1
|
Staurengo-Ferrari L, Araldi D, Green PG, Levine JD. Neuroendocrine mechanisms in oxaliplatin-induced hyperalgesic priming. Pain 2023; 164:1375-1387. [PMID: 36729863 PMCID: PMC10182219 DOI: 10.1097/j.pain.0000000000002828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Stress plays a major role in the symptom burden of oncology patients and can exacerbate cancer chemotherapy-induced peripheral neuropathy (CIPN), a major adverse effect of many classes of chemotherapy. We explored the role of stress in the persistent phase of the pain induced by oxaliplatin. Oxaliplatin induced hyperalgesic priming, a model of the transition to chronic pain, as indicated by prolongation of hyperalgesia produced by prostaglandin E 2 , in male rats, which was markedly attenuated in adrenalectomized rats. A neonatal handling protocol that induces stress resilience in adult rats prevented oxaliplatin-induced hyperalgesic priming. To elucidate the role of the hypothalamic-pituitary-adrenal and sympathoadrenal neuroendocrine stress axes in oxaliplatin CIPN, we used intrathecally administered antisense oligodeoxynucleotides (ODNs) directed against mRNA for receptors mediating the effects of catecholamines and glucocorticoids, and their second messengers, to reduce their expression in nociceptors. Although oxaliplatin-induced hyperalgesic priming was attenuated by intrathecal administration of β 2 -adrenergic and glucocorticoid receptor antisense ODNs, oxaliplatin-induced hyperalgesia was only attenuated by β 2 -adrenergic receptor antisense. Administration of pertussis toxin, a nonselective inhibitor of Gα i/o proteins, attenuated hyperalgesic priming. Antisense ODNs for Gα i 1 and Gα o also attenuated hyperalgesic priming. Furthermore, antisense for protein kinase C epsilon, a second messenger involved in type I hyperalgesic priming, also attenuated oxaliplatin-induced hyperalgesic priming. Inhibitors of second messengers involved in the maintenance of type I (cordycepin) and type II (SSU6656 and U0126) hyperalgesic priming both attenuated hyperalgesic priming. These experiments support a role for neuroendocrine stress axes in hyperalgesic priming, in male rats with oxaliplatin CIPN.
Collapse
Affiliation(s)
| | | | - Paul G. Green
- Departments of Oral and Maxillofacial Surgery and
- Preventative and Restorative Dental Sciences, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, CA, United States
| | - Jon D. Levine
- Departments of Oral and Maxillofacial Surgery and
- Preventative and Restorative Dental Sciences, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, CA, United States
- Division of Neuroscience, Department of Medicine, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Rossi GC, Bodnar RJ. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cell Mol Neurobiol 2021; 41:863-897. [PMID: 32970288 PMCID: PMC11448623 DOI: 10.1007/s10571-020-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Almost a half century of research has elaborated the discoveries of the central mechanisms governing the analgesic responses of opiates, including their receptors, endogenous peptides, genes and their putative spinal and supraspinal sites of action. One of the central tenets of "gate-control theories of pain" was the activation of descending supraspinal sites by opiate drugs and opioid peptides thereby controlling further noxious input. This review in the Special Issue dedicated to the research of Dr. Gavril Pasternak indicates his contributions to the understanding of supraspinal mediation of opioid analgesic action within the context of the large body of work over this period. This review will examine (a) the relevant supraspinal sites mediating opioid analgesia, (b) the opioid receptor subtypes and opioid peptides involved, (c) supraspinal site analgesic interactions and their underlying neurophysiology, (d) molecular (particularly AS) tools identifying opioid receptor actions, and (e) relevant physiological variables affecting site-specific opioid analgesia. This review will build on classic initial studies, specify the contributions that Gavril Pasternak and his colleagues did in this specific area, and follow through with studies up to the present.
Collapse
Affiliation(s)
- Grace C Rossi
- Department of Psychology, C.W. Post College, Long Island University, Post Campus, Brookville, NY, USA.
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
- CUNY Neuroscience Collaborative, Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
3
|
Alvarez P, Bogen O, Green PG, Levine JD. Nociceptor Overexpression of Na V1.7 Contributes to Chronic Muscle Pain Induced by Early-Life Stress. THE JOURNAL OF PAIN 2021; 22:806-816. [PMID: 33636374 PMCID: PMC8406703 DOI: 10.1016/j.jpain.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 01/06/2023]
Abstract
Adult rats previously submitted to neonatal limited bedding (NLB), a model of early-life stress, display muscle mechanical hyperalgesia and nociceptor hyperexcitability, the underlying mechanism for which is unknown. Since voltage-gated sodium channel subtype 7 (NaV1.7) contributes to mechanical hyperalgesia in several preclinical pain models and is critical for nociceptor excitability, we explored its role in the muscle hyperalgesia exhibited by adult NLB rats. Western blot analyses demonstrated increased NaV1.7 protein expression in L4-L5 dorsal root ganglia (DRG) from adult NLB rats, and antisense oligodeoxynucleotide (AS ODN) targeting NaV1.7 alpha subunit mRNA attenuated the expression of NaV1.7 in DRG extracts. While this AS ODN did not affect nociceptive threshold in normal rats it significantly attenuated hyperalgesia in NLB rats. The selective NaV1.7 activator OD1 produced dose-dependent mechanical hyperalgesia that was enhanced in NLB rats, whereas the NaV1.7 blocker ProTx-II prevented OD1-induced hyperalgesia in control rats and ongoing hyperalgesia in NLB rats. AS ODN knockdown of extracellular signal-regulated kinase 1/2, which enhances NaV1.7 function, also inhibited mechanical hyperalgesia in NLB rats. Our results support the hypothesis that overexpression of NaV1.7 in muscle nociceptors play a role in chronic muscle pain induced by early-life stress, suggesting that NaV1.7 is a target for the treatment of chronic muscle pain. PERSPECTIVE: We demonstrate that early-life adversity, induced by exposure to inconsistent maternal care, produces chronic muscle hyperalgesia, which depends, at least in part, on increased expression of NaV1.7 in nociceptors.
Collapse
Affiliation(s)
- Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, California
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, California; UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, California
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, California; UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, California; Department of Preventative and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, California; UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, California; Department of Medicine, University of California San Francisco, San Francisco, California.
| |
Collapse
|
4
|
Prado J, Westerink RHS, Popov-Celeketic J, Steen-Louws C, Pandit A, Versteeg S, van de Worp W, Kanters DHAJ, Reedquist KA, Koenderman L, Hack CE, Eijkelkamp N. Cytokine receptor clustering in sensory neurons with an engineered cytokine fusion protein triggers unique pain resolution pathways. Proc Natl Acad Sci U S A 2021; 118:e2009647118. [PMID: 33836560 PMCID: PMC7980471 DOI: 10.1073/pnas.2009647118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
New therapeutic approaches to resolve persistent pain are highly needed. We tested the hypothesis that manipulation of cytokine receptors on sensory neurons by clustering regulatory cytokine receptor pairs with a fusion protein of interleukin (IL)-4 and IL-10 (IL4-10 FP) would redirect signaling pathways to optimally boost pain-resolution pathways. We demonstrate that a population of mouse sensory neurons express both receptors for the regulatory cytokines IL-4 and IL-10. This population increases during persistent inflammatory pain. Triggering these receptors with IL4-10 FP has unheralded biological effects, because it resolves inflammatory pain in both male and female mice. Knockdown of both IL4 and IL10 receptors in sensory neurons in vivo ablated the IL4-10 FP-mediated inhibition of inflammatory pain. Knockdown of either one of the receptors prevented the analgesic gain-of-function of IL4-10 FP. In vitro, IL4-10 FP inhibited inflammatory mediator-induced neuronal sensitization more effectively than the combination of cytokines, confirming its superior activity. The IL4-10 FP, contrary to the combination of IL-4 and IL-10, promoted clustering of IL-4 and IL-10 receptors in sensory neurons, leading to unique signaling, that is exemplified by activation of shifts in the cellular kinome and transcriptome. Interrogation of the potentially involved signal pathways led us to identify JAK1 as a key downstream signaling element that mediates the superior analgesic effects of IL4-10 FP. Thus, IL4-10 FP constitutes an immune-biologic that clusters regulatory cytokine receptors in sensory neurons to transduce unique signaling pathways required for full resolution of persistent inflammatory pain.
Collapse
Affiliation(s)
- Judith Prado
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jelena Popov-Celeketic
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Cristine Steen-Louws
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Wouter van de Worp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Deon H A J Kanters
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Kris A Reedquist
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Leo Koenderman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - C Erik Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands;
| |
Collapse
|
5
|
Antisense oligonucleotides selectively suppress target RNA in nociceptive neurons of the pain system and can ameliorate mechanical pain. Pain 2019; 159:139-149. [PMID: 28976422 DOI: 10.1097/j.pain.0000000000001074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need for better treatments for chronic pain, which affects more than 1 billion people worldwide. Antisense oligonucleotides (ASOs) have proven successful in treating children with spinal muscular atrophy, a severe infantile neurological disorder, and several ASOs are currently being tested in clinical trials for various neurological disorders. Here, we characterize the pharmacodynamic activity of ASOs in spinal cord and dorsal root ganglia (DRG), key tissues for pain signaling. We demonstrate that activity of ASOs lasts up to 2 months after a single intrathecal bolus dose. Interestingly, comparison of subcutaneous, intracerebroventricular, and intrathecal administration shows that DRGs are targetable by systemic and central delivery of ASOs, while target reduction in the spinal cord is achieved only after direct central delivery. Upon detailed characterization of ASO activity in individual cell populations in DRG, we observe robust target suppression in all neuronal populations, thereby establishing that ASOs are effective in the cell populations involved in pain propagation. Furthermore, we confirm that ASOs are selective and do not modulate basal pain sensation. We also demonstrate that ASOs targeting the sodium channel Nav1.7 induce sustained analgesia up to 4 weeks. Taken together, our findings support the idea that ASOs possess the required pharmacodynamic properties, along with a long duration of action beneficial for treating pain.
Collapse
|
6
|
Nociceptor interleukin 10 receptor 1 is critical for muscle analgesia induced by repeated bouts of eccentric exercise in the rat. Pain 2018. [PMID: 28628078 DOI: 10.1097/j.pain.0000000000000936] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Delayed-onset muscle soreness is typically observed after strenuous or unaccustomed eccentric exercise. Soon after recovery, blunted muscle soreness is observed on repeated eccentric exercise, a phenomenon known as repeated bout effect (RBE). Although regular physical activity decreases muscle hyperalgesia, likely because of increased production of the anti-inflammatory cytokine interleukin-10 (IL-10) in the skeletal muscle, whether IL-10 also contributes to the antinociceptive effect of RBE is unknown. Furthermore, whether IL-10 attenuates muscle hyperalgesia by acting on muscle nociceptors remains to be established. Here, we explored the hypothesis that blunted muscle nociception observed in RBE depends on a local effect of IL-10, acting on IL-10 receptor 1 (IL-10R1) expressed by muscle nociceptors. Results show that after a second bout of eccentric exercise, rats exhibited decreased muscle hyperalgesia, indicative of RBE, and increased expression of IL-10 in the exercised gastrocnemius muscle. Although knockdown of IL-10R1 protein in nociceptors innervating the gastrocnemius muscle by intrathecal antisense oligodeoxynucleotide did not change nociceptive threshold in naive rats, it unveiled latent muscle hyperalgesia in rats submitted to eccentric exercise 12 days ago. Furthermore, antisense also prevented the reduction of muscle hyperalgesia observed after a second bout of eccentric exercise. These data indicate that recovery of nociceptive threshold after eccentric exercise and RBE-induced analgesia depend on a local effect of IL-10, acting on its canonical receptor in muscle nociceptors.
Collapse
|
7
|
Fernandes V, Sharma D, Vaidya S, P A S, Guan Y, Kalia K, Tiwari V. Cellular and molecular mechanisms driving neuropathic pain: recent advancements and challenges. Expert Opin Ther Targets 2018; 22:131-142. [PMID: 29285962 DOI: 10.1080/14728222.2018.1420781] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Current pharmacotherapeutics for neuropathic pain offer only symptomatic relief without treating the underlying pathophysiology. Additionally, they are associated with various dose-limiting side effects. Pain research in the past few decades has revolved around the role of oxidative-nitrosative stress, protein kinases, glial cell activation, and inflammatory signaling cascades but has failed to produce specific and effective therapies. Areas covered: This review focuses on recent advances in cellular and molecular mechanisms of neuropathic pain that may be translated into future therapies. We discuss emerging targets such as WNT signaling mechanisms, the tetrahydrobiopterin pathway, Mrg receptors, endogenous lipid mediators, micro-RNAs and their roles in pain regulation. Recent evidence is also presented regarding genetic and epigenetic mechanisms of pain modulation. Expert opinion: During chronic neuropathic pain, maladaptation occurs in the peripheral and central nervous systems, including a shift in microglial phenotype from a surveillance state to an activated state. Microglial activation leads to an altered expression of cell surface proteins, growth factors, and intracellular signaling molecules that contribute to development of a neuroinflammatory cascade and chronic pain sensitization. Specific targeting of these cellular and molecular mechanisms may provide the key to development of effective neuropathic pain therapies that have minimal side effects.
Collapse
Affiliation(s)
- Valencia Fernandes
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Dilip Sharma
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Shivani Vaidya
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Shantanu P A
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Yun Guan
- b Department of Anesthesiology and Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Kiran Kalia
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Vinod Tiwari
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India.,b Department of Anesthesiology and Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
8
|
Abstract
There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.
Collapse
|
9
|
Xiao Z, Li YY, Sun MJ. Activation of P2X7 receptors in the midbrain periaqueductal gray of rats facilitates morphine tolerance. Pharmacol Biochem Behav 2015; 135:145-53. [PMID: 26054441 DOI: 10.1016/j.pbb.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 02/01/2023]
Abstract
Opiates such as morphine exhibit analgesic effect in various pain models, but repeated and chronic morphine administration may develop resistance to antinociception. The purinergic signaling system is involved in the mechanisms of pain modulation and morphine tolerance. This study aimed to determine whether the P2X7 receptor in the ventrolateral midbrain periaqueductal gray (vlPAG) is involved in morphine tolerance. Development of tolerance to the antinociceptive effect of morphine was induced in normal adult male Sprague-Dawley (SD) rats through subcutaneous injection of morphine (10mg/kg). The analgesic effect of morphine (5mg/kg, i.p.) was assessed by measuring mechanical withdrawal thresholds (MWTs) in rats with an electronic von Frey anesthesiometer. The expression levels and distribution of the P2X7 receptor in the vlPAG was evaluated through Western blot analysis and immunohistochemistry. The acute effects of intra-vlPAG injection of the selective P2X7 receptor agonist Bz-ATP, the selective P2X7 receptor antagonist A-740003, or antisense oligodeoxynucleotide (AS ODN) targeting the P2X7 receptor on morphine-treated rats were also observed. Results demonstrated that repeated morphine administration decreased the mechanical pain thresholds. By contrast, the expression of the P2X7 receptor protein was up-regulated in the vlPAG in morphine tolerant rats. The percent changes in MWT were markedly but only transiently attenuated by intra-vlPAG injection of Bz-ATP (9nmol/0.3μL) but elevated by A-740003 at doses of 10 and 100nmol/0.3μL. AS ODN (15nmol/0.3μL) against the P2X7 receptor reduced the development of chronic morphine tolerance in rats. These results suggest that the development of antinociceptive tolerance to morphine is partially mediated by activating the vlPAG P2X7 receptors. The present data also suggest that the P2X7 receptors may be a therapeutic target for improving the analgesic effect of morphine in treatments of pain when morphine tolerance occurs.
Collapse
Affiliation(s)
- Zhi Xiao
- Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| | - You-Yan Li
- Graduate School, Zunyi Medical University, Zunyi, Guizhou 563003, PR China
| | - Meng-Jie Sun
- Graduate School, Zunyi Medical University, Zunyi, Guizhou 563003, PR China
| |
Collapse
|
10
|
Alvarez P, Levine JD. Screening the role of pronociceptive molecules in a rodent model of endometriosis pain. THE JOURNAL OF PAIN 2014; 15:726-33. [PMID: 24755283 PMCID: PMC4119016 DOI: 10.1016/j.jpain.2014.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED Chronic pain is a major symptom in patients with endometriosis, a common gynecologic condition affecting women in their reproductive years. Although many proalgesic substances are produced by endometriosis lesions, experimental evidence supporting their relative roles is still lacking. Furthermore, it is unclear whether these proalgesic agents directly activate nociceptors to induce endometriosis pain. To determine their relative contribution to pain associated with endometriosis, we evaluated the intrathecal administration of oligodeoxynucleotides (ODNs) antisense to messenger RNA for receptors for 3 pronociceptive mediators known to be produced by the ectopic endometrium. Two weeks after the implant of autologous uterine tissue onto the gastrocnemius muscle, local mechanical hyperalgesia was observed in operated rats. Intrathecal antisense ODN targeting messenger RNA for the interleukin 6 receptor-signaling complex subunit glycoprotein 130 and the nerve growth factor tyrosine kinase receptor A, but not their mismatch ODNs, reversibly attenuated mechanical hyperalgesia at the implant site. In contrast, intrathecal antisense ODN targeting the tumor necrosis factor receptor 1, at a dose that markedly inhibited intramuscularly injected tumor necrosis factor alpha, had only a small antihyperalgesic effect in this model. These results indicate the relative contribution of pronociceptive mediators produced by ectopic endometrial tissue to endometriosis pain. The experimental approach presented here provides a novel method to evaluate for the differential contribution of mediators produced by other painful lesions as well as endometriosis lesions as targets for novel treatment of pain syndromes. PERSPECTIVE This article presents evidence for the relative contribution of proalgesic mediators to primary hyperalgesia displayed by rats submitted to a model of endometriosis pain. This approach can be used to identify potential targets for the treatment of endometriosis pain.
Collapse
Affiliation(s)
- Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, California; Division of Neuroscience, University of California San Francisco, San Francisco, California
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, California; Division of Neuroscience, University of California San Francisco, San Francisco, California; Department of Medicine, University of California San Francisco, San Francisco, California.
| |
Collapse
|
11
|
Role for monocyte chemoattractant protein-1 in the induction of chronic muscle pain in the rat. Pain 2014; 155:1161-1167. [PMID: 24637038 DOI: 10.1016/j.pain.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 01/25/2023]
Abstract
While raised levels of monocyte chemoattractant protein 1 (MCP-1) have been observed in patients with chronic muscle pain, direct evidence for its role as an algogen in skeletal muscle is still lacking. In the rat, MCP-1 induces a dose-dependent mechanical hyperalgesia lasting for up to 6weeks. Following recovery, rats exhibited a markedly prolonged hyperalgesia to an intramuscular injection of prostaglandin E2, hyperalgesic priming. Intrathecal pretreatment with isolectin B4 (IB4)-saporin, which selectively destroys IB4-positive (IB4+) nociceptors, markedly decreased MCP-1-induced hyperalgesia and prevented the subsequent development of priming. To evaluate the involvement of MCP-1 in stress-induced chronic pain we administered, intrathecally, antisense (AS) or mismatch oligodeoxynucleotides directed against CCR2 (the canonical receptor for MCP-1) mRNA, during the exposure to water-avoidance stress, a model of stress-induced persistent muscle pain. The AS treatment attenuated this hyperalgesia, whereas IB4-saporin abolished water-avoidance stress-induced muscle hyperalgesia and prevented stress-induced hyperalgesic priming. These results indicate that MCP-1 induces persistent muscle hyperalgesia and a state of latent chronic sensitization to other algogens, by action on its cognate receptor on IB4+ nociceptors. Because MCP-1 also contributes to stress-induced widespread chronic muscle pain, it should be considered as a player in chronic musculoskeletal pain syndromes.
Collapse
|
12
|
Alvarez P, Green PG, Levine JD. Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biol Psychiatry 2013; 74:688-95. [PMID: 23706525 PMCID: PMC3760993 DOI: 10.1016/j.biopsych.2013.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Early-life stress and exposure to stressful stimuli play a major role in the development of chronic widespread pain in adults. However, how they interact in chronic pain syndromes remains unclear. METHODS Dams and neonatal litters were submitted to a restriction of nesting material (neonatal limited bedding [NLB]) for 1 week. As adults, these rats were exposed to a painless sound stress protocol. The involvement of sympathoadrenal catecholamines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) in nociception was evaluated through behavioral and enzyme-linked immunosorbent assays, surgical interventions, and intrathecal antisense treatments. RESULTS Adult NLB rats exhibited mild muscle hyperalgesia, which was markedly aggravated by sound stress (peaking 15 days after exposure). Adrenal medullectomy did not modify hyperalgesia in NLB rats but prevented its aggravation by sound stress. Sustained administration of epinephrine to NLB rats mimicked sound stress effect. Intrathecal treatment with antisense directed to IL-6 receptor subunit gp130 (gp130), but not to tumor necrosis factor receptor type 1 (TNFR1), inhibited hyperalgesia in NLB rats. However, antisense against either gp130 or TNFR1 inhibited sound stress-induced enhancement of hyperalgesia. Compared with control rats, NLB rats exhibit increased plasma levels of IL-6 but decreased levels of TNFα, whereas sound stress increases IL-6 plasma levels in control rats but not in NLB rats. CONCLUSIONS Early-life stress induces a persistent elevation of IL-6, hyperalgesia, and susceptibility to chronic muscle pain, which is unveiled by exposure to stress in adults. This probably depends on an interaction between adrenal catecholamines and proinflammatory cytokines acting at muscle nociceptor level.
Collapse
Affiliation(s)
- Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California San Francisco,Department of Division of Neuroscience, University of California San Francisco,Corresponding author’s contact information: Dr. Jon D. Levine, Departments of Medicine, Oral and Maxillofacial Surgery and Division of Neuroscience, University of California at San Francisco, C-555, Box 0440, 521 Parnassus Avenue, San Francisco, CA 94143-0440. Phone: +1-415-476-5108, Fax: +1-415-476-6305,
| | - Paul G. Green
- Department of Oral and Maxillofacial Surgery, University of California San Francisco,Department of Division of Neuroscience, University of California San Francisco
| | - Jon D. Levine
- Department of Oral and Maxillofacial Surgery, University of California San Francisco,Department of Medicine, University of California San Francisco,Department of Division of Neuroscience, University of California San Francisco
| |
Collapse
|
13
|
Purinergic mechanisms and pain--an update. Eur J Pharmacol 2013; 716:24-40. [PMID: 23524093 DOI: 10.1016/j.ejphar.2013.01.078] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
There is a brief summary of the background literature about purinergic signalling. The review then considers purinergic mechanosensory transduction involved in visceral, cutaneous and musculoskeletal nociception and on the roles played by P2X3, P2X2/3, P2X4, P2X7 and P2Y₁₂ receptors in neuropathic and inflammatory pain. Current developments of compounds for the therapeutic treatment of both visceral and neuropathic pain are discussed.
Collapse
|
14
|
Paszcuk AF, Dutra RC, da Silva KABS, Quintão NLM, Campos MM, Calixto JB. Cannabinoid agonists inhibit neuropathic pain induced by brachial plexus avulsion in mice by affecting glial cells and MAP kinases. PLoS One 2011; 6:e24034. [PMID: 21931637 PMCID: PMC3172222 DOI: 10.1371/journal.pone.0024034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 07/29/2011] [Indexed: 01/23/2023] Open
Abstract
Background Many studies have shown the antinociceptive effects of cannabinoid (CB) agonists in different models of pain. Herein, we have investigated their relevance in neuropathic pain induced by brachial plexus avulsion (BPA) in mice. Methodology/Principal Findings Mice underwent BPA or sham surgery. The mRNA levels and protein expression of CB1 and CB2 receptors were assessed by RT-PCR and immunohistochemistry, respectively. The activation of glial cells, MAP kinases and transcription factors were evaluated by immunohistochemistry. The antinociceptive properties induced by cannabinoid agonists were assessed on the 5th and 30th days after surgery. We observed a marked increase in CB1 and CB2 receptor mRNA and protein expression in the spinal cord and dorsal root ganglion, either at the 5th or 30th day after surgery. BPA also induced a marked activation of p38 and JNK MAP kinases (on the 30th day), glial cells, such as microglia and astrocytes, and the transcription factors CREB and NF-κB (at the 5th and 30th days) in the spinal cord. Systemic treatment with cannabinoid agonists reduced mechanical allodynia on both the 5th and 30th days after surgery, but the greatest results were observed by using central routes of administration, especially at the 30th day. Treatment with WIN 55,212-2 prevented the activation of both glial cells and MAP kinases, associated with an enhancement of CREB and NF-κB activation. Conclusions/Significance Our results indicate a relevant role for cannabinoid agonists in BPA, reinforcing their potential therapeutic relevance for the management of chronic pain states.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Behavior, Animal/drug effects
- Benzoxazines/pharmacology
- Brachial Plexus/injuries
- Cannabinoids/pharmacology
- Cyclic AMP Response Element-Binding Protein/metabolism
- Enzyme Activation/drug effects
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Gene Knockdown Techniques
- Hyperalgesia/complications
- Mice
- Mitogen-Activated Protein Kinases/metabolism
- Morpholines/pharmacology
- NF-kappa B/metabolism
- Naphthalenes/pharmacology
- Neuralgia/enzymology
- Neuralgia/etiology
- Neuralgia/metabolism
- Neuralgia/pathology
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neuroglia/pathology
- Nociception/drug effects
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/genetics
- Signal Transduction/drug effects
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Ana F. Paszcuk
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rafael C. Dutra
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Kathryn A. B. S. da Silva
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nara L. M. Quintão
- Programa de Mestrado em Ciências Farmacêuticas, Universidade do Vale de Itajaí, Itajaí, Brazil
| | - Maria M. Campos
- School of Dentistry and Institute of Toxicology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - João B. Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Kher G, Trehan S, Misra A. Antisense Oligonucleotides and RNA Interference. CHALLENGES IN DELIVERY OF THERAPEUTIC GENOMICS AND PROTEOMICS 2011. [PMCID: PMC7150054 DOI: 10.1016/b978-0-12-384964-9.00007-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Burnstock G. Purinergic mechanosensory transduction and visceral pain. Mol Pain 2009; 5:69. [PMID: 19948030 PMCID: PMC2789721 DOI: 10.1186/1744-8069-5-69] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 11/30/2009] [Indexed: 02/01/2023] Open
Abstract
In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
18
|
Abstract
P2X and P2Y nucleotide receptors are described on sensory neurons and their peripheral and central terminals in dorsal root, nodose, trigeminal, petrosal, retinal and enteric ganglia. Peripheral terminals are activated by ATP released from local cells by mechanical deformation, hypoxia or various local agents in the carotid body, lung, gut, bladder, inner ear, eye, nasal organ, taste buds, skin, muscle and joints mediating reflex responses and nociception. Purinergic receptors on fibres in the dorsal spinal cord and brain stem are involved in reflex control of visceral and cardiovascular activity, as well as relaying nociceptive impulses to pain centres. Purinergic mechanisms are enhanced in inflammatory conditions and may be involved in migraine, pain, diseases of the special senses, bladder and gut, and the possibility that they are also implicated in arthritis, respiratory disorders and some central nervous system disorders is discussed. Finally, the development and evolution of purinergic sensory mechanisms are considered.
Collapse
|
19
|
Levin ME, Jin JG, Ji RR, Tong J, Pomonis JD, Lavery DJ, Miller SW, Chiang LW. Complement activation in the peripheral nervous system following the spinal nerve ligation model of neuropathic pain ☆. Pain 2008; 137:182-201. [DOI: 10.1016/j.pain.2007.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/15/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
|
20
|
Rainov NG, Heidecke V. Experimental therapies for chronic pain. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:473-7. [PMID: 17691412 DOI: 10.1007/978-3-211-33079-1_62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic pain, an underestimated but complex medical and social phenomenon, is often resistant to currently used analgesic drugs. The effect of these substances is frequently self-limiting, with increasing level of unwanted side effects caused by increased doses. Moreover, most pharmacological therapies for pain are administered systemically, either via the enteral or the parenteral route, and exert their effects on a multitude of organs and structures in the body regardless of their involvement in chronic pain pathways. Unlike pharmacological agents, biological pain therapies provide a means to target single molecules or specific types of neural cells in spatially limited areas in the central nervous system. Biological therapies utilize externally administered natural or synthetic agents acting at specific receptors on the spinal or supraspinal level, or virus or cell vectors allowing the expression and secretion of such agents in small compartments. By targeting a particular receptor or other specific protein involved in signal transmission, biological approaches to the treatment of chronic pain may provide greater analgesic efficacy without the limitations associated with current pharmacological therapies. This review summarizes published data on the most important of the currently known targets for biological therapy of chronic pain, and focuses on therapeutic approaches for modulation of these targets and on results from preclinical and clinical trials. Biological therapies for chronic pain hold great promise and are rapidly developing, but currently still are in a very early stage and therefore deemed experimental and not suitable for routine clinical use.
Collapse
Affiliation(s)
- N G Rainov
- Department of Neurosurgery, Central Clinic Augsburg, Augsburg, Germany.
| | | |
Collapse
|
21
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
22
|
Christoph T, Gillen C, Mika J, Grünweller A, Schäfer MKH, Schiene K, Frank R, Jostock R, Bahrenberg G, Weihe E, Erdmann VA, Kurreck J. Antinociceptive effect of antisense oligonucleotides against the vanilloid receptor VR1/TRPV1. Neurochem Int 2006; 50:281-90. [PMID: 17045702 DOI: 10.1016/j.neuint.2006.08.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/28/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
To examine the role of the vanilloid receptor TRPV1 in neuropathic pain, we assessed the effects of the receptor antagonist thioxo-BCTC and antisense oligonucleotides against the TRPV1 mRNA in a rat model of spinal nerve ligation. In order to identify accessible sites on the mRNA of TRPV1, the RNase H assay was used, leading to the successful identification of binding sites for antisense oligonucleotides. Cotransfection studies using Cos-7 cells were employed to identify the most effective antisense oligonucleotide efficiently inhibiting the expression of a fusion protein consisting of TRPV1 and the green fluorescent protein in a specific and concentration-dependent manner. In an in vivo rat model of spinal nerve ligation, intravenous application of the TRPV1 antagonist thioxo-BCTC reduced mechanical hypersensitivity yielding an ED(50) value of 10.6mg/kg. Intrathecal administration of the antisense oligonucleotide against TRPV1, but not the mismatch oligonucleotide or a vehicle control, reduced mechanical hypersensitivity in rats with spinal nerve ligation in a similar manner. Immunohistochemical analysis revealed neuropathy- and antisense-associated regulation of TRPV1 protein expression in spinal cord and dorsal root ganglia. Our data demonstrate comparative analgesic effects of a TRPV1 anatagonist and a rationally designed TRPV1 antisense oligonucleotide in a spinal nerve ligation model of neuropathic pain and thus, lend support to the validation of TRPV1 as a promising target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Thomas Christoph
- Research & Development, Grünenthal GmbH, Zieglerstr. 6, 52078 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Within the course of only the last few years, RNA interference (RNAi) has been established as a standard technology for investigation of protein function and target validation. The present review summarizes recent progress made in the application of RNAi in neurosciences with special emphasis on pain research. RNAi is a straightforward method to generate loss-of-function phenotypes for any gene of interest. In mammals, silencing is induced by small interfering RNAs (siRNAs), which have been shown to surpass traditional antisense molecules. Due to its high specificity, RNAi has the potential for subtype selective silencing of even closely related genes. One of the major challenges for in vivo investigations of RNAi remains efficient delivery of siRNA molecules to the relevant tissues and cells, particularly to the central nervous system. Various examples will be given to demonstrate that intrathecal application of siRNAs is a suitable approach to analyse the function of receptors or other proteins that are hypothesized to play an important role in pain signalling. Intensive efforts are currently ongoing to solve remaining problems such as the risk of off-target effects, the stability of siRNA molecules and their efficient delivery to the CNS. RNAi has thus demonstrated that it is an extremely valuable tool for the development of new analgesic drugs.
Collapse
Affiliation(s)
- Thomas Röhl
- Institute of Chemistry and Biochemistry, Free University Berlin, Germany
| | | |
Collapse
|
24
|
Christoph T, Grünweller A, Mika J, Schäfer MKH, Wade EJ, Weihe E, Erdmann VA, Frank R, Gillen C, Kurreck J. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem Biophys Res Commun 2006; 350:238-43. [PMID: 16996476 DOI: 10.1016/j.bbrc.2006.09.037] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/09/2006] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) has proven to be a powerful technique to study the function of genes by producing knock-down phenotypes. Here, we report that intrathecal injection of an siRNA against the transient receptor potential vanilloid receptor 1 (TRPV1) reduced cold allodynia of mononeuropathic rats by more than 50% over a time period of approximately 5 days. A second siRNA targeted to a different region of the TRPV1 gene was employed and confirmed the analgesic action of a TRPV1 knock-down. Furthermore, siRNA treatment diminished spontaneous visceral pain behavior induced by capsaicin application to the rectum of mice. The analgesic effect of siRNA-mediated knockdown of TRPV1 in the visceral pain model was comparable to that of the low-molecular weight receptor antagonist BCTC. Our data demonstrate that TRPV1 antagonists, including TRPV1 siRNAs, have potential in the treatment of both, neuropathic and visceral pain.
Collapse
|
25
|
Burnstock G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 2006; 110:433-54. [PMID: 16226312 DOI: 10.1016/j.pharmthera.2005.08.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 08/31/2005] [Accepted: 08/31/2005] [Indexed: 12/22/2022]
Abstract
Following hints in the early literature about adenosine 5'-triphosphate (ATP) injections producing pain, an ion-channel nucleotide receptor was cloned in 1995, P2X3 subtype, which was shown to be localized predominantly on small nociceptive sensory nerves. Since then, there has been an increasing number of papers exploring the role of P2X3 homomultimer and P2X2/3 heteromultimer receptors on sensory nerves in a wide range of organs, including skin, tongue, tooth pulp, intestine, bladder, and ureter that mediate the initiation of pain. Purinergic mechanosensory transduction has been proposed for visceral pain, where ATP released from epithelial cells lining the bladder, ureter, and intestine during distension acts on P2X3 and P2X2/3, and possibly P2Y, receptors on subepithelial sensory nerve fibers to send messages to the pain centers in the brain as well as initiating local reflexes. P1, P2X, and P2Y receptors also appear to be involved in nociceptive neural pathways in the spinal cord. P2X4 receptors on spinal microglia have been implicated in allodynia. The involvement of purinergic signaling in long-term neuropathic pain and inflammation as well as acute pain is discussed as well as the development of P2 receptor antagonists as novel analgesics.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
26
|
Abstract
The concept of a purinergic signaling system, using purine nucleotides and nucleosides as extracellular messengers, was first proposed over 30 years ago. After a brief introduction and update of purinoceptor subtypes, this article focuses on the diverse pathophysiological roles of purines and pyrimidines as signaling molecules. These molecules mediate short-term (acute) signaling functions in neurotransmission, mechanosensory transduction, secretion and vasodilatation, and long-term (chronic) signaling functions in cell proliferation, differentiation, and death involved in development and regeneration. Plasticity of purinoceptor expression in pathological conditions is frequently observed, including an increase in the purinergic component of autonomic cotransmission. Recent advances in therapies using purinergic-related drugs in a wide range of pathological conditions will be addressed with speculation on future developments in the field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London NW3 2PF, UK.
| |
Collapse
|
27
|
Burnstock G. Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 2006; 27:166-76. [PMID: 16487603 DOI: 10.1016/j.tips.2006.01.005] [Citation(s) in RCA: 393] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 11/22/2005] [Accepted: 01/25/2006] [Indexed: 02/07/2023]
Abstract
Purinergic signalling is now recognized to be involved in a wide range of activities of the nervous system, including neuroprotection, central control of autonomic functions, neural-glial interactions, control of vessel tone and angiogenesis, pain and mechanosensory transduction and the physiology of the special senses. In this article, I give a personal retrospective of the discovery of purinergic neurotransmission in the early 1970s, the struggle for its acceptance for approximately 20 years, the expansion into purinergic cotransmission and its eventual acceptance when receptor subtypes for ATP were cloned and characterized and when purinergic synaptic transmission between neurons in the brain and peripheral ganglia was described in the early 1990s. I also discuss the current status of the field, including recent interest in the pathophysiology of purinergic signalling and its therapeutic potential.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free & University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
28
|
Butler M, Hayes CS, Chappell A, Murray SF, Yaksh TL, Hua XY. Spinal distribution and metabolism of 2'-O-(2-methoxyethyl)-modified oligonucleotides after intrathecal administration in rats. Neuroscience 2005; 131:705-15. [PMID: 15730875 DOI: 10.1016/j.neuroscience.2004.11.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 10/25/2022]
Abstract
Intrathecal (IT) delivery of antisense oligodeoxynucleotides (ASO) has been used to study the function of specific gene products in spinal nociception. However, a lack of systematic studies on the spinal distribution and kinetics of IT ASO is a major hurdle to the utilization of this technique. In the present study, we injected rats IT with 2'-O-(2-methoxyethyl) modified phosphorothioate ASO (2'-O-MOE ASO) and examined anatomical and cellular location of the ASO in the spinal cord and dorsal root ganglia (DRG) by immunocytochemistry. At 0.5 h after a single IT injection, immunostaining for ISIS 13920 (a 2'-O-MOE ASO targeting h-ras) localized superficially in the lumbar spinal cord, while at 24 h the immunostaining was distributed throughout the spinal cord and was predominantly intracellular. Double staining with cell type specific antibodies indicated that the ASO was taken up by both glia and neurons. ASO immunoreactivity was also observed in DRG after IT ISIS 13920. Capillary gel electrophoresis analysis showed that ISIS 22703, a 2'-O-MOE ASO targeting the alpha isozyme of protein kinase C (PKC), remained intact in spinal cord tissue and cerebrospinal fluid up to 24 h after the injection and no metabolites were detected. In contrast, after IT ISIS 11300, an unmodified phosphorothioate ASO with the same sequence as ISIS 22703, no full-length compound was detectable at 24 h, and metabolites were seen as early as 0.5 h. IT treatment with ISIS 22703 at doses that effectively down-regulated PKCalpha mRNA in spinal cord did not affect the mRNA expression in DRG. In summary, 2'-O-MOE ASO displayed high stability in spinal tissue after IT delivery, efficiently distributed to spinal cord, and internalized into both neuronal and non-neuronal cells. ASO are able to reach DRG after IT delivery; however, higher doses may be required to reduce target gene in DRG as compared with spinal cord.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Ganglia, Spinal/anatomy & histology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry/methods
- Injections, Spinal/methods
- Male
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacokinetics
- Phosphopyruvate Hydratase/metabolism
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Protein Kinase C-alpha
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spinal Cord/anatomy & histology
- Spinal Cord/metabolism
- Thionucleotides/administration & dosage
- Thionucleotides/chemistry
- Thionucleotides/metabolism
- Thionucleotides/pharmacokinetics
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- M Butler
- ISIS Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, CA 92008, USA
| | | | | | | | | | | |
Collapse
|
29
|
Svensson CI, Fitzsimmons B, Azizi S, Powell HC, Hua XY, Yaksh TL. Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. J Neurochem 2005; 92:1508-20. [PMID: 15748168 DOI: 10.1111/j.1471-4159.2004.02996.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antagonist studies show that spinal p38 mitogen-activated protein kinase plays a crucial role in spinal sensitization. However, there are two p38 isoforms found in spinal cord and the relative contribution of these two to hyperalgesia is not known. Here we demonstrate that the isoforms are distinctly expressed in spinal dorsal horn: p38alpha in neurons and p38beta in microglia. In lieu of isoform selective inhibitors, we examined the functional role of these two individual isoforms in nociception by using intrathecal isoform-specific antisense oligonucleotides to selectively block the expression of the respective isoform. In these rats, down-regulation of spinal p38beta, but not p38alpha, prevented nocifensive flinching evoked by intraplantar injection of formalin and hyperalgesia induced by activation of spinal neurokinin-1 receptors through intrathecal injection of substance P. Both intraplantar formalin and intrathecal substance P produced an increase in spinal p38 phosphorylation and this phosphorylation (activation) was prevented when spinal p38beta, but not p38alpha, was down-regulated. Thus, spinal p38beta, probably in microglia, plays a significant role in spinal nociceptive processing and represents a potential target for pain therapy.
Collapse
Affiliation(s)
- Camilla I Svensson
- Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
30
|
Islam A, Thompson KSJ, Akhtar S, Handley SL. Increased 5-HT2A receptor expression and function following central glucocorticoid receptor knockdown in vivo. Eur J Pharmacol 2005; 502:213-20. [PMID: 15476747 DOI: 10.1016/j.ejphar.2004.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 06/18/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Central glucocorticoid receptor function may be reduced in depression. In vivo modelling of glucocorticoid receptor underfunctionality would assist in understanding its role in depressive illness. The role of glucocorticoid receptors in modulating 5-HT(2A) receptor expression and function in the central nervous system (CNS) is presently unclear, but 5-HT(2A) receptor function also appears altered in depression. With the aid of RNAse H accessibility mapping, we have developed a 21-mer antisense oligodeoxynucleotide (5'-TAAAAACAGGCTTCTGATCCT-3', termed GRAS-5) that showed 56% reduction in glucocorticoid receptor mRNA and 80% down-regulation in glucocorticoid receptor protein in rat C6 glioma cells. Sustained delivery to rat cerebral ventricles in slow release biodegradable polymer microspheres produced a marked decrease in glucocorticoid receptor mRNA and protein in hypothalamus (by 39% and 80%, respectively) and frontal cortex (by 26% and 67%, respectively) 5 days after a single injection, with parallel significant up-regulation of 5-HT(2A) receptor mRNA expression (13%) and binding (21%) in frontal cortex. 5-HT(2A) receptor function, determined by DOI-head-shakes, showed a 55% increase. These findings suggest that central 5-HT(2A) receptors are, directly or indirectly, under tonic inhibitory control by glucocorticoid receptor.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiology
- Gene Silencing/drug effects
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus/physiology
- Male
- Molecular Sequence Data
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Binding/drug effects
- Protein Binding/physiology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/physiology
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/genetics
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Aminul Islam
- LHS, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | | | | | | |
Collapse
|
31
|
Shimoyama N, Shimoyama M, Davis AM, Monaghan DT, Inturrisi CE. An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance. J Pharmacol Exp Ther 2005; 312:834-40. [PMID: 15388787 DOI: 10.1124/jpet.104.074856] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined whether the i.t. administration of an 18-mer phosphodiester antisense oligodeoxynucleotide (ODN) that reduces the expression of the rat NMDAR1 subunit of the N-methyl-d-aspartate (NMDA) receptor would affect nociceptive behaviors and prevent the development of morphine tolerance. Rats received 5 microl of i.t. saline, 30 nM antisense, or mismatch ODN twice a day for 5 days (NMDA-induced nociception, NMDA-induced thermal hyperalgesia, NR1 mRNA, and ligand binding studies) or for 3 days (formalin study). For the tolerance study, 5 days of ODNs or saline were followed by 3 days of concurrent administration of ODNs or saline (twice a day) and i.t. morphine (three times a day). Antisense, but not mismatch, results in the reduction of formalin phase 2 flinching by 50%, the spinal cord dorsal horn levels of NMDAR1 mRNA by 30%, and ligand binding by 50%. The i.t. ED(50) for NMDA-induced nociceptive behaviors is doubled, and thermal hyperalgesia is blocked by antisense treatment. The effects of antisense on NMDA-induced nociception and thermal hyperalgesia are completely reversed by discontinuing antisense. The coadministration of antisense with increasing doses of i.t. morphine for 3 days attenuates the development of morphine tolerance. These results demonstrate that an in vivo antisense targeting of the NMDAR1 subunit results in antihyperalgesic effects and a partial blockade of spinal morphine tolerance. They provide additional support for the critical role of the NMDA receptor in these forms of spinal nociception and in the development of morphine tolerance and suggest the potential therapeutic utility of this approach.
Collapse
Affiliation(s)
- Naohito Shimoyama
- Department of Pharmacology, Weill Medical College of Cornell University, Room LC-524, 1300 York Ave., New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
32
|
Bourinet E, Alloui A, Monteil A, Barrère C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 2004; 24:315-24. [PMID: 15616581 PMCID: PMC545807 DOI: 10.1038/sj.emboj.7600515] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 11/22/2004] [Indexed: 11/08/2022] Open
Abstract
Analgesic therapies are still limited and sometimes poorly effective, therefore finding new targets for the development of innovative drugs is urgently needed. In order to validate the potential utility of blocking T-type calcium channels to reduce nociception, we explored the effects of intrathecally administered oligodeoxynucleotide antisenses, specific to the recently identified T-type calcium channel family (CaV3.1, CaV3.2, and CaV3.3), on reactions to noxious stimuli in healthy and mononeuropathic rats. Our results demonstrate that the antisense targeting CaV3.2 induced a knockdown of the CaV3.2 mRNA and protein expression as well as a large reduction of 'CaV3.2-like' T-type currents in nociceptive dorsal root ganglion neurons. Concomitantly, the antisense treatment resulted in major antinociceptive, anti-hyperalgesic, and anti-allodynic effects, suggesting that CaV3.2 plays a major pronociceptive role in acute and chronic pain states. Taken together, the results provide direct evidence linking CaV3.2 T-type channels to pain perception and suggest that CaV3.2 may offer a specific molecular target for the treatment of pain.
Collapse
|
33
|
Li CY, Gao TW, Wang G, Han ZY, Shen Z, Li TH, Liu YF. The effect of antisense tyrosinase-related protein 1 on melanocytes and malignant melanoma cells. Br J Dermatol 2004; 150:1081-90. [PMID: 15214892 DOI: 10.1111/j.1365-2133.2004.05929.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tyrosinase-related proteins (TRPs) include tyrosinase, TRP-1 and TRP-2. The functions of tyrosinase and TRP-2 have been determined, but the biological role of TRP-1 is still controversial and is not well known in humans. OBJECTIVES To study further the biological role of the human TRP-1 gene in melanocytes and melanoma cells. METHODS TRP-1 cDNA was subcloned into eukaryotic expression vector pcDNA3.1 in the reverse direction, and antisense recombinant vector was transfected into melanocytes and a melanoma cell line using Lipofectamine 2000. Positive cells were selected by geneticin. TRP-1 mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR), and TRP-1 protein level by Western blot. Cell cycles were determined by flow cytometry, and the activity of tyrosinase was evaluated by L-DOPA reaction. Light microscopy, electron microscopy and flow cytometry were used to observe cell morphology and apoptosis. For in vivo assays, the antitumour activity of antisense TRP-1 against the malignant melanoma (MM) cell line, Libr, was evaluated in an animal-tumour model of subcutaneous tumours. RESULTS Positive transfected cells steadily expressed TRP-1 antisense RNA. RT-PCR and Western blot showed a low level of TRP-1 mRNA and TRP-1 protein, respectively. Cell cycles were blocked in the G1 stage, and the activity of tyrosinase decreased significantly (P < 0.01). Light and electron microscopy showed abnormal cell morphology, and apoptosis was detected. The neoplasia activity of antisense TRP-1-transfected MM cells was significantly lower than that of MM cells (P < 0.01). CONCLUSIONS TRP-1 plays an important role in the proliferation, morphology and tyrosinase activity of melanocytes and melanoma cells.
Collapse
Affiliation(s)
- C-Y Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University. Xi'an 710033, China
| | | | | | | | | | | | | |
Collapse
|