1
|
Cao Z, Liu Y, Wang Y, Leng P. Research progress on the role of PDGF/PDGFR in type 2 diabetes. Biomed Pharmacother 2023; 164:114983. [PMID: 37290188 DOI: 10.1016/j.biopha.2023.114983] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are basic proteins stored in the α granules of platelets. PDGFs and their receptors (PDGFRs) are widely expressed in platelets, fibroblasts, vascular endothelial cells, platelets, pericytes, smooth muscle cells and tumor cells. The activation of PDGFR plays a number of critical roles in physiological functions and diseases, including normal embryonic development, cellular differentiation, and responses to tissue damage. In recent years, emerging experimental evidence has shown that activation of the PDGF/PDGFR pathway is involved in the development of diabetes and its complications, such as atherosclerosis, diabetic foot ulcers, diabetic nephropathy, and retinopathy. Research on targeting PDGF/PDGFR as a treatment has also made great progress. In this mini-review, we summarized the role of PDGF in diabetes, as well as the research progress on targeted diabetes therapy, which provides a new strategy for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zhanqi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yijie Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yini Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
2
|
Rai B, Pande A, Tiwari S. TRAIL and EGFR Pathways Targeting microRNAs are Predominantly Regulated in Human Diabetic Nephropathy. Microrna 2023; 12:143-155. [PMID: 37098997 DOI: 10.2174/2211536612666230407093841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Unbiased microRNA profiling of renal tissue and urinary extracellular vesicles (uEVs) from diabetic nephropathy (DN) subjects may unravel novel targets with diagnostic and therapeutic potential. Here we used the miRNA profile of uEVs and renal biopsies from DN subjects available on the GEO database. METHODS The miR expression profiles of kidney tissue (GSE51674) and urinary exosomes (GSE48318) from DN and control subjects were obtained by GEO2R tools from Gene Expression Omnibus (GEO) databases. Differentially expressed miRNAs in DN samples, relative to controls, were identified using a bioinformatic pipeline. Targets of miRs commonly regulated in both sample types were predicted by miRWalk, followed by functional gene enrichment analysis. Gene targets were identified by MiRTarBase, TargetScan and MiRDB. RESULTS Eight miRs, including let-7c, miR-10a, miR-10b and miR-181c, were significantly regulated in kidney tissue and uEVs in DN subjects versus controls. The top 10 significant pathways targeted by these miRs included TRAIL, EGFR, Proteoglycan syndecan, VEGF and Integrin Pathway. Gene target analysis by miRwalk upon validation using ShinyGO 70 targets with significant miRNA-mRNA interaction. CONCLUSION In silico analysis showed that miRs targeting TRAIL and EGFR signaling are predominately regulated in uEVs and renal tissue of DN subjects. After wet-lab validation, the identified miRstarget pairs may be explored for their diagnostic and/or therapeutic potential in diabetic nephropathy.
Collapse
Affiliation(s)
- Bhuvnesh Rai
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Akshara Pande
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
3
|
Osteomeles schwerinae Extract Prevents Diabetes-Induced Renal Injury in Spontaneously Diabetic Torii Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6824215. [PMID: 29849722 PMCID: PMC5941800 DOI: 10.1155/2018/6824215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Mesangial cell proliferation contributes to the development of glomerulosclerosis in diabetic nephropathy. This study was aimed at determining whether Osteomeles schwerinae (OSSC) extract can ameliorate renal damage in Spontaneously Diabetic Torii (SDT) rats. OSSC extract (100 and 250 mg/kg/day) was administered to the SDT rats through oral gavage for 17 weeks. At the end of the experiment, glucose, HbA1c, and albuminuria were measured. In addition, the levels of mesangial proliferation-related proteins were determined by western blotting and immunohistochemistry. Our results show that albuminuria, accumulation of the extracellular matrix (ECM), and renal expansion were markedly restored by OSSC extract administration. The OSSC treatment also inhibited α-smooth muscle actin and transforming growth factor-β1 protein expression. In addition, OSSC and its bioactive compounds hyperoside and quercitrin inhibited the platelet-derived growth factor-BB (PDGF-BB)/platelet-derived growth factor-B receptor (PDGFR-β) ligand binding in an in vitro assay. Taken together, these results indicate that OSSC inhibits ECM accumulation and mesangial proliferation of the glomeruli in SDT rats through inhibition of the interaction between PDGF-BB and PDGFR-β. OSSC has ameliorating effects on the initiation and progression of diabetes complications and can be used for the treatment of early diabetic renal dysfunction.
Collapse
|
4
|
Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. Tyrosines-740/751 of PDGFRβ contribute to the activation of Akt/Hif1α/TGFβ nexus to drive high glucose-induced glomerular mesangial cell hypertrophy. Cell Signal 2017; 42:44-53. [PMID: 28951244 DOI: 10.1016/j.cellsig.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023]
Abstract
Glomerular mesangial cell hypertrophy contributes to the complications of diabetic nephropathy. The mechanism by which high glucose induces mesangial cell hypertrophy is poorly understood. Here we explored the role of the platelet-derived growth factor receptor-β (PDGFRβ) tyrosine kinase in driving the high glucose-induced mesangial cell hypertrophy. We show that high glucose stimulates the association of the PDGFRβ with PI 3 kinase leading to tyrosine phosphorylation of the latter. High glucose-induced Akt kinase activation was also dependent upon PDGFRβ and its tyrosine phosphorylation at 740/751 residues. Inhibition of PDGFRβ activity, its downregulation and expression of its phospho-deficient (Y740/751F) mutant inhibited mesangial cell hypertrophy by high glucose. Interestingly, expression of constitutively active Akt reversed this inhibition, indicating a role of Akt kinase downstream of PDGFRβ phosphorylation in this process. The transcription factor Hif1α is a target of Akt kinase. siRNAs against Hif1α inhibited the high glucose-induced mesangial cell hypertrophy. In contrast, increased expression of Hif1α induced hypertrophy similar to high glucose. We found that inhibition of PDGFRβ and expression of PDGFRβ Y740/751F mutant significantly inhibited the high glucose-induced expression of Hif1α. Importantly, expression of Hif1α countered the inhibition of mesangial cell hypertrophy induced by siPDGFRβ or PDGFRβ Y740/751F mutant. Finally, we show that high glucose-stimulated PDGFRβ tyrosine phosphorylation at 740/751 residues and the tyrosine kinase activity of the receptor regulate the transforming growth factor-β (TGFβ) expression by Hif1α. Thus we define the cell surface PDGFRβ as a major link between high glucose and its effectors Hif1α and TGFβ for induction of diabetic mesangial cell hypertrophy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, UT Health at San Antonio, TX, United States
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, UT Health at San Antonio, TX, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
5
|
Das F, Ghosh-Choudhury N, Venkatesan B, Kasinath BS, Ghosh Choudhury G. PDGF receptor-β uses Akt/mTORC1 signaling node to promote high glucose-induced renal proximal tubular cell collagen I (α2) expression. Am J Physiol Renal Physiol 2017; 313:F291-F307. [PMID: 28424212 DOI: 10.1152/ajprenal.00666.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/28/2023] Open
Abstract
Increased expression of PDGF receptor-β (PDGFRβ) has been shown in renal proximal tubules in mice with diabetes. The core molecular network used by high glucose to induce proximal tubular epithelial cell collagen I (α2) expression is poorly understood. We hypothesized that activation of PDGFRβ by high glucose increases collagen I (α2) production via the Akt/mTORC1 signaling pathway in proximal tubular epithelial cells. Using biochemical and molecular biological techniques, we investigated this hypothesis. We show that high glucose increases activating phosphorylation of the PDGFRβ, resulting in phosphorylation of phosphatidylinositol 3-kinase. A specific inhibitor, JNJ-10198409, and small interfering RNAs targeting PDGFRβ blocked this phosphorylation without having any effect on MEK/Erk1/2 activation. We also found that PDGFRβ regulates high glucose-induced Akt activation, its targets tuberin and PRAS40 phosphorylation, and finally, mTORC1 activation. Furthermore, inhibition of PDGFRβ suppressed high glucose-induced expression of collagen I (α2) in proximal tubular cells. Importantly, expression of constitutively active Akt or mTORC1 reversed these processes. As a mechanism, we found that JNJ and PDGFRβ knockdown inhibited high glucose-stimulated Hif1α expression. Furthermore, overexpression of Hif1α restored expression of collagen I (α2) that was inhibited by PDGFRβ knockdown in high glucose-stimulated cells. Finally, we show increased phosphorylation of PDGFRβ and its association with Akt/mTORC1 activation, Hif1α expression, and elevated collagen I (α2) levels in the renal cortex of mice with diabetes. Our results identify PDGFRβ as a driver in activating Akt/mTORC1 nexus for high glucose-mediated expression of collagen I (α2) in proximal tubular epithelial cells, which contributes to tubulointerstitial fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balachandar Venkatesan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; .,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas; and
| |
Collapse
|
6
|
Takashima Y, Keino-Masu K, Yashiro H, Hara S, Suzuki T, van Kuppevelt TH, Masu M, Nagata M. Heparan sulfate 6-O-endosulfatases, Sulf1 and Sulf2, regulate glomerular integrity by modulating growth factor signaling. Am J Physiol Renal Physiol 2016; 310:F395-408. [PMID: 26764203 DOI: 10.1152/ajprenal.00445.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/27/2015] [Indexed: 12/11/2022] Open
Abstract
Glomerular integrity and functions are maintained by growth factor signaling. Heparan sulfate, the major component of glomerular extracellular matrixes, modulates growth factor signaling, but its roles in glomerular homeostasis are unknown. We investigated the roles of heparan sulfate 6-O-endosulfatases, sulfatase (Sulf)1 and Sulf2, in glomerular homeostasis. Both Sulf1 and Sulf2 were expressed in the glomeruli of wild-type (WT) mice. Sulf1 and Sulf2 double-knockout (DKO) mice showed glomerular hypercellularity, matrix accumulation, mesangiolysis, and glomerular basement membrane irregularity. Platelet-derived growth factor (PDGF)-B and PDGF receptor-β were upregulated in Sulf1 and Sulf2 DKO mice compared with WT mice. Glomeruli from Sulf1 and Sulf2 DKO mice in vitro stimulated by either PDGF-B, VEGF, or transforming growth factor-β similarly showed reduction of phospho-Akt, phospho-Erk1/2, and phospho-Smad2/3, respectively. Since glomerular lesions in Sulf1 and Sulf2 DKO mice were reminiscent of diabetic nephropathy, we examined the effects of Sulf1 and Sulf2 gene disruption in streptozotocin-induced diabetes. Diabetic WT mice showed an upregulation of glomerular Sulf1 and Sulf2 mRNA by in situ hybridization. Diabetic DKO mice showed significant increases in albuminuria and serum creatinine and an acceleration of glomerular pathology without glomerular hypertrophy; those were associated with a reduction of glomerular phospho-Akt. In conclusion, Sulf1 and Sulf2 play indispensable roles to maintain glomerular integrity and protective roles in diabetic nephropathy, probably by growth factor modulation.
Collapse
Affiliation(s)
- Yasutoshi Takashima
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kazuko Keino-Masu
- Molecular Neurobiology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan; and
| | - Hiroshi Yashiro
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Hara
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomo Suzuki
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Toin H van Kuppevelt
- Department of Matrix Biochemistry, Nijmegen Center for Molecular Life Sciences, Radbout University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Masayuki Masu
- Molecular Neurobiology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan; and
| | - Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan;
| |
Collapse
|
7
|
Sohn E, Kim J, Kim CS, Jo K, Lee YM, Kim JS. Root of Polygonum cuspidatum extract reduces progression of diabetes-induced mesangial cell dysfunction via inhibition of platelet-derived growth factor-BB (PDGF-BB) and interaction with its receptor in streptozotocin-induced diabetic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:477. [PMID: 25495844 PMCID: PMC4364577 DOI: 10.1186/1472-6882-14-477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
Background Platelet-derived growth factor–BB (PDGF-BB) is highly expressed in the renal tissues of patients with diabetic nephropathy, and it plays an important role in the initiation and progression of diabetic nephropathy. The aim of this study was to evaluate the protective effects of root of Polygonum cuspidatum extract (PCE) on early renal glomerular proliferation in streptozotocin (STZ)-induced diabetic rats. Methods PCE (100, 350 mg/kg/day) was administered to diabetic rats for 16 weeks. Blood glucose and albuminuria were measured. Renal histology, α-smooth muscle actin (α-SMA), and proliferating cell nuclear antigen (PCNA) expression levels were also examined. Results After 16 weeks of treatment with PCE, severe hyperglycemia and albuminuria were observed in the diabetic rats. The expressions levels of α-SMA and PCNA proteins were significantly increased in the glomeruli of the diabetic rats. The expression levels of PDGF-BB and its receptor expressions were greatly increased in the glomeruli of the diabetic rats. However, PCE markedly reduced albuminuria in the diabetic rats. PCE inhibited α-SMA and PCNA up-regulation and ameliorated PDGF-BB and PEGFR-ß protein expression in the diabetic rats. In addition, the binding of PDGF-BB/PDGFR-ß was inhibited by PCE as shown by an in vitro assay. Conclusions These results suggest that PCE has an inhibitory effect on mesangial proliferation in diabetic renal tissues via the inhibition of the interaction of PDGF-BB with its receptor. PCE may have beneficial effects in preventing the progression of diabetic nephropathy. Electronic supplementary material The online version of this article (doi:10.1186/1472-6882-14-477) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Bessa SSED, Hussein TA, Morad MA, Amer AM. Urinary Platelet-Derived Growth Factor-BB as an Early Marker of Nephropathy in Patients with Type 2 Diabetes: An Egyptian Study. Ren Fail 2012; 34:670-5. [DOI: 10.3109/0886022x.2012.674438] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
9
|
Suzuki H, Usui I, Kato I, Oya T, Kanatani Y, Yamazaki Y, Fujisaka S, Senda S, Ishii Y, Urakaze M, Mahmood A, Takasawa S, Okamoto H, Kobayashi M, Tobe K, Sasahara M. Deletion of platelet-derived growth factor receptor-β improves diabetic nephropathy in Ca²⁺/calmodulin-dependent protein kinase IIα (Thr286Asp) transgenic mice. Diabetologia 2011; 54:2953-62. [PMID: 21833587 DOI: 10.1007/s00125-011-2270-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/05/2011] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS The activation of platelet-derived growth factor receptor-β (PDGFR-β) signalling is increased in the glomeruli and tubules of diabetic animals. In this study, we examined the role of PDGFR-β signalling during the development of diabetic nephropathy. METHODS We recently generated pancreatic beta cell-specific Ca(2+)/calmodulin-dependent protein kinase IIα (Thr286Asp) transgenic mice (CaMKIIα mice), which show very high plasma glucose levels up to 55.5 mmol/l and exhibit the features of diabetic nephropathy. These mice were crossed with conditional knockout mice in which Pdgfr-β (also known as Pdgfrb) was deleted postnatally. The effect of the deletion of the Pdgfr-β gene on diabetic nephropathy in CaMKIIα mice was evaluated at 10 and 16 weeks of age. RESULTS The plasma glucose concentrations and HbA(1c) levels were elevated in the CaMKIIα mice from 4 weeks of age. Variables indicative of diabetic nephropathy, such as an increased urinary albumin/creatinine ratio, kidney weight/body weight ratio and mesangial area/glomerular area ratio, were observed at 16 weeks of age. The postnatal deletion of the Pdgfr-β gene significantly decreased the urinary albumin/creatinine ratio and mesangial area/glomerular area ratio without affecting the plasma glucose concentration. Furthermore, the increased oxidative stress in the kidneys of the CaMKIIα mice as shown by the increased urinary 8-hydroxydeoxyguanosine (8-OHdG) excretion and the increased expression of NAD(P)H oxidase 4 (NOX4), glutathione peroxidase 1 (GPX1) and manganese superoxide dismutase (MnSOD) was decreased by Pdgfr-β gene deletion. CONCLUSIONS/INTERPRETATION The activation of PDGFR-β signalling contributes to the progress of diabetic nephropathy, with an increase in oxidative stress and mesangial expansion in CaMKIIα mice.
Collapse
Affiliation(s)
- H Suzuki
- First Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
van Roeyen CRC, Ostendorf T, Floege J. The platelet-derived growth factor system in renal disease: an emerging role of endogenous inhibitors. Eur J Cell Biol 2011; 91:542-51. [PMID: 21872965 DOI: 10.1016/j.ejcb.2011.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 01/28/2023] Open
Abstract
The platelet-derived growth factor (PDGF) family consists of four isoforms which are secreted as homodimers (PDGF-AA, PDGF-BB, PDGF-CC and PDGF-DD) or heterodimers (PDGF-AB), and two receptor chains (PDGFR-α and -β). All members of the PDGF system are constitutively or inducibly expressed in renal cells and are involved in the regulation of cell proliferation and migration, the accumulation of extracellular matrix proteins and the secretion of pro- and anti-inflammatory mediators. Particular roles have been identified in mediating mesangioproliferative changes, renal interstitial fibrosis and glomerular angiogenesis. Different endogenous inhibitors of PDGF-induced biological responses exist which affect the activation/deactivation of PDGF isoforms, the activity of the PDGFRs, or which block downstream signaling pathways of the autophosphorylated PDGFRs. The novel endogenous inhibitor nephroblastoma overexpressed gene (NOV, CCN3) reduces PDGF-induced cell proliferation and is downregulated by PDGF isoforms itself. Among all identified inhibitors only few "true" PDGF antagonists have been identified. A better understanding of these inhibitors may aid in the design of novel therapeutic approaches to PDGF-mediated diseases.
Collapse
Affiliation(s)
- Claudia R C van Roeyen
- Department of Nephrology and Clinical Immunology, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52057 Aachen, Germany.
| | | | | |
Collapse
|
11
|
Wang QY, Guan QH, Chen FQ. The changes of platelet-derived growth factor-BB (PDGF-BB) in T2DM and its clinical significance for early diagnosis of diabetic nephropathy. Diabetes Res Clin Pract 2009; 85:166-70. [PMID: 19523708 DOI: 10.1016/j.diabres.2009.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate urinary excretion of platelet-derived growth factor-BB (PDGF-BB) during the different stages of diabetic nephropathy (DN) in type 2 diabetes mellitus (T2DM) as well as its clinical significance. METHODS Sixty-five cases with T2DM were divided into three groups: normoalbuminuric group [N-UAlb; urine albumin excretion (UAE) <30 mg/24 h, n=25], microalbuminuric group [M-UAlb; UAE 30-300 mg/24 h, n=20], and macroalbuminuric group [L-UAlb; UAE >300 mg/ 24 h, n=20]. The urinary excretion rates of PDGF-BB were determined by a quantitative sandwich enzyme-linked immunosorbent assay (ELISA) in all the cases and 27 subjects of control. RESULTS The excretion rates of PDGF-BB in T2DM groups were markedly higher than that in control (P<0.001). Moreover, the excretion rates of PDGF-BB increased with the increase of UAE and there were significant differences among the three groups (P<0.05) except the groups of M-UAlb and L-UAlb. Urinary PDGF-BB was also positively correlated with UAE, triglyceride (TG), cholesterol (CHO), low-density lipoprotein (LDL) and negatively correlated with creatinine clearance (Ccr), high-density lipoprotein (HDL), while had no significance correlated with glycohemoglobin A1c (HbA1c). CONCLUSION PDGF-BB might play a very important role in the initiation and progression of DN. Measurements of urine PDGF-BB in T2DM could be used for early diagnosis of diabetic renal dysfunction.
Collapse
Affiliation(s)
- Qiu-yue Wang
- Department of Endocrinology, The First Hospital Affiliated to China Medical University, Shenyang 110001, China.
| | | | | |
Collapse
|
12
|
Goh SY, Jasik M, Cooper ME. Agents in development for the treatment of diabetic nephropathy. Expert Opin Emerg Drugs 2008; 13:447-63. [PMID: 18764722 DOI: 10.1517/14728214.13.3.447] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Nephropathy is a major cause of morbidity and mortality in diabetic patients. Current treatments include optimization of glycemic and blood pressure control, but more innovative strategies are needed for the prevention and treatment of diabetic nephropathy. OBJECTIVES To review emerging therapies for diabetic nephropathy. METHODS This paper discusses the molecular mechanisms of diabetic nephropathy and the potential therapeutic interventions. RESULTS/CONCLUSION New therapies, including those targeting the accumulation of advanced glycation end products (AGEs) and reactive oxygen species (ROS) generation, are likely to feature in future treatment regimens. Other approaches that at this stage do not appear to be progressing include the glycosaminoglycan sulodexide and the protein kinase C-beta (PKC-beta) inhibitor, ruboxistaurin.
Collapse
Affiliation(s)
- Su-Yen Goh
- Albert Einstein Juvenile Diabetes Research Foundation Centre for Diabetes Complications, Diabetes and Metabolism Division, Baker Medical Research Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria, 8008, Australia
| | | | | |
Collapse
|
13
|
O'Meara SJ, Rodgers K, Godson C. Lipoxins: update and impact of endogenous pro-resolution lipid mediators. Rev Physiol Biochem Pharmacol 2008; 160:47-70. [PMID: 18481030 DOI: 10.1007/112_2006_0606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoxins (LXs) are endogenously produced eicosanoids that are typically generated by transcellular biosynthesis. These trihydroxytetraene-containing lipid mediators and their stable synthetic analogues possess a wide spectrum of anti-inflammatory and pro-resolution bioactions both in vitro and in vivo. More recently, LXs have emerged as potential anti-fibrotic mediators that may influence pro-fibrotic cytokines and matrix-associated gene expression in response to platelet-derived growth factor (PDGF). Here we review the biosynthesis, metabolism and bioactions of LXs and LX analogues and their therapeutic potential.
Collapse
Affiliation(s)
- S J O'Meara
- UCD Conway Institute of Biomolecular and Biomedical Research and UCB Diabetes Research Center, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
14
|
Floege J, Eitner F, Alpers CE. A New Look at Platelet-Derived Growth Factor in Renal Disease. J Am Soc Nephrol 2007; 19:12-23. [DOI: 10.1681/asn.2007050532] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
15
|
Gojo A, Utsunomiya K, Taniguchi K, Yokota T, Ishizawa S, Kanazawa Y, Kurata H, Tajima N. The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharmacol 2007; 568:242-7. [PMID: 17511984 DOI: 10.1016/j.ejphar.2007.04.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 03/28/2007] [Accepted: 04/01/2007] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the effect of the Rho-kinase inhibitor fasudil on the development of diabetic nephropathy and clarify a contribution of the Rho/Rho-kinase pathway to the pathogenesis of diabetic nephropathy. Diabetes was induced in male Sprague-Dawley rats with an intraperitoneal injection of streptozotocin. Animals were then divided into the following 4 groups; normal control rats, diabetic rats, diabetic rats administered fasudil orally and diabetic rats administered fluvastatin (3-hydroxy-methylglutaryl coenzyme A reductase inhibitor, statin) orally. After 1 month of treatment, neither fasudil nor statin had any influence on blood glucose or blood pressure in diabetic rats. While urinary excretion of albumin and 8-hydroxydeoxyguanosine (8-OHdG) was increased in diabetic rats, both of these increases were abolished by fasudil and statin. Rho activity was enhanced in the renal cortex of diabetic rats compared to normal controls, and this enhancement was abolished by statin treatment. Expression of transforming growth factor-beta (TGF-beta) and connective tissue growth factor (CTGF) mRNA was up-regulated in the renal cortex of diabetic rats, and this was abolished by fasudil as well as statin. Expression of NOX4 mRNA (catalytic subunit of NAD(P)H oxidase) was up-regulated in the renal cortex of diabetic rats, an effect which was also abolished by fasudil as well as statin. The present study demonstrates that the Rho/Rho-kinase pathway is involved in up-regulation of TGF-beta, CTGF and NAD(P)H oxidase in diabetic kidney. We conclude that suppression of the Rho/Rho-kinase pathway could be a new strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Atsushi Gojo
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi Minato-ku, Tokyo, 105-8461, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Soma J, Sato K, Saito H, Tsuchiya Y. Effect of tranilast in early-stage diabetic nephropathy. Nephrol Dial Transplant 2006; 21:2795-9. [PMID: 16820373 DOI: 10.1093/ndt/gfl325] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tranilast is an antifibrotic drug known to suppress collagen synthesis by fibroblasts by interfering with the effects of TGF-beta. We recently reported that it slowed the progression rate of advanced diabetic nephropathy (DN) by reducing the accumulation of collagens in renal tissue. The present study was undertaken to examine the effect of tranilast on early-stage DN. METHODS Among out-patients with diabetes mellitus, we selected patients with (i) urinary albumin excretion of 30-1000 mg/g creatinine (/gCr) in the first morning urine, (ii) serum creatinine (SCr) < or =1.2 mg/dl and no haematuria and (iii) currently taking an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Twenty patients fulfilled the criteria, of whom 10 were selected at random and commenced on tranilast [100 mg, 3 times daily; T(+) group]. The remaining 10 patients comprised the T(-) group. Excretion of both urinary type IV collagen (U-IV) and albumin (U-A) in the first morning urine was measured every 3 months. The follow-up period was 1 year. RESULTS At baseline, no significant differences were observed in SCr, HbA(1c), blood pressure and U-A excretion between the T(+) and T(-) groups, but U-IV excretion in the T(+) group was higher than in the T(-) group (6.4 +/- 0.66 vs 3.7 +/- 0.36 microg/gCr, mean +/- SEM, P < 0.01). At 1 year, SCr was not different from the baseline in either group. In the T(+) group, however, excretion rates of both U-IV and U-A tended to decrease with time, and after 1 year, were significantly decreased compared with excretion at baseline (U-A: 279 +/- 78 to 191 +/- 62 mg/gCr; P = 0.049, U-IV: 6.4 +/- 0.66 to 4.4 +/- 0.99 microg/gCr; P = 0.02). In contrast, in the T(-) group, excretion of both U-A and U-IV tended to increase with time. The changes of both U-A and U-IV excretions in the two groups took statistically different trends through tranilast treatment (P = 0.01 and P = 0.04, respectively). CONCLUSIONS Our results suggest that tranilast could be therapeutically beneficial in early-stage DN.
Collapse
Affiliation(s)
- Jun Soma
- Department of Nephrology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka 020-0066, Japan.
| | | | | | | |
Collapse
|
17
|
Zhang SX, Wang JJ, Lu K, Mott R, Longeras R, Ma JX. Therapeutic potential of angiostatin in diabetic nephropathy. J Am Soc Nephrol 2006; 17:475-86. [PMID: 16394111 DOI: 10.1681/asn.2005020217] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Angiostatin is a proteolytic fragment of plasminogen and a potent angiogenic inhibitor. Previous studies have shown that angiostatin inhibits retinal neovascularization and reduces retinal vascular permeability in diabetic retinopathy. Here, it is reported for the first time that angiostatin is also implicated in diabetic nephropathy (DN). Angiostatin levels are dramatically decreased in the kidney of streptozotocin-induced diabetic rats. Consistently, diabetic kidneys also showed decreased expression and proteolytic activities of matrix metalloproteinase-2, an enzyme that releases angiostatin from plasminogen. Adenovirus-mediated delivery of angiostatin significantly alleviated albuminuria and attenuated the glomerular hypertrophy in diabetic rats. Moreover, angiostatin treatment downregulated the expression of vascular endothelial growth factor and TGF-beta1, two major pathogenic factors of DN, in diabetic kidneys. In cultured human mesangial cells, angiostatin blocked the overexpression of vascular endothelial growth factor and TGF-beta1 that were induced by high glucose while increasing the levels of pigment epithelium-derived factor, an endogenous inhibitor of DN. Moreover, angiostatin effectively inhibited the high-glucose-and TGF-beta1-induced overproduction of proinflammatory factors and extracellular matrix proteins via blockade of the Smad signaling pathway. These findings suggest that the decrease of angiostatin levels in diabetic kidney may contribute to the pathologic changes such as inflammation and fibrosis in DN. Therefore, angiostatin has therapeutic potential in DN as a result of its anti-inflammatory and antifibrosis activities.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Medicine Endocrinology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|
18
|
Roestenberg P, van Nieuwenhoven FA, Joles JA, Trischberger C, Martens PP, Oliver N, Aten J, Höppener JW, Goldschmeding R. Temporal expression profile and distribution pattern indicate a role of connective tissue growth factor (CTGF/CCN-2) in diabetic nephropathy in mice. Am J Physiol Renal Physiol 2005; 290:F1344-54. [PMID: 16380465 DOI: 10.1152/ajprenal.00174.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Connective tissue growth factor (CTGF) is overexpressed in diabetic nephropathy (DN) and has therefore been implicated in its pathogenesis. The objective of the present study was to determine the tissue distribution of increased CTGF expression and the relationship of plasma, urinary, and renal CTGF levels to the development and severity of DN. We studied the relationship between CTGF and renal pathology in streptozotocin (STZ)-induced diabetes in C57BL/6J mice. Diabetic and age-matched control mice were killed after 1, 2, 4, and 9 wk of diabetes. In addition, key parameters of diabetes and DN were analyzed in 10-mo-old diabetic ob/ob mice and their ob/+ littermates. STZ-induced diabetic mice showed a significantly increased urinary albumin excretion after 1 wk and increased mesangial matrix score after 2 wk. Increased renal fibronectin, fibronectin ED-A, and collagen IValpha1 expression, as well as elevated plasma creatinine levels, were observed after 9 wk. After 2 wk, CTGF mRNA was upregulated threefold in the renal cortex. By 9 wk, CTGF mRNA was also increased in the heart and liver. In contrast, transforming growth factor-beta1 mRNA content was significantly increased only in the kidney by 9 wk. Renal CTGF expression was mainly localized in podocytes and parietal glomerular epithelial cells, and less prominent in mesangial cells. In addition, plasma CTGF levels and urinary CTGF excretion were increased in diabetic mice. Moreover, albuminuria strongly correlated with urinary CTGF excretion (R = 0.83, P < 0.0001). Increased CTGF expression was also demonstrated in type 2 diabetic ob/ob mice, which points to a causal relationship between diabetes and CTGF and thus argues against a role of STZ in this process. The observed relationship of podocyte and urinary CTGF to markers of DN suggests a pathogenic role of CTGF in the development of DN.
Collapse
Affiliation(s)
- Peggy Roestenberg
- Dept. of Pathology, Univ. Medical Ctr. Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hagiwara S, Makita Y, Gu L, Tanimoto M, Zhang M, Nakamura S, Kaneko S, Itoh T, Gohda T, Horikoshi S, Tomino Y. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: Involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation. Nephrol Dial Transplant 2005; 21:605-15. [PMID: 16282336 DOI: 10.1093/ndt/gfi208] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies reported that eicosapentaenoic acid (EPA) was effective against any renal diseases including diabetic nephropathy. Monocyte chemoattractant protein-1 (MCP-1) is a regulating macrophage recruitment protein, which is up-regulated in patients with diabetic nephropathy. The objectives of the present study were to evaluate the effects of EPA including renal MCP-1 expression in diabetic KKAy/Ta mice, MCP-1 production and signal transduction in mouse mesangial cells (MMCs). METHODS KKAy/Ta mice were injected with EPA ethyl ester (1 g/kg/day) intraperitoneally. Immunohistochemical staining of MCP-1, F4/80, phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phospho-p38 in the renal sections were performed. EPA or specific inhibitors were incorporated in MMCs, and the levels of supernatant MCP-1 were measured. The effect of EPA on ERK1/2, c-jun NH2-terminal kinase (JNK), p38 or phosphoinositide 3-kinase (PI3K) activity in MMCs was examined using Western blot. RESULTS EPA decreased the levels of serum triglycerides, leptin, urinary albumin and MCP-1, and improved glucose intolerance, mesangial matrix accumulation and tubulointerstitial fibrosis in KKAy/Ta mice. Immunohistochemical staining of MCP-1 and F4/80 in the glomeruli and tubulointerstitial regions was decreased in the EPA-treated group. EPA and specific inhibitors of ERK1/2, JNK and PI3K decreased levels of MCP-1 in MMCs. EPA suppressed phosphorylation of ERK1/2 and p38 in MMCs, and decreased p-ERK positive cells in glomeruli of KKAy/Ta mice. CONCLUSIONS EPA ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice. We propose that the observed down-regulation of MCP-1 is critically involved in the beneficial effect of EPA, probably in concert with improvement of other clinical parameters.
Collapse
Affiliation(s)
- Shinji Hagiwara
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ewens KG, George RA, Sharma K, Ziyadeh FN, Spielman RS. Assessment of 115 candidate genes for diabetic nephropathy by transmission/disequilibrium test. Diabetes 2005; 54:3305-18. [PMID: 16249459 DOI: 10.2337/diabetes.54.11.3305] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several lines of evidence, including familial aggregation, suggest that allelic variation contributes to risk of diabetic nephropathy. To assess the evidence for specific susceptibility genes, we used the transmission/disequilibrium test (TDT) to analyze 115 candidate genes for linkage and association with diabetic nephropathy. A comprehensive survey of this sort has not been undertaken before. Single nucleotide polymorphisms and simple tandem repeat polymorphisms located within 10 kb of the candidate genes were genotyped in a total of 72 type 1 diabetic families of European descent. All families had at least one offspring with diabetes and end-stage renal disease or proteinuria. As a consequence of the large number of statistical tests and modest P values, findings for some genes may be false-positives. Furthermore, the small sample size resulted in limited power, so the effects of some tested genes may not be detectable, even if they contribute to susceptibility. Nevertheless, nominally significant TDT results (P < 0.05) were obtained with polymorphisms in 20 genes, including 12 that have not been studied previously: aquaporin 1; B-cell leukemia/lymphoma 2 (bcl-2) proto-oncogene; catalase; glutathione peroxidase 1; IGF1; laminin alpha 4; laminin, gamma 1; SMAD, mothers against DPP homolog 3; transforming growth factor, beta receptor II; transforming growth factor, beta receptor III; tissue inhibitor of metalloproteinase 3; and upstream transcription factor 1. In addition, our results provide modest support for a number of candidate genes previously studied by others.
Collapse
Affiliation(s)
- Kathryn Gogolin Ewens
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, USA
| | | | | | | | | |
Collapse
|
21
|
Fukami K, Cooper ME, Forbes JM. Agents in development for the treatment of diabetic nephropathy. Expert Opin Investig Drugs 2005; 14:279-94. [PMID: 15833059 DOI: 10.1517/13543784.14.3.279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease, and accounts for significant morbidity and mortality in patients with diabetes. Diabetic nephropathy seems to occur as a result of an interaction between metabolic and haemodynamic factors, which activate common pathways that lead to renal damage. In the past, the treatment of diabetic nephropathy has focused on the control of hyperglycaemia. Newer targets, some of which are linked to glucose-dependent pathways, appear to be a major focus of new treatments directed against the development and progression of renal damage as a result of diabetes. It is anticipated that additional therapeutic approaches that inhibit both metabolic and haemodynamic pathways will include strategies that target growth factors, cytokines and intracellular second messengers. Such an approach is expected to lead to improved therapies for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Kei Fukami
- Danielle Alberti Memorial Centre for Diabetes Complications, Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria 8008, Australia.
| | | | | |
Collapse
|
22
|
Lassila M, Jandeleit-Dahm K, Seah KK, Smith CM, Calkin AC, Allen TJ, Cooper ME. Imatinib Attenuates Diabetic Nephropathy in Apolipoprotein E-Knockout Mice. J Am Soc Nephrol 2004; 16:363-73. [PMID: 15625075 DOI: 10.1681/asn.2004050392] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the diabetic kidney, clinical as well as experimental observations have shown an upregulation of growth factors such as PDGF. These studies, however, were not designed to address whether upregulation of PDGF is merely a manifestation of diabetic renal injury or whether PDGF plays an active role in the pathophysiology of diabetic nephropathy. The objectives of this study were first to assess whether PDGF-dependent pathways are involved in the development of diabetic nephropathy and second to determine the effects of PDGF receptor antagonism on this disorder and associated molecular and cellular processes. This study used the diabetic apolipoprotein E-knockout (apoE-KO) mouse, a recently described model of accelerated diabetic nephropathy. Diabetes was induced by injection of streptozotocin in 6-wk-old apoE-KO mice. Diabetic animals received treatment with a tyrosine kinase inhibitor that inhibits PDGF action, imatinib (STI-571, 10 mg/kg per d orally) or no treatment for 20 wk. Nondiabetic apoE-KO mice served as controls. This model of accelerated renal disease with albuminuria as well as glomerular and tubulointerstitial injury was associated with increased renal expression of PDGF-B, proliferating cells, and alpha-smooth muscle actin-positive cells. Furthermore, there was increased accumulation of type I and type IV collagen as well as macrophage infiltration. Imatinib treatment ameliorated both renal functional and structural parameters of diabetes as well as overexpression of a number of growth factors, collagens, proliferating cells, alpha-smooth muscle actin-positive cells, and macrophage infiltration within the kidney. Tyrosine kinase inhibition with imatinib seems to retard the development of experimental diabetic nephropathy.
Collapse
Affiliation(s)
- Markus Lassila
- Baker Heart Research Institute, P.O. Box 6492, Commercial Road, Melbourne 8008, VIC 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Schrijvers BF, De Vriese AS, Flyvbjerg A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr Rev 2004; 25:971-1010. [PMID: 15583025 DOI: 10.1210/er.2003-0018] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
At present, diabetic kidney disease affects about 15-25% of type 1 and 30-40% of type 2 diabetic patients. Several decades of extensive research has elucidated various pathways to be implicated in the development of diabetic kidney disease. This review focuses on the metabolic factors beyond blood glucose that are involved in the pathogenesis of diabetic kidney disease, i.e., advanced glycation end-products and the aldose reductase system. Furthermore, the contribution of hemodynamic factors, the renin-angiotensin system, the endothelin system, and the nitric oxide system, as well as the prominent role of the intracellular signaling molecule protein kinase C are discussed. Finally, the respective roles of TGF-beta, GH and IGFs, vascular endothelial growth factor, and platelet-derived growth factor are covered. The complex interplay between these different pathways will be highlighted. A brief introduction to each system and description of its expression in the normal kidney is followed by in vitro, experimental, and clinical evidence addressing the role of the system in diabetic kidney disease. Finally, well-known and potential therapeutic strategies targeting each system are discussed, ending with an overall conclusion.
Collapse
Affiliation(s)
- Bieke F Schrijvers
- Medical Department M/Medical Research Laboratories, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
24
|
Abstract
The alterations in the microvascular system of diabetes mellitus patients are responsible for the most devastating complications of this widespread disease. In the kidney, the microangiopathy leads to thickening of the glomerular capillary basement membrane but also to the expansion of the mesangial matrix and thickening of the tubular basement membrane. Several mechanisms are implicated in the pathogenesis of diabetic renal microangiopathy. These include increased synthesis of type IV collagen following hyperglycaemia-induced alteration of the pattern of podocyte-integrin expression, decreased expression of matrix metalloproteinases (MMP-2 and 3), and increased expression of tissue inhibitor of metalloproteinase (TIMP). An altered morphology of podocytes accompanies these basement membrane alterations. Other factors which may contribute to renal matrix accumulation include vascular endothelial growth factor (VEGF), since treatment with anti-VEGF antibodies attenuates glomerular basement membrane thickening, platelet-derived growth factor (PDGF) (B chain) and its receptor, which appear to be highly expressed in mesangial and visceral epithelial cells and might play a role in the development of diabetic nephropathy. Also oxygen radicals/oxidative stress may play a role in matrix accumulation in diabetic nephropathy as aminoguanidine, an inhibitor of the formation of advanced glycation end-products but with antioxidant properties, attenuates diabetic nephropathy. Retinal diabetic microangiopathy follows much the same principles, be it that microvascular proliferation is a distinctive element in the retina. Nephropathy and retinopathy occur frequently but not always together, indicating that in their multifactorial pathogenesis much remains to be clarified.
Collapse
Affiliation(s)
- Effie C Tsilibary
- Institute of Biology, NCSR Demokritos, Agia Paraskevi, 153 10 Greece.
| |
Collapse
|
25
|
Langham RG, Kelly DJ, Maguire J, Dowling JP, Gilbert RE, Thomson NM. Over-expression of platelet-derived growth factor in human diabetic nephropathy. Nephrol Dial Transplant 2003; 18:1392-6. [PMID: 12808179 DOI: 10.1093/ndt/gfg177] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The pathogenetic mechanisms responsible for progressive renal impairment of diabetic nephropathy are still poorly understood, despite its growing incidence. Increasing evidence suggests that growth factors may contribute to the initiation and progressive fibrosis of diabetic nephropathy. In this study, the gene expression and protein distribution of platelet-derived growth factor-A and -B (PDGF-A and PDGF-B) in human diabetic nephropathy were examined. METHODS PDGF-A and PDGF-B mRNA levels in surplus renal biopsy tissue from seven patients with overt diabetic nephropathy and six nephrectomy samples were examined using quantitative reverse transcription-polymerase chain reaction (RT-PCR). In addition, each sample was also examined immunohistochemically to quantify and localize peptide expression of each PDGF isoform. RESULTS Gene expression of PDGF-A and PDGF-B mRNA were increased 22- and 6-fold, respectively, in biopsies from patients with diabetic nephropathy compared with control tissue. Immunostaining also demonstrated increased peptide expression of both PDGF-A and PDGF-B in diabetic nephropathy, with each isoform showing a specific pattern of tissue distribution. CONCLUSIONS The findings of increased gene and protein expression of PDGF in renal biopsies from patients with diabetic nephropathy imply a potential role for this prosclerotic growth factor in the development of the progressive fibrosis that characterizes human diabetic kidney disease.
Collapse
Affiliation(s)
- Robyn G Langham
- University of Melbourne St Vincent's Hospital Department of Medicine, Fitzroy, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Lin S, Sahai A, Chugh SS, Pan X, Wallner EI, Danesh FR, Lomasney JW, Kanwar YS. High glucose stimulates synthesis of fibronectin via a novel protein kinase C, Rap1b, and B-Raf signaling pathway. J Biol Chem 2002; 277:41725-35. [PMID: 12196513 DOI: 10.1074/jbc.m203957200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The molecular mechanism(s) by which high glucose induces fibronectin expression via G-protein activation in the kidney are largely unknown. This investigation describes the effect of high glucose (HG) on a small GTP-binding protein, Rap1b, expression and activation, and the relevance of protein kinase C (PKC) and Raf pathways in fibronectin synthesis in cultured renal glomerular mesangial cells (MCs). In vivo experiments revealed a dose-dependent increase in Rap1b expression in glomeruli of diabetic rat kidneys. Similarly, in vitro exposure of MCs to HG led to an up-regulation of Rap1b with concomitant increase in fibronectin (FN) mRNA and protein expression. The up-regulation of Rap1b mRNA was mitigated by the PKC inhibitors, calphostin C, and bisindolymaleimide, while also reducing HG- induced FN expression in non-transfected MCs. Overexpression of Rap1b by transfection with pcDNA 3.1/Rap1b in MCs resulted in the stimulation of FN synthesis; however, the PKC inhibitors had no significant effect in reducing FN expression in Rap1b-transfected MCs. Transfection of Rap1b mutants S17N (Ser --> Asn) or T61R (Thr --> Arg) in MCs inhibited the HG-induced increased FN synthesis. B-Raf and Raf-1 expression was investigated to assess whether Rap1b effects are mediated via the Raf pathway. B-Raf, and not Raf-1, expression was increased in MCs transfected with Rap1b. HG also caused activation of Rap1b, which was largely unaffected by anti-platelet-derived growth factor (PDGF) antibodies. HG-induced activation of Rap1b was specific, since Rap2b activation and expression of Rap2a and Rap2b were unaffected by HG. These findings indicate that hyperglycemia and HG cause an activation and up-regulation of Rap1b in renal glomeruli and in cultured MCs, which then stimulates FN synthesis. This effect appears to be PKC-dependent and PDGF-independent, but involves B-Raf, suggesting a novel PKC-Rap1b-B-Raf pathway responsible for HG-induced increased mesangial matrix synthesis, a hallmark of diabetic nephropathy.
Collapse
Affiliation(s)
- Sun Lin
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Watson PA, Vinson C, Nesterova A, Reusch JEB. Content and activity of cAMP response element-binding protein regulate platelet-derived growth factor receptor-alpha content in vascular smooth muscles. Endocrinology 2002; 143:2922-9. [PMID: 12130557 DOI: 10.1210/endo.143.8.8959] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experiments in vascular smooth muscle cells (SMCs) indicate that the transcription factor cAMP response element-binding protein (CREB), the cyclic nucleotide response element-binding protein, suppresses expression of the platelet-derived growth factor-alpha receptor gene (PDGFRalpha). Adenovirus-mediated expression of constitutively active CREB mutants decreases PDGFRalpha mRNA, PDGFRalpha protein, and PDGFRalpha promoter-luciferase reporter activity in cultured SMCs. Expression of dominant negative CREB protein, A-CREB, increases PDGFRalpha protein content and the PDGFRalpha-promoter activity in SMCs. Active CREB prevents activation of PDGFRalpha promoter-luciferase reporter activity by CCAAT/enhancer-binding protein-delta (C/EBPdelta), shown to mediate IL-1beta stimulation of PDGFRalpha expression. Exposure of cultured SMCs to high glucose or reactive oxidant stress, which decrease CREB protein content and activity, increases PDGFRalpha protein content and promoter activity. Expression of active CREB blunts reactive oxidant stress-induced PDGFRalpha accumulation in SMCs. Loss of CREB protein in aortic walls of rats with streptozotocin-induced diabetes is accompanied by an increase in PDGFRalpha content. In Ob/Ob mice (which demonstrate reduced aortic wall CREB content vs. Ob/- controls), treatment with the peroxisomal proliferator-activated receptor gamma rosiglitazone increases CREB content and decreases PDGFRalpha content in the aortic wall. Thus, both in vitro and in vivo loss of CREB content and activity and subsequent accumulation of PDGFRalpha may contribute to SMC activation during diabetes.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/analysis
- Cyclic AMP Response Element-Binding Protein/physiology
- Diabetes Mellitus, Experimental/metabolism
- Insulin Resistance
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Oxidative Stress
- RNA, Messenger/analysis
- Rats
- Receptor, Platelet-Derived Growth Factor alpha/analysis
- Receptor, Platelet-Derived Growth Factor alpha/biosynthesis
- Receptor, Platelet-Derived Growth Factor alpha/genetics
Collapse
Affiliation(s)
- Peter A Watson
- Denver Research Institute, Denver Veterans Affairs Medical Center, University of Colorado Health Sciences Center, 1055 Clermont Street, Denver, CO 80220, USA
| | | | | | | |
Collapse
|
28
|
Ogawa D, Shikata K, Matsuda M, Okada S, Wada J, Yamaguchi S, Suzuki Y, Miyasaka M, Tojo S, Makino H. Preventive effect of sulphated colominic acid on P-selectin-dependent infiltration of macrophages in experimentally induced crescentic glomerulonephritis. Clin Exp Immunol 2002; 129:43-53. [PMID: 12100021 PMCID: PMC1906424 DOI: 10.1046/j.1365-2249.2002.01875.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leucocytes infiltrate into renal tissue and are involved in the pathogenesis of crescentic glomerulonephritis. The initial event in the process of leucocyte infiltration is characterized by selectin-mediated leucocyte rolling on endothelial surface. Role of selectins in pathogenesis of glomerulonephritis has still been controversial. Sulphated glycolipids and sulphated polysaccharides interfere with the binding of P- and L-selectin with carbohydrate ligands on endothelial cells or on leucocytes. Here we evaluated the role of selectins and the preventive effects of sulphated colominic acid (SCA), a synthetic sulphated polysaccharide, on experimental crescentic glomerulonephritis in Wistar-Kyoto (WKY) rats. Crescentic glomerulonephritis was induced by injection of nephrotoxic serum (NTS) in WKY rats. Rats subsequently received intraperitoneal injection of saline, neutralizing or non-neutralizing monoclonal antibody (mAb) to rat P-selectin and L-selectin, SCA (5 or 10mg/kg/day) or nonsulphated colominic acid (CA) (10mg/kg/day) for 2 weeks. Localization of P-, E-selectin, ligands for L-selectin and intraglomerular leucocytes was examined by immunohistochemistry. Gene expression of platelet-derived growth factor (PDGF) B chain in glomeruli was quantified using real-time RT-PCR. P-selectin was highly expressed on glomerular endothelial cells after injection of NTS, whereas E-selectin and L-selectin ligands were not detected. Anti-P-selectin mAb, but not anti-L-selectin mAb, significantly reduced glomerular infiltration of macrophages, crescent formation, and proteinuria. SCA also reduced proteinuria, macrophage infiltration, and crescent formation in a dose-dependent manner. Furthermore, SCA suppressed gene expression of PDGF B chain in glomeruli. Our results indicate that P-selectin partially mediates glomerular infiltration of macrophage in experimental crescentic glomerulonephritis. Moreover, SCA may inhibit intraglomerular infiltration of macrophages by interfering with P-selectin-dependent adhesion pathway, and progression of experimental crescentic glomerulonephritis.
Collapse
Affiliation(s)
- D Ogawa
- Department of Medicine III, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim HW, Moon KC, Park SY, Hong HK, Lee HS. Differential expression of platelet-derived growth factor and transforming growth factor-β in relation to progression of IgA nephropathy. Nephrology (Carlton) 2002. [DOI: 10.1046/j.1440-1797.7.s3.9.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
KIM HW, MOON KC, PARK SY, HONG HK, LEE HS. Differential expression of platelet-derived growth factor and transforming growth factor-β in relation to progression of IgA nephropathy. Nephrology (Carlton) 2002. [DOI: 10.1111/j.1440-1797.2002.tb00523.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Eitner F, Ostendorf T, Van Roeyen C, Kitahara M, Li X, Aase K, Gröne HJ, Eriksson U, Floege J. Expression of a novel PDGF isoform, PDGF-C, in normal and diseased rat kidney. J Am Soc Nephrol 2002; 13:910-917. [PMID: 11912250 DOI: 10.1681/asn.v134910] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Platelet-derived growth factor-C (PDGF-C) is a new member of the PDGF family. Its expression in normal and diseased kidney is unknown. Rabbit antisera were generated against human full-length, core domain, and mouse PDGF-C, and their specificity was confirmed by Western blot analyses. Renal PDGF-C expression was analyzed by immunohistochemistry in normal rats (n = 8), mesangioproliferative anti-Thy 1.1 nephritis (n = 4 each at days 1, 4, 6, and 85), passive Heymann nephritis (PHN, n = 4), puromycin nephrosis (PAN, n = 2), Milan normotensive rats (MN, n = 2), and obese Zucker rats (n = 3). PDGF-C expression was also studied in anti-Thy 1.1 rats treated with PDGF-B aptamer antagonists (n = 5) or irrelevant control aptamers (n = 5). PDGF-C was constitutively expressed in arterial smooth muscle cells and collecting duct epithelial cells. Mesangial PDGF-C was markedly upregulated in anti-Thy 1.1 nephritis in parallel with the peak mesangial cell proliferation. Furthermore, PDGF-CC acted as a potent growth factor for mesangial cells in vitro. Inhibition of PDGF-B via specific aptamers reduced the injury in anti-Thy 1.1 nephritis but did not affect the glomerular PDGF-C overexpression or the mitogenicity of PDGF-CC in vitro. In PHN, PAN, and obese Zucker rats, glomeruli remained negative for PDGF-C despite severe glomerular injury. PDGF-C localized to podocytes at sites of focal and segmental sclerosis in MN. Interstitial PDGF-C expression was increased at sites of fibrosing injury in obese Zucker rats. The use of the different antisera resulted in virtually identical findings. It is concluded that PDGF-C is a novel mesangial cell mitogen that is constitutively expressed in the kidney and specifically upregulated in mesangial, visceral epithelial, and interstitial cells after predominant injury to these cells. PDGF-C may therefore be involved in the pathogenesis of renal scarring.
Collapse
Affiliation(s)
- Frank Eitner
- *Division of Nephrology and Immunology, University of Aachen, Aachen, Germany; †Ludwig Institute for Cancer Research, Stockholm, Sweden; and ‡German Cancer Research Institute, DKFZ Heidelberg, Germany
| | - Tammo Ostendorf
- *Division of Nephrology and Immunology, University of Aachen, Aachen, Germany; †Ludwig Institute for Cancer Research, Stockholm, Sweden; and ‡German Cancer Research Institute, DKFZ Heidelberg, Germany
| | - Claudia Van Roeyen
- *Division of Nephrology and Immunology, University of Aachen, Aachen, Germany; †Ludwig Institute for Cancer Research, Stockholm, Sweden; and ‡German Cancer Research Institute, DKFZ Heidelberg, Germany
| | - Masashi Kitahara
- *Division of Nephrology and Immunology, University of Aachen, Aachen, Germany; †Ludwig Institute for Cancer Research, Stockholm, Sweden; and ‡German Cancer Research Institute, DKFZ Heidelberg, Germany
| | - Xuri Li
- *Division of Nephrology and Immunology, University of Aachen, Aachen, Germany; †Ludwig Institute for Cancer Research, Stockholm, Sweden; and ‡German Cancer Research Institute, DKFZ Heidelberg, Germany
| | - Karin Aase
- *Division of Nephrology and Immunology, University of Aachen, Aachen, Germany; †Ludwig Institute for Cancer Research, Stockholm, Sweden; and ‡German Cancer Research Institute, DKFZ Heidelberg, Germany
| | - Hermann-Josef Gröne
- *Division of Nephrology and Immunology, University of Aachen, Aachen, Germany; †Ludwig Institute for Cancer Research, Stockholm, Sweden; and ‡German Cancer Research Institute, DKFZ Heidelberg, Germany
| | - Ulf Eriksson
- *Division of Nephrology and Immunology, University of Aachen, Aachen, Germany; †Ludwig Institute for Cancer Research, Stockholm, Sweden; and ‡German Cancer Research Institute, DKFZ Heidelberg, Germany
| | - Jürgen Floege
- *Division of Nephrology and Immunology, University of Aachen, Aachen, Germany; †Ludwig Institute for Cancer Research, Stockholm, Sweden; and ‡German Cancer Research Institute, DKFZ Heidelberg, Germany
| |
Collapse
|
32
|
Büyükafşar K, Yazar A, Düşmez D, Oztürk H, Polat G, Levent A. Effect of trapidil, an antiplatelet and vasodilator agent on gentamicin-induced nephrotoxicity in rats. Pharmacol Res 2001; 44:321-8. [PMID: 11592868 DOI: 10.1006/phrs.2001.0864] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was carried out to evaluate the effect of trapidil, an antiplatelet and vasodilator drug, on the nephrotoxicity by an aminoglycoside, gentamicin, in rats. Forty female Wistar rats were divided into six different groups. One group served as a control group and the other groups were treated as follows: gentamicin (50 mg kg(-1) twice daily)-treated, gentamicin plus trapidil (4 or 20 mg kg(-1) daily)-treated and only trapidil-treated (4 or 20 mg kg(-1) daily) groups. Serum urea, creatinine and nitrite/nitrate levels were measured. Moreover, histopathological as well as electron microscopic examinations were performed. At a lower dose (4 mg kg(-1)) trapidil did not prevent the development of renal tubular damage by gentamicin. However, a higher dose of trapidil (20 mg kg(-1)) inhibited the ability of gentamicin to increase the levels of creatinine and urea. Furthermore, both light and electron microscopic evaluation confirmed the nephroprotective effect of the higher dose of trapidil. The level of the stable nitric oxide (NO) metabolite, nitrite, was also increased by trapidil. In conclusion, trapidil at a higher dose may protect against gentamicin nephrotoxicity. The mechanism underlying trapidil nephroprotection is not known, but may result from the antagonism of platelet-derived growth factor (PDGF), vasodilatation, inhibition of trombosit aggregation, and/or NO release.
Collapse
Affiliation(s)
- K Büyükafşar
- Department of Pharmacology, Medical Faculty, Mersin University, Turkey.
| | | | | | | | | | | |
Collapse
|