1
|
Blöchl C, Stork EM, Scherer HU, Toes REM, Wuhrer M, Domínguez‐Vega E. Fc Proteoforms of ACPA IgG Discriminate Autoimmune Responses in Plasma and Synovial Fluid of Rheumatoid Arthritis Patients and Associate with Disease Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408769. [PMID: 39985219 PMCID: PMC12005756 DOI: 10.1002/advs.202408769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/26/2024] [Indexed: 02/24/2025]
Abstract
Autoantibodies and their post-translational modifications (PTMs) are insightful markers of autoimmune diseases providing diagnostic and prognostic clues, thereby informing clinical decisions. However, current autoantibody analyses focus mostly on IgG1 glycosylation representing only a subpopulation of the actual IgG proteome. Here, by taking rheumatoid arthritis (RA) as prototypic autoimmune disease, we sought to circumvent these shortcomings and illuminate the importance of (auto)antibody proteoforms employing a novel comprehensive mass spectrometry (MS)-based analytical workflow. Profiling of anti-citrullinated protein antibodies (ACPA) IgG and total IgG in paired samples of plasma and synovial fluid revealed a clear distinction of autoantibodies from total IgG and between biofluids. This discrimination relied on comprehensive subclass-specific PTM profiles including previously neglected features such as IgG3 CH3 domain glycosylation, allotype ratios, and non-glycosylated IgG. Intriguingly, specific proteoforms were found to correlate with markers of inflammation and disease accentuating the need of such approaches in clinical investigations and calling for further mechanistic studies to comprehend the role of autoantibody proteoforms in defining autoimmune responses.
Collapse
Affiliation(s)
- Constantin Blöchl
- Center for Proteomics and MetabolomicsLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Eva Maria Stork
- Department of RheumatologyLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Hans Ulrich Scherer
- Department of RheumatologyLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Rene E. M. Toes
- Department of RheumatologyLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and MetabolomicsLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Elena Domínguez‐Vega
- Center for Proteomics and MetabolomicsLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| |
Collapse
|
2
|
Budylowski P, Chau SLL, Banerjee A, Guvenc F, Samson R, Hu Q, Fiddes L, Seifried L, Chao G, Buchholz M, Estacio A, Cheatley PL, Pavenski K, Patriquin CJ, Liu Y, Sheikh-Mohamed S, Crasta K, Yue F, Pasic MD, Mossman K, Gingras AC, Gommerman JL, Ehrhardt GRA, Mubareka S, Ostrowski M. A Significant Contribution of the Classical Pathway of Complement in SARS-CoV-2 Neutralization of Convalescent and Vaccinee Sera. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1922-1931. [PMID: 38683124 DOI: 10.4049/jimmunol.2300320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Although high titers of neutralizing Abs in human serum are associated with protection from reinfection by SARS-CoV-2, there is considerable heterogeneity in human serum-neutralizing Abs against SARS-CoV-2 during convalescence between individuals. Standard human serum live virus neutralization assays require inactivation of serum/plasma prior to testing. In this study, we report that the SARS-CoV-2 neutralization titers of human convalescent sera were relatively consistent across all disease states except for severe COVID-19, which yielded significantly higher neutralization titers. Furthermore, we show that heat inactivation of human serum significantly lowered neutralization activity in a live virus SARS-CoV-2 neutralization assay. Heat inactivation of human convalescent serum was shown to inactivate complement proteins, and the contribution of complement in SARS-CoV-2 neutralization was often >50% of the neutralizing activity of human sera without heat inactivation and could account for neutralizing activity when standard titers were zero after heat inactivation. This effect was also observed in COVID-19 vaccinees and could be abolished in individuals who were undergoing treatment with therapeutic anti-complement Abs. Complement activity was mainly dependent on the classical pathway with little contributions from mannose-binding lectin and alternative pathways. Our study demonstrates the importance of the complement pathway in significantly increasing viral neutralization activity against SARS-CoV-2 in spike seropositive individuals.
Collapse
Affiliation(s)
- Patrick Budylowski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Serena L L Chau
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arinjay Banerjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Furkan Guvenc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Reuben Samson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Lindsey Fiddes
- Microscopy Imaging Lab, University of Toronto, Toronto, Ontario, Canada
| | - Laurie Seifried
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Gary Chao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Megan Buchholz
- Apheresis Unit, Kidney and Metabolism Program, St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| | - Antonio Estacio
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| | - Patti Lou Cheatley
- Apheresis Unit, Kidney and Metabolism Program, St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| | - Katerina Pavenski
- Apheresis Unit, Kidney and Metabolism Program, St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine, St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| | - Christopher J Patriquin
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kimberly Crasta
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - FengYun Yue
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maria D Pasic
- Department of Immunology, Unity Health Toronto, Toronto, Ontario, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | | | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Alemán OR, Rosales C. Human neutrophil Fc gamma receptors: different buttons for different responses. J Leukoc Biol 2023; 114:571-584. [PMID: 37437115 DOI: 10.1093/jleuko/qiad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Neutrophils are fundamental cells in host defense. These leukocytes are quickly recruited from the blood to sites of infection or tissue damage. At these sites, neutrophils initiate several innate immune responses, including phagocytosis, production of reactive oxygen species, degranulation to release proteases and other antimicrobial compounds, production of inflammatory mediators, and formation of neutrophil extracellular traps. In addition to their role in innate immunity, neutrophils are now recognized as cells that also regulate adaptive immunity, via interaction with dendritic cells and lymphocytes. Neutrophils also respond to adaptive immunity by interacting with antibody molecules. Indeed, antibody molecules allow neutrophils to have antigen-specific responses. Neutrophils express different receptors for antibodies. The receptors for immunoglobulin G molecules are known as Fcγ receptors. Upon Fcγ receptor aggregation on the cell membrane, these receptors trigger distinct signal transduction cascades that activate particular cellular responses. In this review, we describe the major Fcγ receptors expressed on human neutrophils and discuss how each Fcγ receptor activates a choice of signaling pathways to stimulate particular neutrophil responses.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
4
|
Chou CY, Li ZQ, Huang HC, Hung CH, Weng SL, Tzou SC. Development of an Albumin-Masked mutPD-1Ig as a Tumor Lesion-Selective Immune Checkpoint Inhibitor. ACS OMEGA 2023; 8:40911-40920. [PMID: 37929112 PMCID: PMC10621011 DOI: 10.1021/acsomega.3c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The antitumor effects elicited by immune checkpoint inhibitors (ICIs) have transformed cancer treatments. However, severe immune-related adverse events (irAEs) resulting from these treatments have restricted the application of ICIs. To overcome the adverse events, we developed a tumor lesion-selective pro-PD-1Ig that is activated by proteases overexpressed in tumors. We genetically linked albumin to the N-terminus of a modified PD-1Ig (termed mutPD-1Ig hereafter) via an MMP substrate sequence to form Alb-hinge-mutPD-1Ig. We demonstrate that the binding activity of nondigested Alb-hinge-mutPD-1Ig is approximately 11-folds lower than mutPD-1Ig. However, digestion by type IV collagenase restored the binding activity of Alb-hinge-mutPD-1Ig to a level comparable to that of native mutPD-1Ig. In order to enhance the masking efficiency of Alb-mutPD-1Ig, we simulated the effects of diverse MMP substrate linkers for connecting albumin and PD-1 at various starting positions by bioinformatics tools. Our validation experiments indicate Alb-hinge-mutPD-1Ig displayed the best masking efficiency among all simulated constructs. Our study suggests that albumin may be best applicable to mask a target protein whose binding motif is centralized and in the proximity of the N-terminus of the protein.
Collapse
Affiliation(s)
- Chien-Yu Chou
- Institute
of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsin-Chu 300, Taiwan, Republic Of China
| | - Zhi-Qin Li
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsin-Chu 300, Taiwan, Republic Of China
| | - Hsiao-Chen Huang
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsin-Chu 300, Taiwan, Republic Of China
| | - Chung-Heng Hung
- Institute
of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsin-Chu 300, Taiwan, Republic Of China
| | - Shun-Long Weng
- Department
of Medicine, MacKay Medical College, New Taipei City 207, Taiwan, Republic
Of China
- MacKay
Junior College of Medicine, Nursing and
Management, Taipei City 100-116, Taiwan, Republic Of China
- Department
of Obstetrics and Gynecology, Hsinchu MacKay
Memorial Hospital, 690
Section 2, Guan-Fu Road, Hsinchu City 300, Taiwan, Republic Of China
| | - Shey-Cherng Tzou
- Institute
of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsin-Chu 300, Taiwan, Republic Of China
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsin-Chu 300, Taiwan, Republic Of China
- Drug Development
and Value Creation Research Center, and Department of Biomedical Science
and Environmental Biology, Kaohsiung Medical
University, Kaohsiung 800-852, Taiwan, Republic Of China
- Center
for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsin-Chu 300, Taiwan, Republic
Of China
| |
Collapse
|
5
|
Zhang D, Qiu J, Niu QT, Liu T, Gu R, Zhang X, Luo S. Effects of various pine needle extracts on Chinese hamster ovary cell growth and monoclonal antibody quality. Prep Biochem Biotechnol 2023; 53:1081-1091. [PMID: 36756987 DOI: 10.1080/10826068.2023.2166959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Chinese hamster ovary (CHO) cells are commonly used as "bio-machines" to pro-duce monoclonal antibodies (mAb) because of their ability to produce very complex proteins. In this study, we evaluated the effects of pine needle water extract (PNWE), pine needle ethanol extract (PNEE), and pine needle polysaccharide extract (PNPE) on the CHO cell growth, mAb production and quality using a Fed-batch culture process. PNPE maintained high VCD and viability, and the titer increase was correlated with its concentration. Three extracts effectively reduced the acidic charge variant and modulated mAb glycosylation. PNPE had the most profound effect, with G0F decreasing by 8.7% and G1Fa increasing by 6.7%. The change in the glycoform was also closely related to the PNPE concentration. This study demonstrated that PNPE could facilitate CHO cell growth, increase the mAb production, decrease acidic charge variants, and regulate mAb glycoforms. To identify the components responsible for the above changes, the sugar and flavonoid contents in the extracts were determined, and the chemical compounds were identified by LC-MS, resulting in 38 compounds identified from PNPE. Rich in sugars and flavonoids in these three extracts may be related to increased CHO cell growth and productivity, and changes in glycoforms.
Collapse
Affiliation(s)
- Dingyue Zhang
- Anhui University of Chinese Medicine, Hefei, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
| | - Jinshu Qiu
- Thousand Oaks Biopharmaceuticals Co., Ltd., Nantong, China
| | - Qing-Tian Niu
- Thousand Oaks Biopharmaceuticals Co., Ltd., Nantong, China
| | - Tingting Liu
- Thousand Oaks Biopharmaceuticals Co., Ltd., Nantong, China
| | - Rulin Gu
- Thousand Oaks Biopharmaceuticals Co., Ltd., Nantong, China
| | - Xiaoying Zhang
- Thousand Oaks Biopharmaceuticals Co., Ltd., Nantong, China
| | - Shun Luo
- Anhui University of Chinese Medicine, Hefei, China
- Thousand Oaks Biopharmaceuticals Co., Ltd., Nantong, China
| |
Collapse
|
6
|
Chia S, Tay SJ, Song Z, Yang Y, Walsh I, Pang KT. Enhancing pharmacokinetic and pharmacodynamic properties of recombinant therapeutic proteins by manipulation of sialic acid content. Biomed Pharmacother 2023; 163:114757. [PMID: 37087980 DOI: 10.1016/j.biopha.2023.114757] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023] Open
Abstract
The circulatory half-life of recombinant therapeutic proteins is an important pharmacokinetic attribute because it determines the dosing frequency of these drugs, translating directly to treatment cost. Thus, recombinant therapeutic glycoproteins such as monoclonal antibodies have been chemically modified by various means to enhance their circulatory half-life. One approach is to manipulate the N-glycan composition of these agents. Among the many glycan constituents, sialic acid (specifically, N-acetylneuraminic acid) plays a critical role in extending circulatory half-life by masking the terminal galactose that would otherwise be recognised by the hepatic asialoglycoprotein receptor (ASGPR), resulting in clearance of the biotherapeutic from the circulation. This review aims to provide an illustrative overview of various strategies to enhance the pharmacokinetic/pharmacodynamic properties of recombinant therapeutic proteins through manipulation of their sialic acid content.
Collapse
Affiliation(s)
- Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore.
| | - Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, 637459, Singapore.
| |
Collapse
|
7
|
Zhang W, Wang H, Feng N, Li Y, Gu J, Wang Z. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib Ther 2022; 6:13-29. [PMID: 36683767 PMCID: PMC9847343 DOI: 10.1093/abt/tbac029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Developability refers to the likelihood that an antibody candidate will become a manufacturable, safe and efficacious drug. Although the safety and efficacy of a drug candidate will be well considered by sponsors and regulatory agencies, developability in the narrow sense can be defined as the likelihood that an antibody candidate will go smoothly through the chemistry, manufacturing and control (CMC) process at a reasonable cost and within a reasonable timeline. Developability in this sense is the focus of this review. To lower the risk that an antibody candidate with poor developability will move to the CMC stage, the candidate's developability-related properties should be screened, assessed and optimized as early as possible. Assessment of developability at the early discovery stage should be performed in a rapid and high-throughput manner while consuming small amounts of testing materials. In addition to monoclonal antibodies, bispecific antibodies, multispecific antibodies and antibody-drug conjugates, as the derivatives of monoclonal antibodies, should also be assessed for developability. Moreover, we propose that the criterion of developability is relative: expected clinical indication, and the dosage and administration route of the antibody could affect this criterion. We also recommend a general screening process during the early discovery stage of antibody-derived therapeutics. With the advance of artificial intelligence-aided prediction of protein structures and features, computational tools can be used to predict, screen and optimize the developability of antibody candidates and greatly reduce the risk of moving a suboptimal candidate to the development stage.
Collapse
Affiliation(s)
- Weijie Zhang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Hao Wang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Nan Feng
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Yifeng Li
- Technology and Process Development, WuXi Biologicals, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jijie Gu
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Zhuozhi Wang
- To whom correspondence should be addressed. Biologics Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China, Phone number: +86-21-50518899
| |
Collapse
|
8
|
Narvekar A, Pardeshi A, Jain R, Dandekar P. ADCC enhancement: A conundrum or a boon to mAb therapy? Biologicals 2022; 79:10-18. [PMID: 36085129 DOI: 10.1016/j.biologicals.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/27/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
The ability of antibodies to distinctly identify the antigens is an important feature exploited by the scientific community for the treatment of various diseases. The therapeutic action of monoclonal antibodies (mAbs) is mediated along with the cells of the immune system, such as natural killer cells, T cells and macrophages. The two major mechanisms that govern the therapeutic efficacy of mAbs are the antibody dependent cell mediated cytotoxicity (ADCC) and the complement dependent cytotoxicity (CDC). Consequently, much of the research dedicated to improving their action is focussed on enhancing either of these mechanisms. This manuscript focuses on the strategies to enhance ADCC, for providing more efficacious mAb therapeutics. These approaches essentially bring about changes in the elements of ADCC mechanism, such as the effector cell or the antibody itself and thus favour an enhanced therapeutic response. Several technologies of ADCC enhancement have been developed, based on the success of various strategies advanced by the researchers. These technologies show success with a few antibody therapeutics while they do not work with others. This review presents a detailed overview on these strategies and presents perspectives regarding the same.
Collapse
Affiliation(s)
- Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Apurva Pardeshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
9
|
An Integrated Proteomic and Glycoproteomic Investigation Reveals Alterations in the N-Glycoproteomic Network Induced by 2-Deoxy-D-Glucose in Colorectal Cancer Cells. Int J Mol Sci 2022; 23:ijms23158251. [PMID: 35897829 PMCID: PMC9331968 DOI: 10.3390/ijms23158251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
As a well-known glycolysis inhibitor for anticancer treatment, 2-Deoxy-D-glucose (2DG) inhibits the growth and survival of cancer cells by interfering with the ATP produced by the metabolism of D-glucose. In addition, 2DG inhibits protein glycosylation in vivo by competing with D-mannose, leading to endoplasmic reticulum (ER) stress and unfolded protein responses in cancer cells. However, the molecular details underlying the impact of 2DG on protein glycosylation remain largely elusive. With an integrated approach to glycoproteomics and proteomics, we characterized the 2DG-induced alterations in N-glycosylation, as well as the cascading impacts on the whole proteome using the HT29 colorectal cancer cell line as a model system. More than 1700 site-specific glycoforms, represented by unique intact glycopeptides (IGPs), were identified. The treatment of 2DG had a broad effect on the N-glycoproteome, especially the high-mannose types. The glycosite occupancy of the high-mannose N-glycans decreased the most compared with the sialic acid and fucose-containing N-glycans. Many of the proteins with down-regulated high-mannose were implicated in functional networks related to response to topologically incorrect protein, integrin-mediated signaling, lysosomal transport, protein hydroxylation, vacuole, and protein N-glycosylation. The treatment of 2DG also functionally disrupted the global cellular proteome, evidenced by significant up-regulation of the proteins implicated in protein folding, endoplasmic reticulum, mitochondrial function, cellular respiration, oxidative phosphorylation, and translational termination. Taken together, these findings reveal the complex changes in protein glycosylation and expression underlying the various effects of 2DG on cancer cells, and may provide insightful clues to inform therapeutic development targeting protein glycosylation.
Collapse
|
10
|
Adhikari E, Liu Q, Burton C, Mockabee-Macias A, Lester DK, Lau E. l-fucose, a sugary regulator of antitumor immunity and immunotherapies. Mol Carcinog 2022; 61:439-453. [PMID: 35107186 DOI: 10.1002/mc.23394] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
l-fucose is a dietary sugar that is used by cells in a process called fucosylation to posttranslationally modify and regulate protein behavior and function. As fucosylation plays essential cellular functions in normal organ and immune developmental and homeostasis, it is perhaps not surprising that it has been found to be perturbed in a number of pathophysiological contexts, including cancer. Increasing studies over the years have highlighted key roles that altered fucosylation can play in cancer cell-intrinsic as well as paracrine signaling and interactions. In particular, studies have demonstrated that fucosylation impact tumor:immunological interactions and significantly enhance or attenuate antitumor immunity. Importantly, fucosylation appears to be a posttranslational modification that can be therapeutically targeted, as manipulating the molecular underpinnings of fucosylation has been shown to be sufficient to impair or block tumor progression and to modulate antitumor immunity. Moreover, the fucosylation of anticancer agents, such as therapeutic antibodies, has been shown to critically impact their efficacy. In this review, we summarize the underappreciated roles that fucosylation plays in cancer and immune cells, as well as the fucosylation of therapeutic antibodies or the manipulation of fucosylation and their implications as new therapeutic modalities for cancer.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Qian Liu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Chase Burton
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Andrea Mockabee-Macias
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Daniel K Lester
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
11
|
Heffner KM, Wang Q, Hizal DB, Can Ö, Betenbaugh MJ. Glycoengineering of Mammalian Expression Systems on a Cellular Level. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021. [PMID: 29532110 DOI: 10.1007/10_2017_57] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian expression systems such as Chinese hamster ovary (CHO), mouse myeloma (NS0), and human embryonic kidney (HEK) cells serve a critical role in the biotechnology industry as the production host of choice for recombinant protein therapeutics. Most of the recombinant biologics are glycoproteins that contain complex oligosaccharide or glycan attachments representing a principal component of product quality. Both N-glycans and O-glycans are present in these mammalian cells, but the engineering of N-linked glycosylation is of critical interest in industry and many efforts have been directed to improve this pathway. This is because altering the N-glycan composition can change the product quality of recombinant biotherapeutics in mammalian hosts. In addition, sialylation and fucosylation represent components of the glycosylation pathway that affect circulatory half-life and antibody-dependent cellular cytotoxicity, respectively. In this chapter, we first offer an overview of the glycosylation, sialylation, and fucosylation networks in mammalian cells, specifically CHO cells, which are extensively used in antibody production. Next, genetic engineering technologies used in CHO cells to modulate glycosylation pathways are described. We provide examples of their use in CHO cell engineering approaches to highlight these technologies further. Specifically, we describe efforts to overexpress glycosyltransferases and sialyltransfereases, and efforts to decrease sialidase cleavage and fucosylation. Finally, this chapter covers new strategies and future directions of CHO cell glycoengineering, such as the application of glycoproteomics, glycomics, and the integration of 'omics' approaches to identify, quantify, and characterize the glycosylated proteins in CHO cells. Graphical Abstract.
Collapse
Affiliation(s)
- Kelley M Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Özge Can
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Dyukova I, Ben Faleh A, Warnke S, Yalovenko N, Yatsyna V, Bansal P, Rizzo TR. A new approach for identifying positional isomers of glycans cleaved from monoclonal antibodies. Analyst 2021; 146:4789-4795. [PMID: 34231555 PMCID: PMC8311261 DOI: 10.1039/d1an00780g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Glycosylation patterns in monoclonal antibodies (mAbs) can vary significantly between different host cell types, and these differences may affect mAbs safety, efficacy, and immunogenicity. Recent studies have demonstrated that glycan isomers with the terminal galactose position on either the Man α1-3 arm or the Man α1-6 arm have an impact on the effector functions and dynamic structure of mAbs. The development of a robust method to distinguish positional isomers of glycans is thus critical to guarantee mAb quality. In this work, we apply high-resolution ion mobility combined with cryogenic infrared spectroscopy to distinguish isomeric glycans with different terminal galactose positions, using G1F as an example. Selective enzymatic synthesis of the G1(α1-6)F isomer allows us to assign the peaks in the arrival-time distributions and the infrared spectra to their respective isomeric forms. Moreover, we demonstrate the impact of the host cell line (CHO and HEK-293) on the IgG G1F gycan profile at the isomer level. This work illustrates the potential of our approach for glycan analysis of mAbs.
Collapse
Affiliation(s)
- Irina Dyukova
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Ahmed Ben Faleh
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Natalia Yalovenko
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Vasyl Yatsyna
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
- University of Gothenburg, Department of Physics412 96 GothenburgSweden
| | - Priyanka Bansal
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| |
Collapse
|
13
|
Low-density PD-1 expression on resting human natural killer cells is functional and upregulated after transplantation. Blood Adv 2021; 5:1069-1080. [PMID: 33599743 DOI: 10.1182/bloodadvances.2019001110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
Expression of programmed cell death protein 1 (PD-1) on natural killer (NK) cells has been difficult to analyze on human NK cells. By testing commercial clones and novel anti-PD-1 reagents, we found expression of functional PD-1 on resting human NK cells in healthy individuals and reconstituting NK cells early after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Peripheral blood samples from healthy individuals and transplant recipients were stained for PD-1 expression using the commercial anti-PD-1 clone PD1.3.1.3, fluorescein isothiocyanate (FITC)-labeled pembrolizumab, or an FITC-labeled single-chain variable fragment (scFv) reagent made from pembrolizumab. These reagents identified low yet consistent basal PD-1 expression on resting NK cells, a finding verified by finding lower PD-1 transcripts in sorted NK cells compared with those in resting or activated T cells. An increase in PD-1 expression was identified on paired resting NK cells after allo-HSCT. Blockade of PD-1 on resting NK cells from healthy donors with pembrolizumab did not enhance NK function against programmed death-ligand 1 (PD-L1)-expressing tumor lines, but blocking with its scFv derivative resulted in a twofold increase in NK cell degranulation and up to a fourfold increase in cytokine production. In support of this mechanism, PD-L1 overexpression of K562 targets suppressed NK cell function. Interleukin-15 (IL-15) activity was potent and could not be further enhanced by PD-1 blockade. A similar increase in function was observed with scFv PD-1 blockade on resting blood NK cells after allo-HSCT. We identify the functional importance of the PD-1/PD-L1 axis on human NK cells in which blockade or activation to overcome inhibition will enhance NK cell-mediated antitumor control.
Collapse
|
14
|
Yu X, Wang W. A Rapidly Aging World in the 21st Century: Hopes from Glycomics and Unraveling the Biomarkers of Aging with the Sugar Code. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:242-248. [PMID: 33794663 DOI: 10.1089/omi.2021.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A global rise in life expectancy comes with an increased burden of serious life-long health issues and the need for useful real-time measures of the aging processes. Studies have shown the value of biochemical signatures of immunoglobulin G (IgG) N-glycosylation as clinically relevant biomarkers to differentiate healthy from accelerated aging. Most human biological processes rely on glycosylation of proteins to regulate their function, but these events appear sensitive to environmental changes, age, and the presence of disease. Specifically, variations in N-glycosylation of IgG can adversely affect inflammatory pathways underpinning unhealthy aging and chronic disease pathogenesis. This expert review highlights the discrepancies between an organism's age in years of life (chronological age) versus age in terms of health status (biological age). The article examines and synthesizes the studies on IgG N-glycan profiles and the third alphabet of life, the sugar code, in relation to their relevance as dynamic indicators of aging, and to differentiate between normal and accelerated aging. The levels of N-glycan structures change with aging, suggesting that monitoring the alterations of serum glycan biosignatures with glycomics might allow real-time studies of human aging in the near future. Glycomics brings in yet another systems science technology platform to strengthen the emerging multiomics studies of aging and aging-related diseases.
Collapse
Affiliation(s)
- Xinwei Yu
- Department of Infection Control, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Center for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- School of Public Health, Shandong First Medical University, Tai'an, China
- First Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
15
|
Granel J, Korkmaz B, Nouar D, Weiss SAI, Jenne DE, Lemoine R, Hoarau C. Pathogenicity of Proteinase 3-Anti-Neutrophil Cytoplasmic Antibody in Granulomatosis With Polyangiitis: Implications as Biomarker and Future Therapies. Front Immunol 2021; 12:571933. [PMID: 33679731 PMCID: PMC7930335 DOI: 10.3389/fimmu.2021.571933] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Granulomatosis with polyangiitis (GPA) is a rare but serious necrotizing auto-immune vasculitis. GPA is mostly associated with the presence of Anti-Neutrophil Cytoplasmic Antibody (ANCA) targeting proteinase 3 (PR3-ANCA), a serine protease contained in neutrophil granules but also exposed at the membrane. PR3-ANCAs have a proven fundamental role in GPA: they bind neutrophils allowing their auto-immune activation responsible for vasculitis lesions. PR3-ANCAs bind neutrophil surface on the one hand by their Fab binding PR3 and on the other by their Fc binding Fc gamma receptors. Despite current therapies, GPA is still a serious disease with an important mortality and a high risk of relapse. Furthermore, although PR3-ANCAs are a consistent biomarker for GPA diagnosis, relapse management currently based on their level is inconsistent. Indeed, PR3-ANCA level is not correlated with disease activity in 25% of patients suggesting that not all PR3-ANCAs are pathogenic. Therefore, the development of new biomarkers to evaluate disease activity and predict relapse and new therapies is necessary. Understanding factors influencing PR3-ANCA pathogenicity, i.e. their potential to induce auto-immune activation of neutrophils, offers interesting perspectives in order to improve GPA management. Most relevant factors influencing PR3-ANCA pathogenicity are involved in their interaction with neutrophils: level of PR3 autoantigen at neutrophil surface, epitope of PR3 recognized by PR3-ANCA, isotype and glycosylation of PR3-ANCA. We detailed in this review the advances in understanding these factors influencing PR3-ANCA pathogenicity in order to use them as biomarkers and develop new therapies in GPA as part of a personalized approach.
Collapse
Affiliation(s)
- Jérôme Granel
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Brice Korkmaz
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
| | - Dalila Nouar
- Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Stefanie A I Weiss
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Roxane Lemoine
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France
| | - Cyrille Hoarau
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| |
Collapse
|
16
|
Kaur H. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Crit Rev Biotechnol 2021; 41:300-315. [PMID: 33430641 DOI: 10.1080/07388551.2020.1869684] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the structurally diverse and complex forms of post translational modifications observed in proteins which influence the effector functions of IgG-Fc. Although the glycosylation constitutes 2-3% of the total mass of the IgG antibody, a thorough assessment of glycoform distribution present on the antibody is a critical quality attribute (cQA) for the majority of novel and biosimilar monoclonal antibody (mAb) development. This review paper will highlight the impact of different glycoforms such as galactose, fucose, high mannose, NANA (N-acetylneuraminic acid), and NGNA (N-glycoylneuraminic acid) on the safety/immunogeneicity, efficacy/biological activity and clearance (pharmacodynamics/pharmacokinetic property (PD/PK)) of biological molecules. In addition, this paper will summarize routinely employed reliable analytical techniques such as hydrophilic interaction chromatography (HILIC), high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) for characterizing and monitoring glycosylation in monoclonal antibodies (mAbs). The advantages and disadvantages of each of the methods are addressed. The scope of this review paper is limited to only N-linked and O-linked glycosylation.
Collapse
Affiliation(s)
- Harleen Kaur
- Analytical Sciences, Aurobindo Biologics, Hyderabad, India
| |
Collapse
|
17
|
Glycoproteomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:413-434. [PMID: 33205259 DOI: 10.1007/10_2020_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. As such, comprehensive information about glycosylation of biotherapeutics is critical to demonstrate similarity. Regulatory agencies also require extensive documentation of the comprehensive analyses of glycosylation-related critical quality attributes (CQAs) during the development, manufacturing, and release of biosimilars. Mass spectrometry has catalysed tremendous advancements in the characterisation of glycosylation CQAs of biotherapeutics. Here we provide a perspective overview on the MS-based technologies relevant for biotherapeutic product characterisation with an emphasis on the recent developments that allow determination of glycosylation features such as site of glycosylation, sialic acid linkage, glycan structure, and content.
Collapse
|
18
|
Ma B, Guan X, Li Y, Shang S, Li J, Tan Z. Protein Glycoengineering: An Approach for Improving Protein Properties. Front Chem 2020; 8:622. [PMID: 32793559 PMCID: PMC7390894 DOI: 10.3389/fchem.2020.00622] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Natural proteins are an important source of therapeutic agents and industrial enzymes. While many of them have the potential to be used as highly effective medical treatments for a wide range of diseases or as catalysts for conversion of a range of molecules into important product types required by modern society, problems associated with poor biophysical and biological properties have limited their applications. Engineering proteins with reduced side-effects and/or improved biophysical and biological properties is therefore of great importance. As a common protein modification, glycosylation has the capacity to greatly influence these properties. Over the past three decades, research from many disciplines has established the importance of glycoengineering in overcoming the limitations of proteins. In this review, we will summarize the methods that have been used to glycoengineer proteins and briefly discuss some representative examples of these methods, with the goal of providing a general overview of this research area.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Lodge JM, Schauer KL, Brademan DR, Riley NM, Shishkova E, Westphall MS, Coon JJ. Top-Down Characterization of an Intact Monoclonal Antibody Using Activated Ion Electron Transfer Dissociation. Anal Chem 2020; 92:10246-10251. [PMID: 32608969 DOI: 10.1021/acs.analchem.0c00705] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies (mAbs) are important therapeutic glycoproteins, but their large size and structural complexity make them difficult to rapidly characterize. Top-down mass spectrometry (MS) has the potential to overcome challenges of other common approaches by minimizing sample preparation and preserving endogenous modifications. However, comprehensive mAb characterization requires generation of many, well-resolved fragments and remains challenging. While ETD retains modifications and cleaves disulfide bonds-making it attractive for mAb characterization-it can be less effective for precursors having high m/z values. Activated ion electron transfer dissociation (AI-ETD) uses concurrent infrared photoactivation to promote product ion generation and has proven effective in increasing sequence coverage of intact proteins. Here, we present the first application of AI-ETD to mAb sequencing. For the standard NIST mAb, we observe a high degree of complementarity between fragments generated using standard ETD with a short reaction time and AI-ETD with a long reaction time. Most importantly, AI-ETD reveals disulfide-bound regions that have been intractable, thus far, for sequencing with top-down MS. We conclude AI-ETD has the potential to rapidly and comprehensively analyze intact mAbs.
Collapse
|
20
|
Song K, Moon DB, Kim NY, Shin YK. Glycosylation Heterogeneity of Hyperglycosylated Recombinant Human Interferon-β (rhIFN-β). ACS OMEGA 2020; 5:6619-6627. [PMID: 32258897 PMCID: PMC7114697 DOI: 10.1021/acsomega.9b04385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/11/2020] [Indexed: 05/17/2023]
Abstract
We previously developed a biobetter version of rhIFN-β (R27T) that possesses an additional glycosylation site compared with rhIFN-β 1a. Herein, we characterized N-glycosylation heterogeneity of R27T, which includes both N-glycan site occupancy heterogeneity (macro-heterogeneity) and complexity of carbohydrate moieties (micro-heterogeneity). N-glycan site occupancy manifested as distinct differences in size and isoelectric point. The analysis of complex carbohydrate moieties of R27T involved the common biopharmaceutical glycosylation critical quality attributes such as core fucosylation, antennary composition, sialylation, N-acetyllactosamine extensions, linkages, and overall glycan profiles using weak anion-exchange and hydrophilic interaction high-performance liquid chromatography with 2-aminobenzoic acid-labeled N-glycans. The double-glycosylated form accounted for approx. 94% R27T, while the single-glycosylated form accounted for 6% R27T. N-glycans consisted of a mixture of bi-, tri-, and tetra-antennary glycans, some with N-acetyllactosamine extensions, but neither outer arm fucose nor α-galactose was detected. Sialic acid major variants, N-acetyl- and N-glycolyl-neuraminic acid, were more abundant in R27T than in Rebif. The major N-glycan, accounting for ∼42% of total N-glycans, had a di-sialylated, core-fucosylated bi-antennary structure.
Collapse
Affiliation(s)
- Kyoung Song
- LOGONE
Bio Convergence Research Foundation, Center
for Companion Diagnostics, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- . Phone: +82-2-880-9187
| | - Dae Bong Moon
- IFEZ
Bio Analysis Center, Yeonsu-Gu, Incheon 21985, Republic of Korea
| | - Na Young Kim
- ABION
Inc., R&D Center, Guro, Seoul 13488, Korea
| | - Young Kee Shin
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Molecular
Medicine and Biopharmaceutical Sciences, Graduate School of Convergence
Science and Technology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Bio-MAX/N-Bio, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- . Phone: +82-2-880-9187
| |
Collapse
|
21
|
Accelerating Biologics Manufacturing by Modeling: Process Integration of Precipitation in mAb Downstream Processing. Processes (Basel) 2020. [DOI: 10.3390/pr8010058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The demand on biologics has been constantly rising over the past decades and has become crucial in modern medicine. Promising approaches to cope with widespread diseases like cancer and diabetes are gene therapy, plasmid DNA, virus-like particles, and exosomes. Due to progress that has been made in upstream processing (USP), difficulties arise in downstream processing and demand for innovative solutions. This work focuses on the integration of precipitation using a quality by design (QbD) approach for process development. Selective precipitation is achieved with PEG 4000 resulting in an HCP depletion of ≥80% respectively to IgG. Dissolution was executed with a sodium phosphate buffer (pH = 5/50 mM) reaching an IgG recovery of ≥95%. However, the central challenge in process development is still an optimal process design, which is transferable for a broad molecular variety of new products. This is where rigorous modeling becomes vital in order to generate digital twins to support early-stage process development and reduce the experimental overhead. Therefore, a model development and validation concept for construction of a process model for precipitation is also presented.
Collapse
|
22
|
Bheemareddy BR, Pulipeta M, Iyer P, Dirisala VR. Effect of the total galactose content on complement-dependent cytotoxicity of the therapeutic anti-CD20 IgG1 antibodies under temperature stress conditions. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2018.1541995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | - Pradeep Iyer
- R&D Division, Hetero Biopharma Limited, Mahaboob Nagar, Telangana, India
| | - Vijaya R. Dirisala
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (VFSTR), Guntur, Andhra Pradesh, India
| |
Collapse
|
23
|
Sun W, Liu Y, Lajoie GA, Ma B, Zhang K. An Improved Approach for N-Linked Glycan Structure Identification from HCD MS/MS Spectra. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:388-395. [PMID: 28489544 DOI: 10.1109/tcbb.2017.2701819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glycosylation is a frequently observed post-translational modification on proteins. Currently, tandem mass spectrometry (MS/MS) serves as an efficient analytical technique for characterizing structures of oligosaccharides. However, developing effective computational approaches for identifying glycan structures from mass spectra is still a great challenge in glycoproteomics research. In this study, we proposed an approach for matching the input spectra with glycan structures acquired from a glycan structure database by incorporating a de novo sequencing assisted ranking scheme. The proposed approach is implemented as a software tool, GlycoNovoDB, for automated glycan structure identification from HCD MS/MS of glycopeptides. Experimental results showed that GlycoNovoDB can identify glycans effectively and has better performance than our previously proposed de novo sequencing algorithm as well as another software GlycoMaster DB.
Collapse
|
24
|
Methamphetamine Impairs IgG1-Mediated Phagocytosis and Killing of Cryptococcus neoformans by J774.16 Macrophage- and NR-9640 Microglia-Like Cells. Infect Immun 2019; 87:IAI.00113-18. [PMID: 30510106 DOI: 10.1128/iai.00113-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/27/2018] [Indexed: 01/14/2023] Open
Abstract
The prevalence of methamphetamine (METH) use is estimated at ∼35 million people worldwide, with over 10 million users in the United States. Chronic METH abuse and dependence predispose the users to participate in risky behaviors that may result in the acquisition of HIV and AIDS-related infections. Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis, an opportunistic infection that has recently been associated with drug users. METH enhances C. neoformans pulmonary infection, facilitating its dissemination and penetration into the central nervous system in mice. C. neoformans is a facultative intracellular microorganism and an excellent model to study host-pathogen interactions. METH compromises phagocyte effector functions, which might have deleterious consequences on infection control. In this study, we investigated the role of METH in phagocytosis and antigen processing by J774.16 macrophage- and NR-9460 microglia-like cells in the presence of a specific IgG1 to C. neoformans capsular polysaccharide. METH inhibits antibody-mediated phagocytosis of cryptococci by macrophages and microglia, likely due to reduced expression of membrane-bound Fcγ receptors. METH interferes with phagocytic cells' phagosomal maturation, resulting in impaired fungal control. Phagocytic cell reduction in nitric oxide production during interactions with cryptococci was associated with decreased levels of tumor necrosis factor alpha (TNF-α) and lowered expression of Fcγ receptors. Importantly, pharmacological levels of METH in human blood and organs are cytotoxic to ∼20% of the phagocytes. Our findings suggest that METH abrogates immune cellular and molecular functions and may be deadly to phagocytic cells, which may result in increased susceptibility of users to acquire infectious diseases.
Collapse
|
25
|
Martínez T, Garcia-Robledo JE, Plata I, Urbano MA, Posso-Osorio I, Rios-Serna LJ, Barrera MC, Tobón GJ. Mechanisms of action and historical facts on the use of intravenous immunoglobulins in systemic lupus erythematosus. Autoimmun Rev 2019; 18:279-286. [PMID: 30639648 DOI: 10.1016/j.autrev.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/29/2022]
Abstract
The current existing therapies for severe cases of systemic lupus erythematosus (SLE) patients are still limited. Intravenous immunoglobulin (IVIGs), which are purified from the plasma of thousands of healthy human donors, have been profiled as efficacious and life-saving options for SLE patients refractory to conventional therapy. The specific mechanism of action by which IVIGs generate immunomodulation in SLE is not currently understood. In this manuscript, we reviewed some of the hypothesis that have been postulated to explain the IVIG effects, including those on T and B cell intracellular signalling and activation, as well as the interferon signalling pathways involved in the detection of nucleic acids and the defective removal of immune complexes and debris.
Collapse
Affiliation(s)
- Tatiana Martínez
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | | | - Ilich Plata
- Medical School, Universidad Icesi, Cali, Colombia
| | | | - Ivan Posso-Osorio
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - Lady J Rios-Serna
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - María Claudia Barrera
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - Gabriel J Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia; Laboratory of immunology, Fundación Valle del Lili, Cali, Colombia.
| |
Collapse
|
26
|
Kini RM, Sidhu SS, Laustsen AH. Biosynthetic Oligoclonal Antivenom (BOA) for Snakebite and Next-Generation Treatments for Snakebite Victims. Toxins (Basel) 2018; 10:toxins10120534. [PMID: 30551565 PMCID: PMC6315346 DOI: 10.3390/toxins10120534] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that each year claims the lives of 80,000–140,000 victims worldwide. The only effective treatment against envenoming involves intravenous administration of antivenoms that comprise antibodies that have been isolated from the plasma of immunized animals, typically horses. The drawbacks of such conventional horse-derived antivenoms include their propensity for causing allergenic adverse reactions due to their heterologous and foreign nature, an inability to effectively neutralize toxins in distal tissue, a low content of toxin-neutralizing antibodies, and a complex manufacturing process that is dependent on husbandry and procurement of snake venoms. In recent years, an opportunity to develop a fundamentally novel type of antivenom has presented itself. By using modern antibody discovery strategies, such as phage display selection, and repurposing small molecule enzyme inhibitors, next-generation antivenoms that obviate the drawbacks of existing plasma-derived antivenoms could be developed. This article describes the conceptualization of a novel therapeutic development strategy for biosynthetic oligoclonal antivenom (BOA) for snakebites based on recombinantly expressed oligoclonal mixtures of human monoclonal antibodies, possibly combined with repurposed small molecule enzyme inhibitors.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Sachdev S Sidhu
- Department of Molecular Genetics, The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
27
|
Boosting half-life and effector functions of therapeutic antibodies by Fc-engineering: An interaction-function review. Int J Biol Macromol 2018; 119:306-311. [DOI: 10.1016/j.ijbiomac.2018.07.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/20/2022]
|
28
|
Glycosylation Flux Analysis of Immunoglobulin G in Chinese Hamster Ovary Perfusion Cell Culture. Processes (Basel) 2018. [DOI: 10.3390/pr6100176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The terminal sugar molecules of the N-linked glycan attached to the fragment crystalizable (Fc) region is a critical quality attribute of therapeutic monoclonal antibodies (mAbs) such as immunoglobulin G (IgG). There exists naturally-occurring heterogeneity in the N-linked glycan structure of mAbs, and such heterogeneity has a significant influence on the clinical safety and efficacy of mAb drugs. We previously proposed a constraint-based modeling method called glycosylation flux analysis (GFA) to characterize the rates (fluxes) of intracellular glycosylation reactions. One contribution of this work is a significant improvement in the computational efficiency of the GFA, which is beneficial for analyzing large datasets. Another contribution of our study is the analysis of IgG glycosylation in continuous perfusion Chinese Hamster Ovary (CHO) cell cultures. The GFA of the perfusion cell culture data indicated that the dynamical changes of IgG glycan heterogeneity are mostly attributed to alterations in the galactosylation flux activity. By using a random forest regression analysis of the IgG galactosylation flux activity, we were further able to link the dynamics of galactosylation with two process parameters: cell-specific productivity of IgG and extracellular ammonia concentration. The characteristics of IgG galactosylation dynamics agree well with what we previously reported for fed-batch cultivations of the same CHO cell strain.
Collapse
|
29
|
Awwad S, Angkawinitwong U. Overview of Antibody Drug Delivery. Pharmaceutics 2018; 10:E83. [PMID: 29973504 PMCID: PMC6161251 DOI: 10.3390/pharmaceutics10030083] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most important classes of therapeutic proteins, which are used to treat a wide number of diseases (e.g., oncology, inflammation and autoimmune diseases). Monoclonal antibody technologies are continuing to evolve to develop medicines with increasingly improved safety profiles, with the identification of new drug targets being one key barrier for new antibody development. There are many opportunities for developing antibody formulations for better patient compliance, cost savings and lifecycle management, e.g., subcutaneous formulations. However, mAb-based medicines also have limitations that impact their clinical use; the most prominent challenges are their short pharmacokinetic properties and stability issues during manufacturing, transport and storage that can lead to aggregation and protein denaturation. The development of long acting protein formulations must maintain protein stability and be able to deliver a large enough dose over a prolonged period. Many strategies are being pursued to improve the formulation and dosage forms of antibodies to improve efficacy and to increase the range of applications for the clinical use of mAbs.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of Pharmacy, London WC1N 1AX, UK.
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1 V9EL, UK.
| | | |
Collapse
|
30
|
Behet MC, Kurtovic L, van Gemert GJ, Haukes CM, Siebelink-Stoter R, Graumans W, van de Vegte-Bolmer MG, Scholzen A, Langereis JD, Diavatopoulos DA, Beeson JG, Sauerwein RW. The Complement System Contributes to Functional Antibody-Mediated Responses Induced by Immunization with Plasmodium falciparum Malaria Sporozoites. Infect Immun 2018; 86:e00920-17. [PMID: 29735521 PMCID: PMC6013677 DOI: 10.1128/iai.00920-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/16/2018] [Indexed: 11/20/2022] Open
Abstract
Long-lasting and sterile homologous protection against malaria can be achieved by the exposure of malaria-naive volunteers under chemoprophylaxis to Plasmodium falciparum-infected mosquitoes (chemoprophylaxis and sporozoite [CPS] immunization). While CPS-induced antibodies neutralize sporozoite infectivity in vitro and in vivo, antibody-mediated effector mechanisms are still poorly understood. Here, we investigated whether complement contributes to CPS-induced preerythrocytic immunity. Sera collected before and after CPS immunization in the presence of active or inactive complement were assessed for the recognition of homologous NF54 and heterologous NF135.C10 sporozoites, complement fixation, sporozoite lysis, and possible subsequent effects on in vitro sporozoite infectivity in human hepatocytes. CPS immunization induced sporozoite-specific IgM (P < 0.0001) and IgG (P = 0.001) antibodies with complement-fixing capacities (P < 0.0001). Sporozoite lysis (P = 0.017), traversal (P < 0.0001), and hepatocyte invasion inhibition (P < 0.0001) by CPS-induced antibodies were strongly enhanced in the presence of active complement. Complement-mediated invasion inhibition in the presence of CPS-induced antibodies negatively correlated with cumulative parasitemia during CPS immunizations (P = 0.013). While IgG antibodies similarly recognized homologous and heterologous sporozoites, IgM binding to heterologous sporozoites was reduced (P = 0.023). Although CPS-induced antibodies did not differ in their abilities to fix complement, lyse sporozoites, or inhibit the traversal of homologous and heterologous sporozoites, heterologous sporozoite invasion was more strongly inhibited in the presence of active complement (P = 0.008). These findings demonstrate that CPS-induced antibodies have complement-fixing activity, thereby significantly further enhancing the functional inhibition of homologous and heterologous sporozoite infectivity in vitro The combined data highlight the importance of complement as an additional immune effector mechanism in preerythrocytic immunity after whole-parasite immunization against Plasmodium falciparum malaria.
Collapse
Affiliation(s)
- Marije C Behet
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Geert-Jan van Gemert
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Celine M Haukes
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Rianne Siebelink-Stoter
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | | | - Anja Scholzen
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center and Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Dimitri A Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center and Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - James G Beeson
- Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
- Department of Medical Microbiology, Monash University, Clayton, Australia
| | - Robert W Sauerwein
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| |
Collapse
|
31
|
|
32
|
Identification of human glycosyltransferase genes expressed in erythroid cells predicts potential carbohydrate blood group loci. Sci Rep 2018; 8:6040. [PMID: 29662110 PMCID: PMC5902498 DOI: 10.1038/s41598-018-24445-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/08/2018] [Indexed: 01/24/2023] Open
Abstract
Glycans are biologically important structures synthesised by glycosyltransferase (GT) enzymes. Disruptive genetic null variants in GT genes can lead to serious illness but benign phenotypes are also seen, including antigenic differences on the red blood cell (RBC) surface, giving rise to blood groups. To characterise known and potential carbohydrate blood group antigens without a known underlying gene, we searched public databases for human GT loci and investigated their variation in the 1000 Genomes Project (1000 G). We found 244 GT genes, distributed over 44 families. All but four GT genes had missense variants or other variants predicted to alter the amino acid sequence, and 149 GT genes (61%) had variants expected to cause null alleles, often associated with antigen-negative blood group phenotypes. In RNA-Seq data generated from erythroid cells, 155 GT genes were expressed at a transcript level comparable to, or higher than, known carbohydrate blood group loci. Filtering for GT genes predicted to cause a benign phenotype, a set of 30 genes remained, 16 of which had variants in 1000 G expected to result in null alleles. Our results identify potential blood group loci and could serve as a basis for characterisation of the genetic background underlying carbohydrate RBC antigens.
Collapse
|
33
|
Sun W, Liu Y, Zhang K. An approach for N-linked glycan identification from MS/MS spectra by target-decoy strategy. Comput Biol Chem 2018; 74:391-398. [PMID: 29580737 DOI: 10.1016/j.compbiolchem.2018.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
Glycan structure determination serves as an essential step for the thorough investigation of the structure and function of protein. Currently, appropriate sample preparation followed by tandem mass spectrometry has emerged as the dominant technique for the characterization of glycans and glycopeptides. Although extensive efforts have been made to the development of computational approaches for the automated interpretation of glycopeptide spectra, the previously appeared methods lack a reasonable quality control strategy for the statistical validation of reported results. In this manuscript, we introduced a novel method that constructed a decoy glycan database based on the glycan structures in the target database, and searched the experimental spectra against both the target and decoy databases to find the best matched glycans. Specifically, a two-layer scoring scheme for calculating a normalized matching score is applied in the search procedure which enables the unbiased ranking of the matched glycans. Experimental analysis showed that our proposed method can report more structures with high confidence compared with previous approaches.
Collapse
Affiliation(s)
- Weiping Sun
- Department of Computer Science, University of Western Ontario, London, ON N6A5B7, Canada.
| | - Yi Liu
- Department of Computer Science, University of Western Ontario, London, ON N6A5B7, Canada
| | - Kaizhong Zhang
- Department of Computer Science, University of Western Ontario, London, ON N6A5B7, Canada
| |
Collapse
|
34
|
Montacir O, Montacir H, Springer A, Hinderlich S, Mahboudi F, Saadati A, Parr MK. Physicochemical Characterization, Glycosylation Pattern and Biosimilarity Assessment of the Fusion Protein Etanercept. Protein J 2018; 37:164-179. [DOI: 10.1007/s10930-018-9757-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Ruhe L, Ickert S, Hochkirch U, Hofmann J, Beck S, Thomale J, Linscheid MW. Comprehensive Molecular Characterization of a Cisplatin-Specific Monoclonal Antibody. Mol Pharm 2017; 14:4454-4461. [PMID: 29129076 DOI: 10.1021/acs.molpharmaceut.7b00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite their immense and rapidly increasing importance as analytical tools or therapeutic drugs, the detailed structural features of particular monoclonal antibodies are widely unknown. Here, an antibody already in use for diagnostic purposes and for molecular dosimetry studies in cancer therapy with very high affinity and specificity for cisplatin-induced DNA modifications was studied extensively. The molecular structure and modifications as well as the antigen specificity were investigated mainly by mass spectrometry. Using nano electrospray ionization mass spectrometry, it was possible to characterize the antibody in its native state. Tandem-MS experiments not only revealed specific fragments but also gave information on the molecular structure. The detailed primary structure was further elucidated by proteolytic treatment with a selection of enzymes and high resolution tandem-MS. The data were validated by comparison with known antibody sequences. Then, the complex glycan structures bound to the antibody were characterized in all detail. The Fc-bound oligosaccharides were released enzymatically and studied by matrix-assisted laser desorption/ionization mass spectrometry. Overall 16 different major glycan structures were identified. The binding specificity of the antibody was investigated by applying synthetic single and double stranded DNA oligomers harboring distinct Pt adducts. The antibody-antigen complexes were analyzed by mass spectrometry under native conditions. The stability of the complex with double stranded DNA was also investigated.
Collapse
Affiliation(s)
- Lena Ruhe
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Stefanie Ickert
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany.,Federal Institute for Materials Research and Testing , Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany
| | - Ulrike Hochkirch
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Johanna Hofmann
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | - Sebastian Beck
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Jürgen Thomale
- Department of Cell Biology, Universitaetsklinikum Essen , Hufelandstrasse 55, 45122 Essen, Germany
| | - Michael W Linscheid
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
36
|
Sakae Y, Satoh T, Yagi H, Yanaka S, Yamaguchi T, Isoda Y, Iida S, Okamoto Y, Kato K. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa. Sci Rep 2017; 7:13780. [PMID: 29062024 PMCID: PMC5653758 DOI: 10.1038/s41598-017-13845-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/02/2017] [Indexed: 12/04/2022] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is promoted through interaction between the Fc region of immunoglobulin G1 (IgG1) and Fcγ receptor IIIa (FcγRIIIa), depending on N-glycosylation of these glycoproteins. In particular, core fucosylation of IgG1-Fc N-glycans negatively affects this interaction and thereby compromises ADCC activity. To address the mechanisms of this effect, we performed replica-exchange molecular dynamics simulations based on crystallographic analysis of a soluble form of FcγRIIIa (sFcγRIIIa) in complex with IgG1-Fc. Our simulation highlights increased conformational fluctuation of the N-glycan at Asn162 of sFcγRIIIa upon fucosylation of IgG1-Fc, consistent with crystallographic data giving no interpretable electron density for this N-glycan, except for the innermost part. The fucose residue disrupts optimum intermolecular carbohydrate-carbohydrate interactions, rendering this sFcγRIIIa glycan distal from the Fc glycan. Moreover, our simulation demonstrates that core fucosylation of IgG1-Fc affects conformational dynamics and rearrangements of surrounding amino acid residues, typified by Tyr296 of IgG1-Fc, which was more extensively involved in the interaction with sFcγRIIIa without Fc core fucosylation. Our findings offer a structural foundation for designing and developing therapeutic antibodies with improved ADCC activity.
Collapse
Affiliation(s)
- Yoshitake Sakae
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Saeko Yanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.,Institute for Molecular Science and Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takumi Yamaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.,Institute for Molecular Science and Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yuya Isoda
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo, 194-8533, Japan
| | - Shigeru Iida
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo, 194-8533, Japan
| | - Yuko Okamoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.,Information Technology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan.,Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.,Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan.,JST-CREST, Nagoya, Aichi, 464-8602, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan. .,Institute for Molecular Science and Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
37
|
Wang X, An Z, Luo W, Xia N, Zhao Q. Molecular and functional analysis of monoclonal antibodies in support of biologics development. Protein Cell 2017; 9:74-85. [PMID: 28733914 PMCID: PMC5777976 DOI: 10.1007/s13238-017-0447-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Monoclonal antibody (mAb)-based therapeutics are playing an increasingly important role in the treatment or prevention of many important diseases such as cancers, autoimmune disorders, and infectious diseases. Multi-domain mAbs are far more complex than small molecule drugs with intrinsic heterogeneities. The critical quality attributes of a given mAb, including structure, post-translational modifications, and functions at biomolecular and cellular levels, need to be defined and profiled in details during the developmental phases of a biologics. These critical quality attributes, outlined in this review, serve an important database for defining the drug properties during commercial production phase as well as post licensure life cycle management. Specially, the molecular characterization, functional assessment, and effector function analysis of mAbs, are reviewed with respect to the critical parameters and the methods used for obtaining them. The three groups of analytical methods are three essential and integral facets making up the whole analytical package for a mAb-based drug. Such a package is critically important for the licensure and the post-licensure life cycle management of a therapeutic or prophylactic biologics. In addition, the basic principles on the evaluation of biosimilar mAbs were discussed briefly based on the recommendations by the World Health Organization.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361105, China
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361105, China.,School of Life Sciences, Xiamen University, Xiamen, 361105, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361105, China.,School of Life Sciences, Xiamen University, Xiamen, 361105, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361105, China.
| |
Collapse
|
38
|
Zhuang C, Zheng C, Chen Y, Huang Z, Wang Y, Fu Q, Zeng C, Wu T, Yang L, Qi N. Different fermentation processes produced variants of an anti-CD52 monoclonal antibody that have divergent in vitro and in vivo characteristics. Appl Microbiol Biotechnol 2017; 101:5997-6006. [DOI: 10.1007/s00253-017-8312-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 01/22/2023]
|
39
|
Rosales C. Fcγ Receptor Heterogeneity in Leukocyte Functional Responses. Front Immunol 2017; 8:280. [PMID: 28373871 PMCID: PMC5357773 DOI: 10.3389/fimmu.2017.00280] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Antibodies participate in defense of the organism from all types of pathogens, including viruses, bacteria, fungi, and protozoa. IgG antibodies recognize their associated antigen via their two Fab portions and are in turn recognized though their Fc portion by specific Fcγ receptors (FcγRs) on the membrane of immune cells. Multiple types and polymorphic variants of FcγR exist. These receptors are expressed in many cells types and are also redundant in inducing cell responses. Crosslinking of FcγR on the surface of leukocytes activates several effector functions aimed toward the destruction of pathogens and the induction of an inflammatory response. In the past few years, new evidence on how the particular IgG subclass and the glycosylation pattern of the antibody modulate the IgG-FcγR interaction has been presented. Despite these advances, our knowledge of what particular effector function is activated in a certain cell and in response to a specific type of FcγR remains very limited today. On one hand, each immune cell could be programmed to perform a particular cell function after FcγR crosslinking. On the other, each FcγR could activate a particular signaling pathway leading to a unique cell response. In this review, I describe the main types of FcγRs and our current view of how particular FcγRs activate various signaling pathways to promote unique leukocyte functions.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
40
|
Kovacs Z, Simon A, Szabo Z, Nagy Z, Varoczy L, Pal I, Csanky E, Guttman A. Capillary electrophoresis analysis of N-glycosylation changes of serum paraproteins in multiple myeloma. Electrophoresis 2017; 38:2115-2123. [PMID: 28116769 DOI: 10.1002/elps.201700006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is an immedicable malignancy of the human plasma cells producing abnormal antibodies (also referred to as paraproteins) leading to kidney problems and hyperviscosity syndrome. In this paper, we report on the N-glycosylation analysis of paraproteins from total human serum as well as the fragment crystallizable region (Fc ) and fragment antigen binding (Fab ) κ/λ light chain fractions of papain digested immunoglobulins from multiple myeloma patients. CE-LIF detection was used for the analysis of the N-glycans after endoglycosidase (PNGase F) mediated sugar release and fluorophore labeling (APTS). While characteristic N-glycosylation pattern differences were found between normal control and untreated, treated and remission stage multiple myeloma patient samples at the global serum level, less distinctive changes were observed at the immunoglobulin level. Principal component analysis adequately differentiated the four groups (control and three patient groups) on the basis of total serum N-glycosylation analysis. 12 N-glycan features showed statistically significant differences (p <0.05) among various stages of the disease in comparison to the control at the serum level, while only six features were identified with similar significance at the immunoglobulin level, including the analysis of the partitioned Fc fragment as well as the Fab κ and Fab λ chains.
Collapse
Affiliation(s)
- Zsuzsanna Kovacs
- Horváth Csaba Memorial Institute for Bioanalytical Research, University of Debrecen, Hungary
| | - Adam Simon
- Horváth Csaba Memorial Institute for Bioanalytical Research, University of Debrecen, Hungary
| | | | - Zsolt Nagy
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Laszlo Varoczy
- Department of Hematology, Institute for Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildiko Pal
- Department of Hematology, Institute for Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Andras Guttman
- Horváth Csaba Memorial Institute for Bioanalytical Research, University of Debrecen, Hungary.,MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary
| |
Collapse
|
41
|
Brown EP, Dowell KG, Boesch AW, Normandin E, Mahan AE, Chu T, Barouch DH, Bailey-Kellogg C, Alter G, Ackerman ME. Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles. J Immunol Methods 2017; 443:33-44. [PMID: 28163018 PMCID: PMC5333794 DOI: 10.1016/j.jim.2017.01.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/09/2023]
Abstract
Antibodies are widely considered to be a frequent primary and often mechanistic correlate of protection of approved vaccines; thus evaluating the antibody response is of critical importance in attempting to understand and predict the efficacy of novel vaccine candidates. Historically, antibody responses have been analyzed by determining the titer of the humoral response using measurements such as an ELISA, neutralization, or agglutination assays. In the simplest case, sufficiently high titers of antibody against vaccine antigen(s) are sufficient to predict protection. However, antibody titer provides only a partial measure of antibody function, which is dependent on both the variable region (Fv) to bind the antigen target, and the constant region (Fc) to elicit an effector response from the innate arm of the immune system. In the case of some diseases, such as HIV, for which an effective vaccine has proven elusive, antibody effector function has been shown to be an important driver of monoclonal antibody therapy outcomes, of viral control in infected patients, and of vaccine-mediated protection in preclinical and clinical studies. We sought to establish a platform for the evaluation of the Fc domain characteristics of antigen-specific antibodies present in polyclonal samples in order to better develop insights into Fc receptor-mediated antibody effector activity, more fully understand how antibody responses may differ in association with disease progression and between subject groups, and differentiate protective from non-protective responses. To this end we have developed a high throughput biophysical platform capable of simultaneously evaluating many dimensions of the antibody effector response. High-throughput array-based characterization platform for polyclonal antibodies. Development of a biophysical proxy for antibody effector function. Antigen and Fc receptor recognition characteristics are captured. Enables systematic serologic studies of NHP and human antibody samples.
Collapse
Affiliation(s)
- Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Karen G Dowell
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Erica Normandin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Alison E Mahan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Thach Chu
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Dan H Barouch
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
42
|
Cell culture media supplementation of infrequently used sugars for the targeted shifting of protein glycosylation profiles. Biotechnol Prog 2017; 33:511-522. [DOI: 10.1002/btpr.2429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/10/2016] [Indexed: 11/07/2022]
|
43
|
Abstract
Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Bojiao Yin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA.
| |
Collapse
|
44
|
Abstract
In the last decades, the number of approved therapeutic proteins drugs is increasing exponentially and a large number of new therapeutic entities are progressing through clinical trials, solidifying biologics as the most promising class of pharmaceuticals on the market. Several cell lines are available for biopharmaceutical processes but mammalian cells are preferred since they give fewer problems for immunogenicity as they produce human-like post-translational modifications (PTMs). Glycosylation is the most common and complex (for both bioprocess engineering and quality control) of these modifications. Obtaining the desired glycosylation pattern is crucial for therapeutic proteins as it can impact significantly stability, half-life and safety as well as driving molecular processes, modifying the way drug interacts with patients' cells. As a consequence, glycosylation (like other PTMs) needs to be regulated and accurately analyzed during biopharmaceutical production. Herein we describe and discuss the analytical approaches for glycosylation analysis of therapeutic glycoproteins produced in CHO (Chinese Hamster Ovary) cells. This chapter will describe glycoprotein purification after separation from producing cell lines, N-glycan release and their variants fine structural characterization through mass spectrometry techniques.
Collapse
|
45
|
Saxena A, Wu D. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life. Front Immunol 2016; 7:580. [PMID: 28018347 PMCID: PMC5149539 DOI: 10.3389/fimmu.2016.00580] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Today, monoclonal immunoglobulin gamma (IgG) antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs) is achieved through both its antigen-binding fragment (Fab) and crystallizable fragment (Fc). Fab can specifically recognize tumor-associated antigen (TAA) and thus modulate TAA-linked downstream signaling pathways that may lead to the inhibition of tumor growth, induction of tumor apoptosis, and differentiation. The Fc region can further improve mAbs’ efficacy by mediating effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cell-mediated phagocytosis. Moreover, Fc is the region interacting with the neonatal Fc receptor in a pH-dependent manner that can slow down IgG’s degradation and extend its serum half-life. Loss of the antibody Fc region dramatically shortens its serum half-life and weakens its anticancer effects. Given the essential roles that the Fc region plays in the modulation of the efficacy of mAb in cancer treatment, Fc engineering has been extensively studied in the past years. This review focuses on the recent advances in therapeutic Fc engineering that modulates its related effector functions and serum half-life. We also discuss the progress made in aglycosylated mAb development that may substantially reduce the cost of manufacture but maintain similar efficacies as conventional glycosylated mAb. Finally, we highlight several Fc engineering-based mAbs under clinical trials.
Collapse
Affiliation(s)
- Abhishek Saxena
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| | - Donghui Wu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| |
Collapse
|
46
|
Wang J, Zhao G, Yu F. Facile preparation of Fe3O4@MOF core-shell microspheres for lipase immobilization. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.10.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Yang N, Goonatilleke E, Park D, Song T, Fan G, Lebrilla CB. Quantitation of Site-Specific Glycosylation in Manufactured Recombinant Monoclonal Antibody Drugs. Anal Chem 2016; 88:7091-100. [PMID: 27311011 PMCID: PMC4955800 DOI: 10.1021/acs.analchem.6b00963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the development of recombinant monoclonal antibody (rMAb) drugs, glycosylation receives particular focus because changes in the attached glycans can have a significant impact on the antibody effector functions. The vast heterogeneity of structures that exist across glycosylation sites hinders the in-depth analysis of glycan changes specific to an individual protein within a complex mixture. In this study, we established a sensitive and specific method for monitoring site-specific glycosylation in rMAbs using multiple reaction monitoring (MRM) on an ultrahigh-performance liquid chromatography-triple quadrupole MS (UHPLC-QqQ-MS). Our results showed that irrespective of the IgG subclass expressed in the drugs, the N-glycopeptide profiles are nearly the same but differ in abundances. In all rMAb drugs, a single subclass of IgG comprised over 97% of the total IgG content and showed over 97% N-glycan site occupancy. This study demonstrates the utility of an MRM-based method to rapidly characterize over 130 distinct glycopeptides and determine the extent of site occupancy within minutes. Such multilevel structural characterization is important for the successful development of therapeutic antibodies.
Collapse
Affiliation(s)
- Nan Yang
- School of Pharmacy, Second Military Medical University, Guohe Road, Shanghai, 200433, China
- Department of Pharmacy, Shanghai General Hospital, Haining Road, Shanghai, 200080, China
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Ting Song
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Guorong Fan
- School of Pharmacy, Second Military Medical University, Guohe Road, Shanghai, 200433, China
- Department of Pharmacy, Shanghai General Hospital, Haining Road, Shanghai, 200080, China
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
48
|
Wang Y, Klarić L, Yu X, Thaqi K, Dong J, Novokmet M, Wilson J, Polasek O, Liu Y, Krištić J, Ge S, Pučić-Baković M, Wu L, Zhou Y, Ugrina I, Song M, Zhang J, Guo X, Zeng Q, Rudan I, Campbell H, Aulchenko Y, Lauc G, Wang W. The Association Between Glycosylation of Immunoglobulin G and Hypertension: A Multiple Ethnic Cross-Sectional Study. Medicine (Baltimore) 2016; 95:e3379. [PMID: 27124023 PMCID: PMC4998686 DOI: 10.1097/md.0000000000003379] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
More than half of all known proteins, and almost all membrane and extra-cellular proteins have oligosaccharide structures or glycans attached to them. Defects in glycosylation pathways are directly involved in at least 30 severe human diseases.A multiple center cross-sectional study (China, Croatia, and Scotland) was carried out to investigate the possible association between hypertension and IgG glycosylation. A hydrophilic interaction chromatography of fluorescently labeled glycans was used to analyze N-glycans attached to IgG in plasma samples from a total of 4757 individuals of Chinese Han, Croatian, and Scottish ethnicity.Five glycans (IgG with digalactosylated glycans) significantly differed in participants with prehypertension or hypertension compared to those with normal blood pressure, while additional 17 glycan traits were only significantly differed in participants with hypertension compared to those of normal blood pressure. These glycans were also significant correlated with systolic blood pressure (SBP) or diastolic blood pressure (DBP).The present study demonstrated for the 1st time an association between hypertension and IgG glycome composition. These findings suggest that the individual variation in N-glycosylation of IgG contributes to pathogenesis of hypertension, presumably via its effect on pro- and/or anti-inflammatory pathways.
Collapse
Affiliation(s)
- Youxin Wang
- From Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China (YW, XY, SG, LW, MS, JZ, XG, WW); Genos Glycoscience, Zagreb, Croatia (LK, KT, MN, JK, MP-B, IU, GL); MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK (LK); School of Medical Sciences, Edith Cowan University, Perth, WA, Australia (YW, XY, SG, WW); Center for Physical Examination, Xuanwu Hospital, Capital Medical University, Beijing, China (JD, YL); Centre for Population Health Sciences, Medical School, University of Edinburgh, Edinburgh, UK (JW, IR, HC); Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia (OP, GL); Department of Neurology, Beijing Anzhen Hospital, Capital Medical University (YZ); International Medical Centre, Chinese PLA General Hospital, Beijing, China (QZ); Institute of Cytology and Genetics SB RAS (YA); and Novosibirsk State University, Novosibirsk, Russia (YA)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rohrer JS, Basumallick L, Hurum DC. Profiling N-linked oligosaccharides from IgG by high-performance anion-exchange chromatography with pulsed amperometric detection. Glycobiology 2016; 26:582-91. [PMID: 26786498 DOI: 10.1093/glycob/cww006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
Understanding and characterizing protein therapeutic glycosylation is important with growing evidence that glycosylation impacts biological efficacy, pharmacokinetics and cellular toxicity. Protein expression systems and reactor conditions can impact glycosylation, leading to potentially undesirable glycosylation. For example, high-mannose species may be present, which are atypical of human antibody glycosylation. Their presence in the Fc domain has been linked to increased serum clearance of immunoglobulin G (IgG) antibodies. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) is an effective tool for determining glycans present in glycoprotein therapeutics. We report an improved HPAE-PAD method for IgG oligosaccharide separation. The neutral glycans are well resolved, including separation of high-mannose species from typical human IgG glycans. Oligosaccharide identification was performed by comparison to known standards in conjunction with selective exoglycosidase digestion of both standards and released glycans. Retention times (RTs) of known glycans were compared with the retention times of maltose, maltotriose and maltotetraose standards to define a retention index value for each glycan. These retention indices were used to aid identification of glycans from an example monoclonal antibody sample of unknown glycosylation. Method ruggedness was evaluated across duplicate systems, analysts and triplicate column lots. Comparing two systems with different analysts and columns, retention time precision relative standard deviations (RSDs) were between 0.63 and 4.0% while retention indices precision RSDs ranged from 0.27 to 0.56%. The separation is orthogonal to capillary electrophoresis-based separation of labeled IgG oligosaccharides.
Collapse
Affiliation(s)
- Jeffrey S Rohrer
- Thermo Fisher Scientific, 1214 Oakmead Parkway, Sunnyvale, CA 94085, USA
| | - Lipika Basumallick
- Thermo Fisher Scientific, 1214 Oakmead Parkway, Sunnyvale, CA 94085, USA
| | - Deanna C Hurum
- Thermo Fisher Scientific, 1214 Oakmead Parkway, Sunnyvale, CA 94085, USA
| |
Collapse
|
50
|
|