1
|
Ren H, Yuan Y, Zhang D, Xing Y, Chen Z. The impact of circadian rhythms on retinal immunity. Chronobiol Int 2025; 42:198-212. [PMID: 39917826 DOI: 10.1080/07420528.2025.2460675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025]
Abstract
The eye is an immune-protected organ, which is driven by factors such as cytokines, chemicals, light, and mechanical stimuli. The circadian clock is an intrinsic timing mechanism that influences the immune activities, such as immune cell count and activity, as well as inflammatory responses. Recent studies have demonstrated that the eye also possesses an intrinsic circadian rhythm, and this rhythmic regulation participates in ocular immune modulation. In this review, we discuss the immunoregulatory mechanisms of the circadian clock within the eye, and reveal new perspectives for the prevention and treatment of ocular diseases.
Collapse
Affiliation(s)
- He Ren
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yilin Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danlei Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Folke Olsen L. Complex dynamics in an unexplored simple model of the peroxidase-oxidase reaction. CHAOS (WOODBURY, N.Y.) 2023; 33:023102. [PMID: 36859227 DOI: 10.1063/5.0129095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A previously overlooked version of the so-called Olsen model of the peroxidase-oxidase reaction has been studied numerically using 2D isospike stability and maximum Lyapunov exponent diagrams and reveals a rich variety of dynamic behaviors not observed before. The model has a complex bifurcation structure involving mixed-mode and bursting oscillations as well as quasiperiodic and chaotic dynamics. In addition, multiple periodic and non-periodic attractors coexist for the same parameters. For some parameter values, the model also reveals formation of mosaic patterns of complex dynamic states. The complex dynamic behaviors exhibited by this model are compared to those of another version of the same model, which has been studied in more detail. The two models show similarities, but also notable differences between them, e.g., the organization of mixed-mode oscillations in parameter space and the relative abundance of quasiperiodic and chaotic oscillations. In both models, domains with chaotic dynamics contain apparently disorganized subdomains of periodic attractors with dinoflagellate-like structures, while the domains with mainly quasiperiodic behavior contain subdomains with periodic attractors organized as regular filamentous structures. These periodic attractors seem to be organized according to Stern-Brocot arithmetics. Finally, it appears that toroidal (quasiperiodic) attractors develop into first wrinkled and then fractal tori before they break down to chaotic attractors.
Collapse
Affiliation(s)
- Lars Folke Olsen
- PhyLife, Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
3
|
Aufinger L, Brenner J, Simmel FC. Complex dynamics in a synchronized cell-free genetic clock. Nat Commun 2022; 13:2852. [PMID: 35606356 PMCID: PMC9126873 DOI: 10.1038/s41467-022-30478-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
Complex dynamics such as period doubling and chaos occur in a wide variety of non-linear dynamical systems. In the context of biological circadian clocks, such phenomena have been previously found in computational models, but their experimental study in biological systems has been challenging. Here, we present experimental evidence of period doubling in a forced cell-free genetic oscillator operated in a microfluidic reactor, where the system is periodically perturbed by modulating the concentration of one of the oscillator components. When the external driving matches the intrinsic period, we experimentally find period doubling and quadrupling in the oscillator dynamics. Our results closely match the predictions of a theoretical model, which also suggests conditions under which our system would display chaotic dynamics. We show that detuning of the external and intrinsic period leads to more stable entrainment, suggesting a simple design principle for synchronized synthetic and natural genetic clocks.
Collapse
Affiliation(s)
- Lukas Aufinger
- Physics Department - E14, Technical University Munich, D-85748, Garching, Germany
| | - Johann Brenner
- Physics Department - E14, Technical University Munich, D-85748, Garching, Germany
| | - Friedrich C Simmel
- Physics Department - E14, Technical University Munich, D-85748, Garching, Germany.
| |
Collapse
|
4
|
"Shedding Light on Light": A Review on the Effects on Mental Health of Exposure to Optical Radiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041670. [PMID: 33572423 PMCID: PMC7916252 DOI: 10.3390/ijerph18041670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/10/2023]
Abstract
In relation to human health and functioning, light, or more specifically optical radiation, plays many roles, beyond allowing vision. These may be summarized as: regulation of circadian rhythms; consequences of direct exposure to the skin; and more indirect effects on well-being and functioning, also related to lifestyle and contact with natural and urban environments. Impact on mental health is relevant for any of these specifications and supports a clinical use of this knowledge for the treatment of psychiatric conditions, such as depression or anxiety, somatic symptom disorder, and others, with reference to light therapy in particular. The scope of this narrative review is to provide a summary of recent findings and evidence on the regulating functions of light on human beings’ biology, with a specific focus on mental health, its prevention and care.
Collapse
|
5
|
Nie G, Liu X, Zhou X, Song Q, Fu M, Xu F, Wang X. Functional analysis of a novel cryptochrome gene ( GbCRY1) from Ginkgo biloba. PLANT SIGNALING & BEHAVIOR 2021; 16:1850627. [PMID: 33258712 PMCID: PMC7849775 DOI: 10.1080/15592324.2020.1850627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Cryptochrome (CRY) is a blue light receptor that is widely distributed in animals, plants, and microorganisms. CRY as a coding gene of cryptochrome that regulates the organism gene expression and plays an important role in organism growth and development. In this study, we identified four photolyase/cryptochrome (PHR/CRY) members from the genome of Ginkgo biloba. Phylogenetic tree analysis showed that the Ginkgo PHR/CRY family members were closely related to Arabidopsis thaliana and Solanum lycopersicum. We isolated a cryptochrome gene, GbCRY1, from G. biloba and analyzed its structure and function. GbCRY1 shared high similarity with AtCRY1 from A. thaliana. GbCRY1 expression level was higher in stems and leaves and lower in roots, male strobili, female strobili. GbCRY1 expression level fluctuated periodically within 24 h, gradually increased in the dark, and decreased under blue light. The newly germinated ginkgo seedlings were cultured under dark, white light, and blue light conditions. The blue light normally induced photomorphogenesis of ginkgo seedlings, which included hypocotyl elongation inhibition, leaf expansion inhibition, and chlorophyll formation. Treating dark-adapted ginkgo leaves with blue light could induce stomatal opening. At the same time, blue light reduced the expression level of GbCRY1 in the process of inducing photomorphogenesis and stoma opening. Our results provide evidence that GbCRY1 expression is affected by space, circadian cycle and light, and also proves that GbCRY1 is related to ginkgo circadian clock, photomorphogenesis and stoma opening process.
Collapse
Affiliation(s)
- Gongping Nie
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Qiling Song
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xuefeng Wang
- College of Art, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
6
|
Iwasaki H, Kondo T. Circadian Timing Mechanism in the Prokaryotic Clock System of Cyanobacteria. J Biol Rhythms 2016; 19:436-44. [PMID: 15534323 DOI: 10.1177/0748730404269060] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyanobacteria are the simplest organisms known to exhibit circadian rhythms and have provided experimental model systems for the dissection of basic properties of circadian organization at the molecular, physiological, and ecological levels. This review focuses on the molecular and genetic mechanisms of circadian rhythm generation in cyanobacteria. Recent analyses have revealed the existence of multiple feedback processes in the prokaryotic circadian system and have led to a novel molecular oscillator model. Here, the authors summarize current understanding of, and open questions about, the cyanobacterial oscillator.
Collapse
Affiliation(s)
- Hideo Iwasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan.
| | | |
Collapse
|
7
|
Genetic Correlates of Individual Differences in Sleep Behavior of Free-Living Great Tits (Parus major). G3-GENES GENOMES GENETICS 2016; 6:599-607. [PMID: 26739645 PMCID: PMC4777123 DOI: 10.1534/g3.115.024216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Within populations, free-living birds display considerable variation in observable sleep behaviors, reflecting dynamic interactions between individuals and their environment. Genes are expected to contribute to repeatable between-individual differences in sleep behaviors, which may be associated with individual fitness. We identified and genotyped polymorphisms in nine candidate genes for sleep, and measured five repeatable sleep behaviors in free-living great tits (Parus major), partly replicating a previous study in blue tits (Cyanistes caeruleus). Microsatellites in the CLOCK and NPAS2 clock genes exhibited an association with sleep duration relative to night length, and morning latency to exit the nest box, respectively. Furthermore, microsatellites in the NPSR1 and PCSK2 genes associated with relative sleep duration and proportion of time spent awake at night, respectively. Given the detection rate of associations in the same models run with random markers instead of candidate genes, we expected two associations to arise by chance. The detection of four associations between candidate genes and sleep, however, suggests that clock genes, a clock-related gene, or a gene involved in the melanocortin system, could play key roles in maintaining phenotypic variation in sleep behavior in avian populations. Knowledge of the genetic architecture underlying sleep behavior in the wild is important because it will enable ecologists to assess the evolution of sleep in response to selection.
Collapse
|
8
|
Mei Q, Sadovy Y, Dvornyk V. Molecular evolution of cryptochromes in fishes. Gene 2015; 574:112-20. [PMID: 26238701 DOI: 10.1016/j.gene.2015.07.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/03/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
Abstract
Circadian rhythmicity is an endogenous biological cycle of about 24h, which exists in cyanobacteria and fungi, plants and animals. Circadian rhythms improve the adaptability of organisms in both constant and changing environments. The cryptochrome (CRY) is a key element of the circadian system in various animal groups including fishes. We studied evolution of cryptochromes in the phylogenetically and ecologically diverse fish taxa. The phylogenetic tree of fish Cry features two major clades: Cry1 and Cry2. Teleosts possess extra copies of Cry1 due to the genome duplication, which resulted in 3 main paralogous subfamilies (1A, 1B and 1C). Cry1 experienced further diversification through additional duplications in some taxa. 1A of Cry1 is more conserved than the other paralogs (dN=0.010 ± 0.003, π=0.119 ± 0.058). The analysis of selection indicated that, while the Cry homologs in fish evolved under the different levels of selection pressure, strong purifying selection (average ω=0.017) dominated in their evolution.
Collapse
Affiliation(s)
- Qiming Mei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Yvonne Sadovy
- School of Biological Sciences, University of Hong Kong, Pokfulam Rd., Hong Kong, SAR, People's Republic of China
| | - Volodymyr Dvornyk
- School of Biological Sciences, University of Hong Kong, Pokfulam Rd., Hong Kong, SAR, People's Republic of China; Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Chen W, Liu Z, Li T, Zhang R, Xue Y, Zhong Y, Bai W, Zhou D, Zhao Z. Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nat Commun 2014; 5:5549. [DOI: 10.1038/ncomms6549] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022] Open
|
10
|
Abstract
Several lines of evidence suggest that the circadian clock is constructed of multiple molecular feedback oscillators that function to generate robust rhythms in organisms. However, while core oscillator mechanisms driving specific behaviors are well described in several model systems, the nature of other potential circadian oscillators is not understood. Using genetic approaches in the fungus Neurospora crassa, we uncovered an oscillator mechanism that drives rhythmic spore development in the absence of the well-characterized FRQ/WCC oscillator (FWO) and in constant light, conditions under which the FWO is not functional. While this novel oscillator does not require the FWO for activity, it does require the blue-light photoreceptor CRYPTOCHROME (CRY); thus, we call it the CRY-dependent oscillator (CDO). The CDO was uncovered in a strain carrying a mutation in cog-1 (cry-dependent oscillator gate-1), has a period of ∼1 day in constant light, and is temperature-compensated. In addition, cog-1 cells lacking the circadian blue-light photoreceptor WC-1 respond to blue light, suggesting that alternate light inputs function in cog-1 mutant cells. We show that the blue-light photoreceptors VIVID and CRY compensate for each other and for WC-1 in CRY-dependent oscillator light responses, but that WC-1 is necessary for circadian light entrainment.
Collapse
|
11
|
Hughes ATL, Piggins HD. Feedback actions of locomotor activity to the circadian clock. PROGRESS IN BRAIN RESEARCH 2012; 199:305-336. [PMID: 22877673 DOI: 10.1016/b978-0-444-59427-3.00018-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The phase of the mammalian circadian system can be entrained to a range of environmental stimuli, or zeitgebers, including food availability and light. Further, locomotor activity can act as an entraining signal and represents a mechanism for an endogenous behavior to feedback and influence subsequent circadian function. This process involves a number of nuclei distributed across the brain stem, thalamus, and hypothalamus and ultimately alters SCN electrical and molecular function to induce phase shifts in the master circadian pacemaker. Locomotor activity feedback to the circadian system is effective across both nocturnal and diurnal species, including humans, and has recently been shown to improve circadian function in a mouse model with a weakened circadian system. This raises the possibility that exercise may be useful as a noninvasive treatment in cases of human circadian dysfunction including aging, shift work, transmeridian travel, and the blind.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Jolma IW, Laerum OD, Lillo C, Ruoff P. Circadian oscillators in eukaryotes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:533-549. [PMID: 20836046 DOI: 10.1002/wsbm.81] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The biological clock, present in nearly all eukaryotes, has evolved such that organisms can adapt to our planet's rotation in order to anticipate the coming day or night as well as unfavorable seasons. As all modern high-precision chronometers, the biological clock uses oscillation as a timekeeping element. In this review, we describe briefly the discovery, historical development, and general properties of circadian oscillators. The issue of temperature compensation (TC) is discussed, and our present understanding of the underlying genetic and biochemical mechanisms in circadian oscillators are described with special emphasis on Neurospora crassa, mammals, and plants.
Collapse
Affiliation(s)
- Ingunn W Jolma
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ole Didrik Laerum
- The Gade Institute, Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Cathrine Lillo
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
13
|
Corellou F, Schwartz C, Motta JP, Djouani-Tahri EB, Sanchez F, Bouget FY. Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote ostreococcus. THE PLANT CELL 2009; 21:3436-49. [PMID: 19948792 PMCID: PMC2798331 DOI: 10.1105/tpc.109.068825] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 10/01/2009] [Accepted: 11/05/2009] [Indexed: 05/17/2023]
Abstract
Biological rhythms that allow organisms to adapt to the solar cycle are generated by endogenous circadian clocks. In higher plants, many clock components have been identified and cellular rhythmicity is thought to be driven by a complex transcriptional feedback circuitry. In the small genome of the green unicellular alga Ostreococcus tauri, two of the master clock genes Timing of Cab expression1 (TOC1) and Circadian Clock-Associated1 (CCA1) appear to be conserved, but others like Gigantea or Early-Flowering4 are lacking. Stably transformed luciferase reporter lines and tools for gene functional analysis were therefore developed to characterize clock gene function in this simple eukaryotic system. This approach revealed several features that are comparable to those in higher plants, including the circadian regulation of TOC1, CCA1, and the output gene Chlorophyll a/b Binding under constant light, the relative phases of TOC1/CCA1 expression under light/dark cycles, arrhythmic overexpression phenotypes under constant light, the binding of CCA1 to a conserved evening element in the TOC1 promoter, as well as the requirement of the evening element for circadian regulation of TOC1 promoter activity. Functional analysis supports TOC1 playing a central role in the clock, but repression of CCA1 had no effect on clock function in constant light, arguing against a simple TOC1 /CCA1 one-loop clock in Ostreococcus. The emergence of functional genomics in a simple green cell with a small genome may facilitate increased understanding of how complex cellular processes such as the circadian clock have evolved in plants.
Collapse
Affiliation(s)
- Florence Corellou
- University Pierre and Marie Curie Paris 06, Laboratoire d'Océanographie Microbiene, Observatoire Océanologique, F-66651 Banyuls/Mer, France.
| | | | | | | | | | | |
Collapse
|
14
|
Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci U S A 2009; 4:660-2. [PMID: 19359492 DOI: 10.1073/pnas.0900952106] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In higher plants, the circadian clock controls a wide range of cellular processes such as photosynthesis and stress responses. Understanding metabolic changes in arrhythmic plants and determining output-related function of clock genes would help in elucidating circadian-clock mechanisms underlying plant growth and development. In this work, we investigated physiological relevance of PSEUDO-RESPONSE REGULATORS (PRR 9, 7, and 5) in Arabidopsis thaliana by transcriptomic and metabolomic analyses. Metabolite profiling using gas chromatography-time-of-flight mass spectrometry demonstrated well-differentiated metabolite phenotypes of seven mutants, including two arrhythmic plants with similar morphology, a PRR 9, 7, and 5 triple mutant and a CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1)-overexpressor line. Despite different light and time conditions, the triple mutant exhibited a dramatic increase in intermediates in the tricarboxylic acid cycle. This suggests that proteins PRR 9, 7, and 5 are involved in maintaining mitochondrial homeostasis. Integrated analysis of transcriptomics and metabolomics revealed that PRR 9, 7, and 5 negatively regulate the biosynthetic pathways of chlorophyll, carotenoid and abscisic acid, and alpha-tocopherol, highlighting them as additional outputs of pseudo-response regulators. These findings indicated that mitochondrial functions are coupled with the circadian system in plants.
Collapse
|
15
|
Boake CRB, Arnold SJ, Breden F, Meffert LM, Ritchie MG, Taylor BJ, Wolf JB, Moore AJ. Genetic tools for studying adaptation and the evolution of behavior. Am Nat 2008; 160 Suppl 6:S143-59. [PMID: 18707473 DOI: 10.1086/342902] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rapid expansion of genomic and molecular genetic techniques in model organisms, and the application of these techniques to organisms that are less well studied genetically, make it possible to understand the genetic control of many behavioral phenotypes. However, many behavioral ecologists are uncertain about the value of including a genetic component in their studies. In this article, we review how genetic analyses of behavior are central to topics ranging from understanding past selection and predicting future evolution to explaining the neural and hormonal control of behavior. Furthermore, we review both new and old techniques for studying evolutionary behavior genetics and highlight how the choice of approach depends on both the question and the organism. Topics discussed include genetic architecture, detecting the past history of selection, and genotype-by-environment interactions. We show how these questions are being addressed with techniques including statistical genetics, QTL analyses, transgenic analyses, and microarrays. Many of the techniques were first applied to the behavior of genetic model organisms such as laboratory mice and flies. Two recent developments serve to expand the relevance of such studies to behavioral ecology. The first is to use model organisms for studies of the genetic basis of evolutionarily relevant behavior and the second is to apply methods developed in model genetic systems to species that have not previously been examined genetically. These conceptual advances, along with the rapid diversification of genetic tools and the recognition of widespread genetic homology, suggest a bright outlook for evolutionary genetic studies. This review provides access to tools through references to the recent literature and shows the great promise for evolutionary behavioral genetics.
Collapse
Affiliation(s)
- Christine R B Boake
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996-1610, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Biological functions governed by the circadian clock are the evident result of the entrainment operated by the earth's day and night cycle on living organisms. However, the circadian clock is not unique, and cells and organisms possess many other cyclic activities. These activities are difficult to observe if carried out by single cells and the cells are not coordinated but, if they can be detected, cell-to-cell cross-talk and synchronization among cells must exist. Some of these cycles are metabolic and cell synchronization is due to small molecules acting as metabolic messengers. We propose a short survey of cellular cycles, paying special attention to metabolic cycles and cellular cross-talking, particularly when the synchronization of metabolism or, more generally, cellular functions are concerned. Questions arising from the observation of phenomena based on cell communication and from basic cellular cycles are also proposed.
Collapse
Affiliation(s)
- Michele M Bianchi
- Department of Cell and Developmental Biology, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
17
|
Shi M, Larrondo LF, Loros JJ, Dunlap JC. A developmental cycle masks output from the circadian oscillator under conditions of choline deficiency in Neurospora. Proc Natl Acad Sci U S A 2007; 104:20102-7. [PMID: 18056807 PMCID: PMC2148429 DOI: 10.1073/pnas.0706631104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Indexed: 11/18/2022] Open
Abstract
In Neurospora, metabolic oscillators coexist with the circadian transcriptional/translational feedback loop governed by the FRQ (Frequency) and WC (White Collar) proteins. One of these, a choline deficiency oscillator (CDO) observed in chol-1 mutants grown under choline starvation, drives an uncompensated long-period developmental cycle ( approximately 60-120 h). To assess possible contributions of this metabolic oscillator to the circadian system, molecular and physiological rhythms were followed in liquid culture under choline starvation, but these only confirmed that an oscillator with a normal circadian period length can run under choline starvation. This finding suggested that long-period developmental cycles elicited by nutritional stress could be masking output from the circadian system, although a caveat was that the CDO sometimes requires several days to become consolidated. To circumvent this and observe both oscillators simultaneously, we used an assay using a codon-optimized luciferase to follow the circadian oscillator. Under conditions where the long-period, uncompensated, CDO-driven developmental rhythm was expressed for weeks in growth tubes, the luciferase rhythm in the same cultures continued in a typical compensated manner with a circadian period length dependent on the allelic state of frq. Periodograms revealed no influence of the CDO on the circadian oscillator. Instead, the CDO appears as a cryptic metabolic oscillator that can, under appropriate conditions, assume control of growth and development, thereby masking output from the circadian system. frq-driven luciferase as a reporter of the circadian oscillator may in this way provide a means for assessing prospective role(s) of metabolic and/or ancillary oscillators within cellular circadian systems.
Collapse
Affiliation(s)
- Mi Shi
- Departments of *Genetics and
| | | | - Jennifer J. Loros
- Departments of *Genetics and
- Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| | | |
Collapse
|
18
|
García-Fernández JM, Alvarez-López C, Cernuda-Cernuda R. Cytoplasmic localization of mPER1 clock protein isoforms in the mouse retina. Neurosci Lett 2007; 419:55-8. [PMID: 17433540 DOI: 10.1016/j.neulet.2007.03.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 03/23/2007] [Accepted: 03/23/2007] [Indexed: 11/26/2022]
Abstract
The mammalian Period1 gene is rhythmically expressed and its proteins are found within the nucleus of the cells of the suprachiasmatic nuclei (SCN), the central circadian pacemaker in mammals; however, whether the target of the PER1 proteins is also the nucleus in the retinal peripheral clock cells is yet to be determined. Using an anti-PER1 protein antibody in Western blot analyses, we found three isoforms (75, 110 and 140kDa) in extracts of the SCN, as well as in other different parts of the brain, whereas just two isoforms (75 and 110kDa) were detected in the retinal extracts. We have observed that PER1 immunolabelling has a cytoplasmic location in many cells of the ganglion cell layer and in a few cells in the inner nuclear layer of the mouse retina. This cellular location was seen in any of the tissue samples taken at 4h intervals, either in the day/night cycle or in constant darkness, of both wild type and rd mice. Unlike this situation, PER1 isoforms were nuclear proteins in the SCN cells as well as in other parts of the brain of the same animals. No circadian changes were found for these clock proteins in the neural retina. These findings suggest that PER1 proteins play roles in the retina different from those established in the SCN.
Collapse
|
19
|
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
20
|
Abstract
A functional circadian clock has long been considered a selective advantage. Accumulating evidence shows that the clock coordinates a variety of physiological processes in order to schedule them to the optimal time of day and thus to synchronize metabolism to changes in external conditions. In mitochondria, both metabolic and cellular defense mechanisms are carefully regulated. Abnormal clock function, might influence mitochondrial function, resulting in decreased fitness of an organism.
Collapse
Affiliation(s)
- Sonja Langmesser
- Department of Medicine, Division of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
21
|
Gardner M, Hubbard K, Hotta C, Dodd A, Webb A. How plants tell the time. Biochem J 2006; 397:15-24. [PMID: 16761955 PMCID: PMC1479754 DOI: 10.1042/bj20060484] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/08/2006] [Indexed: 01/16/2023]
Abstract
Plants, like all eukaryotes and most prokaryotes, have evolved sophisticated mechanisms for anticipating predictable environmental changes that arise due to the rotation of the Earth on its axis. These mechanisms are collectively termed the circadian clock. Many aspects of plant physiology, metabolism and development are under circadian control and a large proportion of the transcriptome exhibits circadian regulation. In the present review, we describe the advances in determining the molecular nature of the circadian oscillator and propose an architecture of several interlocking negative-feedback loops. The adaptive advantages of circadian control, with particular reference to the regulation of metabolism, are also considered. We review the evidence for the presence of multiple circadian oscillator types located in within individual cells and in different tissues.
Collapse
Key Words
- biological rhythm
- circadian clock
- photoperiodism
- plant
- temperature regulation
- timekeeping
- arna, antisense rna
- cab, chlorophyll a/b-binding protein
- cat3, catalase 3
- cbs, cca1-binding site
- cca1, circadian clock associated 1
- chs, chalcone synthase
- cop1, constitutively photomorphogenic 1
- co, constans
- cry, cryptochrome
- [ca2+]cyt, cytosolic free ca2+ concentration
- det1, de-etiolated 1
- elf, early flowering
- ft, flowering locus t
- frq, frequency
- grp, glycine-rich protein
- gi, gigantea
- lhy, late elongated hypocotyl
- lkp2, light oxygen or voltage/kelch protein 2
- lov, light oxygen or voltage
- luc, luciferase
- lux, lux arrhythmo
- nr, nitrate reductase
- per, period
- phot, phototropin
- phy, phytochrome
- prr, pseudo response regulator
- skp1, s-phase kinase-associated protein 1
- scf, skp1/cullin/f-box
- scn, suprachiasmatic nucleus
- spy, spindly
- toc1, timing of cab expression 1
- ztl, zeitlupe
Collapse
Affiliation(s)
- Michael J. Gardner
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Katharine E. Hubbard
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Carlos T. Hotta
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Antony N. Dodd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Alex A. R. Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| |
Collapse
|
22
|
Abstract
Microorganisms provide important model systems for studying circadian rhythms, and they are overturning established ideas about the molecular mechanisms of rhythmicity. The transcription/translation feedback model that has been accepted as the basis of circadian clock mechanisms in eukaryotes does not account for old data from the alga Acetabularia demonstrating that transcription is not required for rhythmicity. Moreover, new results showing in vitro rhythmicity of KaiC protein phosphorylation in the cyanobacterium Synechococcus, and rhythmicity in strains of the fungus Neurospora carrying clock gene null mutations, require new ways of looking at circadian systems.
Collapse
|
23
|
Abstract
The molecular mechanism of circadian rhythmicity is usually modeled by a transcription/translation feedback oscillator in which clock proteins negatively feed back on their own transcription to produce rhythmic levels of clock protein mRNAs, which in turn cause the production of rhythmic levels of clock proteins. This mechanism has been applied to all model organisms for which molecular data are available. This review summarizes the increasing number of anomalous observations that do not fit the standard molecular mechanism for the model organisms Acetabularia, Synechococcus, Drosophila, Neurospora, and mouse. The anomalies fall into 2 classes: observations of rhythmicity in the organism when transcription of clock genes is held constant, and rhythmicity in the organism when clock gene function is missing in knockout mutants. It is concluded that the weight of anomalies is now so large that the standard transcription/translation mechanism is no longer an adequate model for circadian oscillators. Rhythmic transcription may have other functions in the circadian system, such as participating in input and output pathways and providing robustness to the oscillations. It may be most useful to think in terms of a circadian system that uses a noncircadian oscillator consisting of metabolic feedback loops, which acquires its circadian properties from additional regulatory molecules such as the products of canonical clock genes.
Collapse
|
24
|
Shao QM, Sehadová H, Ichihara N, Sehnal F, Takeda M. Immunoreactivities to three circadian clock proteins in two ground crickets suggest interspecific diversity of the circadian clock structure. J Biol Rhythms 2006; 21:118-31. [PMID: 16603676 DOI: 10.1177/0748730405283660] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The closely related crickets Dianemobius nigrofasciatus and Allonemobius allardi exhibit similar circadian rhythms and photoperiodic responses, suggesting that they possess similar circadian and seasonal clocks. To verify this assumption, antisera to Period (PER), Doubletime (DBT), and Cryptochrome (CRY) were used to visualize circadian clock neurons in the cephalic ganglia. Immunoreactivities referred to as PER-ir, DBT-ir, and CRY-ir were distributed mainly in the optic lobes (OL), pars intercerebralis (PI), dorsolateral protocerebrum, and the subesophageal ganglion (SOG). A system of immunoreactive cells in the OL dominates in D. nigrofasciatus, while immunoreactivities in the PI and SOG prevail in A. allardi. Each OL of D. nigrofasciatus contains 3 groups of cells that coexpress PER-ir and DBT-ir and send processes over the frontal medulla face to the inner lamina surface, suggesting functional linkage to the compound eye. Only 2 pairs of PER-ir cells (no DBT-ir) were found in the OL of A. allardi. Several groups of PER-ir cells occur in the brain of both species. The PI also contains DBT-ir and CRY-ir cells, but in A. allardi, most of the DBT-ir is confined to the SOG. Most immunoreactive cells in the PI and in the dorsolateral brain send their fibers to the contralateral corpora cardiaca and corpora allata. The proximity and, in some cases, proven identity of the PER-ir, DBT-ir, and CRY-ir perikarya are consistent with presumed interactions between the examined clock components. The antigens were always found in the cytoplasm, and no diurnal oscillations in their amounts were detected. The photoperiod, which controls embryonic diapause, the rate of larval development, and the wing length of crickets, had no discernible effect on either distribution or the intensity of the immunostaining.
Collapse
Affiliation(s)
- Qi-Miao Shao
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Nada, Kobe, Japan
| | | | | | | | | |
Collapse
|
25
|
Paetkau V, Edwards R, Illner R. A model for generating circadian rhythm by coupling ultradian oscillators. Theor Biol Med Model 2006; 3:12. [PMID: 16504091 PMCID: PMC1402262 DOI: 10.1186/1742-4682-3-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 02/23/2006] [Indexed: 12/17/2022] Open
Abstract
Background Organisms ranging from humans to cyanobacteria undergo circadian rhythm, that is, variations in behavior that cycle over a period about 24 hours in length. A fundamental property of circadian rhythm is that it is free-running, and continues with a period close to 24 hours in the absence of light cycles or other external cues. Regulatory networks involving feedback inhibition and feedforward stimulation of mRNA transcription and translation are thought to be critical for many circadian mechanisms, and genes coding for essential components of circadian rhythm have been identified in several organisms. However, it is not clear how such components are organized to generate a circadian oscillation. Results We propose a model in which two independent transcriptional-translational oscillators with periods much shorter than 24 hours are coupled to drive a forced oscillator that has a circadian period, using mechanisms and parameters of conventional molecular biology. Furthermore, the resulting circadian oscillator can be entrained by an external light-dark cycle through known mechanisms. We rationalize the mathematical basis for the observed behavior of the model, and show that the behavior is not dependent on the details of the component ultradian oscillators but occurs even if quite generalized basic oscillators are used. Conclusion We conclude that coupled, independent, transcriptional-translational oscillators with relatively short periods can be the basis for circadian oscillators. The resulting circadian oscillator can be entrained by 24-hour light-dark cycles, and the model suggests a mechanism for its evolution.
Collapse
Affiliation(s)
- Verner Paetkau
- Department of Biochemistry and MicrobiologyUniversity of Victoria Victoria, British Columbia, Canada
| | - Roderick Edwards
- Department of Mathematics and Statistics University of VictoriaVictoria, British Columbia, Canada
| | - Reinhard Illner
- Department of Mathematics and Statistics University of VictoriaVictoria, British Columbia, Canada
| |
Collapse
|
26
|
Hasegawa K, Saigusa T, Tamai Y. Caenorhabditis elegans opens up new insights into circadian clock mechanisms. Chronobiol Int 2005; 22:1-19. [PMID: 15865318 DOI: 10.1081/cbi-200038149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The roundworm, Caenorhabditis elegans, is known to carry homologues of clock genes such as per (=period) and tim (=timeless), which constitute the core of the circadian clock in Drosophila and mammals: lin-42 and tim-1. Analyses using WormBase (C. elegans gene database) have identified with relatively high identity analogous of the clock genes recognized in Drosophila and mammals, with the notable exception of cry (=cryptochrome), which is lacking in C. elegans. All of these C. elegans cognates of the clock genes appear to belong to members of the PAS-superfamily and to participate in development or responsiveness to the environment but apparently are not involved in the C. elegans circadian clock. Nevertheless, C. elegans exhibits convincing circadian rhythms in locomotor behavior in the adult stage and in resistance to hyperosmotic stress in starved larvae (L1) after hatching, indicating that it has a circadian clock with a core design entirely different from that of Drosophila and mammals. Here two possibilities are considered. First, the core of the C. elegans circadian clock includes transcriptional/translational feedback loops between genes and their protein products that are entirely different from those of Drosophila and mammals. Second, a more basic principle such as homeostasis governs the circadian cellular physiology, and was established primarily to minimize the accumulation of DNA damage in response to an environment cycling at 24 h intervals.
Collapse
Affiliation(s)
- Kenji Hasegawa
- Division of Brain Science, Graduate School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | |
Collapse
|
27
|
Abstract
Clock is a member of a highly conserved transcription control network that underlies the circadian cycle. During early embryogenesis, its expression is developmentally regulated and may be required for the normal development of the head. In this report, the transcription factor Pax6, a highly conserved regulator of anterior development, is shown to be a direct target of Clock regulation.
Collapse
Affiliation(s)
- Richard Morgan
- Department of Basic Medical Sciences, St. George's Hospital Medical School, Cranmer Terrace, London, United Kingdom.
| |
Collapse
|
28
|
Cevík H, Erkanli G, Ercan F, Işman CA, Yeğen BC. Exposure to continuous darkness ameliorates gastric and colonic inflammation in the rat: both receptor and non-receptor-mediated processes. J Gastroenterol Hepatol 2005; 20:294-303. [PMID: 15683435 DOI: 10.1111/j.1440-1746.2004.03579.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Melatonin is a hormone involved in the transduction of photoperiodic information, and appears to modulate a variety of neural and endocrine functions. The present study was designed to determine the impact of continuous darkness (CD) on acute gastric and colonic inflammation and the involvement of melatonin receptors in the darkness-related alterations in oxidant gut injury. METHODS Rats were housed either in CD or in standardized light/dark (12/12 h) cycles for 15 days before the induction of colitis or gastric ulcer. Luzindole (MT(2) receptor antagonist) was given at a dose of 0.25 mg/kg intraperitoneally 30 min before and 6 and 18 h following the induction of colitis with acetic acid or gastric ulcer with ethanol. Rats were decapitated at 24 h, and the colons and stomachs were removed for macroscopic scoring, histologic assessment and for the determination of tissue malondialdehyde and glutathione levels. RESULTS All inflammation parameters were increased by acetic acid-induced colitis or ethanol-induced gastric ulcer compared with the control group. Our results indicate that the severity of both gastric and colonic injury is reduced by a 2-week exposure to CD prior to the induction of inflammatory event, while luzindole treatment reversed the protective effect of CD on the colonic and gastric injury. However, darkness-related alterations in malondialdehyde and glutathione levels were not altered by luzindole. CONCLUSION Although the CD-induced amelioration of gut injury involves melatonin receptors, the direct antioxidant effects on melatonin appear to be independent of receptor activity.
Collapse
Affiliation(s)
- Hülya Cevík
- Department of Physiology, Marmara University School of Medicine, Haydarpaşa, Istanbul 34668, Turkey
| | | | | | | | | |
Collapse
|
29
|
Abstract
Recent advances in understanding circadian (daily) rhythms in the genera Neurospora, Gonyaulax, and Synechococcus are reviewed and new complexities in their circadian systems are described. The previous model, consisting of a unidirectional flow of information from input to oscillator to output, has now expanded to include multiple input pathways, multiple oscillators, multiple outputs; and feedback from oscillator to input and output to oscillator. New posttranscriptional features of the frq/white-collar oscillator (FWC) of Neurospora are described, including protein phosphorylation and degradation, dimerization, and complex formation. Experimental evidence is presented for frq-less oscillator(s) (FLO) downstream of the FWC. Mathematical models of the Neurospora system are also discussed.
Collapse
|
30
|
Helfrich-Förster C. The circadian clock in the brain: a structural and functional comparison between mammals and insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:601-13. [PMID: 15156341 DOI: 10.1007/s00359-004-0527-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/17/2004] [Accepted: 04/18/2004] [Indexed: 02/03/2023]
Abstract
The circadian master clocks in the brains of mammals and insects are compared in respect to location, organization and function. They show astonishing similarities. Both clocks are anatomically and functionally connected to the optic system and possess multiple output pathways allowing synchronization with the environmental light-dark cycles as well as the control of diverse endocrine, autonomic and behavioral functions. Both circadian master clocks are composed of multiple neurons, which are organized in populations with different morphology, physiology and neurotransmitter content and appear to subserve different functions. In the hamster and in the cockroach, the master clock consists of a core region that gets input from the eyes, and a shell region from which the majority of output projections originate. Communication between core and shell, between all other populations of clock neurons as well as between the master clocks of both brain hemispheres is a prerequisite of normal rhythmic function. Phenomena like rhythm splitting and internal desynchronization can be observed under constant light conditions and are caused by the "uncoupling" of the master clocks of both brain hemispheres.
Collapse
|
31
|
Vengrova S, Dalgaard JZ. RNase-sensitive DNA modification(s) initiates S. pombe mating-type switching. Genes Dev 2004; 18:794-804. [PMID: 15059961 PMCID: PMC387419 DOI: 10.1101/gad.289404] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mating-type switching in fission yeast depends on an imprint at the mat1 locus. Previous data showed that the imprint is made in the DNA strand replicated as lagging. We now identify this imprint as an RNase-sensitive modification and suggest that it consists of one or two RNA residues incorporated into the mat1 DNA. Formation of the imprint requires swi1- and swi3-dependent pausing of the replication fork. Interestingly, swi1 and swi3 mutations that abolish pausing do not affect the use of lagging-strand priming site during replication. We show that the pausing of replication and subsequent formation of the imprint occur after the leading-strand replication complex has passed the site of the imprint and after lagging-strand synthesis has initiated at this proximal priming site. We propose a model in which a swi1- and swi3-dependent signal during lagging-strand synthesis leads to pausing of leading-strand replication and the introduction of the imprint.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Cell Cycle Proteins
- Chromosomal Proteins, Non-Histone
- Chromosomes, Fungal
- DNA Replication/physiology
- DNA, Fungal/genetics
- DNA-Binding Proteins
- Genes, Fungal
- Genes, Mating Type, Fungal
- Genomic Imprinting
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Neoplasm Proteins
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Fungal/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/isolation & purification
- Replication Origin
- Ribonucleases/metabolism
- Saccharomyces cerevisiae
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Schizosaccharomyces/genetics
- Schizosaccharomyces pombe Proteins
- Sequence Homology, Nucleic Acid
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Sonya Vengrova
- Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | | |
Collapse
|
32
|
Jiang H, Lu J, Ji J. Circadian rhythm of dihydrouracil/uracil ratios in biological fluids: a potential biomarker for dihydropyrimidine dehydrogenase levels. Br J Pharmacol 2004; 141:616-23. [PMID: 14744810 PMCID: PMC1574234 DOI: 10.1038/sj.bjp.0705651] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. In many cancer patients, 5-fluorouracil (5-FUra) treatment is toxic and even causes death. Nevertheless, all patients are subjected to a standard therapy regimen because there is no reliable way to identify beforehand those patients who are predisposed to 5-FUra-induced toxicity. In this study, we identified the dihydrouracil/uracil (UH2/Ura) ratio in plasma or urine as a potential biomarker reflecting the activity of dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme in 5-FUra metabolism. 2. UH2/Ura ratios were measured by high-performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC-MS/MS) in both healthy subjects (n=55) and in patients (n=20) diagnosed with grade I/II gestational trophoblastic tumours. In addition, rats (n=18) were used as an animal model to verify a correlation between UH2/Ura ratios and DPD levels in the liver. 3. A significant circadian rhythm was observed in UH2/Ura ratios in healthy subjects, whereas a disrupted rhythm occurred in cancer patients who were continuously infused with a high dose of 5-FUra. In rats, UH2/Ura ratios, liver DPD levels and PBMC DPD levels showed a definite circadian rhythm. Significant linear correlations with liver DPD levels were demonstrated for plasma UH2/Ura ratios (r=0.883, P<0.01), urine UH2/Ura ratios (r=0.832, P<0.01) and PBMC DPD levels (r=0.859, P<0.01). 4. The UH2/Ura ratio in biological fluid was significantly correlated with liver DPD levels; hence, this ratio could be a potential biomarker to identify patients with a deficiency in DPD.
Collapse
Affiliation(s)
- Hao Jiang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital & Chinese Academy of Medical Science, Beijing 100730, China.
| | | | | |
Collapse
|
33
|
Merrow M, Dragovic Z, Tan Y, Meyer G, Sveric K, Mason M, Ricken J, Roenneberg T. Combining theoretical and experimental approaches to understand the circadian clock. Chronobiol Int 2003; 20:559-75. [PMID: 12916713 DOI: 10.1081/cbi-120023678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review is intended as a summary of our work carried out as part of the German Research Association (DFG) Center Program on Circadian Rhythms. Over the last six years, our approach to understanding circadian systems combined theoretical and experimental tools, and Gonyaulax and Neurospora have proven ideal for these efforts. Both of these model organisms demonstrate that even simple circadian systems can have multiple light input pathways and more than one rhythm generator. They have both been used to elaborate basic circadian features in conjunction with formal models. The models introduce the "zeitnehmer," i.e., a clock-regulated input pathway, to the conceptual framework of circadian systems, and proposes networks of individual feedbacks as the basis for circadian rhythmicity.
Collapse
Affiliation(s)
- Martha Merrow
- Institut für Medizinische Psychologie, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Porsin B, Formento JL, Filipski E, Etienne MC, Francoual M, Renée N, Magné N, Lévi F, Milano G. Dihydropyrimidine dehydrogenase circadian rhythm in mouse liver: comparison between enzyme activity and gene expression. Eur J Cancer 2003; 39:822-8. [PMID: 12651209 DOI: 10.1016/s0959-8049(02)00598-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme of 5-fluorouracil (FU) catabolism. The relevance of the measurement of DPD activity for identifying DPD-deficient patients is lessened by circadian variability in DPD activity. Our purpose was to determine whether or not DPD mRNA is sustained by a circadian rhythm. Synchronised mice (male B6D2F1) were sacrificed at 3, 7, 11, 15, 19 or 23 Hours After Light Onset (HALO; eight mice per time-point). Liver DPD activity was determined by a radio-enzymatic assay and liver DPD expression by a reverse transcriptase-polymerase chain reaction (RT-PCR) enzyme-linked immunosorbent assay (ELISA) method. Mice synchronisation was controlled by leucocyte and neutrophil counts. Individual DPD activity ranged from 555 to 1575 pmol/min/mg prot; mean DPD activity was highest at 3 HALO (mean+/-standard error of the mean (S.E.M.); 1105+/-70) and lowest at 15 HALO (889+/-71). Individual liver DPD expression varied from 761 to 3481 units (DPD/beta actin ratio); the mean was lowest at 3 HALO (1406+/-112) and highest at 15 HALO (2067+/-214). Cosinor analysis indicated that respective double amplitudes of DPD activity and expression were 21 and 30% of the 24-h mean. The acrophases for activity and expression were 6:40 and 14:10 HALO, respectively, meaning that maximum activity occurred 16 h after the maximum observed expression. These results, revealing the existence of a circadian rhythm in DPD expression, should stimulate further studies to enhance our understanding of the molecular mechanisms involved in the circadian regulation of the DPD enzyme.
Collapse
Affiliation(s)
- B Porsin
- Oncopharmacology Unit, Centre Antoine Lacassagne, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The neurons of the mammalian suprachiasmatic nuclei (SCN) control circadian rhythms in molecular, physiological, endocrine, and behavioral functions. In the SCN, circadian rhythms are generated at the level of individual neurons. The last decade has provided a wealth of information on the genetic basis for circadian rhythm generation. In comparison, a modest but growing number of studies have investigated how the molecular rhythm is translated into neuronal function. Neuronal attributes have been measured at the cellular and tissue level with a variety of electrophysiological techniques. We have summarized electrophysiological research on neurons that constitute the SCN in an attempt to provide a comprehensive view on the current state of the art.
Collapse
Affiliation(s)
- Jeroen Schaap
- Department of Neurophysiology, Leiden University Medical School, RC Leiden, The Netherlands
| | | | | |
Collapse
|
36
|
Correa A, Bell-Pedersen D. Distinct signaling pathways from the circadian clock participate in regulation of rhythmic conidiospore development in Neurospora crassa. EUKARYOTIC CELL 2002; 1:273-80. [PMID: 12455961 PMCID: PMC118037 DOI: 10.1128/ec.1.2.273-280.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several different environmental signals can induce asexual spore development (conidiation) and expression of developmentally regulated genes in Neurospora crassa. However, under constant conditions, where no environmental cues for conidiation are present, the endogenous circadian clock in N. crassa promotes daily rhythms in expression of known developmental genes and of conidiation. We anticipated that the same pathway of gene regulation would be followed during clock-controlled conidiation and environmental induction of conidiation and that the circadian clock would need only to control the initial developmental switch. Previous experiments showed that high-level developmental induction of the clock-controlled genes eas (ccg-2) and ccg-1 requires the developmental regulatory proteins FL and ACON-2, respectively, and normal developmental induction of fl mRNA expression requires ACON-2. We demonstrate that the circadian clock regulates rhythmic fl gene expression and that fl rhythmicity requires ACON-2. However, we find that clock regulation of eas (ccg-2) is normal in an fl mutant strain and ccg-1 expression is rhythmic in an acon-2 mutant strain. Together, these data point to the endogenous clock and the environment following separate pathways to regulate conidiation-specific gene expression.
Collapse
Affiliation(s)
- Alejandro Correa
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
37
|
Kippert F. Cellular signalling and the complexity of biological timing: insights from the ultradian clock of Schizosaccharomyces pombe. Philos Trans R Soc Lond B Biol Sci 2001; 356:1725-33. [PMID: 11710979 PMCID: PMC1088548 DOI: 10.1098/rstb.2001.0935] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular bases of circadian clocks are complex and cannot be sufficiently explained by the relatively simple feedback loops, based on transcription and translation, of current models. The existence of additional oscillators has been demonstrated experimentally, but their mechanism(s) have so far resisted elucidation and any universally conserved clock components have yet to be identified. The fission yeast, Schizosaccharomyces pombe, as a simple and well-characterized eukaryote, is a useful model organism in the investigation of many aspects of cell regulation. In fast-growing cells of the yeast an ultradian clock operates, which can serve as a model system to analyse clock complexity. This clock shares strict period homeostasis and efficient entrainment with circadian clocks but, because of its short period of 30 min, mechanisms other than a transcription/translation-based feedback loop must be working. An initial systematic screen involving over 200 deletion mutants has shown that major cellular signalling pathways (calcium/phosphoinositide, mitogen-activated protein kinase and cAMP/protein kinase A) are crucial for the normal functioning of this ultradian clock. A comparative examination of the role of cellular signalling pathways in the S.pombe ultradian clock and in the circadian timekeeping of different eukaryotes may indicate common principles in biological timing processes that are universally conserved amongst eukaryotes.
Collapse
Affiliation(s)
- F Kippert
- Biological Timing Laboratory, Institute of Cell, Animal and Population Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JN, UK.
| |
Collapse
|
38
|
Morgan LW, Feldman JF, Bell-Pedersen D. Genetic interactions between clock mutations in Neurospora crassa: can they help us to understand complexity? Philos Trans R Soc Lond B Biol Sci 2001; 356:1717-24. [PMID: 11710978 PMCID: PMC1088547 DOI: 10.1098/rstb.2001.0967] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent work on circadian clocks in Neurospora has primarily focused on the frequency (frq) and white-collar (wc) loci. However, a number of other genes are known that affect either the period or temperature compensation of the rhythm. These include the period (no relationship to the period gene of Drosophila) genes and a number of genes that affect cellular metabolism. How these other loci fit into the circadian system is not known, and metabolic effects on the clock are typically not considered in single-oscillator models. Recent evidence has pointed to multiple oscillators in Neurospora, at least one of which is predicted to incorporate metabolic processes. Here, the Neurospora clock-affecting mutations will be reviewed and their genetic interactions discussed in the context of a more complex clock model involving two coupled oscillators: a FRQ/WC-based oscillator and a 'frq-less' oscillator that may involve metabolic components.
Collapse
Affiliation(s)
- L W Morgan
- Department of Biology, Texas A&M University, College Station, TX 77843-3248, USA
| | | | | |
Collapse
|
39
|
Bell-Pedersen D, Crosthwaite SK, Lakin-Thomas PL, Merrow M, Økland M. The Neurospora circadian clock: simple or complex? Philos Trans R Soc Lond B Biol Sci 2001; 356:1697-709. [PMID: 11710976 PMCID: PMC1088545 DOI: 10.1098/rstb.2001.0968] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fungus Neurospora crassa is being used by a number of research groups as a model organism to investigate circadian (daily) rhythmicity. In this review we concentrate on recent work relating to the complexity of the circadian system in this organism. We discuss: the advantages of Neurospora as a model system for clock studies; the frequency (frq), white collar-1 and white collar-2 genes and their roles in rhythmicity; the phenomenon of rhythmicity in null frq mutants and its implications for clock mechanisms; the study of output pathways using clock-controlled genes; other rhythms in fungi; mathematical modelling of the Neurospora circadian system; and the application of new technologies to the study of Neurospora rhythmicity. We conclude that there may be many gene products involved in the clock mechanism, there may be multiple interacting oscillators comprising the clock mechanism, there may be feedback from output pathways onto the oscillator(s) and from the oscillator(s) onto input pathways, and there may be several independent clocks coexisting in one organism. Thus even a relatively simple lower eukaryote can be used to address questions about a complex, networked circadian system.
Collapse
Affiliation(s)
- D Bell-Pedersen
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| | | | | | | | | |
Collapse
|
40
|
Roenneberg T, Merrow M. Circadian systems: different levels of complexity. Philos Trans R Soc Lond B Biol Sci 2001; 356:1687-96. [PMID: 11710975 PMCID: PMC1088544 DOI: 10.1098/rstb.2001.0969] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
After approximately 50 years of circadian research, especially in selected circadian model systems (Drosophila, Neurospora, Gonyaulax and, more recently, cyanobacteria and mammals), we appreciate the enormous complexity of the circadian programme in organisms and cells, as well as in physiological and molecular circuits. Many of our insights into this complexity stem from experimental reductionism that goes as far as testing the interaction of molecular clock components in heterologous systems or in vitro. The results of this enormous endeavour show circadian systems that involve several oscillators, multiple input pathways and feedback loops that contribute to specific circadian qualities but not necessarily to the generation of circadian rhythmicity. For a full appreciation of the circadian programme, the results from different levels of the system eventually have to be put into the context of the organism as a whole and its specific temporal environment. This review summarizes some of the complexities found at the level of organisms, cells and molecules, and highlights similar strategies that apparently solve similar problems at the different levels of the circadian system.
Collapse
Affiliation(s)
- T Roenneberg
- Institute for Medical Psychology, Chronobiology, Goethestrasse 31, D-8 0336 München, Germany.
| | | |
Collapse
|
41
|
Lakin-Thomas PL, Gooch VD, Ramsdale M. Rhythms of differentiation and diacylglycerol in Neurospora. Philos Trans R Soc Lond B Biol Sci 2001; 356:1711-5. [PMID: 11710977 PMCID: PMC1088546 DOI: 10.1098/rstb.2001.0966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the fungus Neurospora crassa is a relatively simple lower eukaryote, its circadian system may be more complex than previously thought. In this paper we review evidence suggesting that there may be several output pathways coupled in complex ways to a single oscillator, or that there may be more than one oscillator driving independent output pathways. We have described two new rhythms in Neurospora that are not tightly coupled to the rhythm of conidiation bands that is the standard assay for the state of the Neurospora circadian clock. The first is a rhythm in the timing of differentiation, i.e. the production of aerial hyphae and spores. Large regions of the mycelium differentiate synchronously, as if responding to a spatially widespread signal. This rhythm may be distinct from the timer that sets the determination switch controlling the spatial pattern of conidiation bands. The second new rhythm is an oscillation in the levels of the neutral lipid diacylglycerol (DAG). This rhythm is found in all regions of a colony and is not always in phase with the rhythm of conidiation bands. The DAG rhythm shares some characteristics with the differentiation rhythm and has the potential to act as the signal that induces rhythmic differentiation.
Collapse
Affiliation(s)
- P L Lakin-Thomas
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | | | | |
Collapse
|
42
|
Kostál V, Shimada K. Malfunction of circadian clock in the non-photoperiodic-diapause mutants of the drosophilid fly, Chymomyza costata. JOURNAL OF INSECT PHYSIOLOGY 2001; 47:1269-1274. [PMID: 12770178 DOI: 10.1016/s0022-1910(01)00113-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The diel rhythmicity of adult eclosion was recorded in reciprocal F1 hybrids between the wild-type (Sapporo) and mutant (NPD) strains of Chymomyza costata and the functionality of central circadian clocks was checked in both strains by assessing diel and circadian patterns of the per gene mRNA abundance oscillations in fly heads using competitive polymerase chain reaction methodology. The previously detected mutations in the per coding region of the NPD strain (Shimada, Entomol. Sci. 2 (1999) 575) were found to be primarily neither responsible for the loss of the eclosion rhythm nor for the malfunction of the circadian clocks. While distinct diel and circadian rhythms in per mRNA abundance were found in the wild-type flies, the npd-mutants showed constant (arrhythmic) and low abundance of the per mRNA transcripts. Because the non-photoperiodism, arrhythmicity of adult eclosion and the malfunction of central circadian clocks all seem to result from a mutation in the autosomal npd locus, we hypothesize, that a product coded by this locus may represent a 'point of contact' between the circadian and photoperiodic time measurement systems in C. costata.
Collapse
Affiliation(s)
- V Kostál
- Institute of Entomology, Academy of Sciences of the Czech Republic, Branisovská 31, 370 05, Ceské Budejovice, Czech Republic
| | | |
Collapse
|
43
|
Abstract
Both positive and negative feedback loops of transcriptional regulation have been proposed to be important for the generation of circadian rhythms. To test the sufficiency of the proposed mechanisms, two differential equation-based models were constructed to describe the Neurospora crassa and Drosophila melanogaster circadian oscillators. In the model of the Neurospora oscillator, FRQ suppresses frq transcription by binding to a complex of the transcriptional activators WC-1 and WC-2, thus yielding negative feedback. FRQ also activates synthesis of WC-1, which in turn activates frq transcription, yielding positive feedback. In the model of the Drosophila oscillator, PER and TIM are represented by a "lumped" variable, "PER." PER suppresses its own transcription by binding to the transcriptional regulator dCLOCK, thus yielding negative feedback. PER also binds to dCLOCK to de-repress dclock, and dCLOCK in turn activates per transcription, yielding positive feedback. Both models displayed circadian oscillations that were robust to parameter variations and to noise and that entrained to simulated light/dark cycles. Circadian oscillations were only obtained if time delays were included to represent processes not modeled in detail (e.g., transcription and translation). In both models, oscillations were preserved when positive feedback was removed.
Collapse
|
44
|
Merrow M, Roenneberg T, Macino G, Franchi L. A fungus among us: the Neurospora crassa circadian system. Semin Cell Dev Biol 2001; 12:279-85. [PMID: 11463212 DOI: 10.1006/scdb.2001.0255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurospora crassa is the only molecular genetic model system for circadian rhythms research in the fungi. Its strengths as a model organism lie in its relative simplicity--compared to photosynthesizing and vertebrate organisms, it is a stripped-down version of life. It forms syncitial hyphae, propagates and reproduces, and the circadian clock is manifest in numerous processes therein. As with other model circadian systems, Neurospora features a transcription/translation feedback loop that is fundamental to an intact circadian system. The molecular components of this loop converge with those of blue light photoreception, thus bringing the clock and one of its input pathways together.
Collapse
Affiliation(s)
- M Merrow
- Institute for Medical Psychology, University of Munich, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
45
|
Abstract
Photoperiodic clocks allow organisms to predict the coming season. In insects, the seasonal adaptive response mainly takes the form of diapause. The extensively studied photoperiodic clock in insects was primarily characterized by a "black-box" approach, resulting in numerous cybernetic models. This is in contrast with the circadian clock, which has been dissected pragmatically at the molecular level, particularly in Drosophila. Unfortunately, Drosophila melanogaster, the favorite model organism for circadian studies, does not demonstrate a pronounced seasonal response, and consequently molecular analysis has not progressed in this area. In the current article, the authors explore different ways in which identified molecular components of the circadian pacemaker may play a role in photoperiodism. Future progress in understanding the Drosophila circadian pacemaker, particularly as further output components are identified, may provide a direct link between the clock and photoperiodism. In addition, with improved molecular tools, it is now possible to turn to other insects that have a more dramatic photoperiodic response.
Collapse
Affiliation(s)
- E Tauber
- Department of Genetics, University of Leicester, UK
| | | |
Collapse
|
46
|
Bell-Pedersen D, Lewis ZA, Loros JJ, Dunlap JC. The Neurospora circadian clock regulates a transcription factor that controls rhythmic expression of the output eas(ccg-2) gene. Mol Microbiol 2001; 41:897-909. [PMID: 11532152 DOI: 10.1046/j.1365-2958.2001.02558.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The circadian clock provides a link between an organism's environment and its behaviour, temporally phasing the expression of genes in anticipation of daily environmental changes. Input pathways sense environmental information and interact with the clock to synchronize it to external cycles, and output pathways read out from the clock to impart temporal control on downstream targets. Very little is known about the regulation of outputs from the clock. In Neurospora crassa, the circadian clock transcriptionally regulates expression of the clock-controlled genes, including the well-characterized eas(ccg-2) gene. Dissection of the eas(ccg-2) gene promoter previously localized a 68 bp sequence containing an activating clock element (ACE) that is both necessary and sufficient for rhythmic activation of transcription by the circadian clock. Using electrophoretic mobility shift assays (EMSAs), we have identified light-regulated nuclear protein factors that bind specifically to the ACE in a time-of-day-dependent fashion, consistent with their role in circadian regulation of expression of eas(ccg-2). Nucleotides in the ACE that interact with the protein factors were determined using interference binding assays, and deletion of the core interacting sequences affected, but did not completely eliminate, rhythmic accumulation of eas(ccg-2) mRNA in vivo, whereas deletion of the entire ACE abolished the rhythm. These data indicate that redundant binding sites for the protein factors that promote eas(ccg-2) rhythms exist within the 68 bp ACE. The ACE binding complexes formed using protein extracts from cells with lesions in central components of the Neurospora circadian clock were identical to those formed with extracts from wild-type cells, indicating that other proteins directly control eas(ccg-2) rhythmic expression. These data suggest that the Neurospora crassa circadian clock regulates an unknown transcription factor, which in turn activates the expression of eas(ccg-2) at specific times of the day.
Collapse
Affiliation(s)
- D Bell-Pedersen
- Department of Biology, Texas A & M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
47
|
Moritz OL, Tam BM, Hurd LL, Peränen J, Deretic D, Papermaster DS. Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol Biol Cell 2001; 12:2341-51. [PMID: 11514620 PMCID: PMC58598 DOI: 10.1091/mbc.12.8.2341] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Revised: 05/04/2001] [Accepted: 05/30/2001] [Indexed: 11/11/2022] Open
Abstract
Rab8 is a GTPase involved in membrane trafficking. In photoreceptor cells, rab8 is proposed to participate in the late stages of delivery of rhodopsin-containing post-Golgi membranes to the plasma membrane near the base of the connecting cilium. To test the function of rab8 in vivo, we generated transgenic Xenopus laevis expressing wild-type, constitutively active (Q67L), and dominant negative (T22N) forms of canine rab8 in their rod photoreceptors as green fluorescent protein (GFP) fusion proteins. Wild-type and constitutively active GFP-rab8 proteins were primarily associated with Golgi and post-Golgi membranes, whereas the dominant negative protein was primarily cytoplasmic. Expression of wild-type GFP-rab8 had minimal effects on cell survival and intracellular structures. In contrast, GFP-rab8T22N caused rapid retinal degeneration. In surviving peripheral rods, tubulo-vesicular structures accumulated at the base of the connecting cilium. Expression of GFP-rab8Q67L induced a slower retinal degeneration in some tadpoles. Transgene effects were transmitted to F1 offspring. Expression of the GFP-rab8 fusion proteins appears to decrease the levels of endogenous rab8 protein. Our results demonstrate a role for rab8 in docking of post-Golgi membranes in rods, and constitute the first report of a transgenic X. laevis model of retinal degenerative disease.
Collapse
Affiliation(s)
- O L Moritz
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06032-3705, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Over the course of the past 40 years Neurospora has become a well-known and uniquely tractable model system for the analysis of the molecular basis of eukaryotic circadian oscillatory systems. Molecular bases for the period length and sustainability of the rhythm, light, and temperature resetting of the circadian system and for gating of light input and light effects are becoming understood, and Neurospora promises to be a suitable system for examining the role of coupled feedback loops in the clock. Many of these insights have shown or foreshadow direct parallels in mammalian systems, including the mechanism of light entrainment, the involvement of PAS:PAS heterodimers as transcriptional activators in essential clock-associated feedback loops, and dual role of FRQ in the loop as an activator and a repressor; similarities extend to the primary sequence level in at least one case, that of WC-1 and BMAL1. Work on circadian output in Neurospora has identified more than a dozen regulated genes and has been at the forefront of studies aimed at understanding clock control of gene expression.
Collapse
Affiliation(s)
- J J Loros
- Department of Biochemistry Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
49
|
McClung CR. CIRCADIAN RHYTHMS IN PLANTS. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:139-162. [PMID: 11337395 DOI: 10.1146/annurev.arplant.52.1.139] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Circadian rhythms, endogenous rhythms with periods of approximately 24 h, are widespread in nature. Although plants have provided many examples of rhythmic outputs and our understanding of photoreceptors of circadian input pathways is well advanced, studies with plants have lagged in the identification of components of the central circadian oscillator. Nonetheless, genetic and molecular biological studies, primarily in Arabidopsis, have begun to identify the components of plant circadian systems at an accelerating pace. There also is accumulating evidence that plants and other organisms house multiple circadian clocks both in different tissues and, quite probably, within individual cells, providing unanticipated complexity in circadian systems.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755-3576; e-mail:
| |
Collapse
|
50
|
Abstract
In the cyanobacterium Synechococcus elongatus, cell division is regulated by a circadian clock. Deletion of the circadian clock gene, kaiC, abolishes rhythms of gene expression and cell division timing. Overexpression of the ftsZ gene halted cell division but not growth, causing cells to grow as filaments without dividing. The nondividing filamentous cells still exhibited robust circadian rhythms of gene expression. This result indicates that the circadian timing system is independent of rhythmic cell division and, together with other results, suggests that the cyanobacterial circadian system is stable and well sustained under a wide range of intracellular conditions.
Collapse
Affiliation(s)
- T Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|