment. For all this, TCTP can be considered as a possible therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s11686-022-00521-9.
Collapse
|
6
|
Lagunas-Rangel FA, Liu W, Schiöth HB. Can Exposure to Environmental Pollutants Be Associated with Less Effective Chemotherapy in Cancer Patients? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042064. [PMID: 35206262 PMCID: PMC8871977 DOI: 10.3390/ijerph19042064] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
Since environmental pollutants are ubiquitous and many of them are resistant to degradation, we are exposed to many of them on a daily basis. Notably, these pollutants can have harmful effects on our health and be linked to the development of disease. Epidemiological evidence together with a better understanding of the mechanisms that link toxic substances with the development of diseases, suggest that exposure to some environmental pollutants can lead to an increased risk of developing cancer. Furthermore, several studies have raised the role of low-dose exposure to environmental pollutants in cancer progression. However, little is known about how these compounds influence the treatments given to cancer patients. In this work, we present a series of evidences suggesting that environmental pollutants such as bisphenol A (BPA), benzo[a]pyrene (BaP), persistent organic pollutants (POPs), aluminum chloride (AlCl3), and airborne particulate matter may reduce the efficacy of some common chemotherapeutic drugs used in different types of cancer. We discuss the potential underlying molecular mechanisms that lead to the generation of this chemoresistance, such as apoptosis evasion, DNA damage repair, activation of pro-cancer signaling pathways, drug efflux and action of antioxidant enzymes, among others.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Correspondence: (F.A.L.-R.); (H.B.S.)
| | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str. Moscow, 119991 Moscow, Russia
- Correspondence: (F.A.L.-R.); (H.B.S.)
| |
Collapse
|
7
|
Jagdale S, Rao U, Giri AP. Effectors of Root-Knot Nematodes: An Arsenal for Successful Parasitism. FRONTIERS IN PLANT SCIENCE 2021; 12:800030. [PMID: 35003188 PMCID: PMC8727514 DOI: 10.3389/fpls.2021.800030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
Root-knot nematodes (RKNs) are notorious plant-parasitic nematodes first recorded in 1855 in cucumber plants. They are microscopic, obligate endoparasites that cause severe losses in agriculture and horticulture. They evade plant immunity, hijack the plant cell cycle, and metabolism to modify healthy cells into giant cells (GCs) - RKN feeding sites. RKNs secrete various effector molecules which suppress the plant defence and tamper with plant cellular and molecular biology. These effectors originate mainly from sub-ventral and dorsal oesophageal glands. Recently, a few non-oesophageal gland secreted effectors have been discovered. Effectors are essential for the entry of RKNs in plants, subsequently formation and maintenance of the GCs during the parasitism. In the past two decades, advanced genomic and post-genomic techniques identified many effectors, out of which only a few are well characterized. In this review, we provide molecular and functional details of RKN effectors secreted during parasitism. We list the known effectors and pinpoint their molecular functions. Moreover, we attempt to provide a comprehensive insight into RKN effectors concerning their implications on overall plant and nematode biology. Since effectors are the primary and prime molecular weapons of RKNs to invade the plant, it is imperative to understand their intriguing and complex functions to design counter-strategies against RKN infection.
Collapse
Affiliation(s)
- Shounak Jagdale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Boia-Ferreira M, Moreno KG, Basílio ABC, da Silva LP, Vuitika L, Soley B, Wille ACM, Donatti L, Barbaro KC, Chaim OM, Gremski LH, Veiga SS, Senff-Ribeiro A. TCTP from Loxosceles Intermedia (Brown Spider) Venom Contributes to the Allergic and Inflammatory Response of Cutaneous Loxoscelism. Cells 2019; 8:E1489. [PMID: 31766608 PMCID: PMC6953063 DOI: 10.3390/cells8121489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/24/2022] Open
Abstract
LiTCTP is a toxin from the Translationally Controlled Tumor Protein (TCTP) family identified in Loxosceles brown spider venoms. These proteins are known as histamine-releasing factors (HRF). TCTPs participate in allergic and anaphylactic reactions, which suggest their potential role as therapeutic targets. The histaminergic effect of TCTP is related to its pro-inflammatory functions. An initial characterization of LiTCTP in animal models showed that this toxin can increase the microvascular permeability of skin vessels and induce paw edema in a dose-dependent manner. We evaluated the role of LiTCTP in vitro and in vivo in the inflammatory and allergic aspects that undergo the biological responses observed in Loxoscelism, the clinical condition after an accident with Loxosceles spiders. Our results showed LiTCTP recombinant toxin (LiRecTCTP) as an essential synergistic factor for the dermonecrotic toxin actions (LiRecDT1, known as the main toxin in the pathophysiology of Loxoscelism), revealing its contribution to the exacerbated inflammatory response clinically observed in envenomated patients.
Collapse
Affiliation(s)
- Marianna Boia-Ferreira
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Kamila G. Moreno
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Alana B. C. Basílio
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Lucas P. da Silva
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Larissa Vuitika
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Bruna Soley
- Department of Pharmacology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
| | - Ana Carolina M. Wille
- Department of Structural and Molecular Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
| | - Lucélia Donatti
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Katia C. Barbaro
- Laboratory of Immunopathology, Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Olga M. Chaim
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Silvio S. Veiga
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| |
Collapse
|
9
|
Marques DN, Siqueira AS, Gonçalves EC, Barros NLF, de Souza CRB. Homology modeling and molecular dynamics simulations of a cassava translationally controlled tumor protein (MeTCTP). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
MacDonald SM. History of Histamine-Releasing Factor (HRF)/Translationally Controlled Tumor Protein (TCTP) Including a Potential Therapeutic Target in Asthma and Allergy. Results Probl Cell Differ 2019; 64:291-308. [PMID: 29149416 DOI: 10.1007/978-3-319-67591-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histamine-releasing factor (HRF) also known as translationally controlled tumor protein (TCTP) is a highly conserved, ubiquitous protein that has both intracellular and extracellular functions. Here we will highlight the subcloning of the molecule, its clinical implications, as well as an inducible-transgenic mouse. Particular attention will be paid to its extracellular functioning and its potential role as a therapeutic target in asthma and allergy. The cells and the cytokines that are produced when stimulated or primed by HRF/TCTP will be detailed as well as the downstream signaling pathway that HRF/TCTP elicits. While it was originally thought that HRF/TCTP interacted with IgE, the finding that cells not binding IgE also respond to HRF/TCTP called this interaction into question. HRF/TCTP or at least its mouse counterpart appears to interact with some, but not all IgE and IgG molecules. HRF/TCTP has been shown to activate multiple human cells including basophils, eosinophils, T cells, and B cells. Since many of the cells that are activated by HRF/TCTP participate in the allergic response, the extracellular functions of HRF/TCTP could exacerbate the allergic, inflammatory cascade. Particularly exciting is that small molecule agonists of the phosphatase SHIP-1 have been shown to modulate the P13 kinase/AKT pathway and may control inflammatory disorders. This review discusses this possibility in light of HRF/TCTP.
Collapse
Affiliation(s)
- Susan M MacDonald
- The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 3B.69, Baltimore, MD, 21224, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Yang S, Gao X, Meng J, Zhang A, Zhou Y, Long M, Li B, Deng W, Jin L, Zhao S, Wu D, He Y, Li C, Liu S, Huang Y, Zhang H, Zou L. Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in the Gut of Giant Pandas. Front Microbiol 2018; 9:1717. [PMID: 30108570 PMCID: PMC6080571 DOI: 10.3389/fmicb.2018.01717] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
To obtain full details of gut microbiota, including bacteria, fungi, bacteriophages, and helminths, in giant pandas (GPs), we created a comprehensive microbial genome database and used metagenomic sequences to align against the database. We delineated a detailed and different gut microbiota structures of GPs. A total of 680 species of bacteria, 198 fungi, 185 bacteriophages, and 45 helminths were found. Compared with 16S rRNA sequencing, the dominant bacterium phyla not only included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria but also Cyanobacteria and other eight phyla. Aside from Ascomycota, Basidiomycota, and Glomeromycota, Mucoromycota, and Microsporidia were the dominant fungi phyla. The bacteriophages were predominantly dsDNA Myoviridae, Siphoviridae, Podoviridae, ssDNA Inoviridae, and Microviridae. For helminths, phylum Nematoda was the dominant. In addition to previously described parasites, another 44 species of helminths were found in GPs. Also, differences in abundance of microbiota were found between the captive, semiwild, and wild GPs. A total of 1,739 genes encoding cellulase, β-glucosidase, and cellulose β-1,4-cellobiosidase were responsible for the metabolism of cellulose, and 128,707 putative glycoside hydrolase genes were found in bacteria/fungi. Taken together, the results indicated not only bacteria but also fungi, bacteriophages, and helminths were diverse in gut of giant pandas, which provided basis for the further identification of role of gut microbiota. Besides, metagenomics revealed that the bacteria/fungi in gut of GPs harbor the ability of cellulose and hemicellulose degradation.
Collapse
Affiliation(s)
- Shengzhi Yang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xin Gao
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States
| | - Jianghong Meng
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States
| | - Anyun Zhang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yingmin Zhou
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Mei Long
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Bei Li
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wenwen Deng
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lei Jin
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Siyue Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Daifu Wu
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Yongguo He
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Caiwu Li
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Yan Huang
- The China Conservation and Research Center for the Giant Panda, Wolong, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), Wolong, China
| | - Hemin Zhang
- The China Conservation and Research Center for the Giant Panda, Wolong, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), Wolong, China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Malard F, Assrir N, Alami M, Messaoudi S, Lescop E, Ha-Duong T. Conformational Ensemble and Biological Role of the TCTP Intrinsically Disordered Region: Influence of Calcium and Phosphorylation. J Mol Biol 2018; 430:1621-1639. [DOI: 10.1016/j.jmb.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 01/09/2023]
|
13
|
Nicosia A, Bennici C, Biondo G, Costa S, Di Natale M, Masullo T, Monastero C, Ragusa MA, Tagliavia M, Cuttitta A. Characterization of Translationally Controlled Tumour Protein from the Sea Anemone Anemonia viridis and Transcriptome Wide Identification of Cnidarian Homologues. Genes (Basel) 2018; 9:genes9010030. [PMID: 29324689 PMCID: PMC5793182 DOI: 10.3390/genes9010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Gene family encoding translationally controlled tumour protein (TCTP) is defined as highly conserved among organisms; however, there is limited knowledge of non-bilateria. In this study, the first TCTP homologue from anthozoan was characterised in the Mediterranean Sea anemone, Anemonia viridis. The release of the genome sequence of Acropora digitifera, Exaiptasia pallida, Nematostella vectensis and Hydra vulgaris enabled a comprehensive study of the molecular evolution of TCTP family among cnidarians. A comparison among TCTP members from Cnidaria and Bilateria showed conserved intron exon organization, evolutionary conserved TCTP signatures and 3D protein structure. The pattern of mRNA expression profile was also defined in A. viridis. These analyses revealed a constitutive mRNA expression especially in tissues with active proliferation. Additionally, the transcriptional profile of A. viridis TCTP (AvTCTP) after challenges with different abiotic/biotic stresses showed induction by extreme temperatures, heavy metals exposure and immune stimulation. These results suggest the involvement of AvTCTP in the sea anemone defensome taking part in environmental stress and immune responses.
Collapse
Affiliation(s)
- Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Carmelo Bennici
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Girolama Biondo
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Sicily, Italy.
| | - Marilena Di Natale
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Tiziana Masullo
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Calogera Monastero
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Sicily, Italy.
| | - Marcello Tagliavia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
14
|
Zheng J, Chen Y, Li Z, Cao S, Zhang Z, Jia H. Translationally controlled tumor protein is required for the fast growth of
Toxoplasma gondii
and maintenance of its intracellular development. FASEB J 2018; 32:906-919. [DOI: 10.1096/fj.201700994r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jun Zheng
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Yaping Chen
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhaoran Li
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Shinuo Cao
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhaoxia Zhang
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Honglin Jia
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
15
|
Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice. Int J Mol Sci 2017; 18:ijms18020256. [PMID: 28134765 PMCID: PMC5343792 DOI: 10.3390/ijms18020256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 01/20/2023] Open
Abstract
Our previous study showed that dimerized translationally controlled tumor protein (dTCTP) plays a role in the pathogenesis of allergic diseases, such as asthma and allergic rhinitis. A 7-mer peptide, called dTCTP-binding peptide 2 (dTBP2), binds to dTCTP and inhibits its cytokine-like effects. We therefore examined the protective effects of dTBP2 in house dust mite-induced atopic dermatitis (AD)-like skin lesions in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice. We found that topical administration of dTBP2 significantly reduced the AD-like skin lesions formation and mast cell infiltration in NC/Nga mice, similarly to the response seen in the Protopic (tacrolimus)-treated group. Treatment with dTBP2 also decreased the serum levels of IgE and reduced IL-17A content in skin lesions and inhibited the expression of mRNAs of interleukin IL-4, IL-5, IL-6, IL-13, macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC) and thymic stromal lymphopoietin (TSLP). These findings indicate that dTBP2 not only inhibits the release of Th2 cytokine but also suppresses the production of proinflammatory cytokines in AD-like skin lesions in NC/Nga mice, by inhibiting TCTP dimer, in allergic responses. Therefore, dTCTP is a therapeutic target for AD and dTBP2 appears to have a potential role in the treatment of AD.
Collapse
|
16
|
Zhuo K, Chen J, Lin B, Wang J, Sun F, Hu L, Liao J. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. MOLECULAR PLANT PATHOLOGY 2017; 18:45-54. [PMID: 26808010 PMCID: PMC6638250 DOI: 10.1111/mpp.12374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 05/20/2023]
Abstract
Meloidogyne enterolobii is one of the most important plant-parasitic nematodes that can overcome the Mi-1 resistance gene and damage many economically important crops. Translationally controlled tumour protein (TCTP) is a multifunctional protein that exists in various eukaryotes and plays an important role in parasitism. In this study, a novel M. enterolobii TCTP effector, named MeTCTP, was identified and functionally characterized. MeTCTP was specifically expressed within the dorsal gland and was up-regulated during M. enterolobii parasitism. Transient expression of MeTCTP in protoplasts from tomato roots showed that MeTCTP was localized in the cytoplasm of the host cells. Transgenic Arabidopsis thaliana plants overexpressing MeTCTP were more susceptible to M. enterolobii infection than wild-type plants in a dose-dependent manner. By contrast, in planta RNA interference (RNAi) targeting MeTCTP suppressed the expression of MeTCTP in infecting nematodes and attenuated their parasitism. Furthermore, MeTCTP could suppress programmed cell death triggered by the pro-apoptotic protein BAX. These results demonstrate that MeTCTP is a novel plant-parasitic nematode effector that promotes parasitism, probably by suppressing programmed cell death in host plants.
Collapse
Affiliation(s)
- Kan Zhuo
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Jiansong Chen
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Borong Lin
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Jing Wang
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Fengxia Sun
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Lili Hu
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Jinling Liao
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Vocational College of Ecological EngineeringGuangzhou510520China
| |
Collapse
|
17
|
Assrir N, Malard F, Lescop E. Structural Insights into TCTP and Its Interactions with Ligands and Proteins. Results Probl Cell Differ 2017; 64:9-46. [PMID: 29149402 DOI: 10.1007/978-3-319-67591-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 19-24 kDa Translationally Controlled Tumor Protein (TCTP) is involved in a wide range of molecular interactions with biological and nonbiological partners of various chemical compositions such as proteins, peptides, nucleic acids, carbohydrates, or small molecules. TCTP is therefore an important and versatile binding platform. Many of these protein-protein interactions have been validated, albeit only few received an in-depth structural characterization. In this chapter, we will focus on the structural analysis of TCTP and we will review the available literature regarding its interaction network from a structural perspective.
Collapse
Affiliation(s)
- Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Jia Z, Wang M, Yue F, Wang X, Wang L, Song L. The immunomodulation of a maternal translationally controlled tumor protein (TCTP) in Zhikong scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2017; 60:141-149. [PMID: 27871901 DOI: 10.1016/j.fsi.2016.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Translationally controlled tumor protein (TCTP) is initially described as a highly conserved protein implicated in cell growth, and it is subsequently confirmed to play important roles in mediating the innate immune response, especially the inflammatory. In the present study, the full-length cDNA sequence of a TCTP from Zhikong scallop Chlamys farreri (designed as CfTCTP) was cloned by rapid amplification of cDNA ends (RACE) technique based on the expression sequence tag (EST) analysis. It was of 1230 bp with an open reading frame (ORF) of 543 bp encoding a polypeptide of 180 amino acids. The deduced amino acid sequence contained a conserved TCTP signature sequence (from I47 to E58) and it shared 26.1%-48.9% similarities with previously identified TCTPs. CfTCTP was clustered with the TCTP from Argopectehs irradias in the phylogenetic tree and was designated into a single branch of mollusk with TCTP from Ruditapes philippinarum. The mRNA transcripts of CfTCTP were constitutively expressed in all the tested tissues, including haemocytes, muscle, mantle, gill, hepatopancreas, kidney and gonad, with the highest expression level in hepatopancreas. The mRNA expression level of CfTCTP in oocytes and fertilized eggs kept at a higher level, and was down-regulated from 2-cell embryos to the lowest level in gastrula. Then it was up-regulated in trochophore and dropped down in the late veliger larvae to the similar level as that in oocytes. After pathogen-associated molecular patterns (PAMPs) stimulation, the expression of CfTCTP mRNA in haemocytes was increased at 3 or 6 h, and fall down to the normal level at 24 h. The recombinant protein of CfTCTP could induce the release of histamine from BT-549 cells. All these results indicated that CfTCTP was a pro-inflammatory factor and it could be maternally transferred from female gonad to oocytes and offspring, and play pivotal role in the embryonic development and immune protection of scallops.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Embryo, Nonmammalian/immunology
- Immunity, Innate
- Immunomodulation
- Pathogen-Associated Molecular Pattern Molecules/metabolism
- Pectinidae/classification
- Pectinidae/genetics
- Pectinidae/growth & development
- Pectinidae/immunology
- Phylogeny
- Protein Conformation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment/veterinary
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
19
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
20
|
Abstract
The translationally controlled tumor protein (TCTP) is a small, multifunctional protein found in most, if not all, eukaryotic lineages, involved in a myriad of key regulatory processes. Among these, the control of proliferation and inhibition of cell death, as well as differentiation, are the most important, and it is probable that other responses are derived from the ability of TCTP to influence them in both unicellular and multicellular organisms. In the latter, an additional function for TCTP stems from its capacity to be secreted via a nonclassical pathway and function in a non-cell autonomous (paracrine) manner, thus affecting the responses of neighboring or distant cells to developmental or environmental stimuli (as in the case of serum TCTP/histamine-releasing factor in mammals and phloem TCTP in Arabidopsis). The additional ability to traverse membranes without a requirement for transmembrane receptors adds to its functional flexibility. The long-distance transport of TCTP mRNA and protein in plants via the vascular system supports the notion that an important aspect of TCTP function is its ability to influence the response of neighboring and distant cells to endogenous and exogenous signals in a supracellular manner. The predicted tridimensional structure of TCTPs indicates a high degree of conservation, more than its amino acid sequence similarity could suggest. However, subtle differences in structure could lead to different activities, as evidenced by TCTPs secreted by Plasmodium spp. Similar structural variations in animal and plant TCTPs, likely the result of convergent evolution, could lead to deviations from the canonical function of this group of proteins, which could have an impact from a biomedical and agricultural perspectives.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, Colonia San Pedro Zacatenco, México City, 07360, México.
| |
Collapse
|
21
|
Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:730390. [PMID: 26425551 PMCID: PMC4573619 DOI: 10.1155/2015/730390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.
Collapse
|
22
|
Taylor KJ, Van TTH, MacDonald SM, Meshnick SR, Fernley RT, Macreadie IG, Smooker PM. Immunization of mice with Plasmodium TCTP delays establishment of Plasmodium infection. Parasite Immunol 2015; 37:23-31. [PMID: 25376500 DOI: 10.1111/pim.12158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/31/2014] [Indexed: 12/19/2022]
Abstract
Translationally controlled tumour protein (TCTP) may play an important role in the establishment or maintenance of parasitemia in a malarial infection. In this study, the potential of TCTP as a malaria vaccine was investigated in two trials. In the initial vaccine trial, Plasmodium falciparum TCTP (PfTCTP) was expressed in Saccharomyces cerevisiae and used to immunize BALB/c mice. Following challenge with Plasmodium yoelii YM, parasitemia was significantly reduced during the early stages of infection. In the second vaccine trial, the TCTP from P. yoelii and P. berghei was expressed in Escherichia coli and used in several mouse malaria models. A significant reduction in parasitemia in the early stages of infection was observed in BALB/c mice challenged with P. yoelii YM. A significantly reduced parasitemia at each day leading up to a delayed and reduced peak parasitemia was also observed in BALB/c mice challenged with the nonlethal Plasmodium chabaudi (P.c.) chabaudi AS. These results suggest that TCTP has an important role for parasite establishment and may be important for pathogenesis.
Collapse
Affiliation(s)
- K J Taylor
- School of Applied Sciences, RMIT University, Bundoora, VIc., Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Ligand binding reveals a role for heme in translationally-controlled tumor protein dimerization. PLoS One 2014; 9:e112823. [PMID: 25396429 PMCID: PMC4232476 DOI: 10.1371/journal.pone.0112823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
The translationally-controlled tumor protein (TCTP) is a highly conserved, ubiquitously expressed, abundant protein that is broadly distributed among eukaryotes. Its biological function spans numerous cellular processes ranging from regulation of the cell cycle and microtubule stabilization to cell growth, transformation, and death processes. In this work, we propose a new function for TCTP as a “buffer protein” controlling cellular homeostasis. We demonstrate that binding of hemin to TCTP is mediated by a conserved His-containing motif (His76His77) followed by dimerization, an event that involves ligand-mediated conformational changes and that is necessary to trigger TCTP's cytokine-like activity. Mutation in both His residues to Ala prevents hemin from binding and abrogates oligomerization, suggesting that the ligand site localizes at the interface of the oligomer. Unlike heme, binding of Ca2+ ligand to TCTP does not alter its monomeric state; although, Ca2+ is able to destabilize an existing TCTP dimer created by hemin addition. In agreement with TCTP's proposed buffer function, ligand binding occurs at high concentration, allowing the “buffer” condition to be dissociated from TCTP's role as a component of signal transduction mechanisms.
Collapse
|
24
|
Fu Y, Lan J, Wu X, Yang D, Zhang Z, Nie H, Hou R, Zhang R, Zheng W, Xie Y, Yan N, Yang Z, Wang C, Luo L, Liu L, Gu X, Wang S, Peng X, Yang G. Expression of translationally controlled tumor protein (TCTP) gene of Dirofilaria immitis guided by transcriptomic screening. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:21-6. [PMID: 24623877 PMCID: PMC3948989 DOI: 10.3347/kjp.2014.52.1.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/09/2013] [Accepted: 11/12/2013] [Indexed: 11/23/2022]
Abstract
Dirofilaria immitis (heartworm) infections affect domestic dogs, cats, and various wild mammals with increasing incidence in temperate and tropical areas. More sensitive antibody detection methodologies are required to diagnose asymptomatic dirofilariasis with low worm burdens. Applying current transcriptomic technologies would be useful to discover potential diagnostic markers for D. immitis infection. A filarial homologue of the mammalian translationally controlled tumor protein (TCTP) was initially identified by screening the assembled transcriptome of D. immitis (DiTCTP). A BLAST analysis suggested that the DiTCTP gene shared the highest similarity with TCTP from Loa loa at protein level (97%). A histidine-tagged recombinant DiTCTP protein (rDiTCTP) of 40 kDa expressed in Escherichia coli BL21 (DE3) showed immunoreactivity with serum from a dog experimentally infected with heartworms. Localization studies illustrated the ubiquitous presence of rDiTCTP protein in the lateral hypodermal chords, dorsal hypodermal chord, muscle, intestine, and uterus in female adult worms. Further studies on D. immitis-derived TCTP are warranted to assess whether this filarial protein could be used for a diagnostic purpose.
Collapse
Affiliation(s)
- Yan Fu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Jingchao Lan
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Developing Toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Xuhang Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Deying Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhihe Zhang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Developing Toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Huaming Nie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Developing Toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Runhui Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Wanpeng Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Ning Yan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhi Yang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Developing Toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Chengdong Wang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Developing Toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Li Luo
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Developing Toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Li Liu
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Developing Toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Shuxian Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
25
|
The Plasmodium falciparum translationally controlled tumor protein (TCTP) is incorporated more efficiently into B cells than its human homologue. PLoS One 2014; 9:e85514. [PMID: 24465583 PMCID: PMC3894975 DOI: 10.1371/journal.pone.0085514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum secretes a homologue of the translationally controlled tumor protein (TCTP) into serum of infected individuals, although its role in pathogenesis or virulence is unknown. To determine the effect of P. falciparum TCTP on B cells as compared to human TCTP, fluorescently labeled proteins were incubated on primary cultures of mouse splenic B cells and analyzed by flow cytometry and confocal microscopy. Our results indicate that both recombinant proteins are incorporated into B cells, but differ significantly in their rate and percentage of incorporation, being significantly higher for P. falciparum TCTP. Furthermore, P. falciparum TCTP showed a lower B cell proliferative effect than human TCTP, suggesting a mechanism through which the former could interfere in the host's immune response.
Collapse
|
26
|
Santa Brígida AB, dos Reis SP, de Nazaré Monteiro Costa C, Cardoso CMY, Lima AM, de Souza CRB. Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Mol Biol Rep 2014; 41:1787-97. [DOI: 10.1007/s11033-014-3028-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/03/2014] [Indexed: 12/28/2022]
|
27
|
Ganapathy M, Perumal A, Mohan C, Palaniswamy H, Perumal K. Immunogenicity of Brugia malayi Abundant Larval Transcript-2, a potential filarial vaccine candidate expressed in tobacco. PLANT CELL REPORTS 2014; 33:179-88. [PMID: 24277081 DOI: 10.1007/s00299-013-1521-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE Transgenic tobacco plants with Bm ALT-2, a filarial vaccine candidate, were developed. The plant-produced antigen showed immunogenicity on par with the E.coli product. Transgenic tobacco plants were developed using Brugia malayi Abundant Larval Transcript-2 (Bm ALT-2), a major antigen produced from recombinant E.coli found to be experimentally successful as potential vaccine candidate against lymphatic filariasis. Results of experiments on the transformation and expression of the Bm ALT-2 in tobacco plant to produce plant-based vaccine are presented here. We have successfully transformed the tobacco plant with Bm ALT-2 and confirmed that the plants expressed the filarial protein by PCR analysis and Western blotting. The level of expression varied from 50 to 90 ng/μg of total soluble protein for ALT-2. Immunization of mice with plant-extracted protein indicated that the plant-produced protein had immunological characteristics similar to the E.coli-produced protein. Antibody titres produced by plant-produced recombinant ALT 2-immunized mice were on par with those immunized with recombinant protein produced by E.coli. Antibody isotype assay showed that plant-produced recombinant ALT-2 induced significant IgG1, whereas E.coli-produced recombinant ALT-2 induced IgG3. This result is a step forward towards the development of a model eukaryotic system for the production of recombinant filarial proteins, which can be utilized to produce therapeutic and diagnostic molecules against lymphatic filariasis, a neglected tropical infectious disease which has a negative impact on socioeconomic development. In addition, this is the first report of the immunogenicity of a plant-derived filarial antigen.
Collapse
Affiliation(s)
- Mathangi Ganapathy
- Centre for Biotechnology, Anna University, Guindy, Chennai, 600025, Tamil Nadu, India,
| | | | | | | | | |
Collapse
|
28
|
Rinnerthaler M, Lejskova R, Grousl T, Stradalova V, Heeren G, Richter K, Breitenbach-Koller L, Malinsky J, Hasek J, Breitenbach M. Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity. PLoS One 2013; 8:e77791. [PMID: 24204967 PMCID: PMC3810133 DOI: 10.1371/journal.pone.0077791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022] Open
Abstract
As we have shown previously, yeast Mmi1 protein translocates from the cytoplasm to the outer surface of mitochondria when vegetatively growing yeast cells are exposed to oxidative stress. Here we analyzed the effect of heat stress on Mmi1 distribution. We performed domain analyses and found that binding of Mmi1 to mitochondria is mediated by its central alpha-helical domain (V-domain) under all conditions tested. In contrast, the isolated N-terminal flexible loop domain of the protein always displays nuclear localization. Using immunoelectron microscopy we confirmed re-location of Mmi1 to the nucleus and showed association of Mmi1 with intact and heat shock-altered mitochondria. We also show here that mmi1Δ mutant strains are resistant to robust heat shock with respect to clonogenicity of the cells. To elucidate this phenotype we found that the cytosolic Mmi1 holoprotein re-localized to the nucleus even in cells heat-shocked at 40°C. Upon robust heat shock at 46°C, Mmi1 partly co-localized with the proteasome marker Rpn1 in the nuclear region as well as with the cytoplasmic stress granules defined by Rpg1 (eIF3a). We co-localized Mmi1 also with Bre5, Ubp3 and Cdc48 which are involved in the protein de-ubiquitination machinery, protecting protein substrates from proteasomal degradation. A comparison of proteolytic activities of wild type and mmi1Δ cells revealed that Mmi1 appears to be an inhibitor of the proteasome. We conclude that one of the physiological functions of the multifunctional protein module, Mmi1, is likely in regulating degradation and/or protection of proteins thereby indirectly regulating the pathways leading to cell death in stressed cells.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department Cell Biology, Division Genetics, University of Salzburg, Salzburg, Austria
| | - Renata Lejskova
- Laboratory of Cell Reproduction, Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Reproduction, Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Vendula Stradalova
- Microscopy Unit, Institute of Experimental Medicine of AS CR, v.v.i., Prague, Czech Republic
| | - Gino Heeren
- Department Cell Biology, Division Genetics, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department Cell Biology, Division Genetics, University of Salzburg, Salzburg, Austria
| | | | - Jan Malinsky
- Microscopy Unit, Institute of Experimental Medicine of AS CR, v.v.i., Prague, Czech Republic
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
- * E-mail: (JH); (MB)
| | - Michael Breitenbach
- Department Cell Biology, Division Genetics, University of Salzburg, Salzburg, Austria
- * E-mail: (JH); (MB)
| |
Collapse
|
29
|
Wu W, Wu B, Ye T, Huang H, Dai C, Yuan J, Wang W. TCTP is a critical factor in shrimp immune response to virus infection. PLoS One 2013; 8:e74460. [PMID: 24073212 PMCID: PMC3779204 DOI: 10.1371/journal.pone.0074460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022] Open
Abstract
The translationally controlled tumor protein (TCTP) is an abundant, ubiquitous, and conserved protein which plays important roles in a number of biological processes. In the present study, the TCTP in shrimp Litopenaeus vannamei was analyzed. The TCTP of L.vannamei, a 168-amino-acid polypeptide, shares a high degree of similarity with TCTPs from other species, having two TCTP protein signatures at the 45–55 aa and 123–145 aa motif. The mRNA and protein levels from different tissues were detected with the highest in muscle and the lowest in heart among all examined tissues. In addition, temporal TCTP expression was significantly up-regulated at 16 h and 48 h following infection with white spot syndrome virus (WSSV). Lastly, silencing of TCTP with dsRNA led to a significant increase of WSSV loads. These results provide new insights into the importance of TCTP as an evolutionarily conserved molecule for shrimp innate immunity against virus infection.
Collapse
Affiliation(s)
- Wenlin Wu
- Department of Biology, Quanzhou Normal University, Quanzhou, China
- * E-mail: (W. Wu); (W. Wang)
| | - Bingyan Wu
- Department of Biology, Quanzhou Normal University, Quanzhou, China
| | - Ting Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huagen Huang
- Department of Biology, Quanzhou Normal University, Quanzhou, China
| | - Congjie Dai
- Department of Biology, Quanzhou Normal University, Quanzhou, China
| | - Jianjun Yuan
- Department of Biology, Quanzhou Normal University, Quanzhou, China
| | - Wei Wang
- The Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- * E-mail: (W. Wu); (W. Wang)
| |
Collapse
|
30
|
Dimerization of TCTP and its clinical implications for allergy. Biochimie 2013; 95:659-66. [DOI: 10.1016/j.biochi.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 01/12/2023]
|
31
|
Wei J, Guo M, Ji H, Yan Y, Ouyang Z, Huang X, Hang Y, Qin Q. Grouper translationally controlled tumor protein prevents cell death and inhibits the replication of Singapore grouper iridovirus (SGIV). FISH & SHELLFISH IMMUNOLOGY 2012; 33:916-925. [PMID: 22986590 DOI: 10.1016/j.fsi.2012.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 06/01/2023]
Abstract
Translationally controlled tumor protein (TCTP) is an important molecule involved in multiple biological processes, such as cell growth, cell cycle progression, malignant transformation, and enhancement of the anti-apoptotic activity. In this study, the TCTP from orange-spotted grouper Epinephelus coioides (Ec-TCTP) was cloned and characterized. The full-length cDNA of Ec-TCTP was comprised of 1057 bp with a 510 bp open reading frame that encodes a putative protein of 170 amino acids. Recombinant Ec-TCTP (rEc-TCTP) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-Ec-TCTP serum preparation. The rEc-TCTP fusion protein was demonstrated to possess antioxidant activity, which conferred resistance to H(2)O(2) damage. Quantitative real-time PCR analysis revealed that Ec-TCTP mRNA is predominately expressed in the liver, and the expression was up-regulated in the liver of grouper after viral challenge with Singapore grouper iridovirus (SGIV). Intracellular localization revealed that Ec-TCTP expression was distributed predominantly in the cytoplasm. Although human TCTP has a role in apoptosis regulation, it is not known if grouper TCTP has any role in apoptosis regulation. Strikingly, grouper TCTP, when overexpressed in fathead minnow (FHM) cells, protected them from cell death induced by cycloheximide (CHX). In addition, overexpressed Ec-TCTP in grouper spleen (GS) cells inhibited the replication of SGIV. These results suggest that Ec-TCTP may play a critical role in their response to SGIV infection, through regulation of a cell death pathway that is common to fish and humans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antioxidants/metabolism
- Antiviral Agents/pharmacology
- Apoptosis
- Bass/genetics
- Bass/immunology
- Bass/metabolism
- Bass/virology
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Cell Line
- Cloning, Molecular
- DNA Virus Infections/immunology
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/immunology
- Fish Proteins/metabolism
- Gene Expression Profiling/veterinary
- Gene Expression Regulation
- Injections, Intraperitoneal/veterinary
- Mice
- Molecular Sequence Data
- Organ Specificity
- Phylogeny
- RNA, Messenger/analysis
- Ranavirus
- Real-Time Polymerase Chain Reaction/veterinary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Sequence Alignment/veterinary
- Sequence Analysis, DNA/veterinary
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Jingguang Wei
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Macdonald SM. Potential role of histamine releasing factor (HRF) as a therapeutic target for treating asthma and allergy. J Asthma Allergy 2012; 5:51-9. [PMID: 23055753 PMCID: PMC3461606 DOI: 10.2147/jaa.s28868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Histamine releasing factor (HRF), also known as translationally controlled tumor protein (TCTP), is a highly conserved, ubiquitous protein that has both intracellular and extracellular functions. Here, we will highlight the history of the molecule, its clinical implications with a focus on its extracellular functioning, and its potential role as a therapeutic target in asthma and allergy. The cells and cytokines produced when stimulated or primed by HRF/TCTP are detailed as well as the downstream signaling pathway that HRF/TCTP elicits. While it was originally thought that HRF/TCTP interacted with IgE, the finding that cells not binding IgE also respond to HRF/TCTP called this interaction into question. HRF/TCTP, or at least its mouse counterpart, appears to interact with some, but not all IgE and IgG molecules. HRF/TCTP has been shown to activate multiple human cells including basophils, eosinophils, T cells, and B cells. Since many of the cells activated by HRF/TCTP participate in the allergic response, extracellular functions of HRF/TCTP may exacerbate the allergic, inflammatory cascade. Particularly exciting is that small molecule agonists of Src homology 2-containing inositol phosphatase-1 have been shown to modulate the phosphoinositide 3-kinase/AKT pathway and may control inflammatory disorders. This review discusses this possibility in light of HRF/TCTP.
Collapse
|
33
|
Enhanced basophil reactivities during severe malaria and their relationship with the Plasmodium falciparum histamine-releasing factor translationally controlled tumor protein. Infect Immun 2012; 80:2963-70. [PMID: 22753372 DOI: 10.1128/iai.00072-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies suggest shared pathogenic pathways during malaria and allergy. Indeed, IgE, histamine, and the parasite-derived Plasmodium falciparum histamine-releasing factor translationally controlled tumor protein (PfTCTP) can be found at high levels in serum from patients experiencing malaria, but their relationship with basophil activation remains unknown. We recruited P. falciparum-infected patients in Senegal with mild malaria (MM; n = 19) or severe malaria (SM; n = 9) symptoms and healthy controls (HC; n = 38). Levels of serum IgE, PfTCTP, and IgG antibodies against PfTCTP were determined by enzyme-linked immunosorbent assays (ELISA). Basophil reactivities to IgE-dependent and -independent stimulations were measured ex vivo using fresh blood by looking at the expression level of the basophil activation marker CD203c with flow cytometry. Unstimulated basophils from MM had significantly lower levels of CD203c expression compared to those from HC and SM. After normalization on this baseline level, basophils from SM showed an enhanced reactivity to calcimycin (A23187) and hemozoin. Although SM reached higher median levels of activation after anti-IgE stimulation, great interindividual differences did not allow the results to reach statistical significance. When primed with recombinant TCTP before anti-IgE, qualitative differences in terms of a better ability to control excessive activation could be described for SM. IgE levels were very high in malaria patients, but concentrations in MM and SM were similar and were not associated with basophil responses, which demonstrates that the presence of IgE alone cannot explain the various basophil reactivities. Indeed, PfTCTP could be detected in 32% of patients, with higher concentrations for SM. These PfTCTP-positive patients displayed significantly higher basophil reactivities to any stimulus. Moreover, the absence of anti-PfTCTP IgG was associated with higher responses in SM but not MM. Our results show an association between basophil reactivity and malaria severity and suggest a pathogenic role for plasmodial PfTCTP in the induction of this allergy-like mechanism.
Collapse
|
34
|
Munirathinam G, Ramaswamy K. Sumoylation of human translationally controlled tumor protein is important for its nuclear transport. Biochem Res Int 2012; 2012:831940. [PMID: 22567286 PMCID: PMC3332165 DOI: 10.1155/2012/831940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/27/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO) motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into the nucleus. We show that TCTP exists in sumoylated form in cytoplasm and nucleus of mammalian cells. Point mutation of lysine residue in the SUMO motif compromised the ability of TCTP to get sumoylated in vitro. When cells were transfected with FLAG-tagged mutated TCTP, nuclear transport of TCTP was inhibited confirming that sumoylation is critical for the nuclear transport of TCTP. Our previous studies demonstrated that TCTP can function as an antioxidant protein in the nucleus. When we mutated TCTP at the SUMO motif the antioxidant function of TCTP was compromised. Results presented in this study thus show that sumoylation plays an important role in the transport of TCTP into the nucleus where they function as antioxidant protein.
Collapse
Affiliation(s)
- Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Kalyanasundaram Ramaswamy
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| |
Collapse
|
35
|
Cloning and characterization of high mobility group box protein 1 (HMGB1) of Wuchereria bancrofti and Brugia malayi. Parasitol Res 2012; 111:619-27. [PMID: 22402610 DOI: 10.1007/s00436-012-2878-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
A human homologue of high mobility group box 1 (HMGB1) protein was cloned and characterized from the human filarial parasites Wuchereria bancrofti and Brugia malayi. Sequence analysis showed that W. bancrofti HMGB1 (WbHMGB1) and B. malayi HMGB1 (BmHMGB1) proteins share 99 % sequence identity. Filarial HMGB1 showed typical architectural sequence characteristics of HMGB family of proteins and consisted of only a single HMG box domain that had significant sequence similarity to the pro-inflammatory B box domain of human HMGB1. When incubated with mouse peritoneal macrophages and human promyelocytic leukemia cells, rBmHMGB1 induced secretion of significant levels of pro-inflammatory cytokines such as TNF-α, GM-CSF, and IL-6. Functional analysis also showed that the filarial HMGB1 proteins can bind to supercoiled DNA similar to other HMG family of proteins. BmHMGB1 protein is expressed in the adult and microfilarial stages of the parasite and is found in the excretory secretions of the live parasites. These findings suggest that filarial HMGB1 may have a significant role in lymphatic pathology associated with lymphatic filariasis.
Collapse
|
36
|
Wang F, Shang Y, Yang L, Zhu C. Comparative proteomic study and functional analysis of translationally controlled tumor protein in rice roots under Hg2+ stress. J Environ Sci (China) 2012; 24:2149-58. [PMID: 23534212 DOI: 10.1016/s1001-0742(11)61062-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
So far, very little is known about mercury stress-induced intercellular metabolic changes in rice roots at the proteome level. To investigate the response of rice roots to mercury stress, changes in protein expression in rice roots were analyzed using a comparative proteomics approach. Six-leaf stage rice seedlings were treated with 50 micromol/L HgCl2 for 3 hr; 29 protein spots showed a significant changes in abundance under stress when compared with the Hg2+ -tolerant rice mutant and wild type (Zhonghua 11). Furthermore, all these protein spots were identified by mass spectrometry to match 27 diverse protein species. The identified proteins were involved in several processes, including stress response, redox homeostasis, signal transduction, regulation and metabolism; some were found to be cellular structure proteins and a few were unknown. Among the up-regulated proteins, OsTCTP (translationally controlled tumor protein) was chosen to perform hetereologous expression in yeast which was presumed to participate in the Hg2+ tolerance of rice, providing evidence for its role in alleviating Hg2+ damage. Among the many tests, we found that OsTCTP-overexpressed yeast strains were more resistant to Hg2+ than wild-type yeast. Thus, we propose that OsTCTP contributes to Hg2+ resistance. Here we present, for the first time, the functional characterization of OsTCTP in connection with Hg2+ stress in plants.
Collapse
Affiliation(s)
- Feijuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
37
|
Qiang M, Fenfang W, Yan G, Wen S, Maoliang H, Yingsong W, Weiwen X, Ming L. Preparation and characterization of monoclonal antibody against translationally controlled tumor protein. Hybridoma (Larchmt) 2011; 30:81-5. [PMID: 21466289 DOI: 10.1089/hyb.2010.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
From our previous proteomic research, we found that translationally controlled tumor protein (TCTP) might play at least a partial role in colon adenocarcinoma progression. However, the precise impact of TCTP on colorectal cancer metastasis progression is currently still unknown. Therefore, immunology reagents are urgently needed to proceed with the next mechanism-related research. Moreover, the identification of TCTP expression level in tissue of colorectal cancer patients also requires substantial amounts of immunology reagents. In this report, monoclonal antibodies (MAbs) against to TCTP were made from hyperimmune Balb/c mice, by injecting 50 μg of purified antigen intraperitoneally. Hybridomas were screened by indirect enzyme-linked immunosorbent assay (ELISA) using purified protein. Finally six mouse hybridomas producing MAbs to TCTP were established. The MAbs obtained were fully characterized using Western blot analysis and immunohistochemistry. The results showed that these antibodies could be used for the preliminary application of the next mechanism-related research and TCTP expression level analysis.
Collapse
Affiliation(s)
- Ma Qiang
- The Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, North Guangzhou Road, Baiyun, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chaim OM, Trevisan-Silva D, Chaves-Moreira D, Wille ACM, Ferrer VP, Matsubara FH, Mangili OC, da Silveira RB, Gremski LH, Gremski W, Senff-Ribeiro A, Veiga SS. Brown spider (Loxosceles genus) venom toxins: tools for biological purposes. Toxins (Basel) 2011; 3:309-44. [PMID: 22069711 PMCID: PMC3202818 DOI: 10.3390/toxins3030309] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/26/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5–40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.
Collapse
Affiliation(s)
- Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Dilza Trevisan-Silva
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Ana Carolina M. Wille
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, CEP 84030-900 Ponta Grossa, Paraná, Brazil;
| | - Valéria Pereira Ferrer
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Fernando Hitomi Matsubara
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | | | - Rafael Bertoni da Silveira
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, CEP 84030-900 Ponta Grossa, Paraná, Brazil;
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Waldemiro Gremski
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
- Catholic University of Paraná, Health and Biological Sciences Institute, CEP 80215-901 Curitiba, Paraná, Brazil;
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
- Author to whom correspondence should be addressed; ; Tel.: +55-41-33611776; Fax: +55-41-3266-2042
| |
Collapse
|
39
|
Kim M, Chung J, Lee C, Jung J, Kwon Y, Lee K. A peptide binding to dimerized translationally controlled tumor protein modulates allergic reactions. J Mol Med (Berl) 2011; 89:603-10. [PMID: 21384150 DOI: 10.1007/s00109-011-0740-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 01/30/2011] [Accepted: 02/10/2011] [Indexed: 11/28/2022]
Abstract
Translationally controlled tumor protein (TCTP) is believed to be involved in a variety of inflammatory processes: secretion of histamine and cytokines such as IL-4, IL-8, IL-13, and granulocyte/macrophage colony-stimulating factor; chemoattraction for eosinophils; augmentation of B cell proliferation; and immunoglobulin production, thereby potentially regulating allergic phenomena. In a previous study, we showed that the cytokine-releasing activity of extracellular TCTP is generated only when TCTP dimerizes via the intermolecular disulfide bond of NH(2)-terminal truncated TCTP implying that the dimerized TCTP (dTCTP) promotes the inflammatory phenomena. Modulation of dTCTP, thus, may offer a strategy for the treatment of chronic allergic diseases. In this study, we searched for dTCTP-binding peptides (dTBPs) by screening a phage-displayed 7-mer peptide library. We identified one peptide in the library, designated as dTBP2, which showed higher affinity to dTCTP than to full-length, monomeric TCTP. dTBP2 inhibited the induction of IL-8 by dTCTP from BEAS-2B cells. dTBP2 also reduced symptom score and eosinophil infiltration in a mouse rhinitis model. This study suggests that the dTBP2 binding to dTCTP modulates the release of inflammatory mediators of dTCTP. This result may provide a rational strategy for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Miyoung Kim
- College of Pharmacy, Center for Cell Signalling & Drug Discovery Research, Ewha Womans University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
40
|
The effects of overexpression of histamine releasing factor (HRF) in a transgenic mouse model. PLoS One 2010; 5:e11077. [PMID: 20552026 PMCID: PMC2884026 DOI: 10.1371/journal.pone.0011077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Asthma is a disease that affects all ages, races and ethnic groups. Its incidence is increasing both in Westernized countries and underdeveloped countries. It involves inflammation, genetics and environment and therefore, proteins that exacerbate the asthmatic, allergic phenotype are important. Our laboratory purified and cloned a histamine releasing factor (HRF) that was a complete stimulus for histamine and IL-4 secretion from a subpopulation of allergic donors' basophils. Throughout the course of studying HRF, it was uncovered that HRF enhances or primes histamine release and IL-13 production from all anti-IgE antibody stimulated basophils. In order to further delineate the biology of HRF, we generated a mouse model. METHODOLOGY/PRINCIPAL FINDINGS We constructed an inducible transgenic mouse model with HRF targeted to lung epithelial cells, via the Clara cells. In antigen naïve mice, overproduction of HRF yielded increases in BAL macrophages and statistical increases in mRNA levels for MCP-1 in the HRF transgenic mice compared to littermate controls. In addition to demonstrating intracellular HRF in the lung epithelial cells, we have also been able to document HRF's presence extracellularly in the BAL fluid of these transgenic mice. Furthermore, in the OVA challenged model, we show that HRF exacerbates the allergic, asthmatic responses. We found statistically significant increases in serum and BAL IgE, IL-4 protein and eosinophils in transgenic mice compared to controls. CONCLUSIONS/SIGNIFICANCE This mouse model demonstrates that HRF expression enhances allergic, asthmatic inflammation and can now be used as a tool to further dissect the biology of HRF.
Collapse
|
41
|
Kamgno J, Djomo PN, Pion SD, Thylefors B, Boussinesq M. A controlled trial to assess the effect of quinine, chloroquine, amodiaquine, and artesunate on Loa loa microfilaremia. Am J Trop Med Hyg 2010; 82:379-85. [PMID: 20207860 DOI: 10.4269/ajtmh.2010.09-0573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Onchocerciasis control is currently based on mass ivermectin treatment. Unfortunately, this drug can induce serious adverse events (SAEs) in persons with high levels of Loa loa microfilaremia (> 30,000 microfilaria/mL). A means of preventing SAEs would be to treat at risk populations with a drug that would progressively reduce the microfilarial loads before administering ivermectin. Antimalarial drugs are a potential solution because they have shown some activity against various filarial species. A controlled trial was conducted to assess the effect of standard doses of quinine, chloroquine, amodiaquine, and artesunate on L. loa microfilaremia. Ninety-eight patients were randomly allocated into five groups (one for each drug and a control group) after stratification on microfilarial load. Loa loa microfilaremia was monitored on days 0, 3, 7, 15, 30, 60, and 90. No significant change in the loads was recorded in any of the treatment groups. A comprehensive review of the effects of antimalarial drugs against filariae is also provided.
Collapse
Affiliation(s)
- Joseph Kamgno
- Filariasis Research Centre, University of Yaounde I, Yaounde, Cameroon.
| | | | | | | | | |
Collapse
|
42
|
Cadman ET, Lawrence RA. Granulocytes: effector cells or immunomodulators in the immune response to helminth infection? Parasite Immunol 2010; 32:1-19. [PMID: 20042003 DOI: 10.1111/j.1365-3024.2009.01147.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Granulocytes are effector cells in defence against helminth infections. We review the current evidence for the role of granulocytes in protective immunity against different helminth infections and note that for each parasite species the role of granulocytes as effector cells can vary. Emerging evidence also points to granulocytes as immunomodulatory cells able to produce many cytokines, chemokines and modulatory factors which can bias the immune response in a particular direction. Thus, the role of granulocytes in an immunomodulatory context is discussed including the most recent data that points to an important role for basophils under this guise.
Collapse
Affiliation(s)
- E T Cadman
- Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | | |
Collapse
|
43
|
Nie Z, Lv Z, Qian J, Chen J, Li S, Sheng Q, Wang D, Shen H, Yu W, Wu X, Zhang Y. Molecular cloning and expression characterization of translationally controlled tumor protein in silkworm pupae. Mol Biol Rep 2009; 37:2621-8. [PMID: 19757184 DOI: 10.1007/s11033-009-9787-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 08/31/2009] [Indexed: 12/11/2022]
Abstract
A Bombyx mori (B. mori) cDNA was isolated from silkworm pupae cDNA library encoding a homologue of translationally controlled tumor protein (BmTCTPk). BmTCTPk was expressed in E. coli; SDS-PAGE and Western blot showed the molecular weight of recombinant and native BmTCTPk is approximately 28 and 25 kDa, respectively; they are larger than the theoretical molecular weight. Immunohistochemical studies showed that BmTCTPk is uniformly distributed throughout the cytoplasm of BmN cells. In silkworm pupae, BmTCTPk is expressed in the midgut wall, the midgut cavity, and some fat body tissues lying between the midgut wall and body wall. Western blot and ELISAs performed on total protein extracts isolated from silkworm pupae at different development stages showed that, although BmTCTPk is expressed during all pupae stages, its expression level increases dramatically during late pupae stages, suggesting that BmTCTPk may play an important role during the developmental transition from pupa to imago.
Collapse
Affiliation(s)
- Zuoming Nie
- Institute of Biochemistry, Zhejiang Sci-Tech University, Xiasha High-Tech Zone, No. 2 Road, 310018 Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rid R, Onder K, MacDonald S, Lang R, Hawranek T, Ebner C, Hemmer W, Richter K, Simon-Nobbe B, Breitenbach M. Alternaria alternata TCTP, a novel cross-reactive ascomycete allergen. Mol Immunol 2009; 46:3476-87. [PMID: 19683813 DOI: 10.1016/j.molimm.2009.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 07/26/2009] [Indexed: 12/18/2022]
Abstract
Defining more comprehensively the allergen repertoire of the ascomycete Alternaria alternata is undoubtedly of immense medical significance since this mold represents one of the most important, worldwide occurring fungal species responsible for IgE-mediated hypersensitivity reactions ranging from rhinitis and ocular symptoms to severe involvement of the lower respiratory tract including asthma with its life-threatening complications. Performing a hybridization screening of an excised A. alternata cDNA library with a radioactively labeled Cladosporium herbarum TCTP probe, we were able to identify, clone and purify the respective A. alternata homologue of TCTP which again represents a multifunctional protein that has been evolutionarily conserved from unicellular eukaryotes like yeasts to humans and appears, summarizing current literature, to be involved in housekeeping processes such as cell growth as well as cell-cycle progression, the protection of cells against various stress conditions including for instance apoptosis, and in higher organisms even in the allergic response. In this context, our present study characterizes recombinant A. alternata TCTP as a novel minor allergen candidate that displays a prevalence of IgE reactivity of approximately 4% and interestingly shares common, cross-reactive IgE epitopes with its C. herbarum and human counterparts as determined via Western blotting and in vitro inhibition approaches.
Collapse
Affiliation(s)
- Raphaela Rid
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim M, Min HJ, Won HY, Park H, Lee JC, Park HW, Chung J, Hwang ES, Lee K. Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity. PLoS One 2009; 4:e6464. [PMID: 19649253 PMCID: PMC2715101 DOI: 10.1371/journal.pone.0006464] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/25/2009] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Translationally Controlled Tumor Protein (TCTP) found in nasal lavage fluids of allergic patients was named IgE-dependent histamine-releasing factor (HRF). Human recombinant HRF (HrHRF) has been recently reported to be much less effective than HRF produced from activated mononuclear cells (HRFmn). METHODS AND FINDINGS We found that only NH(2)-terminal truncated, but not C-terminal truncated, TCTP shows cytokine releasing activity compared to full-length TCTP. Interestingly, only NH(2)-terminal truncated TCTP, unlike full-length TCTP, forms dimers through intermolecular disulfide bonds. We tested the activity of dimerized full-length TCTP generated by fusing it to rabbit Fc region. The untruncated-full length protein (Fc-HrTCTP) was more active than HrTCTP in BEAS-2B cells, suggesting that dimerization of TCTP, rather than truncation, is essential for the activation of TCTP in allergic responses. We used confocal microscopy to evaluate the affinity of TCTPs to its putative receptor. We detected stronger fluorescence in the plasma membrane of BEAS-2B cells incubated with Del-N11TCTP than those incubated with rat recombinant TCTP (RrTCTP). Allergenic activity of Del-N11TCTP prompted us to see whether the NH(2)-terminal truncated TCTP can induce allergic airway inflammation in vivo. While RrTCTP had no influence on airway inflammation, Del-N11TCTP increased goblet cell hyperplasia in both lung and rhinal cavity. The dimerized protein was found in sera from allergic patients, and bronchoalveolar lavage fluids from airway inflamed mice. CONCLUSIONS Dimerization of TCTP seems to be essential for its cytokine-like activity. Our study has potential to enhance the understanding of pathogenesis of allergic disease and provide a target for allergic drug development.
Collapse
Affiliation(s)
- Miyoung Kim
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Hyun Jung Min
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Hee Yeon Won
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Heejin Park
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | | | - Heung-Woo Park
- Division of Allergy and Clinical Immunology, Seoul National University Hospital, Seoul, Korea
| | - Junho Chung
- College of Medicine and Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Eun Sook Hwang
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Kyunglim Lee
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| |
Collapse
|
46
|
Kim IC, Kim YJ, Lee YM, Kim BG, Park TJ, Kim HS, Jung MM, Williams TD, Lee W, Lee JS. cDNA Cloning of Translationally Controlled Tumor Protein/Histamine Releasing Factor (TCTP/HRF) from the Intertidal Harpacticoid CopepodTigriopus japonicus. ACTA ACUST UNITED AC 2009; 15:159-63. [PMID: 15346772 DOI: 10.1080/1042517042000199960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We synthesized a cDNA library from the intertidal copepod Tigriopus japonicus, converted it to phagemids and sequenced expressed sequence tags (ESTs). Of these, Tigriopus translationally controlled tumor protein/histamine releasing factor (TCTP/HRF) was further characterized. The Tigriopus TCTP/HRF gene encoded 172 amino acid residues and showed high similarity to Drosophila but moderate similarity to other annelids (e.g. Brugia, Wuchereria and C. elegans). The Tigriopus TCTP/HRF gene appeared in the same clade as the annelids. Here, we describe the analysis of the Tigriopus TCTP/HRF gene.
Collapse
Affiliation(s)
- Il-Chan Kim
- Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gnanasekar M, Dakshinamoorthy G, Ramaswamy K. Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 2009; 386:333-7. [PMID: 19523440 DOI: 10.1016/j.bbrc.2009.06.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/06/2009] [Indexed: 01/27/2023]
Abstract
Translationally controlled tumor protein (TCTP) is often designated as a stress-related protein because of its highly regulated expression in stress conditions. Following a thermal shock, TCTP expression is highly upregulated in a variety of cells. However, at present it is not known whether this upregulation has any cell protective function similar to other heat shock proteins. In this study human TCTP (HuTCTP) and a TCTP homolog (SmTCTP) from Schistosoma mansoni were evaluated for heat shock protein-like function and molecular chaperone activity. Our results show that similar to other molecular chaperones, both human and parasite TCTPs can bind to a variety of denatured proteins and protect them from the harmful effects of thermal shock. An important observation was the ability of both HuTCTP and SmTCTP to bind to native protein and protect them from thermal denaturation. Over expression of TCTP in bacterial cells protected them from heat shock-induced death. These findings suggest that TCTP may belong to a novel small molecular weight heat shock protein.
Collapse
Affiliation(s)
- Munirathinam Gnanasekar
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | | | | |
Collapse
|
48
|
Meyvis Y, Houthoofd W, Visser A, Borgonie G, Gevaert K, Vercruysse J, Claerebout E, Geldhof P. Analysis of the translationally controlled tumour protein in the nematodes Ostertagia ostertagi and Caenorhabditis elegans suggests a pivotal role in egg production. Int J Parasitol 2009; 39:1205-13. [PMID: 19285501 DOI: 10.1016/j.ijpara.2009.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/16/2022]
Abstract
The translationally controlled tumour protein (TCTP) is a conserved protein which has been described for a wide range of eukaryotic organisms including protozoa, yeasts, plants, nematodes and mammals. Several parasitic organisms have been shown to actively secrete TCTP during host infection as part of their immuno-evasive strategy. In this study, we have studied TCTP in Ostertagia ostertagi, a parasitic nematode of cattle, and in the free-living nematode Caenorhabditis elegans. An analysis of the transcription and expression patterns showed that TCTP was present in the eggs of both species. This localisation is consistent for some other Strongylida such as Teladorsagia circumcincta, Cooperia oncophora and Haemonchus contortus. TCTP was also detected at low levels in excretory-secretory material from adult O. ostertagi worms. The role of TCTP in nematode biology was also investigated by RNA interference in C. elegans. Knock-down of C. elegans tctp (tct-1) transcription reduced the numbers of eggs laid by the hermaphrodite in the F(0) and F(1) generations by 90% and 72%, respectively, indicating a pivotal role of TCTP in reproduction.
Collapse
Affiliation(s)
- Yves Meyvis
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Adisakwattana P, Saunders SP, Nel HJ, Fallon PG. Helminth-Derived Immunomodulatory Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:95-107. [DOI: 10.1007/978-1-4419-1601-3_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Wang S, Zhao XF, Wang JX. Molecular cloning and characterization of the translationally controlled tumor protein from Fenneropenaeus chinensis. Mol Biol Rep 2008; 36:1683-93. [DOI: 10.1007/s11033-008-9369-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 09/24/2008] [Indexed: 12/19/2022]
|