1
|
Del Prete V, Piazzesi A, Scanu M, Toto F, Pane S, Berrilli F, Paterno G, Putignani L, di Cave D. Pneumocystis Pneumonia Severity Is Associated with Taxonomic Shifts in the Respiratory Microbiota. Pathogens 2025; 14:82. [PMID: 39861043 PMCID: PMC11768410 DOI: 10.3390/pathogens14010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Pneumonia caused by Pneumocystis jirovecii infection (PCP) is a potentially life-threatening illness, particularly affecting the immunocompromised. The past two decades have shown an increase in PCP incidence; however, the underlying factors that promote disease severity and fatality have yet to be fully elucidated. Recent evidence suggests that the microbiota of the respiratory tract may play a role in stimulating or repressing pulmonary inflammation, as well as the progression of both bacterial and viral pneumonia. Here, we employed 16S rRNA metataxonomic sequencing to profile the respiratory microbiota of patients with mild-moderate and severe PCP. Our results show that the upper and lower airways of PCP patients have bacterial profiles which have been associated with a pro-inflammatory response. Furthermore, we find that severe PCP is associated with lower bacterial diversity and an increase in Prevotella and a decrease in Neisseria. Functionally, severe PCP was associated with a decrease in metabolic pathways of molecules with anti-inflammatory and antimicrobial properties. To our knowledge, this is the first study showing an association of PCP severity with shifts in the respiratory microbiome and may provide some insight into which patients are more susceptible to the more severe manifestations of the disease.
Collapse
Affiliation(s)
- Valentina Del Prete
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.D.P.); (F.B.)
| | - Antonia Piazzesi
- Management and Diagnostic Innovations & Clinical Pathways Research Area, Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy; (A.P.); (M.S.); (F.T.)
| | - Matteo Scanu
- Management and Diagnostic Innovations & Clinical Pathways Research Area, Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy; (A.P.); (M.S.); (F.T.)
| | - Francesca Toto
- Management and Diagnostic Innovations & Clinical Pathways Research Area, Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy; (A.P.); (M.S.); (F.T.)
| | - Stefania Pane
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy;
| | - Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.D.P.); (F.B.)
| | - Giovangiacinto Paterno
- Hematology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Management and Diagnostic Innovations & Clinical Pathways Research Area, Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00144 Rome, Italy
| | - David di Cave
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.D.P.); (F.B.)
| |
Collapse
|
2
|
Veiga-da-Cunha M, Wortmann SB, Grünert SC, Van Schaftingen E. Treatment of the Neutropenia Associated with GSD1b and G6PC3 Deficiency with SGLT2 Inhibitors. Diagnostics (Basel) 2023; 13:1803. [PMID: 37238286 PMCID: PMC10217388 DOI: 10.3390/diagnostics13101803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Glycogen storage disease type Ib (GSD1b) is due to a defect in the glucose-6-phosphate transporter (G6PT) of the endoplasmic reticulum, which is encoded by the SLC37A4 gene. This transporter allows the glucose-6-phosphate that is made in the cytosol to cross the endoplasmic reticulum (ER) membrane and be hydrolyzed by glucose-6-phosphatase (G6PC1), a membrane enzyme whose catalytic site faces the lumen of the ER. Logically, G6PT deficiency causes the same metabolic symptoms (hepatorenal glycogenosis, lactic acidosis, hypoglycemia) as deficiency in G6PC1 (GSD1a). Unlike GSD1a, GSD1b is accompanied by low neutrophil counts and impaired neutrophil function, which is also observed, independently of any metabolic problem, in G6PC3 deficiency. Neutrophil dysfunction is, in both diseases, due to the accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases, which is slowly formed in the cells from 1,5-anhydroglucitol (1,5-AG), a glucose analog that is normally present in blood. Healthy neutrophils prevent the accumulation of 1,5-AG6P due to its hydrolysis by G6PC3 following transport into the ER by G6PT. An understanding of this mechanism has led to a treatment aimed at lowering the concentration of 1,5-AG in blood by treating patients with inhibitors of SGLT2, which inhibits renal glucose reabsorption. The enhanced urinary excretion of glucose inhibits the 1,5-AG transporter, SGLT5, causing a substantial decrease in the concentration of this polyol in blood, an increase in neutrophil counts and function and a remarkable improvement in neutropenia-associated clinical signs and symptoms.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Metabolic Research Group, de Duve Institute and UCLouvain, B-1200 Brussels, Belgium
| | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University, 5020 Salzburg, Austria;
- Amalia Children’s Hospital, Radboudumc, 6525 Nijmegen, The Netherlands
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | | |
Collapse
|
3
|
Nakata M, Yamaguchi Y, Monnkawa H, Takahashi M, Zhang B, Santoso P, Yada T, Maruyama I. 1,5-Anhydro-D-Fructose Exhibits Satiety Effects via the Activation of Oxytocin Neurons in the Paraventricular Nucleus. Int J Mol Sci 2023; 24:ijms24098248. [PMID: 37175953 PMCID: PMC10179633 DOI: 10.3390/ijms24098248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
1,5-Anhydro-D-fructose (1,5-AF) is a bioactive monosaccharide that is produced by the glycogenolysis in mammalians and is metabolized to 1,5-anhydro-D-glucitol (1,5-AG). 1,5-AG is used as a marker of glycemic control in diabetes patients. 1,5-AF has a variety of physiological activities, but its effects on energy metabolism, including feeding behavior, are unclarified. The present study examined whether 1,5-AF possesses the effect of satiety. Peroral administration of 1,5-AF, and not of 1,5-AG, suppressed daily food intake. Intracerebroventricular (ICV) administration of 1,5-AF also suppressed feeding. To investigate the neurons targeted by 1,5-AF, we investigated c-Fos expression in the hypothalamus and brain stem. ICV injection of 1,5-AF significantly increased c-Fos positive oxytocin neurons and mRNA expression of oxytocin in the paraventricular nucleus (PVN). Moreover, 1,5-AF increased cytosolic Ca2+ concentration of oxytocin neurons in the PVN. Furthermore, the satiety effect of 1,5-AF was abolished in oxytocin knockout mice. These findings reveal that 1,5-AF activates PVN oxytocin neurons to suppress feeding, indicating its potential as the energy storage monitoring messenger to the hypothalamus for integrative regulation of energy metabolism.
Collapse
Affiliation(s)
- Masanori Nakata
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Yuto Yamaguchi
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Hikaru Monnkawa
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Midori Takahashi
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Boyang Zhang
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Putra Santoso
- Department of Physiology, Division of Integrative Physiology, School of Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Toshihiko Yada
- Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
4
|
Zhang S, Wang Y, Han L, Fu X, Wang S, Li W, Han W. Targeting N-Terminal Human Maltase-Glucoamylase to Unravel Possible Inhibitors Using Molecular Docking, Molecular Dynamics Simulations, and Adaptive Steered Molecular Dynamics Simulations. Front Chem 2021; 9:711242. [PMID: 34527658 PMCID: PMC8435576 DOI: 10.3389/fchem.2021.711242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 02/04/2023] Open
Abstract
There are multiple drugs for the treatment of type 2 diabetes, including traditional sulfonylureas biguanides, glinides, thiazolidinediones, α-glucosidase inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase IV (DPP-4) inhibitors, and sodium-glucose cotransporter 2 (SGLT2) inhibitors. α-Glucosidase inhibitors have been used to control postprandial glucose levels caused by type 2 diabetes since 1990. α-Glucosidases are rather crucial in the human metabolic system and are principally found in families 13 and 31. Maltase-glucoamylase (MGAM) belongs to glycoside hydrolase family 31. The main function of MGAM is to digest terminal starch products left after the enzymatic action of α-amylase; hence, MGAM becomes an efficient drug target for insulin resistance. In order to explore the conformational changes in the active pocket and unbinding pathway for NtMGAM, molecular dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were performed for two NtMGAM-inhibitor [de-O-sulfonated kotalanol (DSK) and acarbose] complexes. MD simulations indicated that DSK bound to NtMGAM may influence two domains (inserted loop 1 and inserted loop 2) by interfering with the spiralization of residue 497–499. The flexibility of inserted loop 1 and inserted loop 2 can influence the volume of the active pocket of NtMGAM, which can affect the binding progress for DSK to NtMGAM. ASMD simulations showed that compared to acarbose, DSK escaped from NtMGAM easily with lower energy. Asp542 is an important residue on the bottleneck of the active pocket of NtMGAM and could generate hydrogen bonds with DSK continuously. Our theoretical results may provide some useful clues for designing new α-glucosidase inhibitors to treat type 2 diabetes.
Collapse
Affiliation(s)
- Shitao Zhang
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Yi Wang
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Lu Han
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Xueqi Fu
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Wannan Li
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Weiwei Han
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Attjioui M, Ryan S, Ristic AK, Higgins T, Goñi O, Gibney ER, Tierney J, O'Connell S. Comparison of edible brown algae extracts for the inhibition of intestinal carbohydrate digestive enzymes involved in glucose release from the diet. J Nutr Sci 2021; 10:e5. [PMID: 33889388 PMCID: PMC8057513 DOI: 10.1017/jns.2020.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023] Open
Abstract
Type II diabetes is considered the most common metabolic disorder in the developed world and currently affects about one in ten globally. A therapeutic target for the management of type II diabetes is the inhibition of α- glucosidase, an essential enzyme located at the brush border of the small intestinal epithelium. The inhibition of α-glucosidase results in reduced digestion of carbohydrates and a decrease in postprandial blood glucose. Although pharmaceutical synthetic inhibitors are available, these are usually associated with significant gastrointestinal side effects. In the present study, the impact of inhibitors derived from edible brown algae is being investigated and compared for their effect on glycaemic control. Carbohydrate- and polyphenolic-enriched extracts derived from Ascophyllum nodosum, Fucus vesiculosus and Undaria pinnatifida were characterised and screened for their inhibitory effects on maltase and sucrase enzymes. Furthermore, enzyme kinetics and the mechanism of inhibition of maltase and sucrase were determined using linear and nonlinear regression methods. All tested extracts showed a dose-dependent inhibitory effect of α-glucosidase with IC50 values ranging from 0⋅26 to 0⋅47 mg/ml for maltase; however, the only extract that was able to inhibit sucrase activity was A. nodosum, with an IC50 value of 0⋅83 mg/ml. The present study demonstrates the mechanisms in which different brown seaweed extracts with varying composition and molecular weight distribution differentially inhibit α-glucosidase activities. The data highlight that all brown seaweed extracts are not equal in the inhibition of carbohydrate digestive enzymes involved in postprandial glycaemia.
Collapse
Affiliation(s)
- Maha Attjioui
- Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
| | | | | | - Thomas Higgins
- Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
| | | | - Eileen R. Gibney
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Joanna Tierney
- Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
| | - Shane O'Connell
- Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
- Marigot Ltd., Carrigaline, Ireland
| |
Collapse
|
6
|
Veiga‐da‐Cunha M, Van Schaftingen E, Bommer GT. Inborn errors of metabolite repair. J Inherit Metab Dis 2020; 43:14-24. [PMID: 31691304 PMCID: PMC7041631 DOI: 10.1002/jimd.12187] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
It is traditionally assumed that enzymes of intermediary metabolism are extremely specific and that this is sufficient to prevent the production of useless and/or toxic side-products. Recent work indicates that this statement is not entirely correct. In reality, enzymes are not strictly specific, they often display weak side activities on intracellular metabolites (substrate promiscuity) that resemble their physiological substrate or slowly catalyse abnormal reactions on their physiological substrate (catalytic promiscuity). They thereby produce non-classical metabolites that are not efficiently metabolised by conventional enzymes. In an increasing number of cases, metabolite repair enzymes are being discovered that serve to eliminate these non-classical metabolites and prevent their accumulation. Metabolite repair enzymes also eliminate non-classical metabolites that are formed through spontaneous (ie, not enzyme-catalysed) reactions. Importantly, genetic deficiencies in several metabolite repair enzymes lead to 'inborn errors of metabolite repair', such as L-2-hydroxyglutaric aciduria, D-2-hydroxyglutaric aciduria, 'ubiquitous glucose-6-phosphatase' (G6PC3) deficiency, the neutropenia present in Glycogen Storage Disease type Ib or defects in the enzymes that repair the hydrated forms of NADH or NADPH. Metabolite repair defects may be difficult to identify as such, because the mutated enzymes are non-classical enzymes that act on non-classical metabolites, which in some cases accumulate only inside the cells, and at rather low, yet toxic, concentrations. It is therefore likely that many additional metabolite repair enzymes remain to be discovered and that many diseases of metabolite repair still await elucidation.
Collapse
Affiliation(s)
| | - Emile Van Schaftingen
- de Duve InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO)UCLouvainBrusselsBelgium
| | - Guido T. Bommer
- de Duve InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO)UCLouvainBrusselsBelgium
| |
Collapse
|
7
|
Metabolite Repair Enzymes Control Metabolic Damage in Glycolysis. Trends Biochem Sci 2019; 45:228-243. [PMID: 31473074 DOI: 10.1016/j.tibs.2019.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
Abstract
Hundreds of metabolic enzymes work together smoothly in a cell. These enzymes are highly specific. Nevertheless, under physiological conditions, many perform side-reactions at low rates, producing potentially toxic side-products. An increasing number of metabolite repair enzymes are being discovered that serve to eliminate these noncanonical metabolites. Some of these enzymes are extraordinarily conserved, and their deficiency can lead to diseases in humans or embryonic lethality in mice, indicating their central role in cellular metabolism. We discuss how metabolite repair enzymes eliminate glycolytic side-products and prevent negative interference within and beyond this core metabolic pathway. Extrapolating from the number of metabolite repair enzymes involved in glycolysis, hundreds more likely remain to be discovered that protect a wide range of metabolic pathways.
Collapse
|
8
|
Sakasai-Sakai A, Takata T, Suzuki H, Maruyama I, Motomiya Y, Takeuchi M. Immunological evidence for in vivo production of novel advanced glycation end-products from 1,5-anhydro-D-fructose, a glycogen metabolite. Sci Rep 2019; 9:10194. [PMID: 31308400 PMCID: PMC6629992 DOI: 10.1038/s41598-019-46333-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/14/2019] [Indexed: 11/09/2022] Open
Abstract
The anhydrofructose pathway is an alternate pathway for glycogen degradation by α-1,4-glucan lyase. The sugar 1,5-anhydro-D-fructose (1,5-AF) acts as the central intermediate of this pathway, but its physiological role of in mammals is unclear. Glycation reactions forming advanced glycation end-products (AGEs) are important in the development of complications of diabetes mellitus. We hypothesized that 1,5-AF may contribute to cellular damage by forming 1,5-AF-derived AGEs (AF-AGEs) with intracellular proteins. To clarify the role of 1,5-AF in protein modification, we created a novel antibody targeting AF-AGEs. Serum albumin modified by AF-AGEs was prepared by incubating rabbit serum albumin (RSA) or bovine serum albumin (BSA) with 1,5-AF. After immunizing rabbits with AF-AGEs-RSA, affinity chromatography of anti-AF-AGE antiserum was performed on a Sepharose 4B column coupled with AF-AGEs-BSA or N-(carboxymethyl)/N-(carboxyethyl)lysine-BSA. A novel immunopurified anti-AF-AGE antibody was obtained and was characterized using a competitive enzyme-linked immunosorbent assay. Then an AF-AGEs assay was established using this immunopurified antibody. This assay was able to detect AF-AGEs in human and animal serum samples. Finally, intracellular accumulation of AF-AGEs was shown to be associated with damage to cultured hepatocytes (HepG2 cells). This is the first report about in vivo detection of AF-AGEs with a novel structural epitope.
Collapse
Affiliation(s)
- Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan
| | - Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan
| | - Hirokazu Suzuki
- Department of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa, 920-1181, Japan
| | - Ikuro Maruyama
- Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | | | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan.
| |
Collapse
|
9
|
Campesato L, Marforio TD, Giacinto P, Calvaresi M, Bottoni A. A Full QM Computational Study of the Catalytic Mechanism of α-1,4-Glucan Lyases. Chemphyschem 2018; 19:1514-1521. [DOI: 10.1002/cphc.201701332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Lara Campesato
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| | - Pietro Giacinto
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “Giacomo Ciamician”; Alma Mater Studiorum - Università di Bologna; via Francesco Selmi 2 40126 Bologna Italy
| |
Collapse
|
10
|
Kikuchi A, Okuyama M, Kato K, Osaki S, Ma M, Kumagai Y, Matsunaga K, Klahan P, Tagami T, Yao M, Kimura A. A novel glycoside hydrolase family 97 enzyme: Bifunctional β- l -arabinopyranosidase/α-galactosidase from Bacteroides thetaiotaomicron. Biochimie 2017; 142:41-50. [DOI: 10.1016/j.biochi.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
|
11
|
Okuyama M, Saburi W, Mori H, Kimura A. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Cell Mol Life Sci 2016; 73:2727-51. [PMID: 27137181 PMCID: PMC11108350 DOI: 10.1007/s00018-016-2247-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/30/2022]
Abstract
α-Glucosidases (AGases) and α-1,4-glucan lyases (GLases) catalyze the degradation of α-glucosidic linkages at the non-reducing ends of substrates to release α-glucose and anhydrofructose, respectively. The AGases belong to glycoside hydrolase (GH) families 13 and 31, and the GLases belong to GH31 and share the same structural fold with GH31 AGases. GH13 and GH31 AGases show diverse functions upon the hydrolysis of substrates, having linkage specificities and size preferences, as well as upon transglucosylation, forming specific α-glucosidic linkages. The crystal structures of both enzymes were determined using free and ligand-bound forms, which enabled us to understand the important structural elements responsible for the diverse functions. A series of mutational approaches revealed features of the structural elements. In particular, amino-acid residues in plus subsites are of significance, because they regulate transglucosylation, which is used in the production of industrially valuable oligosaccharides. The recently solved three-dimensional structure of GLase from red seaweed revealed the amino-acid residues essential for lyase activity and the strict recognition of the α-(1 → 4)-glucosidic substrate linkage. The former was introduced to the GH31 AGase, and the resultant mutant displayed GLase activity. GH13 and GH31 AGases hydrate anhydrofructose to produce glucose, suggesting that AGases are involved in the catabolic pathway used to salvage unutilized anhydrofructose.
Collapse
Affiliation(s)
- Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
12
|
Maneesan J, Matsuura H, Tagami T, Mori H, Kimura A. Production of 1,5-anhydro-d-fructose by an α-glucosidase belonging to glycoside hydrolase family 31. Biosci Biotechnol Biochem 2014; 78:2064-8. [DOI: 10.1080/09168451.2014.943651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
α-1,4-Glucan lyases [glycoside hydrolase family (GH) 31] catalyze an elimination reaction to form 1,5-anhydro-d-fructose (AF), while GH31 α-glucosidases normally catalyze a hydrolytic reaction. We determined that a small amount of AF was produced by GH31 Aspergillus niger α-glucosidase from maltooligosaccharides by elimination reaction, likely via an oxocarbenium ion intermediate.
Collapse
Affiliation(s)
- Janjira Maneesan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Function and Structure Studies of GH Family 31 and 97 α-Glycosidases. Biosci Biotechnol Biochem 2014; 75:2269-77. [DOI: 10.1271/bbb.110610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
A Historical Perspective for the Catalytic Reaction Mechanism of Glycosidase; So As to Bring about Breakthrough in Confusing Situation. Biosci Biotechnol Biochem 2014; 76:215-31. [DOI: 10.1271/bbb.110713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Abstract
Over the sixty years since Koshland initially formulated the classical mechanisms for retaining and inverting glycosidases, researchers have assembled a large body of supporting evidence and have documented variations of these mechanisms. Recently, however, researchers have uncovered a number of completely distinct mechanisms for enzymatic cleavage of glycosides involving elimination and/or hydration steps. In family GH4 and GH109 glycosidases, the reaction proceeds via transient NAD(+)-mediated oxidation at C3, thereby acidifying the proton at C2 and allowing for elimination across the C1-C2 bond. Subsequent Michael-type addition of water followed by reduction at C3 generates the hydrolyzed product. Enzymes employing this mechanism can hydrolyze thioglycosides as well as both anomers of activated substrates. Sialidases employ a conventional retaining mechanism in which a tyrosine functions as the nucleophile, but in some cases researchers have observed off-path elimination end products. These reactions occur via the normal covalent intermediate, but instead of an attack by water on the anomeric center, the catalytic acid/base residue abstracts an adjacent proton. These enzymes can also catalyze hydration of the enol ether via the reverse pathway. Reactions of α-(1,4)-glucan lyases also proceed through a covalent intermediate with subsequent abstraction of an adjacent proton to give elimination. However, in this case, the departing carboxylate "nucleophile" serves as the base in a concerted but asynchronous syn-elimination process. These enzymes perform only elimination reactions. Polysaccharide lyases, which act on uronic acid-containing substrates, also catalyze only elimination reactions. Substrate binding neutralizes the charge on the carboxylate, which allows for abstraction of the proton on C5 and leads to an elimination reaction via an E1cb mechanism. These enzymes can also cleave thioglycosides, albeit slowly. The unsaturated product of polysaccharide lyases can then serve as a substrate for a hydration reaction carried out by unsaturated glucuronyl hydrolases. This hydration is initiated by protonation at C4 and proceeds in a Markovnikov fashion rather than undergoing a Michael-type addition, giving a hemiketal at C5. This hemiketal then undergoes a rearrangement that results in cleavage of the anomeric bond. These enzymes can also hydrolyze thioglycosides efficiently and slowly turn over substrates with inverted anomeric configuration. The mechanisms discussed in this Account proceed through transition states that involve either positive or negative charges, unlike the exclusively cationic transition states of the classical Koshland retaining and inverting glycosidases. In addition, the distribution of this charge throughout the substrate can vary substantially. The nature of these mechanisms and their transition states means that any inhibitors or inactivators of these unusual enzymes probably differ from those presently used for Koshland retaining or inverting glycosidases.
Collapse
Affiliation(s)
- Seino A. K. Jongkees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
16
|
Su H, Dong L, Liu Y. A QM/MM study of the catalytic mechanism of α-1,4-glucan lyase from the red seaweed Gracilariopsis lemaneiformis. RSC Adv 2014. [DOI: 10.1039/c4ra09758k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Rozeboom HJ, Yu S, Madrid S, Kalk KH, Zhang R, Dijkstra BW. Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism. J Biol Chem 2013; 288:26764-74. [PMID: 23902768 DOI: 10.1074/jbc.m113.485896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-D-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades starch via an elimination reaction instead of hydrolysis. The crystal structure shows that the enzyme, like GH31 hydrolases, contains a (β/α)8-barrel catalytic domain with B and B' subdomains, an N-terminal domain N, and the C-terminal domains C and D. The N-terminal domain N of the lyase was found to bind a trisaccharide. Complexes of the enzyme with acarbose and 1-dexoynojirimycin and two different covalent glycosyl-enzyme intermediates obtained with fluorinated sugar analogues show that, like GH31 hydrolases, the aspartic acid residues Asp(553) and Asp(665) are the catalytic nucleophile and acid, respectively. However, as a unique feature, the catalytic nucleophile is in a position to act also as a base that abstracts a proton from the C2 carbon atom of the covalently bound subsite -1 glucosyl residue, thus explaining the unique lyase activity of the enzyme. One Glu to Val mutation in the active site of the homologous α-glucosidase from Sulfolobus solfataricus resulted in a shift from hydrolytic to lyase activity, demonstrating that a subtle amino acid difference can promote lyase activity in a GH31 hydrolase.
Collapse
Affiliation(s)
- Henriëtte J Rozeboom
- From the Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Kim YM, Saburi W, Yu S, Nakai H, Maneesan J, Kang MS, Chiba S, Kim D, Okuyama M, Mori H, Kimura A. A novel metabolic pathway for glucose production mediated by α-glucosidase-catalyzed conversion of 1,5-anhydrofructose. J Biol Chem 2012; 287:22441-4. [PMID: 22613728 DOI: 10.1074/jbc.c112.360909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Glucosidase is in the glycoside hydrolase family 13 (13AG) and 31 (31AG). Only 31AGs can hydrate the D-glucal double bond to form α-2-deoxyglucose. Because 1,5-anhydrofructose (AF), having a 2-OH group, mimics the oxocarbenium ion transition state, AF may be a substrate for α-glucosidases. α-Glucosidase-catalyzed hydration produced α-glucose from AF, which plateaued with time. Combined reaction with α-1,4-glucan lyase and 13AG eliminated the plateau. Aspergillus niger α-glucosidase (31AG), which is stable in organic solvent, produced ethyl α-glucoside from AF in 80% ethanol. The findings indicate that α-glucosidases catalyze trans-addition. This is the first report of α-glucosidase-associated glucose formation from AF, possibly contributing to the salvage pathway of unutilized AF.
Collapse
Affiliation(s)
- Young-Min Kim
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Meng X, Kawahara KI, Miyanohara H, Yoshimoto Y, Yoshinaga K, Noma S, Kikuchi K, Morimoto Y, Ito T, Oyama Y, Yoshinaga N, Shrestha B, Chandan B, Mera K, Tada KI, Miura N, Ono Y, Takenouchi K, Maenosono R, Nagasato T, Hashiguchi T, Maruyama I. 1,5-Anhydro-D-fructose: A natural antibiotic that inhibits the growth of gram-positive bacteria and microbial biofilm formation to prevent nosocomial infection. Exp Ther Med 2011; 2:625-628. [PMID: 22977551 DOI: 10.3892/etm.2011.245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 03/16/2011] [Indexed: 11/05/2022] Open
Abstract
Nosocomial infections caused by microbial opportunistic infections or microbial biofilms may occur during hospitalization and increase patient morbidity, mortality and health care costs. Artificial antibiotic agents were initially used to prevent infection; however, the high prevalence of nosocomial infections has resulted in their excessive use, which has led to microbial resistance to these agents. The increase in microbial resistance to antibiotics and the development of antibiotic agents may be the cause of the production of other microbial resistance. Thus, natural compounds that have no adverse side effects would be a preferred treatment modality. Recently, the monosaccharide 1,5-anhydro-D-fructose (1,5-AF), a natural plant compound derived from starch, has been found to have multifunctional properties, including antioxidant, antiplatelet aggregation by thrombin and anti-inflammatory activities. The results of the present study demonstrate that 1,5-AF suppressed the growth of coagulase-negative staphylococci on the hands as well as the growth of Staphylococcus epidermidis, which is a cause of opportunistic infections. Furthermore, 1,5-AF suppressed biofilm formation by the methicillin-resistant Staphylococcus aureus. In conclusion, 1,5-AF is a natural compound that may be effective in preventing nosocomial infections, without causing adverse side effects.
Collapse
Affiliation(s)
- Xiaojie Meng
- Department of Laboratory and Vascular Medicine, Cardiovascular and Respiratory Disorders, Advanced Therapeutics
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mei J, Yu S, Ahrén B. Study on administration of 1,5-anhydro-D-fructose in C57BL/6J mice challenged with high-fat diet. BMC Endocr Disord 2010; 10:17. [PMID: 20958989 PMCID: PMC2974679 DOI: 10.1186/1472-6823-10-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 10/19/2010] [Indexed: 11/20/2022] Open
Abstract
1,5-Anhydro-D-fructose (AF) is a mono-saccharide directly formed from starch and glycogen by the action of α-1,4-glucan lyase (EC 4.2.2.13). Our previous study has indicated that AF increases glucose tolerance and insulin secretion in NMRI mice after administration through a gastric gavage in a single dose at 150 mg per mouse. In this study, we used high-fat feeding of C57BL/6J mice to examine the influence of long-term administration of AF on glucose-stimulated insulin secretion in vivo and in vitro. We found that 8-weeks of high-fat feeding increased body weight, fasting blood glucose and insulin levels in C57BL/6J mice when compared to mice fed normal diet. Impaired glucose tolerance was also observed in mice receiving 8-weeks of high-fat diet. In contrast, AF (1.5 g/kg/day), administered through drinking water for 8-weeks, did not affect body weight or food and water intake in mice fed either the high-fat or normal diet. There was no difference in basal blood glucose or insulin levels between AF-treated and control group. Oral glucose tolerance test (OGTT) showed that AF did not affect glucose-stimulated insulin secretion in mice. In in vitro studies with isolated islets, AF did not influence glucose-stimulated insulin secretion in mice receiving either high-fat or normal diet. We therefore conclude that when given through drinking water for 8 weeks at 1.5 g/kg/day, AF has no effect on glucose-stimulated insulin secretion in C57BL/6J mice challenged with a high-fat diet.
Collapse
Affiliation(s)
- Jie Mei
- Department of Medicine, B11 BMC, S-221 84, Lund University, Lund, Sweden
| | - Shukun Yu
- Department of Biotechnology, Box 124, S-221 00, Lund University, Lund, Sweden
- Enzyme R&D, Genencor Division, Danisco A/S, Edwin Rahrs Vej, 38, Brabrand, DK 8220, Denmark
| | - Bo Ahrén
- Department of Medicine, B11 BMC, S-221 84, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Fiskesund R, Thomas LV, Schobert M, Ernberg I, Lundt I, Yu S. Inhibition spectrum studies of microthecin and other anhydrofructose derivatives using selected strains of Gram-positive and -negative bacteria, yeasts and moulds, and investigation of the cytotoxicity of microthecin to malignant blood cell lines. J Appl Microbiol 2010; 106:624-33. [PMID: 19200326 DOI: 10.1111/j.1365-2672.2008.04035.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To prepare 1,5-anhydro-d-fructose (AF) derivatives, test their microbial inhibition spectrum, and to further examine the most effective AF derivative against Pseudomonas aeruginosa and malignant blood cell lines. METHODS AND RESULTS Microthecin and nine other AF derivatives were synthesized from AF. The 10 compounds were tested in vitro against Gram-positive (GP) and Gram-negative (GN) bacteria, yeasts and moulds using a well diffusion method and in a Bioscreen growth analyser. Of the test compounds, microthecin exhibited the most significant antibacterial activity at 100-2000 ppm against both GP and GN bacteria, including Ps. aeruginosa. Further tests with three malignant blood cell lines (Mutu, Ramos, Raji) and one normal cell line indicated that microthecin was a cell toxin, with a cell mortality >85% at 50 ppm. The other nine AF derivatives demonstrated low or no antimicrobial activity. CONCLUSIONS Microthecin was active 100-2000 ppm against GP and GN bacteria including Ps. aeruginosa, but was inactive against yeasts and moulds. Microthecin was also a cytotoxin to some mammalian cell lines. SIGNIFICANCE AND IMPACT OF THE STUDY Microthecin might have potential for development as a novel drug against Ps. aeruginosa and to target cancer cells. It might also be developed as a food processing aid to control bacterial growth.
Collapse
Affiliation(s)
- R Fiskesund
- Department of Medicine, Karolinska University Hospital, Huddinge, 14186, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
22
|
Lundt I, Yu S. 1,5-Anhydro-d-fructose: biocatalytic and chemical synthetic methods for the preparation, transformation and derivatization. Carbohydr Res 2010; 345:181-90. [DOI: 10.1016/j.carres.2009.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/03/2009] [Indexed: 11/30/2022]
|
23
|
Meng X, Kawahara KI, Matsushita K, Nawa Y, Shrestha B, Kikuchi K, Sameshima H, Hashiguchi T, Maruyama I. Attenuation of LPS-induced iNOS expression by 1,5-anhydro-d-fructose. Biochem Biophys Res Commun 2009; 387:42-6. [DOI: 10.1016/j.bbrc.2009.06.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 11/30/2022]
|
24
|
1,5-Anhydro-d-fructose attenuates lipopolysaccharide-induced cytokine release via suppression of NF-κB p65 phosphorylation. Biochem Biophys Res Commun 2009; 380:343-8. [DOI: 10.1016/j.bbrc.2009.01.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/15/2009] [Indexed: 11/22/2022]
|
25
|
Vocadlo DJ, Davies GJ. Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 2009; 12:539-55. [PMID: 18558099 DOI: 10.1016/j.cbpa.2008.05.010] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 11/16/2022]
Abstract
The enzymatic hydrolysis of the glycosidic bond continues to gain importance, reflecting the critically important roles complex glycans play in health and disease as well as the rekindled interest in enzymatic biomass conversion. Recent advances include the broadening of our understanding of enzyme reaction coordinates, through both computational and structural studies, improved understanding of enzyme inhibition through transition state mimicry and fascinating insights into mechanism yielded by physical organic chemistry approaches.
Collapse
Affiliation(s)
- David J Vocadlo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada.
| | | |
Collapse
|
26
|
|
27
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
28
|
Yu S, Fiskesund R. The anhydrofructose pathway and its possible role in stress response and signaling. Biochim Biophys Acta Gen Subj 2006; 1760:1314-22. [PMID: 16822618 DOI: 10.1016/j.bbagen.2006.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/12/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
Anhydrofructose (AF) pathway describes the catabolism of alpha-1,4-glucans of glycogen, starch and maltosaccharides to various metabolites via the central intermediate AF. The reaction sequence of the pathway consists of more than 10 enzymatic steps. This pathway occurs in certain bacteria, fungi, algae and mammals. In this communication, the AF pathway and its regulatory mechanisms in these organisms are presented and the metabolites of this pathway as antioxidants and antimicrobials in biotic and abiotic stress responses and in carbon starvation signaling are discussed.
Collapse
Affiliation(s)
- Shukun Yu
- Danisco Innovation, Danisco A/S, Langebrogade 1, PO box 17, Copenhagen, Denmark.
| | | |
Collapse
|
29
|
Andreassen M, Lundt I. A new chemical synthesis of Ascopyrone P from 1,5-anhydro-d-fructose. Carbohydr Res 2006; 341:1692-6. [PMID: 16630602 DOI: 10.1016/j.carres.2006.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/21/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
The naturally occurring antioxidant Ascopyrone P (1,5-anhydro-4-deoxy-D-glycero-hex-1-en-3-ulose, 1) was prepared from the rare sugar 1,5-anhydro-D-fructose (AF, 3) in three steps in an overall yield of 36%. Thus, acetylation of 3 afforded the enolone 3,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulopyranose (4), which could be isomerised to 2,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-1-ene-3-ulose (6). Deacetylation of 6 under mild conditions gave crystalline Ascopyrone P (1).
Collapse
Affiliation(s)
- Mikkel Andreassen
- Department of Chemistry, Technical University of Denmark, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
30
|
Kühn A, Yu S, Giffhorn F. Catabolism of 1,5-anhydro-D-fructose in Sinorhizobium morelense S-30.7.5: discovery, characterization, and overexpression of a new 1,5-anhydro-D-fructose reductase and its application in sugar analysis and rare sugar synthesis. Appl Environ Microbiol 2006; 72:1248-57. [PMID: 16461673 PMCID: PMC1392929 DOI: 10.1128/aem.72.2.1248-1257.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Sinorhizobium morelense S-30.7.5 was isolated by a microbial screening using the sugar 1,5-anhydro-D-fructose (AF) as the sole carbon source. This strain metabolized AF by a novel pathway involving its reduction to 1,5-anhydro-D-mannitol (AM) and the further conversion of AM to D-mannose by C-1 oxygenation. Growth studies showed that the AF metabolizing capability is not confined to S. morelense S-30.7.5 but is a more common feature among the Rhizobiaceae. The AF reducing enzyme was purified and characterized as a new NADPH-dependent monomeric reductase (AFR, EC 1.1.1.-) of 35.1 kDa. It catalyzed the stereoselective reduction of AF to AM and also the conversion of a number of 2-keto aldoses (osones) to the corresponding manno-configurated aldoses. In contrast, common aldoses and ketoses, as well as nonsugar aldehydes and ketones, were not reduced. A database search using the N-terminal AFR sequence retrieved a putative 35-kDa oxidoreductase encoded by the open reading frame Smc04400 localized on the chromosome of Sinorhizobium meliloti 1021. Based on sequence information for this locus, the afr gene was cloned from S. morelense S-30.7.5 and overexpressed in Escherichia coli. In addition to the oxidoreductase of S. meliloti 1021, AFR showed high sequence similarities to putative oxidoreductases of Mesorhizobium loti, Brucella suis, and B. melitensis but not to any oxidoreductase with known functions. AFR could be assigned to the GFO/IDH/MocA family on the basis of highly conserved common structural features. His6-tagged AFR was used to demonstrate the utility of this enzyme for AF analysis and synthesis of AM, as well as related derivatives.
Collapse
Affiliation(s)
- Annette Kühn
- Lehrstuhl für Angewandte Mikrobiologie, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | | | | |
Collapse
|
31
|
Okuyama M, Kaneko A, Mori H, Chiba S, Kimura A. Structural elements to convert Escherichia coli alpha-xylosidase (YicI) into alpha-glucosidase. FEBS Lett 2006; 580:2707-11. [PMID: 16631751 DOI: 10.1016/j.febslet.2006.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/07/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Escherichia coli YicI, a member of glycoside hydrolase family (GH) 31, is an alpha-xylosidase, although its amino-acid sequence displays approximately 30% identity with alpha-glucosidases. By comparing the amino-acid sequence of GH 31 enzymes and through structural comparison of the (beta/alpha)(8) barrels of GH 27 and GH 31 enzymes, the amino acids Phe277, Cys307, Phe308, Trp345, Lys414, and beta-->alpha loop 1 of (beta/alpha)(8) barrel of YicI have been identified as elements that might be important for YicI substrate specificity. In attempt to convert YicI into an alpha-glucosidase these elements have been targeted by site-directed mutagenesis. Two mutated YicI, short loop1-enzyme and C307I/F308D, showed higher alpha-glucosidase activity than wild-type YicI. C307I/F308D, which lost alpha-xylosidase activity, was converted into alpha-glucosidase.
Collapse
Affiliation(s)
- Masayuki Okuyama
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
32
|
Yip VLY, Withers SG. Breakdown of oligosaccharides by the process of elimination. Curr Opin Chem Biol 2006; 10:147-55. [PMID: 16495121 DOI: 10.1016/j.cbpa.2006.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 02/09/2006] [Indexed: 12/22/2022]
Abstract
Several new mechanisms for enzyme-catalyzed breakdown of oligosaccharides have been uncovered in recent years. A common feature is the recruitment of elimination steps rather than direct displacements. Bond cleavage can proceed via E1 mechanisms with cationic transition states or E1(cb) mechanisms with anionic transition states, and can even involve NAD(+)-mediated redox steps. A common feature emerging from studies on disparate syn-eliminating enzymes is the use of a single catalytic residue, often tyrosine, as both general acid and base.
Collapse
Affiliation(s)
- Vivian L Y Yip
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
33
|
Ernst HA, Lo Leggio L, Willemoës M, Leonard G, Blum P, Larsen S. Structure of the Sulfolobus solfataricus alpha-glucosidase: implications for domain conservation and substrate recognition in GH31. J Mol Biol 2006; 358:1106-24. [PMID: 16580018 DOI: 10.1016/j.jmb.2006.02.056] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/26/2022]
Abstract
The crystal structure of alpha-glucosidase MalA from Sulfolobus solfataricus has been determined at 2.5Angstrom resolution. It provides a structural model for enzymes representing the major specificity in glycoside hydrolase family 31 (GH31), including alpha-glucosidases from higher organisms, involved in glycogen degradation and glycoprotein processing. The structure of MalA shows clear differences from the only other structure known from GH31, alpha-xylosidase YicI. MalA and YicI share only 23% sequence identity. Although the two enzymes display a similar domain structure and both form hexamers, their structures differ significantly in quaternary organization: MalA is a dimer of trimers, YicI a trimer of dimers. MalA and YicI also differ in their substrate specificities, as shown by kinetic measurements on model chromogenic substrates. In addition, MalA has a clear preference for maltose (Glc-alpha1,4-Glc), whereas YicI prefers isoprimeverose (Xyl-alpha1,6-Glc). The structural origin of this difference occurs in the -1 subsite where MalA residues Asp251 and Trp284 could interact with OH6 of the substrate. The structure of MalA in complex with beta-octyl-glucopyranoside has been determined. It reveals Arg400, Asp87, Trp284, Met321 and Phe327 as invariant residues forming the +1 subsite in the GH31 alpha-glucosidases. Structural comparisons with other GH families suggest that the GH31 enzymes belong to clan GH-D.
Collapse
Affiliation(s)
- Heidi A Ernst
- Biophysical Chemistry Group, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Mei J, Yu S, Ahrén B. A 90-day toxicological evaluation of 1,5-anhydro-d-fructose in Sprague-Dawley rats. Drug Chem Toxicol 2005; 28:263-72. [PMID: 16051552 DOI: 10.1081/dct-200064458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
1,5-anhydro-d-fructose (1,5-AF) is a novel monosaccharide produced by the action of alpha-1,4-glucan lyase (EC 4.2.2.13) on glycogen, starch, or related substrates such as maltose and maltosaccharides. 1,5-AF is of interest as a compound to be used as a food supplement because of its antioxidant, antimicrobial, and antidiabetic properties. This enforces the safety of 1,5-AF and therefore, in the current study, four groups of male and female Sprague-Dawley rats were provided with 1,5-AF in the drinking water (at 0 or 1.0 g/kg body weight daily) for a period of 90 days (n=10 in each group). All the animals survived, and no clinical signs of toxicity or alterations in hematological or clinical chemistry parameters were observed. Furthermore, organ weight and histopathological examination of brain, heart, urinary bladder, gastrointestinal tract, and pancreas were normal after 1,5-AF treatment. Moreover, there was no change in food consumption, water intake, or body weight gain in rats receiving 1,5-AF. In conclusion, administration of 1,5-AF did not induce any significant toxicological effects and, therefore, 1,5-AF seems safe to administer in vivo over a long period of time.
Collapse
Affiliation(s)
- Jie Mei
- Department of Medicine, Lund University, Lund, Sweden
| | | | | |
Collapse
|
35
|
Yu S. Enzymatic description of the anhydrofructose pathway of glycogen degradation. Biochim Biophys Acta Gen Subj 2005; 1723:63-73. [PMID: 15716041 DOI: 10.1016/j.bbagen.2005.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 01/10/2005] [Accepted: 01/10/2005] [Indexed: 11/15/2022]
Abstract
The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). Enzymes that form 1,5AnFru, ascopyrone P (APP), and ascopyrone M (APM) have been reported from our laboratory earlier. In the present study, APM formed from 1,5AnFru was found to be the intermediate to the antimicrobial microthecin. The microthecin forming enzyme from the fungus Phanerochaete chrysosporium proved to be aldos-2-ulose dehydratase (AUDH, EC 4.2.1.-), which was purified and characterized for its enzymatic and catalytic properties. The purified AUDH showing a molecular mass of 97.4 kDa on SDS-PAGE was partially sequenced. Total 332 amino acid residues in length were obtained, representing some 37% of the AUDH protein. The obtained amino acid sequences showed no homology to known proteins but to an unannotated DNA sequence in Scaffold 62 of the published genome of the fungus. The alignment revealed three introns of the identified AUDH gene (Audh; ph.chr), thus the first gene coding for a neutral sugar dehydratase is identified. AUDH was found to be a bi-functional enzyme, being able to dehydrate 1,5AnFru to APM and further isomerizing the APM formed to microthecin. The optimal pH for the formation of APM and microthecin was pH 5.8 and 6.8, respectively. AUDH showed 5 fold higher activity toward 1,5AnFru than toward its analogue glucosone, when tested at concentrations from 0.6 mM to 0.2 M. Based on the characteristic UV absorbance of microthecin (230 nm) and APM (262 nm) assay methods were developed for the microthecin forming enzymes.
Collapse
Affiliation(s)
- Shukun Yu
- Danisco Innovation, Danisco A/S, Langebrogade 1, PO box 17, DK 1001, Copenhagen K, Denmark.
| |
Collapse
|
36
|
Richard G, Yu S, Monsan P, Remaud-Simeon M, Morel S. A novel family of glucosyl 1,5-anhydro-d-fructose derivatives synthesised by transglucosylation with dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydr Res 2005; 340:395-401. [PMID: 15680594 DOI: 10.1016/j.carres.2004.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 10/30/2004] [Indexed: 11/20/2022]
Abstract
1,5-Anhydro-d-fructose (AF), a metabolite of starch/glycogen degradation, is a good antioxidant. With the prospect of increasing its applications and use as a food ingredient, AF glucosylation catalysed by the dextransucrase from Leuconostoc mesenteroides NRRL B-512F was performed in the presence of sucrose. This led to AF glucosylated derivatives containing alpha-(1-->6) linkages named 1,5-anhydro-d-fructo-glucooligosaccharides (AFGOS). LC-MS analyses showed that AFGOS with a degree of polymerisation (DP) of up to 7 were synthesised. The amount of AFGOS produced and the average DP increased by using a high sucrose/AF molar ratio and high total sugar concentration. AFGOS were proved to present antioxidant properties quite similar to AF.
Collapse
Affiliation(s)
- Gaëtan Richard
- Laboratoire de Biotechnologie-Bioprocédés UMR CNRS 5504, UMR INRA 792, INSA DGBA 135 avenue de Rangueil 31077 Toulouse Cedex 04, France
| | | | | | | | | |
Collapse
|
37
|
Lovering AL, Lee SS, Kim YW, Withers SG, Strynadka NCJ. Mechanistic and structural analysis of a family 31 alpha-glycosidase and its glycosyl-enzyme intermediate. J Biol Chem 2004; 280:2105-15. [PMID: 15501829 DOI: 10.1074/jbc.m410468200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the first structure of a family 31 alpha-glycosidase, that of YicI from Escherichia coli, both free and trapped as a 5-fluoroxylopyranosyl-enzyme intermediate via reaction with 5-fluoro-alpha-D-xylopyranosyl fluoride. Our 2.2-A resolution structure shows an intimately associated hexamer with structural elements from several monomers converging at each of the six active sites. Our kinetic and mass spectrometry analyses verified several of the features observed in our structural data, including a covalent linkage from the carboxylate side chain of the identified nucleophile Asp(416) to C-1 of the sugar ring. Structure-based sequence comparison of YicI with the mammalian alpha-glucosidases lysosomal alpha-glucosidase and sucrase-isomaltase predicts a high level of structural similarity and provides a foundation for understanding the various mutations of these enzymes that elicit human disease.
Collapse
Affiliation(s)
- Andrew L Lovering
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
38
|
Yu S, Mei J, Ahrén B. Basic toxicology and metabolism studies of 1,5-anhydro-d-fructose using bacteria, cultured mammalian cells, and rodents. Food Chem Toxicol 2004; 42:1677-86. [PMID: 15354319 DOI: 10.1016/j.fct.2004.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1,5-Anhydro-D-fructose (AF) is a monosaccharide occurring in edible morels, red seaweeds and certain mammalian tissues. It can be formed directly from starch and glycogen in vivo by alpha-1,4-glucan lyase (EC 4.2.2.13). In this study, the toxicity, absorption and metabolism of AF using bacteria, mammalian cells, rat and mouse models were examined. In Ames test, AF showed no genotoxicity using five strains of the bacterium Salmonella typhimurium TA 98, 100, 102, 1535 and 1537. AF caused no mammalian gene mutation as tested with mouse lymphoma L5178Y cells. AF did not cause toxic symptoms in rats when it was administered as a single oral dose of 5 g/kg and observed over a 14-day period. Furthermore, at necropsy, no signs of abnormality were detected. Daily intraperitoneal (ip) administration of 2 g/kg AF to mice did not induce adverse effects throughout a 28-day period. Radioactive tracing experiments using 14C-labeled AF indicated that AF was efficiently absorbed since the major portion of radioactive material was recovered in urine. Further work using unlabeled AF indicated that the cyclic polyol 1,5-anhydro-D-sorbitol (AS) increased dramatically in both blood and urine upon AF administration at 1 g/kg ip, suggesting the existence of an efficient reduction mechanism from AF to AS, which was then excreted in urine. In conclusion, these studies indicate that AF had low or no toxicity and showed no mutagenicity.
Collapse
Affiliation(s)
- Shukun Yu
- Danisco Innovation, Danisco A/S, Copenhagen, Denmark.
| | | | | |
Collapse
|
39
|
Okuyama M, Mori H, Chiba S, Kimura A. Overexpression and characterization of two unknown proteins, YicI and YihQ, originated from Escherichia coli. Protein Expr Purif 2004; 37:170-9. [PMID: 15294295 DOI: 10.1016/j.pep.2004.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/06/2004] [Indexed: 10/26/2022]
Abstract
The proteins encoded in the yicI and yihQ gene of Escherichia coli have similarities in the amino acid sequences to glycoside hydrolase family 31 enzymes, but they have not been detected as the active enzymes. The functions of the two proteins have been first clarified in this study. Recombinant YicI and YihQ produced in E. coli were purified and characterized. YicI has the activity of alpha-xylosidase. YicI existing as a hexamer shows optimal pH at 7.0 and is stable in the pH range of 4.7-10.1 with incubation for 24h at 4 degrees C and also is stable up to 47 degrees C with incubation for 15 min. The enzyme shows higher activity against alpha-xylosyl fluoride, isoprimeverose (6-O-alpha-xylopyranosyl-glucopyranose), and alpha-xyloside in xyloglucan oligosaccharides. The alpha-xylosidase catalyzes the transfer of alpha-xylosyl residue from alpha-xyloside to xylose, glucose, mannose, fructose, maltose, isomaltose, nigerose, kojibiose, sucrose, and trehalose. YihQ exhibits the hydrolysis activity against alpha-glucosyl fluoride, and so is an alpha-glucosidase, although the natural substrates, such as alpha-glucobioses, are scarcely hydrolyzed. alpha-Glucosidase has been found for the first time in E. coli.
Collapse
Affiliation(s)
- Masayuki Okuyama
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | | | | | |
Collapse
|
40
|
Yu S, Refdahl C, Lundt I. Enzymatic description of the anhydrofructose pathway of glycogen degradation; I. Identification and purification of anhydrofructose dehydratase, ascopyrone tautomerase and alpha-1,4-glucan lyase in the fungus Anthracobia melaloma. Biochim Biophys Acta Gen Subj 2004; 1672:120-9. [PMID: 15110094 DOI: 10.1016/j.bbagen.2004.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-d-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., alpha-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red algae in our laboratory earlier. In the present study, two 1,5AnFru metabolizing enzymes were discovered in the fungus Anthracobia melaloma for the formation of ascopyrone P (APP), a fungal secondary metabolite exhibiting antibacterial and antioxidant activity. These are 1,5AnFru dehydratase (AFDH) and ascopyrone tautomerase (APTM). AFDH catalyzed the conversion of 1,5AnFru to ascopyrone M (APM), a compound that has been earlier presumed to occur biologically, while APTM isomerized the APM formed to APP. Both enzymes were purified 400-fold by (NH(4))(2)SO(4) fractionation, hydrophobic interaction, ion-exchange and gel filtration chromatography. The purified AFDH showed a molecular mass of 98 kDa on SDS-PAGE and 230 kDa by gel filtration. The corresponding values for APTM was 60 and 140 kDa. Spectrophotometric and HPLC methods were developed for the assay of these two enzymes. To confirm that A. melaloma possessed all enzymes needed for conversion of glycogen to APP, an alpha-1,4-glucan lyase from this fungus was isolated and partially sequenced. Based on this work, a scheme of the enzymatic description of the anhydrofructose pathway in A. melaloma was proposed.
Collapse
Affiliation(s)
- Shukun Yu
- Danisco Innovation, Danisco A/S, Langebrogade 1, P.O. Box 17, DK 1001 Copenhagen, Denmark.
| | | | | |
Collapse
|
41
|
Thomas LV, Ingram RE, Yu S, Delves-Broughton J. Investigation of the effectiveness of Ascopyrone P as a food preservative. Int J Food Microbiol 2004; 93:319-23. [PMID: 15163588 DOI: 10.1016/j.ijfoodmicro.2003.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 11/03/2003] [Accepted: 11/10/2003] [Indexed: 11/22/2022]
Abstract
Ascopyrone P (APP), a novel antibacterial from fungi, was evaluated as a food preservative. Efficacy was generally assessed by comparing the time taken for test strains to grow to 10(6) CFU/g in food +/- APP. In chilled chicken soup, 2000 mg kg-1 APP prevented Bacillus cereus, Listeria monocytogenes, Pseudomonas fluorescens, Salmonella and Escherichia coli reaching this threshold for >60 days. Good activity was also observed at 500-1000 mg kg-1 but not against L. monocytogenes. No activity was observed against Saccharomyces cerevisiae. Activity was reduced at 20 degrees C, although 2000 mg kg-1 was still effective against B. cereus and P. fluorescens. APP was less effective in chilled cooked meat systems and ineffective in raw meat. In a cooked meat system at 8 degrees C, bacteriostatic effect was generally observed at 2000 mg kg-1 against Salmonella typhimurium, E. coli and P. fluorescens but not against L. monocytogenes or Lactobacillus sake. Activity against Gram-negative enteric bacteria was enhanced by low temperature. In milk, 2000 mg l-1 was effective against P. fluorescens at chilled but not ambient temperature. APP was ineffective against yeasts and the mould Byssochlamys in apple juice. A minimum of 2000 mg kg-1 APP would appear to be necessary for antibacterial efficacy in food, although low-temperature storage may help. Observed variations in sensitivity may be related to APP stability, which decreases >pH 5.5. Toxicology testing is needed before consideration of APP for food use.
Collapse
Affiliation(s)
- Linda V Thomas
- Danisco, Innovation Department, 15 North Street, Beaminster, Dorset, DT8 3DZ, UK.
| | | | | | | |
Collapse
|
42
|
Yamanouchi T, Inoue T, Ichiyanagi K, Sakai T, Ogata N. 1,5-Anhydroglucitol stimulates insulin release in insulinoma cell lines. Biochim Biophys Acta Gen Subj 2003; 1623:82-7. [PMID: 14572905 DOI: 10.1016/s0304-4165(03)00160-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Concentrations of 1,5-anhydroglucitol (1,5-AG), which is a major circulating polyol, decrease in patients with diabetes mellitus. In both insulinoma-derived RINr and MIN6 cells, 1,5-AG stimulated insulin release within the range of 0.03-0.61 mM in a dose-dependent manner. Insulin release was maximally stimulated by 1,5-AG to levels that reached 25% and 100% greater than that of control (1,5-AG-free group) in RINr and MIN6 cells, respectively. A physiological concentration of 1,5-AG stimulated insulin release after a 5-min incubation and this action was maintained for 60 min. In addition, at approximately 1/200 the concentration of glucose, 1,5-AG had additive action with 20 mM glucose. The action of 1,5-AG on insulin secretion with other types of saccharides and polyol was similarly additive. Mannnoheptulose and diazoxide suppressed the stimulative action of 1,5-AG on insulin release. The secretagogue action of 1,5-AG seemed to be independent on an increase in the intracellular content of cAMP and ATP. These results suggest that 1,5-AG can stimulate insulin secretion through a mechanism that completely differs from that of glucose.
Collapse
Affiliation(s)
- Toshikazu Yamanouchi
- Department of Internal Medicine, University of Teikyo, Kaga, Tokyo 173-0003, Itabashi, Japan.
| | | | | | | | | |
Collapse
|
43
|
Da Costa A, Michaud P, Heyraud A, Colin-Morel P, Courtois B, Courtois J. Acetyl substitution of glucuronan influences glucuronan cleavage by GlyA from Sinorhizobium meliloti M5N1CS (NCIMB 40472). Carbohydr Polym 2003. [DOI: 10.1016/s0144-8617(02)00170-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Affiliation(s)
- Miloslav Cerný
- Department of Organic Chemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| |
Collapse
|
45
|
Thomas LV, Yu S, Ingram RE, Refdahl C, Elsser D, Delves-Broughton J. Ascopyrone P, a novel antibacterial derived from fungi. J Appl Microbiol 2002; 93:697-705. [PMID: 12234354 DOI: 10.1046/j.1365-2672.2002.01751.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To assess the antimicrobial efficacy of ascopyrone P (APP), a secondary metabolite formed by the fungi Anthracobia melaloma, Plicaria anthracina, Plic. leiocarpa and Peziza petersi belonging to the order Pezizales. METHODS AND RESULTS In vitro testing using a well diffusion procedure showed that APP at a high concentration (approximately 5%) inhibited the growth of Gram-positive and Gram-negative bacteria. Using an automated microbiology reader, growth curve analysis showed that 2000-4000 mg l(-1) APP caused total or significant bacterial inhibition after incubation for 24 h at 30 degrees C. Against certain yeast strains, 1000- 2000 mg l(-1) APP enhanced growth, although at higher concentrations inhibition of some yeasts was observed. Clostridium and fungal strains were not sensitive to 2000 mg l(-1) APP. No significant cidal effect was observed after 2 h against Listeria monocytogenes or Escherichia coli. Results were identical whether the APP samples tested had been produced enzymatically or chemically. CONCLUSIONS At a level of 2000 mg l(-1), APP demonstrated growth inhibitory activity against a broad range of bacteria, but not yeasts or moulds. SIGNIFICANCE AND IMPACT OF THE STUDY A possible application for this novel natural antimicrobial is in food preservation, to control the growth of Gram-negative and Gram-positive bacteria in raw and cooked foods. Effective dosage levels would be 500-4000 mg kg(-1), depending on food type. The efficacy, organoleptic and safety aspects of this compound in food still need to be assessed.
Collapse
|
46
|
Andersen SM, Lundt I, Marcussen J, Yu S. 1,5-Anhydro-D-fructose; a versatile chiral building block: biochemistry and chemistry. Carbohydr Res 2002; 337:873-90. [PMID: 12007470 DOI: 10.1016/s0008-6215(02)00062-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is a steadily increasing need to expand sustainable resources, and carbohydrates are anticipated to play an important role in this respect, both for bulk and fine chemical preparation. The enzyme alpha-(1-->4)-glucan lyase degrades starch to 1,5-anhydro-D-fructose. This compound, which has three different functional properties, a prochiral center together with a permanent pyran ring, renders it a potential chiral building block for the synthesis of valuable and potentially biologically active compounds. 1,5-Anhydro-D-fructose is found in natural materials as a degradation product of alpha-(1-->4)-glucans. The occurrence of lyases and the metabolism of 1,5-anhydro-D-fructose are reviewed in the biological part of this article. In the chemical part, the elucidated structure of 1,5-anhydro-D-fructose will be presented together with simple stereoselective conversions into hydroxy/amino 1,5-anhydro hexitols and a nojirimycin analogue. Synthesis of 6-O-acylated derivatives of 1,5-anhydro-D-fructose substituted with long fatty acid residues is carried out using commercially available enzymes. Those reactions lead to compounds with potential emulsifying properties. The use of protected derivatives of 1,5-anhydro-D-fructose for the synthesis of natural products is likewise reviewed. The potential utilization of this chemical building block is far from being exhausted. Since 1,5-anhydro-D-fructose now is accessible in larger amounts through a simple-enzyme catalyzed degradation of starch by alpha-(1-->4)-glucan lyase, the application of 1,5-anhydro-D-fructose may be considered a valuable contribution to the utilization of carbohydrates as the most abundant resource of sustainable raw materials.
Collapse
Affiliation(s)
- Søren M Andersen
- Department of Chemistry, Technical University of Denmark, Building 201, DK-2800 Kgs., Lyngby, Denmark
| | | | | | | |
Collapse
|
47
|
Yu S, Blennow A, Bojko M, Madsen F, Olsen CE, Engelsen SB. Physico-chemical Characterization of Floridean Starch of Red Algae. STARCH-STARKE 2002. [DOI: 10.1002/1521-379x(200202)54:2<66::aid-star66>3.0.co;2-b] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Lee SS, He S, Withers SG. Identification of the catalytic nucleophile of the Family 31 alpha-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosyl-enzyme intermediate. Biochem J 2001; 359:381-6. [PMID: 11583585 PMCID: PMC1222157 DOI: 10.1042/0264-6021:3590381] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanism-based reagent 5-fluoro-alpha-d-glucopyranosyl fluoride (5F alpha GlcF) was used to trap a glycosyl-enzyme intermediate and identify the catalytic nucleophile at the active site of Aspergillus niger alpha-glucosidase (Family 31). Incubation of the enzyme with 5F alpha GlcF, followed by peptic proteolysis and comparative liquid chromatography/MS mapping allowed the isolation of a labelled peptide. Fragmentation analysis of this peptide by tandem MS yielded the sequence WYDMSE, with the label located on the aspartic acid residue (D). Comparison with the known protein sequence identified the labelled amino acid as Asp-224 of the P2 subunit.
Collapse
Affiliation(s)
- S S Lee
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | | | | |
Collapse
|
49
|
Abstract
The unique catalytic potential of the fungal enzyme pyranose oxidase was demonstrated by preparative conversions of a variety of carbohydrates, and by extensive chemical characterization of the reaction products with NMR spectroscopy. The studies revealed that POx not only oxidizes most substrates very efficiently but also that POx possesses a glycosyl-transfer potential, producing disaccharides from beta-glycosides of higher alcohols. Although most substrates are oxidized by POx at the C-2 position, several substrates are converted into the 3-keto-derivatives. On the basis of these products, strategies are developed for the convenient production of sugar-derived synthons, rare sugars and fine chemicals by combining biotechnical and chemical methods.
Collapse
|
50
|
Hirano K, Ziak M, Kamoshita K, Sukenaga Y, Kametani S, Shiga Y, Roth J, Akanuma H. N-linked oligosaccharide processing enzyme glucosidase II produces 1,5-anhydrofructose as a side product. Glycobiology 2000; 10:1283-9. [PMID: 11159920 DOI: 10.1093/glycob/10.12.1283] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
alpha-1,4-Glucan lyase cleaves alpha-1,4-linkages of nonreducing termini of alpha-1,4-glucans to produce 1,5-anhydrofructose (1,5-AnFru). The enzymes isolated from fungi and algae show high homology with glycoside hydrolase family 31. Purification of alpha-1,4-glucan lyase from rat liver using DEAE Cellulose chromatography resulted in separation of two enzymatic active fractions, one was bound to the column and the other was in the flow-through. Partial amino acid sequence determined from the lyase, retained on the anion exchange column, were identical with that of the N:-linked oligosaccharide processing enzyme glucosidase II. The lyase showed similar enzymatic properties as the microsomal glucosidase such as inhibition by 1-deoxynojirimycin and castanospermine. On the other hand, glucosidase II purified from rat liver microsomes produced not only glucose but also a small amount of 1,5-AnFru using maltose as substrate. Furthermore, CHO cells overexpressing pig liver glucosidase II showed a 1.5- to 2-fold higher lyase activity compared to the nontransfected CHO cells. Conversely, no lyase activity was detectable either in PHAR2.7, the glucosidase II-deficient mutant from a mouse lymphoma cell line, or in Saccharomyces cerevisiae strain YG427 having the glucosidase II gene disrupted. These data demonstrate that glucosidase II possesses an additional enzymatic activity of releasing 1,5-AnFru from maltose.
Collapse
Affiliation(s)
- K Hirano
- Department of Life Sciences (Chemistry), Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | |
Collapse
|