1
|
Bhattacharya S, Sadhukhan D, Saraswathy R. Role of sex in immune response and epigenetic mechanisms. Epigenetics Chromatin 2024; 17:1. [PMID: 38247002 PMCID: PMC10802034 DOI: 10.1186/s13072-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The functioning of the human immune system is highly dependent on the sex of the individual, which comes by virtue of sex chromosomes and hormonal differences. Epigenetic mechanisms such as X chromosome inactivation, mosaicism, skewing, and dimorphism in X chromosome genes and Y chromosome regulatory genes create a sex-based variance in the immune response between males and females. This leads to differential susceptibility in immune-related disorders like infections, autoimmunity, and malignancies. Various naturally available immunomodulators are also available which target immune pathways containing X chromosome genes.
Collapse
Affiliation(s)
- Sombodhi Bhattacharya
- Biomedical Genetics Research Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Debasmita Sadhukhan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Radha Saraswathy
- Biomedical Genetics Research Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Filipowicz G, Wajda A, Stypińska B, Kmiołek T, Felis-Giemza A, Stańczyk S, Czuszyńska Z, Walczyk M, Olesińska M, Paradowska-Gorycka A. Mixed Connective Tissue Disease as Different Entity: Global Methylation Aspect. Int J Mol Sci 2023; 24:15495. [PMID: 37895173 PMCID: PMC10607312 DOI: 10.3390/ijms242015495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Mixed connective tissue disease (MCTD) is a very rare disorder that belongs in the rare and clinically multifactorial groups of diseases. The pathogenesis of MCTD is still unclear. The best understood epigenetic alteration is DNA methylation whose role is to regulate gene expression. In the literature, there are ever-increasing assumptions that DNA methylation can be one of the possible reasons for the development of Autoimmune Connective Tissue Diseases (ACTDs) such as systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). The aim of this study was to define the global DNA methylation changes between MCTD and other ACTDs patients in whole blood samples. The study included 54 MCTD patients, 43 SSc patients, 45 SLE patients, and 43 healthy donors (HC). The global DNA methylation level was measured by ELISA. Although the global DNA methylation was not significantly different between MCTD and control, we observed that hypomethylation distinguishes the MCTD patients from the SSc and SLE patients. The present analysis revealed a statistically significant difference of global methylation between SLE and MCTD (p < 0.001), SLE and HC (p = 0.008), SSc and MCTD (p ≤ 0.001), and SSc and HC (p < 0.001), but neither between MCTD and HC (p = 0.09) nor SSc and SLE (p = 0.08). The highest % of global methylation (median, IQR) has been observed in the group of patients with SLE [0.73 (0.43, 1.22] and SSc [0,91 (0.59, 1.50)], whereas in the MCTD [0.29 (0.20, 0.54)], patients and healthy subjects [0.51 (0.24, 0.70)] were comparable. In addition, our study provided evidence of different levels of global DNA methylation between the SSc subtypes (p = 0.01). Our study showed that patients with limited SSc had a significantly higher global methylation level when compared to diffuse SSc. Our data has shown that the level of global DNA methylation may not be a good diagnostic marker to distinguish MCTD from other ACTDs. Our research provides the groundwork for a more detailed examination of the significance of global DNA methylation as a distinguishing factor in patients with MCTD compared to other ACTDs patients.
Collapse
Affiliation(s)
- Gabriela Filipowicz
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1, 02-637 Warsaw, Poland; (G.F.)
| | - Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1, 02-637 Warsaw, Poland; (G.F.)
| | - Barbara Stypińska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1, 02-637 Warsaw, Poland; (G.F.)
| | - Tomasz Kmiołek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1, 02-637 Warsaw, Poland; (G.F.)
| | - Anna Felis-Giemza
- Biologic Therapy Center, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1, 02-637 Warsaw, Poland (S.S.)
| | - Sandra Stańczyk
- Biologic Therapy Center, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1, 02-637 Warsaw, Poland (S.S.)
| | - Zenobia Czuszyńska
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, Smulochowskiego 17, 80-214 Gdansk, Poland
| | - Marcela Walczyk
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1, 02-637 Warsaw, Poland
| | - Marzena Olesińska
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1, 02-637 Warsaw, Poland
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartanska 1, 02-637 Warsaw, Poland; (G.F.)
| |
Collapse
|
3
|
X-Chromosome Inactivation and Related Diseases. Genet Res (Camb) 2022; 2022:1391807. [PMID: 35387179 PMCID: PMC8977309 DOI: 10.1155/2022/1391807] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is the form of dosage compensation in mammalian female cells to balance X-linked gene expression levels of the two sexes. Many diseases are related to XCI due to inactivation escape and skewing, and the symptoms and severity of these diseases also largely depend on the status of XCI. They can be divided into 3 types: X-linked diseases, diseases that are affected by XCI escape, and X-chromosome aneuploidy. Here, we review representative diseases in terms of their definition, symptoms, and XCI’s role in the pathogenesis of these diseases.
Collapse
|
4
|
Angum F, Khan T, Kaler J, Siddiqui L, Hussain A. The Prevalence of Autoimmune Disorders in Women: A Narrative Review. Cureus 2020; 12:e8094. [PMID: 32542149 PMCID: PMC7292717 DOI: 10.7759/cureus.8094] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Autoimmune disorders are characterized as a condition in which the host's immune system mistakenly attacks itself. These disorders cause the immune system to cause a systemic reaction by attacking multiple organs or may be localized to attacking one specific organ, such as the skin. The exact mechanism of such autoimmune conditions is not well understood; however, the presumed mechanism tends to vary amongst the disorders. Autoimmune diseases present with a clear gender bias with a greater prevalence amongst women, occurring at a rate of 2 to 1. Many autoimmune disorders tend to affect women during periods of extensive stress, such as pregnancy, or during a great hormonal change. A far greater number of women are affected every year with autoimmune diseases, leading to researchers attempting to identify the underlying factors, which could be responsible for this disparity. Autoimmune disorders occur as a result of multiple factors as some disorders may be genetic, while others are sporadic. Throughout this review, various hypotheses are explored that provide insight into the increased susceptibility of autoimmune disorders within women.
Collapse
Affiliation(s)
- Fariha Angum
- Internal Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | - Tahir Khan
- Internal Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | - Jasndeep Kaler
- Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | | | - Azhar Hussain
- Healthcare Administration, Franklin University, Columbus, USA
- Medicine, Xavier University School of Medicine, Oranjestad, ABW
| |
Collapse
|
5
|
Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. Proc Natl Acad Sci U S A 2019; 116:26779-26787. [PMID: 31822606 PMCID: PMC6936674 DOI: 10.1073/pnas.1910072116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sex differences are naturally occurring disease modifiers that, if understood, could lead to novel targets for drug development. Autoimmune diseases are more prevalent in women than in men, and sex differences in immune responses have been shown in humans and mice. Here, we discover a global parent-of-origin difference in DNA methylation on the X chromosome that affects gene expression in activated CD4+ T lymphocytes. The paternal X has more methylation than the maternal X, with higher expression of X genes in XY cells since they only express from the maternal X. Thus, parent-of-origin differences in DNA methylation of X genes can play a role in sex differences in immune responses. Many autoimmune diseases are more frequent in females than in males in humans and their mouse models, and sex differences in immune responses have been shown. Despite extensive studies of sex hormones, mechanisms underlying these sex differences remain unclear. Here, we focused on sex chromosomes using the “four core genotypes” model in C57BL/6 mice and discovered that the transcriptomes of both autoantigen and anti-CD3/CD28 stimulated CD4+ T lymphocytes showed higher expression of a cluster of 5 X genes when derived from XY as compared to XX mice. We next determined if higher expression of an X gene in XY compared to XX could be due to parent-of-origin differences in DNA methylation of the X chromosome. We found a global increase in DNA methylation on the X chromosome of paternal as compared to maternal origin. Since DNA methylation usually suppresses gene expression, this result was consistent with higher expression of X genes in XY cells because XY cells always express from the maternal X chromosome. In addition, gene expression analysis of F1 hybrid mice from CAST × FVB reciprocal crosses showed preferential gene expression from the maternal X compared to paternal X chromosome, revealing that these parent-of-origin effects are not strain-specific. SJL mice also showed a parent-of-origin effect on DNA methylation and X gene expression; however, which X genes were affected differed from those in C57BL/6. Together, this demonstrates how parent-of-origin differences in DNA methylation of the X chromosome can lead to sex differences in gene expression during immune responses.
Collapse
|
6
|
Farivar S, Aghamaleki FS. Effects of Major Epigenetic Factors on Systemic Lupus Erythematosus. IRANIAN BIOMEDICAL JOURNAL 2018; 22:294-302. [PMID: 29803202 PMCID: PMC6058186 DOI: 10.29252/ibj.22.5.294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors of gene regulation. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur in CD4+ T-cells. Moreover, histone acetylation and deacetylation inhibitors reverse the expression of multiple genes involved in SLE, indicating histone modification in SLE. Autoreactive T-cells and B-cells have been shown to alter the patterns of epigenetic changes in SLE patients. Understanding the molecular mechanisms involved in the pathogenesis of SLE is critical for the introduction of effective, target-directed and tolerated therapies. In this review, we summarize the recent findings that highlight the importance of epigenetic modifications and their mechanisms in SLE.
Collapse
Affiliation(s)
- Shirin Farivar
- Dept. of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C. Tehran, Iran
| | - Fateme Shaabanpour Aghamaleki
- Dept. of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C. Tehran, Iran
| |
Collapse
|
7
|
Roy SW. Intragenomic Conflict and Immune Tolerance: Do Selfish X-Linked Alleles Drive Skewed X Chromosome Inactivation? Genome Biol Evol 2018; 10:857-862. [PMID: 29092048 PMCID: PMC5861445 DOI: 10.1093/gbe/evx221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2017] [Indexed: 12/18/2022] Open
Abstract
In mammalian females, diploid somatic cells contain two X chromosomes, one of which is transcriptionally silenced, in a process termed X chromosome inactivation (XCI). Whereas XCI is largely random in placental females, many women exhibit skewed XCI (SXCI), in which the vast majority cells have the same X chromosome inactivated. SXCI has serious health consequences, associated with conditions ranging from Alzheimer’s to various autoimmune disorders. SXCI is also associated with outcomes of pregnancies, with higher rates of recurrent spontaneous abortion in women with SXCI. Here, I suggest that SXCI could be driven by selfish X-linked alleles. Consistent with the association of SXCI with autoimmunity, I first note the possibility that recurrent spontaneous abortion could reflect immune rejection of fetuses inheriting alleles from the largely silenced maternal X chromosome. Preferential abortion of fetuses carrying silenced X-linked alleles implies a transmission advantage for X-linked alleles on the largely expressed chromosome, which could drive the emergence of X-linked alleles that make the chromosome resistant to XCI. I discuss the evolutionary dynamics, fitness tradeoffs and implications of this hypothesis, and suggest future directions.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, San Francisco State University
| |
Collapse
|
8
|
Margery-Muir AA, Bundell C, Nelson D, Groth DM, Wetherall JD. Gender balance in patients with systemic lupus erythematosus. Autoimmun Rev 2017; 16:258-268. [DOI: 10.1016/j.autrev.2017.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
|
9
|
Abstract
Female/male ratios of autoimmune diseases range from 10: 1 to 1: 3, with similar severity between the sexes. Men and women respond similarly to the infection and to vaccination, arguing against intrinsic sex differences in immune response. In autoimmune-like illnesses caused by environmental agents sex discrepancy is explained by differences in exposure. Endogenous hormones could cause sex discrepancy if their effect is a threshold off-on switch rather than quantitatively variable. X-inactivation and imprinting could cause sex discrepancy. Other possibilities include chronobiologic differences and pregnancy and menstruation biologies in which men differ from women.
Collapse
Affiliation(s)
- M D Lockshin
- Barbara Volcker Center for Women and Rheumatic Disease Joan and Sanford Weill Medical College of Cornell University, Hospital for Special Surgery, New York, NY 10021, USA.
| |
Collapse
|
10
|
Kanaan SB, Onat OE, Balandraud N, Martin GV, Nelson JL, Azzouz DF, Auger I, Arnoux F, Martin M, Roudier J, Ozcelik T, Lambert NC. Evaluation of X Chromosome Inactivation with Respect to HLA Genetic Susceptibility in Rheumatoid Arthritis and Systemic Sclerosis. PLoS One 2016; 11:e0158550. [PMID: 27355582 PMCID: PMC4927113 DOI: 10.1371/journal.pone.0158550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/19/2016] [Indexed: 11/27/2022] Open
Abstract
Background Autoimmune diseases, including rheumatoid arthritis (RA) and systemic sclerosis (SSc) are characterized by a strong genetic susceptibility from the Human Leucocyte Antigen (HLA) locus. Additionally, disorders of epigenetic processes, in particular non-random X chromosome inactivation (XCI), have been reported in many female-predominant autoimmune diseases. Here we test the hypothesis that women with RA or SSc who are strongly genetically predisposed are less susceptible to XCI bias. Methods Using methylation sensitive genotyping of the androgen receptor (AR) gene, XCI profiles were performed in peripheral blood mononuclear cells from 161 women with RA, 96 women with SSc and 100 healthy women. HLA-DRB1 and DQB1 were genotyped. Presence of specific autoantibodies was documented for patients. XCI skewing was defined as having a ratio ≥ 80:20 of cells inactivating the same X chromosome. Results 110 women with RA, 68 women with SSc, and 69 controls were informative for the AR polymorphism. Among them 40.9% of RA patients and 36.8% of SSc patients had skewed XCI compared to 17.4% of healthy women (P = 0.002 and 0.018, respectively). Presence of RA-susceptibility alleles coding for the “shared epitope” correlated with higher skewing among RA patients (P = 0.002) and such correlation was not observed in other women, healthy or with SSc. Presence of SSc-susceptibility alleles did not correlate with XCI patterns among SSc patients. Conclusion Data demonstrate XCI skewing in both RA and SSc compared to healthy women. Unexpectedly, skewed XCI occurs more often in women with RA carrying the shared epitope, which usually reflects severe disease. This reinforces the view that loss of mosaicism in peripheral blood may be a consequence of chronic autoimmunity.
Collapse
Affiliation(s)
- Sami B. Kanaan
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRs1097, Scientific Park of Luminy, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Onur E. Onat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Nathalie Balandraud
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRs1097, Scientific Park of Luminy, Marseille, France
- Service de Rhumatologie, Hôpital Sainte Marguerite, AP-HM, Marseille, France
| | - Gabriel V. Martin
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRs1097, Scientific Park of Luminy, Marseille, France
- Aix-Marseille University, Marseille, France
| | - J. Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
| | - Doua F. Azzouz
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRs1097, Scientific Park of Luminy, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Isabelle Auger
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRs1097, Scientific Park of Luminy, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Fanny Arnoux
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRs1097, Scientific Park of Luminy, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Marielle Martin
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRs1097, Scientific Park of Luminy, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Jean Roudier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRs1097, Scientific Park of Luminy, Marseille, France
- Aix-Marseille University, Marseille, France
- Service de Rhumatologie, Hôpital Sainte Marguerite, AP-HM, Marseille, France
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Nathalie C. Lambert
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRs1097, Scientific Park of Luminy, Marseille, France
- Aix-Marseille University, Marseille, France
- * E-mail:
| |
Collapse
|
11
|
Häggmark A, Schwenk JM, Nilsson P. Neuroproteomic profiling of human body fluids. Proteomics Clin Appl 2015; 10:485-502. [PMID: 26286680 DOI: 10.1002/prca.201500065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/17/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
Analysis of protein expression and abundance provides a possibility to extend the current knowledge on disease-associated processes and pathways. The human brain is a complex organ and dysfunction or damage can give rise to a variety of neurological diseases. Although many proteins potentially reflecting disease progress are originating from brain, the scarce availability of human tissue material has lead to utilization of body fluids such as cerebrospinal fluid and blood in disease-related research. Within the most common neurological disorders, much effort has been spent on studying the role of a few hallmark proteins in disease pathogenesis but despite extensive investigation, the signatures they provide seem insufficient to fully understand and predict disease progress. In order to expand the view the field of neuroproteomics has lately emerged alongside developing technologies, such as affinity proteomics and mass spectrometry, for multiplexed and high-throughput protein profiling. Here, we provide an overview of how such technologies have been applied to study neurological disease and we also discuss some important considerations concerning discovery of disease-associated profiles.
Collapse
Affiliation(s)
- Anna Häggmark
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
12
|
D'Amico F, Skarmoutsou E, Mazzarino MC. The sex bias in systemic sclerosis: on the possible mechanisms underlying the female disease preponderance. Clin Rev Allergy Immunol 2014; 47:334-43. [PMID: 24126759 DOI: 10.1007/s12016-013-8392-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Systemic sclerosis is a multifactorial and heterogeneous disease. Genetic and environmental factors are known to interplay in the onset and progression of systemic sclerosis. Sex plays an important and determinant role in the development of such a disorder. Systemic sclerosis shows a significant female preponderance. However, the reason for this female preponderance is incompletely understood. Hormonal status, genetic and epigenetic differences, and lifestyle have been considered in order to explain female preponderance in systemic sclerosis. Sex chromosomes play a determinant role in contributing to systemic sclerosis onset and progression, as well as in its sex-biased prevalence. It is known, in fact, that X chromosome contains many sex- and immuno-related genes, thus contributing to immuno tolerance and sex hormone status. This review focuses mainly on the recent progress on epigenetic mechanisms--exclusively linked to the X chromosome--which would contribute to the development of systemic sclerosis. Furthermore, we report also some hypotheses (dealing with skewed X chromosome inactivation, X gene reactivation, acquired monosomy) that have been proposed in order to justify the female preponderance in autoimmune diseases. However, despite the intensive efforts in elucidating the mechanisms involved in the pathogenesis of systemic sclerosis, many questions remain still unanswered.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Bio-medical Sciences, University of Catania, via Androne 83, 95124, Catania, Italy,
| | | | | |
Collapse
|
13
|
Contributing factors in multiple sclerosis and the female sex bias. Immunol Lett 2014; 162:223-32. [DOI: 10.1016/j.imlet.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 11/22/2022]
|
14
|
Olivier-Van Stichelen S, Abramowitz LK, Hanover JA. X marks the spot: does it matter that O-GlcNAc transferase is an X-linked gene? Biochem Biophys Res Commun 2014; 453:201-7. [PMID: 24960196 DOI: 10.1016/j.bbrc.2014.06.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 01/07/2023]
Abstract
O-GlcNAcylation has emerged as a critical post-translational modification important for a wide array of cellular processes. This modification has been identified on a large pool of intracellular proteins that have wide-ranging roles, including transcriptional regulation, cell cycle progression, and signaling, among others. Interestingly, in mammals the single gene encoding O-GlcNAc Transferase (OGT) is located on the X-chromosome near the Xist locus suggesting that tight dosage regulation is necessary for normal development. Herein, we highlight the importance of OGT dosage and consider how its genomic location can contribute to a gender-specific increased risk for a number of diseases.
Collapse
Affiliation(s)
- Stéphanie Olivier-Van Stichelen
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - Lara K Abramowitz
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - John A Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Abramowitz LK, Olivier-Van Stichelen S, Hanover JA. Chromosome imbalance as a driver of sex disparity in disease. J Genomics 2014; 2:77-88. [PMID: 25031659 PMCID: PMC4091450 DOI: 10.7150/jgen.8123] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has long been recognized that men and women exhibit different risks for diverse disorders ranging from metabolic to autoimmune diseases. However, the underlying causes of these disparities remain obscure. Analysis of patients with chromosomal abnormalities, including Turner syndrome (45X) and Klinefelter syndrome (47XXY), has highlighted the importance of X-linked gene dosage as a contributing factor for disease susceptibility. Escape from X-inactivation and X-linked imprinting can result in transcriptional differences between normal men and women as well as in patients with sex chromosome abnormalities. Animal models support a role for X-linked gene dosage in disease with O-linked N-acetylglucosamine transferase (OGT) emerging as a prime candidate for a pleiotropic effector. OGT encodes a highly regulated nutrient-sensing epigenetic modifier with established links to immunity, metabolism and development.
Collapse
Affiliation(s)
- Lara K Abramowitz
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-0851, USA
| | | | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-0851, USA
| |
Collapse
|
16
|
|
17
|
Chabchoub G. X chromosome inactivation and autoimmune diseases. World J Rheumatol 2013; 3:12-15. [DOI: 10.5499/wjr.v3.i3.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/21/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of autoimmune diseases (AIDs) is characterized by a female preponderance. The causes for this sex imbalance are based on several hypotheses. One of the most intriguing hypotheses is related to an X chromosome inactivation (XCI) process. Females are mosaics for two cell populations, one with the maternal and one with the paternal X as the active chromosome. Skewed XCI is often defined as a pattern where 80% or more of the cells show a preferential inactivation of one X chromosome. The role of skewed XCI has been questioned in the pathogenesis of several AIDs, such as autoimmune thyroid diseases and rheumatoid arthritis.
Collapse
|
18
|
Chu X, Shen M, Xie F, Miao XJ, Shou WH, Liu L, Yang PP, Bai YN, Zhang KY, Yang L, Hua Q, Liu WD, Dong Y, Wang HF, Shi JX, Wang Y, Song HD, Chen SJ, Chen Z, Huang W. An X chromosome-wide association analysis identifies variants in GPR174 as a risk factor for Graves' disease. J Med Genet 2013; 50:479-85. [PMID: 23667180 PMCID: PMC3686253 DOI: 10.1136/jmedgenet-2013-101595] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Graves’ disease is a female preponderant autoimmune illness and the contribution of the X chromosome to its risk has long been appreciated. However, no X-linked susceptibility loci have been indentified from recent genome-wide association studies (GWAS). Methods We re-examined the X chromosome data from our recent GWAS for Graves’ disease by including males that were previously excluded from the X chromosome analyses. The data were analysed using logistic regression analysis including sex as a covariate, and an additive method assuming X chromosome inactivation, implemented in snpMatrix. Results A cluster of single nucleotide polymorphism (SNPs) at Xq21.1 was found showing association with genome-wide significance, among which rs3827440 was a non-synonymous SNP of GPR174 (Plogistic regression=
9.52×10−8; PsnpMatrix=4.60×10−9; OR=1.76, 95% CI 1.45 to 2.13). The association was reproduced in an independent sample collection set including 4564 Graves’ disease cases and 3968 sex matched controls (combined Plogistic regression=5.53×10−21; combined PsnpMatrix=4.26×10−22; OR=1.69, 95% CI 1.53 to 1.86). Notably, GPR174 was widely expressed in immune related tissues and rs3827440 genotypes were associated with distinct mRNA levels (p=0.002). GPR174 did not show sex biased gene expression in our expression analysis. Resequencing study suggested the contribution of some rare variants in the GPR174 gene region to disease risk with a collapsing p value of 1.16×10−3. Conclusions The finding of an X-linked risk locus for Graves’ disease expands our understanding of the role of the X chromosome in disease susceptibility.
Collapse
Affiliation(s)
- Xun Chu
- Department of Genetics, Chinese National Human Genome Center, Bldg. 1, 250 BiBo Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Płoski R, Szymański K, Bednarczuk T. The genetic basis of graves' disease. Curr Genomics 2012; 12:542-63. [PMID: 22654555 PMCID: PMC3271308 DOI: 10.2174/138920211798120772] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 01/09/2023] Open
Abstract
The presented comprehensive review of current knowledge about genetic factors predisposing to Graves’ disease (GD) put emphasis on functional significance of observed associations. In particular, we discuss recent efforts aimed at refining diseases associations found within the HLA complex and implicating HLA class I as well as HLA-DPB1 loci. We summarize data regarding non-HLA genes such as PTPN22, CTLA4, CD40, TSHR and TG which have been extensively studied in respect to their role in GD. We review recent findings implicating variants of FCRL3 (gene for FC receptor-like-3 protein), SCGB3A2 (gene for secretory uteroglobin-related protein 1- UGRP1) as well as other unverified possible candidate genes for GD selected through their documented association with type 1 diabetes mellitus: Tenr–IL2–IL21, CAPSL (encoding calcyphosine-like protein), IFIH1(gene for interferon-induced helicase C domain 1), AFF3, CD226 and PTPN2. We also review reports on association of skewed X chromosome inactivation and fetal microchimerism with GD. Finally we discuss issues of genotype-phenotype correlations in GD.
Collapse
Affiliation(s)
- Rafał Płoski
- Department of Medical Genetics, Centre for Biostructure, Medical University of Warsaw, Poland
| | | | | |
Collapse
|
20
|
|
21
|
Bianchi I, Lleo A, Gershwin ME, Invernizzi P. The X chromosome and immune associated genes. J Autoimmun 2012; 38:J187-J192. [PMID: 22178198 DOI: 10.1016/j.jaut.2011.11.012] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 12/13/2022]
Abstract
The X chromosome is known to contain the largest number of immune-related genes of the whole human genome. For this reason, X chromosome has recently become subject of great interest and attention and numerous studies have been aimed at understanding the role of genes on the X chromosome in triggering and maintaining the autoimmune aggression. Autoimmune diseases are indeed a growing heath burden affecting cumulatively up to 10% of the general population. It is intriguing that most X-linked primary immune deficiencies carry significant autoimmune manifestations, thus illustrating the critical role played by products of single gene located on the X chromosome in the onset, function and homeostasis of the immune system. Again, the plethora of autoimmune stigmata observed in patients with Turner syndrome, a disease due to the lack of one X chromosome or the presence of major X chromosome deletions, indicate that X-linked genes play a unique and major role in autoimmunity. There have been several reports on a role of X chromosome gene dosage through inactivation or duplication in women with autoimmune diseases, for example through a higher rate of circulating cells with a single X chromosome (i.e. with X monosomy). Finally, a challenge for researchers in the coming years will be to dissect the role for the large number of X-linked microRNAs from the perspective of autoimmune disease development. Taken together, X chromosome might well constitute the common trait of the susceptibility to autoimmune diseases, other than to explain the female preponderance of these conditions. This review will focus on the available evidence on X chromosome changes and discuss their potential implications and limitations.
Collapse
Affiliation(s)
- Ilaria Bianchi
- Center for Autoimmune Liver Diseases, Department of Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Italy
| | | | | | | |
Collapse
|
22
|
|
23
|
Selmi C, Brunetta E, Raimondo MG, Meroni PL. The X chromosome and the sex ratio of autoimmunity. Autoimmun Rev 2011; 11:A531-7. [PMID: 22155196 DOI: 10.1016/j.autrev.2011.11.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of human conditions that are currently considered to be autoimmune diseases (AID) has been steadily growing over the past decades and it is now estimated that over 10 million people are affected in the United States. One of the major shared features among AID is the predominance in the female sex which in some cases changes with the age at disease diagnosis. Numerous hypotheses have been formulated based on intuitive scientific backgrounds to justify this sex imbalance, i.e. sex hormones and reproductive factors, fetal microchimerism, other sex-related environmental factors, a skewing of the X-chromosome inactivation patterns, and major defects in sex chromosomes. Nevertheless, none of these hypotheses has thus far gathered enough convincing evidence and in most cases data are conflicting, as well illustrated by the reports on fetal microchimerism in systemic sclerosis or primary biliary cirrhosis. The present article will critically discuss the main hypotheses (loss of mosaicism, reactivation, and haploinsufficiency) that have been proposed based on findings in female patients with specific AID along with two additional mechanisms (X-chromosome vulnerability and X-linked polyamine genes) that have been observed in AID models. Further, recent data have significantly shifted the paradigm of X chromosome inactivation by demonstrating that a large number of genes can variably escape silencing on one or both chromosomes. As a result we may hypothesize that more than one mechanism may contribute to the female susceptibility to tolerance breakdown while the possibility that unknown factors may indeed protect men from AID should not be overlooked.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Autoimmune diseases appear to have multiple contributing factors including genetics, epigenetics, environmental factors, and aging. The predominance of females among patients with autoimmune diseases suggests possible involvement of the X chromosome and X chromosome inactivation. X chromosome inactivation is an epigenetic event resulting in multiple levels of control for modulation of the expression of X-linked genes in normal female cells such that there remains only one active X chromosome in the cell. The extent of this control is unique among the chromosomes and has the potential for problems when regulation is disrupted. Here we discuss the X chromosome inactivation process and how the X chromosome and X chromosome inactivation may be involved in development of autoimmune disorders.
Collapse
Affiliation(s)
- Wesley H Brooks
- Experimental HTS, Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612-9416, USA.
| |
Collapse
|
25
|
The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 2010; 10:594-604. [DOI: 10.1038/nri2815] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
|
27
|
Lu LJ, Wallace DJ, Ishimori ML, Scofield RH, Weisman MH. Review: Male systemic lupus erythematosus: a review of sex disparities in this disease. Lupus 2009; 19:119-29. [PMID: 19946032 DOI: 10.1177/0961203309350755] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although males with systemic lupus erythematosus (SLE) represent 4-22% of all SLE patients, it may not be appropriate that these cases should be subordinated to females with SLE in terms of most health-related issues. Over the past few decades, some distinctive features of male lupus have been observed with regard to genetic and environmental aspects of sex differences, clinical features, and outcome. In addition, recent insights into sex disparities in this disease have brought forth a few plausible and novel pathogenetic hypotheses. This review discusses these findings and sex disparities in SLE that appear to be especially noteworthy and pertinent to our understanding of male SLE.
Collapse
Affiliation(s)
- L-J Lu
- Cedars Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|
28
|
Chabchoub G, Uz E, Maalej A, Mustafa CA, Rebai A, Mnif M, Bahloul Z, Farid NR, Ozcelik T, Ayadi H. Analysis of skewed X-chromosome inactivation in females with rheumatoid arthritis and autoimmune thyroid diseases. Arthritis Res Ther 2009; 11:R106. [PMID: 19589151 PMCID: PMC2745787 DOI: 10.1186/ar2759] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 06/22/2009] [Accepted: 07/09/2009] [Indexed: 12/12/2022] Open
Abstract
Introduction The majority of autoimmune diseases such as rheumatoid arthritis (RA) and autoimmune thyroid diseases (AITDs) are characterized by a striking female predominance superimposed on a predisposing genetic background. The role of extremely skewed X-chromosome inactivation (XCI) has been questioned in the pathogenesis of several autoimmune diseases. Methods We examined XCI profiles of females affected with RA (n = 106), AITDs (n = 145) and age-matched healthy women (n = 257). XCI analysis was performed by enzymatic digestion of DNA with a methylation sensitive enzyme (HpaII) followed by PCR of a polymorphic CAG repeat in the androgen receptor (AR) gene. The XCI pattern was classified as skewed when 80% or more of the cells preferentially inactivated the same X-chromosome. Results Skewed XCI was observed in 26 of the 76 informative RA patients (34.2%), 26 of the 100 informative AITDs patients (26%), and 19 of the 170 informative controls (11.2%) (P < 0.0001; P = 0.0015, respectively). More importantly, extremely skewed XCI, defined as > 90% inactivation of one allele, was present in 17 RA patients (22.4%), 14 AITDs patients (14.0%), and in only seven controls (4.1%, P < 0.0001; P = 0.0034, respectively). Stratifying RA patients according to laboratory profiles (rheumatoid factor and anti-citrullinated protein antibodies), clinical manifestations (erosive disease and nodules) and the presence of others autoimmune diseases did not reveal any statistical significance (P > 0.05). Conclusions These results suggest a possible role for XCI mosaicism in the pathogenesis of RA and AITDs and may in part explain the female preponderance of these diseases.
Collapse
Affiliation(s)
- Ghazi Chabchoub
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Avenue Majida Boulila, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Invernizzi P, Pasini S, Selmi C, Miozzo M, Podda M. Skewing of X chromosome inactivation in autoimmunity. Autoimmunity 2009; 41:272-7. [DOI: 10.1080/08916930802024574] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M. Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 2009; 33:12-6. [PMID: 19356902 DOI: 10.1016/j.jaut.2009.03.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/03/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
It is known that autoimmune diseases cumulatively affect 5-10% of the general population. Although knowledge of pathogenesis has become more refined, laboratory diagnosis more accurate, and therapy more effective, the reasons for the female preponderance of these conditions remain unclear. The most intriguing theory to explain the female preponderance is currently related to sex chromosomes, as women with autoimmune diseases manifest a higher rate of circulating cells with a single X chromosome (i.e. X monosomy). In addition, there have been several reports on the role of X chromosome gene dosage through inactivation or duplication in autoimmunity. Taken together, sex chromosome changes might constitute the common trait of the susceptibility to autoimmune diseases.
Collapse
Affiliation(s)
- Pietro Invernizzi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Milan, Italy.
| | | | | | | | | |
Collapse
|
31
|
Selmi C. The X in sex: how autoimmune diseases revolve around sex chromosomes. Best Pract Res Clin Rheumatol 2009; 22:913-22. [PMID: 19028371 DOI: 10.1016/j.berh.2008.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent estimates suggest that autoimmune diseases cumulatively affect 5-10% of the general population worldwide. Although the etiology and pathogenesis remain poorly understood in most cases, similarities between diseases outnumber differences in the initiation and perpetuation of the autoimmune injury. One major example is the predominance of affected women, and perhaps its most intriguing putative mechanism is related to sex chromosomes, based on the recent observation that women with autoimmune diseases manifest a higher rate of circulating leukocytes with a single X chromosome. In a complementary fashion, there have been several reports on a role of X chromosome gene dosage through inactivation or duplication in autoimmunity. It is important not to overlook men with autoimmune diseases, who might manifest a more frequent loss of the Y chromosome in circulating leukocytes. Taken together, sex chromosome changes might constitute the common trait of autoimmunity.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Internal Medicine, IRCCS-Istituto Clinico Humanitas, University of Milan, Rozzano, Milan, Italy.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Powerful new methods are allowing identification of genetic risk factors in large populations of adults with autoimmune diseases. In this review, we describe the advantages and limitations of genetic methodologies, and how these methods have been used to discover candidate genes in smaller populations of pediatric patients. We also introduce novel concepts for nontraditional modes of genetic inheritance that may be important in the pathogenesis of autoimmunity. RECENT FINDINGS Candidate genes identified by linkage analyses and genome-wide association scans in adult populations have led to focused genetic studies in pediatric populations. Some genes are associated with subsets of both adult and pediatric patients; others appear to be age specific. Novel concepts in genetics have uncovered potential contributions of maternal compared with paternal transmission, noninherited maternal alleles that may work through maternal microchimerism, and sex-specific epigenetic mechanisms of immunoregulation. SUMMARY Advancing methods are leading to the discovery of genes associated with childhood autoimmune diseases. However, the genetic contribution to disease risk for any one gene remains less than 30% for most diseases, suggesting that pediatric autoimmunity is not primarily genetic in a classical sense. A combinatorial approach considering the contributions of multiple genes, mode of inheritance, and environmental influences will be required to fully understand the mechanisms of pathogenesis in pediatric autoimmune disease.
Collapse
|
33
|
Ozcelik T. X chromosome inactivation and female predisposition to autoimmunity. Clin Rev Allergy Immunol 2008; 34:348-51. [PMID: 18097773 DOI: 10.1007/s12016-007-8051-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Bilkent, Ankara 06800, Turkey.
| |
Collapse
|
34
|
Uz E, Loubiere LS, Gadi VK, Ozbalkan Z, Stewart J, Nelson JL, Ozcelik T. Skewed X-chromosome inactivation in scleroderma. Clin Rev Allergy Immunol 2008; 34:352-5. [PMID: 18157513 PMCID: PMC2716291 DOI: 10.1007/s12016-007-8044-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Scleroderma is a female-prevalent autoimmune disease of unclear etiology. Two fundamental gender differences, skewed X-chromosome inactivation (XCI) and pregnancy-related microchimerism, have been implicated in scleroderma. We investigated the XCI patterns of female scleroderma patients and the parental origin of the inactive X chromosome in those patients having skewed XCI patterns (>80%). In addition, we investigated whether a correlation exists between XCI patterns and microchimerism in a well-characterized cohort. About 195 female scleroderma patients and 160 female controls were analyzed for the androgen receptor locus to assess XCI patterns in the DNA extracted from peripheral blood cells. Skewed XCI was observed in 67 (44.9%) of 149 informative patients and in 10 of 124 healthy controls (8.0%) [odds ratio (OR) = 9.3 (95% confidence interval (CI) 4.3-20.6, P < 0.0001)]. Extremely skewed XCI (>90%) was present in 44 of 149 patients (29.5%) but only in 3 of 124 controls (2.4%; OR = 16.9; 95% CI 4.8-70.4, P < 0.0001). Parental origin of the inactive X chromosome was investigated for ten patients for whom maternal DNA was informative, and the inactive X chromosome was of maternal origin in eight patients and of paternal origin in two patients. Skewed XCI mosaicism could be considered as an important risk factor in scleroderma.
Collapse
Affiliation(s)
- Elif Uz
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Laurence S Loubiere
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Vijayakrishna K. Gadi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Zeynep Ozbalkan
- Rheumatology Department, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | | | - J. Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
- Institute for Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
35
|
Abstract
Autoimmune diseases affect approximately 5% of the population in Western countries, with high female predominance. Family and twins studies have demonstrated that genetic factors are crucial determinants of susceptibility to autoimmune disease, but no specific genes have yet been identified. Recent studies indicate that X chromosome abnormalities, such as monosomy rates and inactivation patterns, occur in a number of female-predominant autoimmune diseases. We will review herein the most recent evidence on the role of the X chromosome in loss of tolerance and discuss its potential implications. Future studies will identify the X chromosome regions containing candidate genes for autoimmune susceptibility.
Collapse
Affiliation(s)
- Pietro Invernizzi
- Division of Internal Medicine and Liver Unit, San Paolo Hospital School of Medicine, University of Milan, Via di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
36
|
Abstract
Similar to the majority of autoimmune conditions, primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease characterized by a striking female predominance; it is characterized by high titer serum autoantibodies to mitochondrial antigens, elevated serum immunoglobulin M, progressive destruction of intrahepatic bile ducts, and ultimately liver cirrhosis and failure. Familiarity and high concordance rates for the disease among monozygotic twins strongly support the role of genetics in the disease. Experimental efforts have been dedicated by our and other research groups to investigate the role of X chromosome abnormalities (i.e. monosomyrates and inactivation patterns) in autoimmunity. Our recent work has demonstrated enhanced X monosomy in women with PBC as well as two other female-predominant autoimmune diseases, systemic sclerosis and autoimmune thyroid disease. We will review herein the most recent evidence on the role of the X chromosome in PBC onset and discuss the potential implications. Future developments of these findings will be discussed.
Collapse
Affiliation(s)
- Pietro Invernizzi
- Division of Internal Medicine and Liver Unit, San Paolo Hospital School of Medicine, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Uz E, Dolen I, Al AR, Ozcelik T. Extremely skewed X-chromosome inactivation is increased in pre-eclampsia. Hum Genet 2006; 121:101-5. [PMID: 17115188 DOI: 10.1007/s00439-006-0281-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 10/11/2006] [Indexed: 11/25/2022]
Abstract
Pre-eclampsia is a disorder that affects approximately 5% of pregnancies. We tested the hypothesis that skewed X-chromosome inactivation (XCI) could be involved in the pathogenesis of pre-eclampsia. Peripheral blood DNA was obtained from 67 pre-eclampsia patients and 130 control women. Androgen receptor (AR) was analyzed by the HpaII/polymerase chain reaction assay to assess XCI patterns in DNA extracted from peripheral-blood cells. In addition, buccal cells were obtained from seven patients, and the analysis repeated. Extremely skewed XCI was observed in 10 of 46 informative patients (21.74%), and in 2 of 86 informative controls (2.33%, P = 0.0005; chi(2) test). Our findings support a role for the X-chromosome in the pathogenesis of pre-eclampsia in a subgroup of patients.
Collapse
Affiliation(s)
- Elif Uz
- Department of Molecular Biology and Genetics, Bilkent University, Bilkent, Ankara 06800, Turkey
| | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Similar to the majority of autoimmune rheumatic diseases, systemic sclerosis is characterized by a striking female predominance superimposed on a predisposing genetic background. At least two genetic mechanisms have been proposed that play a role in susceptibility to systemic sclerosis; firstly the maintenance of immune tolerance via genes on the X chromosomes and, secondly, fetal microchimerism. Based on these lines of evidence, experimental efforts have been most recently dedicated to investigating the role of X chromosome abnormalities (i.e. monosomy rates and inactivation patterns) in autoimmunity. We will review herein the most recent data on the role of the X chromosome in systemic sclerosis onset and discuss the potential implications. RECENT FINDINGS Women with systemic sclerosis manifest an enhanced rate of X monosomic cells in peripheral blood compared with healthy age-matched women. Furthermore, a severely skewed X chromosome inactivation pattern is found in women with systemic sclerosis. SUMMARY These observations, reproduced in other female-predominant autoimmune diseases, strongly support the role of the X chromosome in conferring susceptibility to tolerance breakdown and open novel scenarios to emphasize the unknown etiopathogenesis of systemic sclerosis. The implications of these findings will be discussed.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
39
|
Abstract
Many, but not all, autoimmune diseases primarily affect women. In humans, severity of illness does not differ between men and women. Men and women respond similarly to infection and vaccination, which suggests that the intrinsic differences in immune response between the sexes do not account for differences in disease frequency. In autoimmune-like illnesses caused by recognized environmental agents, sex discrepancy is usually explained by differences in exposure. Endogenous hormones are not a likely explanation for sex discrepancy; hormones could have an effect if the effect is a threshold rather than quantitative. X and Y chromosomal differences have not been studied in depth. Other possibilities to explain sex discrepancy include chronobiologic difference and various other biologies, such and pregnancy and menstruation, in which men differ from women.
Collapse
Affiliation(s)
- Michael D Lockshin
- Barbara Volcker Center for Women and Rheumatic Disease, Mary Kirkland Center for Lupus Research, Joan and Sanford Weill Medical College of Cornell University, Hospital for Special Surgery, New York, NY 10021, USA.
| |
Collapse
|
40
|
Ozcelik T, Uz E, Akyerli CB, Bagislar S, Mustafa CA, Gursoy A, Akarsu N, Toruner G, Kamel N, Gullu S. Evidence from autoimmune thyroiditis of skewed X-chromosome inactivation in female predisposition to autoimmunity. Eur J Hum Genet 2006; 14:791-7. [PMID: 16596118 DOI: 10.1038/sj.ejhg.5201614] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The etiologic factors in the development of autoimmune thyroid diseases (AITDs) are not fully understood. We investigated the role of skewed X-chromosome inactivation (XCI) mosaicism in female predisposition to AITDs. One hundred and ten female AITDs patients (81 Hashimoto's thyroiditis (HT), 29 Graves' disease (GD)), and 160 female controls were analyzed for the androgen receptor locus by the HpaII/polymerase chain reaction assay to assess XCI patterns in DNA extracted from peripheral blood cells. In addition, thyroid biopsy, buccal mucosa, and hair follicle specimens were obtained from five patients whose blood revealed an extremely skewed pattern of XCI, and the analysis was repeated. Skewed XCI was observed in DNA from peripheral blood cells in 28 of 83 informative patients (34%) as compared with 10 of 124 informative controls (8%, P<0.0001). Extreme skewing was present in 16 patients (19%), but only in three controls (2.4%, P<0.0001). The buccal mucosa, and although less marked, the thyroid specimens also showed skewing. Analysis of two familial cases showed that only the affected individuals demonstrate skewed XCI patterns. Based on these results, skewed XCI mosaicism may play a significant role in the pathogenesis of AITDs.
Collapse
Affiliation(s)
- Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Peeva E, Zouali M. Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunol Lett 2005; 101:123-43. [PMID: 16061292 DOI: 10.1016/j.imlet.2005.05.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 05/27/2005] [Accepted: 05/27/2005] [Indexed: 12/16/2022]
Abstract
Pathogenic autoimmunity requires a combination of inherited and acquired factors. In as much as hormones influence the sexual dimorphism of the immune system, it is possible that they can initiate or accelerate an autoimmune process, and contribute to gender-biased autoimmune disorders. Not only natural hormones, but also endocrine disruptors, such as environmental estrogens, may act in conjunction with other factors to override immune tolerance to self-antigens. In lupus, murine and human studies demonstrate that female sex hormones are implicated in disease pathogenesis. In the B cell compartment, both prolactin and estrogen are immunomodulators that affect maturation, selection and antibody secretion. Their impact may be based on their capacity to allow autoreactive B cells to escape the normal mechanisms of tolerance and to accumulate in sufficient numbers to cause clinically apparent disease. Both hormones lead to the survival and activation of autoreactive B cells, but they skew B cell maturation towards different directions, with prolactin inducing T cell-dependent autoreactive follicular B cells and estrogen eliciting T cell-independent autoreactive marginal zone B cells. Differential modulation of the cytokine milieu by hormones may also affect the development and activation of specific mature B cell subsets. This novel insight suggests that targeted manipulation of these pathways may represent a promising avenue in the treatment of lupus and other gender-biased autoimmune diseases.
Collapse
Affiliation(s)
- Elena Peeva
- Albert Einstein College of Medicine, Department of Medicine, Microbiology and Immunology, 1300 Morris Park Avenue, F717, Bronx, NY 10461, USA
| | | |
Collapse
|
42
|
Ozbalkan Z, Bagişlar S, Kiraz S, Akyerli CB, Ozer HTE, Yavuz S, Birlik AM, Calgüneri M, Ozçelik T. Skewed X chromosome inactivation in blood cells of women with scleroderma. ACTA ACUST UNITED AC 2005; 52:1564-70. [PMID: 15880831 DOI: 10.1002/art.21026] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Scleroderma (SSc) is an autoimmune disease of unknown etiology. The disease is 3-8 times more frequent in women than in men. The role of X chromosome inactivation (XCI) in the predisposition of women to autoimmunity has been questioned. Until now this has not been illustrated experimentally. This study was undertaken to test the hypothesis that disturbances in XCI mosaicism may be involved in the pathogenesis of the disease in female patients with SSc. METHODS Seventy female SSc patients and 160 female controls were analyzed for the androgen receptor locus by the Hpa II/polymerase chain reaction assay to assess XCI patterns in DNA extracted from peripheral blood cells. Furthermore, skin biopsy samples were obtained from 5 patients whose blood revealed an extremely skewed pattern of XCI, and the analysis repeated. Since microchimerism in SSc was reported, Y chromosome sequences were investigated in all samples. RESULTS Skewed XCI was observed in DNA from peripheral blood cells in 35 of 55 informative patients (64%), as compared with 10 of 124 informative controls (8%) (P < 0.0001). Extreme skewing was present in 27 of the patient group (49%), as compared with only 3 of the controls (2.4%) (P < 0.0001). However, XCI was random in all skin biopsy samples. The potential contribution of microchimerism to the random XCI pattern is highly unlikely based on the medical histories of the patients. CONCLUSION Skewed XCI mosaicism may play a significant role in the pathogenesis of SSc.
Collapse
|
43
|
Lockshin MD. Sex Differences in Autoimmune Disease. HANDBOOK OF SYSTEMIC AUTOIMMUNE DISEASES 2005. [DOI: 10.1016/s1571-5078(05)04002-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Abstract
The course and severity of the autoimmune thyroid diseases (AITD) is known to be influenced by pregnancy as evidenced by disease suppression during pregnancy and initiation, or exacerbation, of disease postpartum. AITD is also known to affect both fertility and pregnancy outcome as evidenced by increased fetal loss. However, the precise mechanisms of this influence have not been fully understood. Here we have reviewed the mechanisms of self-recognition thought to be active in AITD and we have included recent information on the potential role of fetal microchimerism (exposure of paternal antigen to the mother during and after pregnancy).
Collapse
Affiliation(s)
- Takao Ando
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Mount Sinai School of Medicine, Box 1055, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
45
|
Murashima A, Fukazawa T, Hirashima M, Takasaki Y, Oonishi M, Niijima S, Yamashiro Y, Yamataka A, Miyano T, Hashimoto H. Long term prognosis of children born to lupus patients. Ann Rheum Dis 2004; 63:50-3. [PMID: 14672891 PMCID: PMC1754725 DOI: 10.1136/ard.2002.001594] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To determine the long term prognosis of children of patients with systemic lupus erythematosus (SLE). METHODS Children of patients with SLE were invited to attend our clinic for physical examination and laboratory tests. A total of 195 children (aged 4 months to 26 years; male = 82, female = 113) were examined in 1991, 1995, 1997, and 1998. RESULTS Two cases were diagnosed as SLE at the first visit and were excluded from the second visit. A significantly higher percentage (52/195 (27%)) of patients were positive for antinuclear antibodies (ANA) at a cut off serum dilution of 1/40 compared with controls (4/57 (7%)). ANA were detected more frequently in female subjects than in men (p<0.05). Forty four subjects were examined on more than two occasions. Nine of the 10 patients who were positive for ANA at the second visit were girls aged 4-8 years. The incidence of anti-DNA and antiphospholipid antibodies in children of patients with SLE was similar to that in the controls. CONCLUSIONS The finding that children, especially girls, born to maternal lupus patients had a high positive rate for ANA suggests that a genetic factor is involved in SLE pathogenesis. Longitudinal observation of these patients may provide important clinical information and clues to the pathogenesis of SLE.
Collapse
Affiliation(s)
- A Murashima
- Department of Maternal Medicine, National Centre for Child Health and Development, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Costedoat-Chalumeau N, Amoura Z, Le Thi Hong D, Georgin S, Vauthier D, Sebbouh D, Francès C, Villain E, Wechsler B, Piette JC. [Neonatal lupus syndrome: review of the literature]. Rev Med Interne 2003; 24:659-71. [PMID: 14550519 DOI: 10.1016/s0248-8663(03)00211-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE Neonatal lupus syndrome include skin lesions, hematological and hepatic disorders, and congenital heart block (CHB) in the absence of severe cardiac malformation. This rare disorder is closely linked to transplacental transport of anti-SSA/Ro and anti-SSB/La maternal antibodies. CURRENT KNOWLEDGE AND KEY POINTS The prevalence of CHB in newborns of anti-Ro/SSA positive women with known connective tissue disease is 2% and the risk of recurrence ranges from 10 to 17%. Skin and systemic lesions are transient, whereas CHB is definitive and is associated with significant morbidity and mortality (estimated at 16-19%). A pacemaker must be implanted in 2/3 of cases. Myocarditis may be associated or may appeared secondarily. Mothers of children with CHB are usually asymptomatic or have Gougerot-Sjögren, or undifferentiated connective tissue disease. Mothers of children with cutaneous manifestations may present with more severe disease and systemic lupus erythematosus. In anti-Ro/SSA positive pregnant women, echocardiograms should be performed at least every 2 weeks from 16 to 24 weeks gestation. Electrocardiogram should be performed for all children. FUTURE PROSPECTS AND PROJECTS The efficiency of prophylactic treatment of CHB is not established. Therapy for CHB detected in utero is not standardized and involves fluorinated steroids (especially betamethasone).
Collapse
Affiliation(s)
- N Costedoat-Chalumeau
- Service de médecine interne, centre hospitalier universitaire Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tomer Y, Davies TF. Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function. Endocr Rev 2003; 24:694-717. [PMID: 14570752 DOI: 10.1210/er.2002-0030] [Citation(s) in RCA: 283] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The autoimmune thyroid diseases (AITD) are complex diseases that are caused by an interaction between susceptibility genes and environmental triggers. Genetic susceptibility, in combination with external factors (e.g., dietary iodine), is believed to initiate the autoimmune response to thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITD. Various techniques have been used to identify the genes contributing to the etiology of AITD, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions) that are linked with AITD, and in some of these loci putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to Graves' disease (GD) and Hashimoto's thyroiditis (HT), and some are common to both diseases, indicating that there is a shared genetic susceptibility to GD and HT. The putative GD and HT susceptibility genes include both immune modifying genes (e.g., human leukocyte antigen, cytotoxic T lymphocyte antigen-4) and thyroid-specific genes (e.g., TSH receptor, thyroglobulin). Most likely these loci interact, and their interactions may influence disease phenotype and severity. It is hoped that in the near future additional AITD susceptibility genes will be identified and the mechanisms by which they induce AITD will be unraveled.
Collapse
Affiliation(s)
- Yaron Tomer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
48
|
Abstract
Some autoimmune diseases have high female/male (F/M) ratios. Definitions and classifications of autoimmune diseases differ, as do the F/M ratios themselves. The sex ratio of lupus is the single most prominent, little explored clinical fact that may lead to understanding of how lupus and other autoimmune diseases occur. The objective of this study was to evaluate evidence for causes of high F/M ratios of autoimmune and non-immunologic diseases. This was done by a literature review. Some thyroid, rheumatic and hepatic diseases consistently have high F/M ratios; other autoimmune diseases have low ratios. Because F/M ratios reflect disease incidence, not disease severity, an intrinsic biologic cause for the F/M ratios (such as estrogen) would be likely to act through a threshold or permissive mechanism rather than through quantitative immunomodulation. Sex differences related to environmental exposure, X-inactivation, imprinting, X or Y chromosome genes and intrauterine influences are other possible explanations for sex differences of incidence. The epidemiology of the sex discrepant autoimmune diseases, young, female, suggests that an explanation for sex discrepancy lies in differential exposure, vulnerable periods or thresholds, rather than in quantitative aspects of immunomodulation.
Collapse
Affiliation(s)
- M D Lockshin
- Barbara Volcker Center, Hospital for Special Surgery, Joan and Sanford I. Weill Medical College, Cornell University, New York, USA.
| |
Collapse
|
49
|
Ringold DA, Nicoloff JT, Kesler M, Davis H, Hamilton A, Mack T. Further evidence for a strong genetic influence on the development of autoimmune thyroid disease: the California twin study. Thyroid 2002; 12:647-53. [PMID: 12225632 DOI: 10.1089/105072502760258613] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To determine the heritable component of Graves' disease (GD) more precisely, a disease survey questionnaire completed by 13,726 California-born twin pairs over the age of 37 years was used as the foundation of this study. On the basis of this survey, each member of pairs reporting a past diagnosis of GD was then sought for an extensive telephone interview to seek diagnostic confirmation. Successful diagnostic evaluation occurred in 108 cases, of which 99 affected twin pairs form the basis of this report. The results indicate that the estimated pairwise concordance for is 17% in monozygotic (MZ) twins, and 1.9% in dizygotic (DZ) twins, which are in close agreement with a recent report from a Danish twin population. Moreover, the reported 3.9% occurrence of GD found in the first-degree relatives of affected twin pairs supports these findings. In contrast, only 0.45% of all twins, 0.27% of the spouses of twins, and approximately 0.16% of the first-degree relatives of unaffected twins were reported to have GD. Additionally, among the unaffected MZ twins of patients with GD, 17% reported having chronic thyroiditis and 10% other nonthyroid autoimmune conditions such as lupus erythematosus, pernicious anemia, or idiopathic thrombocytopenic purpura. Thus, a genetic predisposition appears to be shared for both thyroid and some nonthyroid autoimmune diseases. While it seems that GD is a strongly and nonspecifically heritable condition, the relatively low level of twin concordance indicates that this disease likely requires a nonheritable etiologic determinant(s) as well.
Collapse
Affiliation(s)
- Daniel A Ringold
- Department of Internal Medicine, Keck School of Medicine at the University of Southern California School of Medicine, Los Angeles, California 90089-9023, USA
| | | | | | | | | | | |
Collapse
|
50
|
Rodewald HR, Paul S, Haller C, Bluethmann H, Blum C. Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 2001; 414:763-8. [PMID: 11742403 DOI: 10.1038/414763a] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The thymus is organized into medullary and cortical zones that support distinct stages of T-cell development. The formation of medulla and cortex compartments is thought to occur through invagination of an endodermal epithelial sheet into an ectodermal one at the third pharyngeal pouch and cleft, respectively. Epithelial stem/progenitor cells have been proposed to be involved in thymus development, but evidence for their existence has been elusive. We have constructed chimaeric mice by injecting embryonic stem (ES) cells into blastocysts using ES cells and blastocysts differing in their major histocompatibility complex (MHC) type. Here we show that the MHC class-II-positive medullary epithelium in these chimaeras is composed of cell clusters, most of which derive from either embryonic stem cell or blastocyst, but not mixed, origin. Thus, the medulla comprises individual epithelial 'islets' each arising from a single progenitor. One thymic lobe has about 300 medullary areas that originate from as few as 900 progenitors. Islet formation can be recapitulated after implantation of 'reaggregated fetal thymic organs' into mice, which shows that medullary 'stem' cells retain their potential until at least day 16.5 in fetal development. Thus, medulla-cortex compartmentalization is established by formation of medullary islets from single progenitors.
Collapse
Affiliation(s)
- H R Rodewald
- Department for Immunology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| | | | | | | | | |
Collapse
|