1
|
Davis SE, Hu J, Nanescu SE, Kumar MN, Baydyuk M, Oft HC, Amjad FS, Wellstein A, Huang JK. Differential Effects of IL4I1 Protein on Lymphocytes From Healthy and Multiple Sclerosis Patients. Pharmacol Res Perspect 2025; 13:e70062. [PMID: 40102177 PMCID: PMC11919572 DOI: 10.1002/prp2.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 03/20/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease characterized by immune-mediated demyelination of the central nervous system, resulting in extensive neurological deficit and remyelination impairment. We have previously found that interleukin-four induced one (IL4I1) protein modulates CNS inflammation and enhances remyelination in mouse models of experimental demyelination. However, it remained unclear if IL4I1 regulates lymphocyte activity in MS. To assess the therapeutic potential of IL4I1 in MS, we investigated the impact of IL4I1 treatment on human lymphocytes from peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and MS patients. We found that IL4I1 increased the relative densities of Th2 and regulatory T-cells, while reducing Th17 cell density in healthy control (HC) samples. Furthermore, IL4I1-treated lymphocytes promoted CNS remyelination when grafted into demyelinated spinal cord lesions in mice. We found that baseline endogenous IL4I1 expression was reduced in people with MS. However, unlike HCs, IL4I1 treatment had no significant effect on IL17 or TOB1 expression in lymphocytes derived from MS patients. These results suggest that IL4I1 skews CD4+ T-cells to a regulatory state in healthy human lymphocytes, which may be essential for promoting remyelination. However, IL4I1 appears unable to exert its influence on lymphocytes in MS, indicating that impaired IL4I1-mediated activity may underlie MS pathology.
Collapse
Affiliation(s)
- Stephanie E. Davis
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDCUSA
- Georgetown University School of MedicineGeorgetown UniversityWashingtonDCUSA
| | - Jingwen Hu
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
| | | | | | - Maryna Baydyuk
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
| | - Helena C. Oft
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
| | - Faria S. Amjad
- Department of NeurologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - Anton Wellstein
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDCUSA
- Lombardi Cancer CenterGeorgetown University Medical CenterWashingtonDCUSA
| | - Jeffrey K. Huang
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDCUSA
| |
Collapse
|
2
|
Shen R, Ding Y, Dong Q, Wang Y, Yu J, Pan C, Cai Y, Li Z, Zhang J, Yu K, Zeng Q. IL-4-Induced Gene 1: A Potential Player in Myocardial Infarction. Rev Cardiovasc Med 2024; 25:337. [PMID: 39355609 PMCID: PMC11440439 DOI: 10.31083/j.rcm2509337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 10/03/2024] Open
Abstract
Myocardial infarction (MI), a severe outcome of cardiovascular disease, poses a serious threat to human health. Uncontrolled inflammation and excessive cardiomyocyte death, following an infarction event, significantly contribute to both the mortality rate and complications associated with MI. The protein IL-4-induced gene 1 (IL4I1 or FIG1) serves as a natural inhibitor of innate and adaptive immunity, playing a crucial role in CD4+ T cell differentiation, macrophage polarization, and ferroptosis inhibition. Previous studies have linked IL4I1 to acute MI. This review summarizes evidence from both basic and clinical research, highlighting IL4I1 as a critical immunoregulatory enzyme that not only regulates inflammatory responses, but also potentially mitigates MI-induced damage.
Collapse
Affiliation(s)
- Rui Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yue Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Zhiyang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jiangmei Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| |
Collapse
|
3
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
4
|
Peng X, Liu C, Zhang L, Chen Y, Mao L, Gao S, Shi X, Zuo L. IL4I1: a novel molecular biomarker represents an inflamed tumor microenvironment and precisely predicts the molecular subtype and immunotherapy response of bladder cancer. Front Pharmacol 2024; 15:1365683. [PMID: 38873416 PMCID: PMC11169701 DOI: 10.3389/fphar.2024.1365683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction: IL4I1, also known as Interleukin-4-induced gene 1, is an enzyme that can modulate the immune system by acting as a L-amino acid oxidase. Nevertheless, a precise understanding of the correlation of IL4I1 with immunological features and immunotherapy efficacy in bladder cancer (BLCA) remains incomplete. Methods: We analyzed RNA sequencing data from the Cancer Genome Atlas (TCGA) to investigate the immune function and prognostic importance of IL4I1 across different cancer types. We further examined the TCGA-BLCA cohort for correlations between IL4I1 and various immunological characteristics of tumor microenvironment (TME), such as cancer immune cycle, immune cell infiltration, immune checkpoint expression and T cell inflamed score. Validation was conducted using two independent cohort, GSE48075 and E-MTAB-4321. Finally, RNA sequencing data from the IMvigor210 cohort and immunohistochemistry assays were employed to validate the predictive value of IL4I1 for the TME and immunotherapy efficacy. Results: In our findings, a positive correlation was observed between IL4I1 expression and immunomodulators expression, immune cell infiltration, the cancer immune cycle, and T cell inflamed score in BLCA, suggesting a significant link to the inflamed TME. In addition, studies have shown that IL4I1 elevated levels of individuals tend to be more performance for basal subtype and exhibit enhanced response rates to diverse treatment modalities, specifically immunotherapy. Clinical data from the IMvigor 210 cohort confirmed a higher rate of response to immunotherapy and better survival benefits in patients with high IL4I1 expression. Discussion: To summarize, our research showed that elevated IL4I1 levels are indicative of an inflamed TME, the basal subtype, and a more favorable response to various treatment methods, especially immune checkpoint blockade therapy in BLCA.
Collapse
Affiliation(s)
- Xiangrong Peng
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chuan Liu
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li Zhang
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yin Chen
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lixin Mao
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Shenglin Gao
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Urology, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai, China
| | - Xiaokai Shi
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li Zuo
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Zhang K, Mishra A, Jagannath C. New insight into arginine and tryptophan metabolism in macrophage activation during tuberculosis. Front Immunol 2024; 15:1363938. [PMID: 38605962 PMCID: PMC11008464 DOI: 10.3389/fimmu.2024.1363938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Arginine and tryptophan are pivotal in orchestrating cytokine-driven macrophage polarization and immune activation. Specifically, interferon-gamma (IFN-γ) stimulates inducible nitric oxide synthase (iNOS) expression), leading to the conversion of arginine into citrulline and nitric oxide (NO), while Interleukin-4 (IL4) promotes arginase activation, shifting arginine metabolism toward ornithine. Concomitantly, IFN-γ triggers indoleamine 2,3-dioxygenase 1 (IDO1) and Interleukin-4 induced 1 (IL4i1), resulting in the conversion of tryptophan into kynurenine and indole-3-pyruvic acid. These metabolic pathways are tightly regulated by NAD+-dependent sirtuin proteins, with Sirt2 and Sirt5 playing integral roles. In this review, we present novel insights that augment our understanding of the metabolic pathways of arginine and tryptophan following Mycobacterium tuberculosis infection, particularly their relevance in macrophage responses. Additionally, we discuss arginine methylation and demethylation and the role of Sirt2 and Sirt5 in regulating tryptophan metabolism and arginine metabolism, potentially driving macrophage polarization.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Zhu L, Wang J, Hu J. High expression of IL4I1 is correlated with poor prognosis and immune infiltration in thyroid cancer. BMC Endocr Disord 2023; 23:148. [PMID: 37434155 DOI: 10.1186/s12902-023-01407-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Thyroid cancer-related deaths mostly result from metastasis. It was reported that the immunometabolism associated enzyme interleukin-4-induced-1 (IL4I1) was related to tumor metastasis. The present study was intended to investigate the effects of IL4I1 on thyroid cancer metastasis and its relationship with the prognosis. METHODS Data from Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were analyzed to find out the different mRNA expressions of IL4I1 between thyroid cancer and normal tissues. And Human Protein Atlas (HPA) was used to assess IL4I1 protein expression. To further differentiate thyroid cancer from normal tissues and estimate the impact of IL4I1 on the prognosis, the receiver operating characteristic curve (ROC) and Kaplan-Meier (KM) method was performed. The protein-protein interaction (PPI) network was established using STRING, and functional enrichment analyses were conducted by "clusterProfiler" package. Then, we assayed the correlation between IL4I1 and some related molecules. The relationship between IL4I1 and immune infiltration was performed using "Gene Set Variation Analysis (GSVA)" package in TCGA and tumor-immune system interaction database (TISIDB). Finally, we did in vitro experiments in order to further prove the bioeffects of IL4I1 on metastasis. RESULTS The expression of IL4I1 mRNA and IL4I1 protein was significantly upregulated in thyroid cancer tissues. The increment of IL4I1 mRNA expression was related to high-grade malignancy, lymph node metastases and extrathyroidal extension. The ROC curve displayed the cutoff value of 0.782, with the sensitivity of 77.5% and the specificity of 77.8%. KM survival analysis showed that there was a worse PFS in patients with high IL4I1 expression than those with low IL4I1 expression (p = 0.013). Further study indicated that IL4I1 was associated with lactate, body fluid secretion, positive regulation of T cell differentiation, and cellular response to nutrients in Gene Ontology (GO) analysis. Moreover, IL4I1 was found correlated with immune infiltration. Finally, the in vitro experiments revealed the promotion of IL4I1 on cancer cell proliferation, migration and invasion. CONCLUSIONS The increased IL4I1 expression is markedly correlated with the immune imbalance in the tumor microenvironment (TME) and predicts poor survival in thyroid cancer. This study reveals the potential clinical biomarker of poor prognosis and the target of immune therapy in thyroid cancer.
Collapse
Affiliation(s)
- Liying Zhu
- Department of Geratology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jun Wang
- Department of Otolaryngology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia'an Hu
- Department of Geratology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
7
|
Leu JH, Tsai CH, Yang CH, Chou HY, Wang HC. Identification and characterization of l-amino acid oxidase 2 gene in orange-spotted grouper (Epinephelus coioides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104058. [PMID: 33657430 DOI: 10.1016/j.dci.2021.104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Recently, l-amino acid oxidases (LAAOs) have been identified in several fish species as first-line defense molecules against bacterial infection. Here, we report the cloning and characterization of a fish LAAO gene, EcLAAO2, from orange-spotted grouper (Epinephelus coioides). The full-length cDNA is 3030 bp, with an ORF encoding a protein of 511 amino acids. EcLAAO2 is mainly expressed in the fin, gill, and intestine. Its expression is upregulated in several immune organs after challenge with lipopolysaccharide (LPS) and poly (I:C). The recombinant EcLAAO2 protein (rEcLAAO2), expressed and purified from a baculovirus expression system, was determined to be a glycosylated dimer. According to a hydrogen peroxide-production assay, the recombinant protein was identified as having LAAO enzyme activity with substrate preference for L-Phe and L-Trp, but not L-Lys as other known fish LAAOs. rEcLAAO2 could effectively inhibit the growth of Vibrio parahaemolyticus, Staphylococcus aureus, and Bacillus subtilis while exhibiting less effective inhibition of the growth of Escherichia coli. Finally, protein models based on sequence homology were constructed to predict the three-dimensional structure of EcLAAO2 as well as to explain the difference in substrate specificity between EcLAAO2 and other reported fish LAAOs. In conclusion, this study identifies EcLAAO2 as a novel fish LAAO with a substrate preference distinct from other known fish LAAOs and reveals that it may function against invading pathogens.
Collapse
Affiliation(s)
- Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, ROC.
| | - Chi-Hang Tsai
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Chia-Hsun Yang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Hsin-Yiu Chou
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, ROC; Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Hao-Ching Wang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 115, Taiwan, ROC; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
8
|
Kasai K, Nakano M, Ohishi M, Nakamura T, Miura T. Antimicrobial properties of L-amino acid oxidase: biochemical features and biomedical applications. Appl Microbiol Biotechnol 2021; 105:4819-4832. [PMID: 34106313 PMCID: PMC8188536 DOI: 10.1007/s00253-021-11381-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Abstract Mucus layer that covers the body surface of various animal functions as a defense barrier against microbes, environmental xenobiotics, and predators. Previous studies have reported that L-amino acid oxidase (LAAO), present in several animal fluids, has potent properties against pathogenic bacteria, viruses, and parasites. LAAO catalyzes the oxidative deamination of specific L-amino acids with the generation of hydrogen peroxide and L-amino acid metabolites. Further, the generated hydrogen peroxide is involved in oxidation (direct effect) while the metabolites activate immune responses (indirect effect). Therefore, LAAO exhibits two different mechanisms of bioactivation. Previously, we described the selective, specific, and local oxidative and potent antibacterial actions of various LAAOs as potential therapeutic strategies. In this review, we focus on their biochemical features, enzymatic regulations, and biomedical applications with a view of describing their probable role as biochemical agents and biomarkers for microbial infections, cancer, and autoimmune-mediated diseases. We consider that LAAOs hold implications in biomedicine owing to their antimicrobial activity wherein they can be used in treatment of infectious diseases and as diagnostic biomarkers in the above-mentioned diseased conditions. Key points •Focus on biochemical features, enzymatic regulation, and biomedical applications of LAAOs. •Mechanisms of antimicrobial activity, inflammatory regulation, and immune responses of LAAOs. •Potential biomedical application as an antimicrobial and anti-infection agent, and disease biomarker.
Collapse
Affiliation(s)
- Kosuke Kasai
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Manabu Nakano
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | | | - Toshiya Nakamura
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan.
| |
Collapse
|
9
|
Zhang X, Gan M, Li J, Li H, Su M, Tan D, Wang S, Jia M, Zhang L, Chen G. Endogenous Indole Pyruvate Pathway for Tryptophan Metabolism Mediated by IL4I1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10678-10684. [PMID: 32866000 DOI: 10.1021/acs.jafc.0c03735] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
l-tryptophan (Trp) is widely used in food and feed enforcement to play an important role in biological processes. Various metabolites of Trp perform its potent function. The indole pyruvate pathway is one of the main pathways of Trp metabolism in the gut microbiota, providing numerous indole-derivatives, which can modulate intestinal homeostasis and mucosal immunity by activating the aryl hydrocarbon receptor (AHR) signaling pathway. In this study, we constructed an IL4I1-overexpressed 293T cell line and found that IL4I1 can catalyze Trp to produce indole-3-acetic acid (IAA) and indole-3-carboxaldehyde (IAld). Moreover, both IAA and IAld are accumulated in dendritic cells (DCs) and can stimulate the expression of CYP1A1. Our results demonstrate the existence of the indole pyruvate pathway in host cells with IL4I1 as the key enzyme. The IL4I1-mediated Trp metabolism implies the role of dietary impact on immunity.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Gan
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyun Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meicheng Su
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongfei Tan
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaolei Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Man Jia
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liguo Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Molinier-Frenkel V, Prévost-Blondel A, Castellano F. The IL4I1 Enzyme: A New Player in the Immunosuppressive Tumor Microenvironment. Cells 2019; 8:E757. [PMID: 31330829 PMCID: PMC6678094 DOI: 10.3390/cells8070757] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
The high metabolic needs of T lymphocytes in response to activation make them particularly vulnerable to modifications of their biochemical milieu. Immunosuppressive enzymes produced in the tumor microenvironment modify nutrient availability by catabolizing essential or semi-essential amino acids and producing toxic catabolites, thus participating in the local sabotage of the antitumor immune response. L-amino-acid oxidases are FAD-bound enzymes found throughout evolution, from bacteria to mammals, and are often endowed with anti-infectious properties. IL4I1 is a secreted L-phenylalanine oxidase mainly produced by inflammatory antigen-presenting cells-in particular, macrophages present in T helper type 1 granulomas and in various types of tumors. In the last decade, it has been shown that IL4I1 is involved in the fine control of B- and T-cell adaptive immune responses. Preclinical models have revealed its role in cancer immune evasion. Recent clinical data highlight IL4I1 as a new potential prognostic marker in human melanoma. As a secreted enzyme, IL4I1 may represent an easily targetable molecule for cancer immunotherapy.
Collapse
Affiliation(s)
- Valérie Molinier-Frenkel
- INSERM, U955, Team 09, 94010 Créteil, France.
- Faculty of Medicine, University Paris Est, 94010 Créteil, France.
- AP-HP, H. Mondor - A. Chenevier Hospital, Biological Immunology Service, 94010 Créteil, France.
| | - Armelle Prévost-Blondel
- INSERM, U1016, Institute Cochin, 75014 Paris, France
- CNRS, UMR8104, 75014 Paris, France
- University Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Flavia Castellano
- INSERM, U955, Team 09, 94010 Créteil, France.
- Faculty of Medicine, University Paris Est, 94010 Créteil, France.
| |
Collapse
|
11
|
An Overview of l-Amino Acid Oxidase Functions from Bacteria to Mammals: Focus on the Immunoregulatory Phenylalanine Oxidase IL4I1. Molecules 2017; 22:molecules22122151. [PMID: 29206151 PMCID: PMC6149928 DOI: 10.3390/molecules22122151] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 01/04/2023] Open
Abstract
l-amino acid oxidases are flavin adenine dinucleotide-dependent enzymes present in all major kingdom of life, from bacteria to mammals. They participate in defense mechanisms by limiting the growth of most bacteria and parasites. A few mammalian LAAOs have been described, of which the enzyme “interleukin-4 induced gene 1” (IL4I1) is the best characterized. IL4I1 mainly oxidizes l-phenylalanine. It is a secreted enzyme physiologically produced by antigen presenting cells of the myeloid and B cell lineages and T helper type (Th) 17 cells. Important roles of IL4I1 in the fine control of the adaptive immune response in mice and humans have emerged during the last few years. Indeed, IL4I1 inhibits T cell proliferation and cytokine production and facilitates naïve CD4+ T-cell differentiation into regulatory T cells in vitro by limiting the capacity of T lymphocytes to respond to clonal receptor stimulation. It may also play a role in controlling the germinal center reaction for antibody production and limiting Th1 and Th17 responses. IL4I1 is expressed in tumor-associated macrophages of most human cancers and in some tumor cell types. Such expression, associated with its capacity to facilitate tumor growth by inhibiting the anti-tumor T-cell response, makes IL4I1 a new potential druggable target in the field of immunomodulation in cancer.
Collapse
|
12
|
Aubatin A, Sako N, Decrouy X, Donnadieu E, Molinier-Frenkel V, Castellano F. IL4-induced gene 1 is secreted at the immune synapse and modulates TCR activation independently of its enzymatic activity. Eur J Immunol 2017; 48:106-119. [PMID: 28891065 DOI: 10.1002/eji.201646769] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 08/21/2017] [Accepted: 09/06/2017] [Indexed: 01/11/2023]
Abstract
Amino-acid catabolizing enzymes produced by mononuclear phagocytes play a central role in regulating the immune response. The mammalian phenylalanine-catabolizing enzyme IL4-induced gene 1 (IL4I1) inhibits effector T lymphocyte proliferation and facilitates regulatory T-cell development. IL4I1 expression by macrophages of various human tumors may affect patient prognosis as it facilitates tumor escape from the T-cell response in murine models. Its enzymatic activity appears to participate in its effects, but some actions of IL4I1 remain unclear. Here, we show that the presence of IL4I1 during T-cell activation decreases early signaling events downstream of TCR stimulation, resulting in global T-cell inhibition which is more pronounced when there is CD28 costimulation. Surprisingly, the enzymatic activity of IL4I1 is not involved. Focal secretion of IL4I1 into the immune synaptic cleft and its binding to CD3+ lymphocytes could be important in IL4I1 immunosuppressive mechanism of action.
Collapse
Affiliation(s)
- Aude Aubatin
- INSERM, U955, Equipe 09, Créteil, France.,Faculté de Médecine, Université Paris Est, Créteil, France
| | - Nouhoum Sako
- INSERM, U955, Equipe 09, Créteil, France.,Faculté de Médecine, Université Paris Est, Créteil, France
| | - Xavier Decrouy
- INSERM, U955, Plateforme d'imagerie, Créteil, France.,Faculté de Médecine, Université Paris Est, Créteil, France
| | - Emmanuel Donnadieu
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valérie Molinier-Frenkel
- INSERM, U955, Equipe 09, Créteil, France.,Faculté de Médecine, Université Paris Est, Créteil, France.,AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Biologique, Créteil, France
| | - Flavia Castellano
- INSERM, U955, Equipe 09, Créteil, France.,Faculté de Médecine, Université Paris Est, Créteil, France.,AP-HP, Hôpital H. Mondor - A. Chenevier, Plateforme de Ressources Biologiques, Créteil, France
| |
Collapse
|
13
|
Psachoulia K, Chamberlain KA, Heo D, Davis SE, Paskus JD, Nanescu SE, Dupree JL, Wynn TA, Huang JK. IL4I1 augments CNS remyelination and axonal protection by modulating T cell driven inflammation. Brain 2016; 139:3121-3136. [PMID: 27797811 PMCID: PMC5382940 DOI: 10.1093/brain/aww254] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
SEE PLUCHINO AND PERUZZOTTI-JAMETTI DOI101093/AWW266 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Myelin regeneration (remyelination) is a spontaneous process that occurs following central nervous system demyelination. However, for reasons that remain poorly understood, remyelination fails in the progressive phase of multiple sclerosis. Emerging evidence indicates that alternatively activated macrophages in central nervous system lesions are required for oligodendrocyte progenitor differentiation into remyelinating oligodendrocytes. Here, we show that an alternatively activated macrophage secreted enzyme, interleukin-four induced one (IL4I1), is upregulated at the onset of inflammation resolution and remyelination in mouse central nervous system lesions after lysolecithin-induced focal demyelination. Focal demyelination in mice lacking IL4I1 or interleukin 4 receptor alpha (IL4Rα) results in increased proinflammatory macrophage density, remyelination impairment, and axonal injury in central nervous system lesions. Conversely, recombinant IL4I1 administration into central nervous system lesions reduces proinflammatory macrophage density, enhances remyelination, and rescues remyelination impairment in IL4Rα deficient mice. We find that IL4I1 does not directly affect oligodendrocyte differentiation, but modulates inflammation by reducing interferon gamma and IL17 expression in lesioned central nervous system tissues, and in activated T cells from splenocyte cultures. Remarkably, intravenous injection of IL4I1 into mice with experimental autoimmune encephalomyelitis at disease onset significantly reversed disease severity, resulting in recovery from hindlimb paralysis. Analysis of post-mortem tissues reveals reduced axonal dystrophy in spinal cord, and decreased CD4+ T cell populations in spinal cord and spleen tissues. These results indicate that IL4I1 modulates inflammation by regulating T cell expansion, thereby permitting the formation of a favourable environment in the central nervous system tissue for remyelination. Therefore, IL4I1 is a potentially novel therapeutic for promoting central nervous system repair in multiple sclerosis.
Collapse
Affiliation(s)
| | | | - Dongeun Heo
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Stephanie E Davis
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Jeremiah D Paskus
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Sonia E Nanescu
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Jeffrey L Dupree
- 2 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas A Wynn
- 3 Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey K Huang
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
14
|
Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain. Neurochem Res 2016; 42:217-243. [DOI: 10.1007/s11064-016-2015-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
|
15
|
Alterations of the immunosuppressive IL4I1 enzyme activity induced by naturally occurring SNP/mutations. Genes Immun 2015; 17:148-52. [DOI: 10.1038/gene.2015.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022]
|
16
|
Kitani Y, Fernandes JMO, Kiron V. Identification of the Atlantic cod L-amino acid oxidase and its alterations following bacterial exposure. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:116-120. [PMID: 25681742 DOI: 10.1016/j.dci.2015.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/08/2015] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Antibacterial factors that are present in epidermal mucus of fish have a potential role in the first line of host defence to bacterial pathogens. This study reports the identification of L-amino acid oxidase (LAO) in Atlantic cod (GmLao) and the changes in the molecule following bacterial exposure. The gmlao transcripts and LAO activity were present on both the body surface and in the internal organs of the fish. Relative mRNA level of gmlao increased significantly in the gills, the spleen and the head kidney (up to 8-fold) of fish that were challenged with the pathogen Vibrio anguillarum. The gmlao expression in skin was 4-fold higher in challenged fish. Our data indicate that LAO may be an important effector of antibacterial defence in Atlantic cod.
Collapse
Affiliation(s)
- Yoichiro Kitani
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway.
| | - Jorge M O Fernandes
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| |
Collapse
|
17
|
Rodriguez-Pla A, Patel P, Maecker HT, Rossello-Urgell J, Baldwin N, Bennett L, Cantrell V, Baisch J, Punaro M, Gotte A, Nassi L, Wright T, Palucka AK, Banchereau J, Pascual V. IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes. THE JOURNAL OF IMMUNOLOGY 2014; 192:5586-98. [PMID: 24829414 DOI: 10.4049/jimmunol.1301319] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Blood monocytes from children with systemic lupus erythematosus (SLE) behave similar to dendritic cells (DCs), and SLE serum induces healthy monocytes to differentiate into DCs in a type I IFN-dependent manner. In this study, we found that these monocytes display significant transcriptional changes, including a prominent IFN signature, compared with healthy controls. Few of those changes, however, explain DC function. Exposure to allogeneic T cells in vitro reprograms SLE monocytes to acquire DC phenotype and function, and this correlates with both IFN-inducible (IP10) and proinflammatory cytokine (IL-1β and IL6) expression. Furthermore, we found that both IFN and SLE serum induce the upregulation of CCR7 transcription in these cells. CCR7 protein expression, however, requires a second signal provided by TLR agonists such as LPS. Thus, SLE serum "primes" a subset of monocytes to readily (<24 h) respond to TLR agonists and acquire migratory DC properties. Our findings might explain how microbial infections exacerbate lupus.
Collapse
Affiliation(s)
| | - Pinakeen Patel
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Holden T Maecker
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University Medical Center, Stanford, CA 94305
| | | | - Nicole Baldwin
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Lynda Bennett
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | | | - Jeanine Baisch
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Marilynn Punaro
- Division of Pediatric Rheumatology, Texas Scottish Rite Hospital for Children, Dallas, TX 75219; and University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Alisa Gotte
- Division of Pediatric Rheumatology, Texas Scottish Rite Hospital for Children, Dallas, TX 75219; and University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Lorien Nassi
- Division of Pediatric Rheumatology, Texas Scottish Rite Hospital for Children, Dallas, TX 75219; and University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Tracey Wright
- Division of Pediatric Rheumatology, Texas Scottish Rite Hospital for Children, Dallas, TX 75219; and University of Texas Southwestern Medical Center, Dallas, TX 75235
| | | | | | - Virginia Pascual
- Baylor Institute for Immunology Research, Dallas, TX 75204; Division of Pediatric Rheumatology, Texas Scottish Rite Hospital for Children, Dallas, TX 75219; and
| |
Collapse
|
18
|
Hallen A, Jamie JF, Cooper AJL. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 2013; 45:1249-72. [PMID: 24043460 DOI: 10.1007/s00726-013-1590-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022]
Abstract
The lysine catabolism pathway differs in adult mammalian brain from that in extracerebral tissues. The saccharopine pathway is the predominant lysine degradative pathway in extracerebral tissues, whereas the pipecolate pathway predominates in adult brain. The two pathways converge at the level of ∆(1)-piperideine-6-carboxylate (P6C), which is in equilibrium with its open-chain aldehyde form, namely, α-aminoadipate δ-semialdehyde (AAS). A unique feature of the pipecolate pathway is the formation of the cyclic ketimine intermediate ∆(1)-piperideine-2-carboxylate (P2C) and its reduced metabolite L-pipecolate. A cerebral ketimine reductase (KR) has recently been identified that catalyzes the reduction of P2C to L-pipecolate. The discovery that this KR, which is capable of reducing not only P2C but also other cyclic imines, is identical to a previously well-described thyroid hormone-binding protein [μ-crystallin (CRYM)], may hold the key to understanding the biological relevance of the pipecolate pathway and its importance in the brain. The finding that the KR activity of CRYM is strongly inhibited by the thyroid hormone 3,5,3'-triiodothyronine (T3) has far-reaching biomedical and clinical implications. The inter-relationship between tryptophan and lysine catabolic pathways is discussed in the context of shared degradative enzymes and also potential regulation by thyroid hormones. This review traces the discoveries of enzymes involved in lysine metabolism in mammalian brain. However, there still remain unanswered questions as regards the importance of the pipecolate pathway in normal or diseased brain, including the nature of the first step in the pathway and the relationship of the pipecolate pathway to the tryptophan degradation pathway.
Collapse
Affiliation(s)
- André Hallen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia,
| | | | | |
Collapse
|
19
|
Nuutinen JT, Marttinen E, Soliymani R, Hildén K, Timonen S. L-Amino acid oxidase of the fungus Hebeloma cylindrosporum displays substrate preference towards glutamate. MICROBIOLOGY-SGM 2011; 158:272-283. [PMID: 21998160 DOI: 10.1099/mic.0.054486-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Catabolism of amino acids is a central process in cellular nitrogen turnover, but only a few of the mechanisms involved have been described from basidiomycete fungi. This study identified one such mechanism, the l-amino acid oxidase (Lao1) enzyme of Hebeloma cylindrosporum, by 2D gel separation and MS. We determined genomic DNA sequences of lao1 and part of its upstream gene, a putative pyruvate decarboxylase (pdc2), and cloned the cDNA of lao1. The two genes were also identified and annotated from the genome of Laccaria bicolor. The lao1 and pdc2 gene structures were conserved between the two fungi. The intergenic region of L. bicolor possessed putative duplications not detected in H. cylindrosporum. Lao1 sequences possessed dinucleotide-binding motifs typical for flavoproteins. Lao1 was less than 23 % identical to Lao sequences described previously. Recombinant Lao1 of H. cylindrosporum was expressed in Escherichia coli, purified and refolded with SDS to gain catalytic activity. The enzyme possessed broad substrate specificity: 37 l-amino acids or derivatives served as effective substrates. The highest activities were recorded with l-glutamate, but positively charged and aromatic amino acids were also accepted. Michaelis constants for six amino acids varied from 0.5 to 6.7 mM. We have thus characterized a novel type of Lao-enzyme and its gene from the basidiomycete fungus H. cylindrosporum.
Collapse
Affiliation(s)
- Jaro T Nuutinen
- Department of Food and Environmental Sciences, PO Box 56, FI-00014 University of Helsinki, Finland.,Department of Agricultural Sciences, PO Box 27, FI-00014 University of Helsinki, Finland
| | - Eeva Marttinen
- Department of Food and Environmental Sciences, PO Box 56, FI-00014 University of Helsinki, Finland.,Department of Agricultural Sciences, PO Box 27, FI-00014 University of Helsinki, Finland
| | - Rabah Soliymani
- Institute of Biomedicine, Department of Anatomy, Protein Chemistry Unit, Biomedicum-Helsinki, PO Box 63, FI-00014 University of Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, PO Box 56, FI-00014 University of Helsinki, Finland
| | - Sari Timonen
- Department of Food and Environmental Sciences, PO Box 56, FI-00014 University of Helsinki, Finland.,Department of Agricultural Sciences, PO Box 27, FI-00014 University of Helsinki, Finland
| |
Collapse
|
20
|
Lasoudris F, Cousin C, Prevost-Blondel A, Martin-Garcia N, Abd-Alsamad I, Ortonne N, Farcet JP, Castellano F, Molinier-Frenkel V. IL4I1: an inhibitor of the CD8⁺ antitumor T-cell response in vivo. Eur J Immunol 2011; 41:1629-38. [PMID: 21469114 DOI: 10.1002/eji.201041119] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/04/2011] [Accepted: 03/15/2011] [Indexed: 12/21/2022]
Abstract
The L-phenylalanine oxidase IL4I1 inhibits T-cell proliferation in vitro through H(2) O(2) production, and is highly expressed in tumor-associated macrophages. IL4I1 is also detected by immunohistochemistry in neoplastic cells from several B-cell lymphomas and some non-lymphoid tumors. To evaluate IL4I1's effect on tumor growth, we developed a mouse melanoma model constitutively coexpressing IL4I1 and the GP33 epitope. After GP33 vaccination, tumors developed more frequently in mice injected with IL4I1-expressing cells in comparison with mice receiving control cells. Tumor escape was preceded by a rapid diminution of IFN-γ-producing cytotoxic antitumor CD8(+) T cells. Moreover, tumor incidence was already increased when only 20% of the injected cells expressed IL4I1. The minimal IL4I1 activities leading to tumor escape were close to those detected in human melanoma and mesothelioma. Thus, we demonstrate the immunosuppressive functions of IL4I1 in vivo and suggest that IL4I1 facilitates human tumor growth by inhibiting the CD8(+) antitumor T-cell response.
Collapse
|
21
|
Hughes AL. Origin and diversification of the L-amino oxidase family in innate immune defenses of animals. Immunogenetics 2010; 62:753-9. [PMID: 20878154 PMCID: PMC3004525 DOI: 10.1007/s00251-010-0482-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/15/2010] [Indexed: 11/24/2022]
Abstract
L-amino acid oxidases (LAOs), because they produce hydrogen peroxide as a by-product, function in innate immune defenses of both vertebrates and mollusks. Phylogenetic analysis revealed two major subfamilies of LAOs: (1) a subfamily including LAOs from vertebrates and mainly from Terrabacteria and (2) a subfamily including LAOs from mollusks and Hydrobacteria. These subfamilies thus originated early in the history of life, implying that their innate immune functions in vertebrates and mollusks have evolved separately. Mammalian LAOs were found to belong to three separate clades: (1) LAO1, (2) LAO2, and (3) IL4I1. Phylogenetic analysis supported the hypothesis that LAO1 and LAO2 arose by a gene duplication prior to the divergence of marsupials from placental mammals, while IL4I1 duplicated from the ancestor of the LAO1 and LAO2 prior to the divergence of tetrapods from bony fishes. Mammalian IL4I1 clustered with LAOs from bony fishes, and these molecules shared a number of unique sequence features, including both amino acid replacements and a unique two-codon deletion. It is certain such unique features may be functionally important, especially three unique amino acid replacements in close proximity to the putative active site.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
22
|
Marquet J, Lasoudris F, Cousin C, Puiffe ML, Martin-Garcia N, Baud V, Chereau F, Farcet JP, Molinier-Frenkel V, Castellano F. Dichotomy between factors inducing the immunosuppressive enzyme IL-4-induced gene 1 (IL4I1) in B lymphocytes and mononuclear phagocytes. Eur J Immunol 2010; 40:2557-68. [PMID: 20683900 DOI: 10.1002/eji.201040428] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MPhi and DC are key elements in the control of tissue homeostasis and response to insult. In this work, we demonstrate that MPhi and DC are the major producers of the phenylalanine catabolizing enzyme IL-4-induced gene 1 (IL4I1) under inflammatory conditions. IL4I1 was first described in B cells, which indeed can produce IL4I1 in vitro, although at much lower levels. In vivo, IL4I1 is highly expressed by MPhi and DC of Th1 granulomas (sarcoidosis, tuberculosis) but poorly detected in Th2 granulomas (schistosomiasis). In vitro, expression of the enzyme is induced in mononuclear phagocytes by various pro-inflammatory stimuli through the activation of the transcription factors NF-kappaB and/or STAT1. B cells also express IL4I1 in response to NF-kappaB-activating stimuli such as CD40L; however, in contrast to myeloid cells, B cells are insensitive to IFN-gamma but respond to stimulation of the IL-4/STAT6 axis. As we show that the expression of IL4I1 by a monocytic cell line inhibits T-cell proliferation and production of IFN-gamma and inflammatory cytokines, we propose that IL4I1 participates in the downregulation of Th1 inflammation in vivo.
Collapse
|
23
|
Abstract
The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.
Collapse
Affiliation(s)
- Ursula Grohmann
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
24
|
Bhattacharya P, Ganeshan T, Nandi S, Srivastava A, Singh P, Rehan M, Rashkush R, Subbarao N, Lynn A. Analysis of oligomeric proteins during unfolding by pH and temperature. J Mol Model 2009; 15:1013-1025. [PMID: 19205760 DOI: 10.1007/s00894-008-0365-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
During thermal transition and variation of pH, structural properties of 35 proteins and their complexes (bound with substrate and co-factor) were analyzed in detail. During pH alteration, these proteins were shown to have substantial differences in conformations. pH conformers were analyzed in detail. Free energy and other energy parameters were also estimated for these proteins at various pH and temperatures. Detailed structural analysis and binding interfaces of various substrates, inhibitors and cofactor of these proteins were also investigated using docking and molecular dynamic simulation.
Collapse
Affiliation(s)
- Pradip Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shimizu YI, Morita M, Ohmi A, Aoyagi S, Ebihara H, Tonaki D, Horino Y, Iijima M, Hirose H, Takahashi S, Takahashi Y. Fasting induced up-regulation of activating transcription factor 5 in mouse liver. Life Sci 2009; 84:894-902. [DOI: 10.1016/j.lfs.2009.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
26
|
Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 2009; 222:162-79. [PMID: 18364001 DOI: 10.1111/j.1600-065x.2008.00602.x] [Citation(s) in RCA: 472] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence indicates that the Achilles' heel of cancer immunotherapies is often the complex interplay of tumor-derived factors and deviant host properties, which involve a wide range of immune elements in the lymphoid and myeloid compartments. Regulatory lymphocytes, tumor-conditioned myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, and dysfunctional and immature dendritic cells take part in a complex immunoregulatory network. Despite the fact that some mechanisms governing tumor-induced immune tolerance and suppression are starting to be better understood and their complexity dissected, little is known about the diachronic picture of immune tolerance. Based on observations of MDSCs, we present a time-structured and topologically consistent idea of tumor-dependent tolerance progression in tumor-bearing hosts.
Collapse
Affiliation(s)
- Ilaria Marigo
- Department of Oncology and Surgical Sciences, Padova University, Padova, Italy, and Venetian Institute for Molecular Medicine, Padova, Italy
| | | | | | | | | |
Collapse
|
27
|
Boulland ML, Marquet J, Molinier-Frenkel V, Möller P, Guiter C, Lasoudris F, Copie-Bergman C, Baia M, Gaulard P, Leroy K, Castellano F. Human IL4I1 is a secreted L-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation. Blood 2007; 110:220-7. [PMID: 17356132 DOI: 10.1182/blood-2006-07-036210] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Interleukin-4-induced gene 1 (IL4I1) was first described as a B-cell IL4-inducible gene and is highly expressed in primary mediastinal B-cell lymphomas. We established stable HEK293 clones expressing human and mouse IL4I1 to examine their biochemical properties and function. Both proteins were secreted into the culture medium, and we observed the secretion of endogenous human IL4I1 (hIL4I1) protein in a mediastinal lymphoma B-cell line, MedB-1. We showed that IL4I1 has l-amino acid oxidase activity, optimal at physiological pH and primarily directed toward phenylalanine. Immunohistochemical analysis of secondary lymphoid organs showed staining of germinal center macrophages and inflammatory myeloid cells. In vitro, functional enzyme was highest in mature dendritic cells (DCs), suggesting a role in antigen-presenting cell/T-lymphocyte cross-talk. Indeed, hIL4I1 inhibited the proliferation of CD3-stimulated T lymphocytes with a similar effect on CD4(+) and CD8(+) T cells. In contrast, memory T cells were more strongly affected by hIL4I1 and its catabolite H(2)O(2) than naive T cells. hIL4I1 inhibitory effect was dependent on enzymatic activity and H(2)O(2) production and associated with a transient down-regulation of TCRzeta expression. Altogether these data suggest IL4I1 as a new immunomodulatory enzyme produced by DCs.
Collapse
Affiliation(s)
- Marie-Laure Boulland
- Institut National de la Santé et de la Recherche Medicale, Unité 841, Institut Mondor de Recherche Médicale, Département Immunologie-Oncologie-Dermatologie, Equipe 09, Créteil, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wiemann S, Kolb-Kokocinski A, Poustka A. Alternative pre-mRNA processing regulates cell-type specific expression of the IL4l1 and NUP62 genes. BMC Biol 2005; 3:16. [PMID: 16029492 PMCID: PMC1198218 DOI: 10.1186/1741-7007-3-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 07/19/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Given the complexity of higher organisms, the number of genes encoded by their genomes is surprisingly small. Tissue specific regulation of expression and splicing are major factors enhancing the number of the encoded products. Commonly these mechanisms are intragenic and affect only one gene. RESULTS Here we provide evidence that the IL4I1 gene is specifically transcribed from the apparent promoter of the upstream NUP62 gene, and that the first two exons of NUP62 are also contained in the novel IL4I1_2 variant. While expression of IL4I1 driven from its previously described promoter is found mostly in B cells, the expression driven by the NUP62 promoter is restricted to cells in testis (Sertoli cells) and in the brain (e.g., Purkinje cells). Since NUP62 is itself ubiquitously expressed, the IL4I1_2 variant likely derives from cell type specific alternative pre-mRNA processing. CONCLUSION Comparative genomics suggest that the promoter upstream of the NUP62 gene originally belonged to the IL4I1 gene and was later acquired by NUP62 via insertion of a retroposon. Since both genes are apparently essential, the promoter had to serve two genes afterwards. Expression of the IL4I1 gene from the "NUP62" promoter and the tissue specific involvement of the pre-mRNA processing machinery to regulate expression of two unrelated proteins indicate a novel mechanism of gene regulation.
Collapse
Affiliation(s)
- Stefan Wiemann
- Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
| | - Anja Kolb-Kokocinski
- Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
| | - Annemarie Poustka
- Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
| |
Collapse
|
29
|
Mason JM, Naidu MD, Barcia M, Porti D, Chavan SS, Chu CC. IL-4-Induced Gene-1 Is a Leukocyte l-Amino Acid Oxidase with an Unusual Acidic pH Preference and Lysosomal Localization. THE JOURNAL OF IMMUNOLOGY 2004; 173:4561-7. [PMID: 15383589 DOI: 10.4049/jimmunol.173.7.4561] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-4-induced gene-1 (Il4i1 or Fig1) initially isolated as a gene of unknown function from mouse B lymphocytes, is limited in expression to primarily immune tissues and genetically maps to a region of susceptibility to autoimmune disease. The predicted Il4i1 protein (IL4I1) sequence is most similar to apoptosis-inducing protein and Apoxin I, both l-amino acid oxidases (LAAO; Enzyme Commission 1.4.3.2). We demonstrate that IL4I1 has unique LAAO properties. IL4I1 has preference for aromatic amino acid substrates, having highest specific activity with phenylalanine. In support of this selectivity, IL4I1 is inhibited by aromatic competitors (benzoic acid and para-aminobenzoic acid), but not by nonaromatic LAAO inhibitors. Il4i1 protein and enzyme activity is found in the insoluble fraction of transient transfections, implying an association with cell membrane and possibly intracellular organelles. Indeed, IL4I1 has the unique property of being most active at acidic pH (pH 4), suggesting it may reside preferentially in lysosomes. IL4I1 is N-linked glycosylated, a requirement for lysosomal localization. Confocal microscopy of cells expressing IL4I1 translationally fused to red fluorescent protein demonstrated that IL4I1 colocalized with GFP targeted to lysosomes and with acriflavine, a green fluorescent dye that is taken up into lysosomes. Thus, IL4I1 is a unique mammalian LAAO targeted to lysosomes, an important subcellular compartment involved in Ag processing.
Collapse
Affiliation(s)
- James M Mason
- Gene Therapy Vector Laboratory, North Shore-Long Island Jewish Research Institute, Department of Medicine, North Shore University Hospital and New York University School of Medicine, Manhasset, NY 11030, USA
| | | | | | | | | | | |
Collapse
|
30
|
Guiter C, Dusanter-Fourt I, Copie-Bergman C, Boulland ML, Le Gouvello S, Gaulard P, Leroy K, Castellano F. Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood 2004; 104:543-9. [PMID: 15044251 DOI: 10.1182/blood-2003-10-3545] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBL), currently recognized as a diffuse large B-cell lymphoma (DLBCL) subtype, shows increased expression of interleukin 4 (IL-4)/IL-13 signaling effectors and targets, suggesting constitutive activation of these pathways. We therefore investigated the functional state of the signal transducer and activator of transcription 6 (STAT6), mediating IL-4/IL-13 transcriptional effects. Constitutive STAT6 phosphorylation and DNA-binding activity were detected in PMBL cell lines but not DLBCL cell lines. Moreover, immunohistochemical analysis revealed nuclear phosphorylated STAT6 (P-STAT6) in 8 of 11 PMBL, compared with 1 of 10 DLBCL primary tumors (P =.01). IL-4 and IL-13 transcripts were absent in PMBL cell lines and expressed at low levels in tumors, indicating that, contrary to classical Hodgkin lymphoma (cHL), STAT6 activation is not due to an autocrine IL-4/IL-13 secretion. We demonstrated an amplification of the JAK2 gene in 2 of 6 PMBL cases, and showed higher JAK2 mRNA levels in PMBL compared with DLBCL (P =.005). The Janus kinase 2 (JAK2) was constitutively phosphorylated in the PMBL MedB1 cell line. MedB1 treatment with JAK2 inhibitor AG490 partially decreased STAT6 phosphorylation, suggesting that JAK2 is partially involved in STAT6 activation in these cells. Our findings highlight phosphorylated STAT6 as a characteristic distinguishing PMBL from DLBCL, but a common feature to PMBL and cHL, supporting the hypothesis of common pathogenic events in these 2 lymphomas.
Collapse
Affiliation(s)
- Chrystelle Guiter
- U617, INSERM, Université Paris XII/Département de Pathologie, Hôpital Henri Mondor, AP-HP, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sobrado P, Fitzpatrick PF. Analysis of the role of the active site residue Arg98 in the flavoprotein tryptophan 2-monooxygenase, a member of the L-amino oxidase family. Biochemistry 2004; 42:13826-32. [PMID: 14636049 PMCID: PMC1635017 DOI: 10.1021/bi035299n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The flavoprotein tryptophan 2-monooxygenase catalyzes the oxidative decarboxylation of tryptophan to indoleacetamide. We have previously identified tryptophan 2-monooxygenase as a homologue of L-amino acid oxidase [Sobrado, P., and Fitzpatrick, P. F. (2002) Arch. Biochem. Biophys. 402, 24-30]. On the basis of the sequence comparisons of the different LAAO family members, Arg98 of tryptophan 2-monooxygenase can be identified as an active site residue which interacts with the carboxylate of the amino acid substrate. The catalytic properties of R98K and R98A tryptophan 2-monooxygenase have been characterized to evaluate the role of this residue. Mutation of Arg98 to lysine decreases the first-order rate constant for flavin reduction by 180-fold and the second-order rate constant for flavin oxidation by 26-fold, has no significant effect on the K(d) value for tryptophan or the K(i) value for the competitive inhibitor indoleacetamide, and increases the K(i) value for indolepyruvate less than 2-fold. Mutation of this residue to alanine decreases the rate constants for reduction and oxidation an additional 5- and 2-fold, respectively, and increases the K(d) value for tryptophan and the K(i) value for indolepyruvate by 31- and 17-fold, respectively, while having an only 2-fold effect on the K(i) value for indoleacetamide. Both mutations increase the value of the primary deuterium isotope effect with tryptophan as a substrate, consistent with a later transition state. Both mutant enzymes catalyze a simple oxidase reaction, producing indolepyruvate and hydrogen peroxide. The pH dependences of the V/K(trp) values for the mutant enzymes show that the anionic form of the substrate is preferred but that the zwitterionic form is a substrate. The results are consistent with the interaction between Arg98 and the carboxylate of the amino acid substrate being critical for correct positioning of the substrate in the active site for efficient catalysis.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | |
Collapse
|
32
|
Deocharan B, Marambio P, Edelman M, Putterman C. Differential effects of interleukin-4 in peptide induced autoimmunity. Clin Immunol 2003; 108:80-8. [PMID: 12921753 DOI: 10.1016/s1521-6616(03)00096-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BALB/c mice immunized with multimeric DWEYSVWLSN develop IgG1 anti-DNA antibodies and glomerular immunoglobulin deposits, leading us to investigate the role of IL-4 in this model of antigen induced lupus. Splenocytes from DWEYSVWLSN immunized mice secreted IL-4 but not gamma-interferon. Following peptide immunization, IgG1 anti-peptide and anti-DNA antibodies were significantly higher in IL-4 wild type mice, while IgM and IgG3 anti-DNA levels were significantly higher in IL-4 knockout mice. Titers of IgG anti-laminin and anti-histone, but not anti-Sm/RNP and anti-cardiolipin antibodies, were significantly higher in the IL-4 wild type group. Glomerular immunoglobulin deposition was substantially decreased in IL-4 knockout mice. We conclude that while IL-4 does not materially affect the generation of some autoantibody responses associated with peptide induced autoimmunity, IL-4 deficiency inhibits kidney immunoglobulin deposition. The effect of IL-4 on humoral autoimmunity in lupus is complex, and is dependent on genetic background, the antigenic trigger and stage of disease.
Collapse
Affiliation(s)
- Bisram Deocharan
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
33
|
Copie-Bergman C, Boulland ML, Dehoulle C, Möller P, Farcet JP, Dyer MJS, Haioun C, Roméo PH, Gaulard P, Leroy K. Interleukin 4-induced gene 1 is activated in primary mediastinal large B-cell lymphoma. Blood 2003; 101:2756-61. [PMID: 12446450 DOI: 10.1182/blood-2002-07-2215] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular markers that distinguish primary mediastinal large B-cell lymphoma (PMBL) from nonmediastinal diffuse large B-cell lymphomas (NM-DLBLs) remain to be identified. Using cDNA representational difference analysis to compare PMBL and NM-DLBL transcripts, we isolated a cDNA fragment homologous to the mouse B-cell interleukin 4 (IL-4)-inducible gene FIG1 (interleukin 4-induced gene 1) transcript. The human FIG1 mRNA encodes a 567 amino acid protein that comprises a signal peptide and a large flavin-binding amino oxidase domain, and shares significant homology with secreted apoptosis-inducing L-amino acid oxidases. Northern blot studies showed that FIG1 mRNA expression is mainly restricted to lymphoid tissues. It is expressed at low levels in thymus, spleen, tonsils, and reactive lymph nodes, and is highly up-regulated in IL-4+CD40-activated tonsillar B cells. Interestingly, in human B-cell lines, FIG1 mRNA expression appeared restricted to the PMBL-derived MedB-1 and Karpas 1106 cell lines. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR), we demonstrated that all but one PMBL (16/17) displayed high FIG1 mRNA levels, whereas most NM-DLBLs (12/18) and all low-grade B-cell lymphomas tested (8/8) exhibited low FIG1 mRNA levels. The difference between PMBLs and NM-DLBLs was statistically significant (Fisher test; P =.0003). Southern blot studies did not show rearrangement of the FIG1 gene. FIG1 gene expression might be due to a constitutive activation of a cytokine signaling pathway in PMBL.
Collapse
Affiliation(s)
- Christiane Copie-Bergman
- Département de Pathologie, the Service d'Immunologie Biologique, EA2348, AP-HP, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sahara H, Shastri N. Second class minors: molecular identification of the autosomal H46 histocompatibility locus as a peptide presented by major histocompatibility complex class II molecules. J Exp Med 2003; 197:375-85. [PMID: 12566421 PMCID: PMC2193838 DOI: 10.1084/jem.20021961] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CD4 T cells regulate immune responses that cause chronic graft rejection and graft versus host disease but their target antigens remain virtually unknown. We developed a new method to identify CD4 T cell-stimulating antigens. LacZ-inducible CD4 T cells were used as a probe to detect their cognate peptide/MHC II ligand generated in dendritic cells fed with Escherichia coli expressing a library of target cell genes. The murine H46 locus on chromosome 7 was thus found to encode the interleukin 4-induced IL4i1 gene. The IL4i1 precursor contains the HAFVEAIPELQGHV peptide which is presented by A(b) major histocompatibility complex class II molecule via an endogenous pathway in professional antigen presenting cells. Both allelic peptides bind A(b) and a single alanine to methionine substitution at p2 defines nonself. These results reveal novel features of H loci that regulate CD4 T cell responses as well as provide a general strategy for identifying elusive antigens that elicit CD4 T cell responses to tumors or self-tissues in autoimmunity.
Collapse
Affiliation(s)
- Hiroeki Sahara
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
35
|
Ehara T, Kitajima S, Kanzawa N, Tamiya T, Tsuchiya T. Antimicrobial action of achacin is mediated by L-amino acid oxidase activity. FEBS Lett 2002; 531:509-12. [PMID: 12435602 DOI: 10.1016/s0014-5793(02)03608-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Achacin is an antibacterial glycoprotein purified from the mucus of the giant snail, Achatina fulica Férussac, as a humoral defense factor. We showed that achacin has L-amino acid oxidase activity and can generate cytotoxic H(2)O(2); however, the concentration of H(2)O(2) was not sufficient to kill bacteria. The antibacterial activity of achacin was inhibited by various H(2)O(2) scavengers. Immunochemical analysis revealed that achacin was preferentially bound to growth-phase bacteria, accounting for the important role in growth-phase-dependent antibacterial activity of achacin. Achacin may act as an important defense molecule against invading bacteria.
Collapse
Affiliation(s)
- Tatsuya Ehara
- Department of Chemistry, Faculty of Science and Technology, Sophia University, 102-8554, Tokyo, Japan
| | | | | | | | | |
Collapse
|