1
|
Pandey SS. The Role of Iron in Phytopathogenic Microbe-Plant Interactions: Insights into Virulence and Host Immune Response. PLANTS (BASEL, SWITZERLAND) 2023; 12:3173. [PMID: 37687419 PMCID: PMC10563075 DOI: 10.3390/plants12173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Iron is an essential element required for the growth and survival of nearly all forms of life. It serves as a catalytic component in multiple enzymatic reactions, such as photosynthesis, respiration, and DNA replication. However, the excessive accumulation of iron can result in cellular toxicity due to the production of reactive oxygen species (ROS) through the Fenton reaction. Therefore, to maintain iron homeostasis, organisms have developed a complex regulatory network at the molecular level. Besides catalyzing cellular redox reactions, iron also regulates virulence-associated functions in several microbial pathogens. Hosts and pathogens have evolved sophisticated strategies to compete against each other over iron resources. Although the role of iron in microbial pathogenesis in animals has been extensively studied, mechanistic insights into phytopathogenic microbe-plant associations remain poorly understood. Recent intensive research has provided intriguing insights into the role of iron in several plant-pathogen interactions. This review aims to describe the recent advances in understanding the role of iron in the lifestyle and virulence of phytopathogenic microbes, focusing on bacteria and host immune responses.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India; ; Tel.: +91-361-2270095 (ext. 216)
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
2
|
Reyes-López M, Aguirre-Armenta B, Piña-Vázquez C, de la Garza M, Serrano-Luna J. Hemoglobin uptake and utilization by human protozoan parasites: a review. Front Cell Infect Microbiol 2023; 13:1150054. [PMID: 37360530 PMCID: PMC10289869 DOI: 10.3389/fcimb.2023.1150054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The protozoan disease is a major global health concern. Amoebiasis, leishmaniasis, Chagas disease, and African sleeping sickness affect several million people worldwide, leading to millions of deaths annually and immense social and economic problems. Iron is an essential nutrient for nearly all microbes, including invading pathogens. The majority of iron in mammalian hosts is stored intracellularly in proteins, such as ferritin and hemoglobin (Hb). Hb, present in blood erythrocytes, is a very important source of iron and amino acids for pathogenic microorganisms ranging from bacteria to eukaryotic pathogens, such as worms, protozoa, yeast, and fungi. These organisms have developed adequate mechanisms to obtain Hb or its byproducts (heme and globin) from the host. One of the major virulence factors identified in parasites is parasite-derived proteases, essential for host tissue degradation, immune evasion, and nutrient acquisition. The production of Hb-degrading proteases is a Hb uptake mechanism that degrades globin in amino acids and facilitates heme release. This review aims to provide an overview of the Hb and heme-uptake mechanisms utilized by human pathogenic protozoa to survive inside the host.
Collapse
|
3
|
León-Sicairos CR, Figueroa-Angulo EE, Calla-Choque JS, Arroyo R. The Non-Canonical Iron-Responsive Element of IRE-tvcp12 Hairpin Structure at the 3'-UTR of Trichomonas vaginalis TvCP12 mRNA That Binds TvHSP70 and TvACTN-3 Can Regulate mRNA Stability and Amount of Protein. Pathogens 2023; 12:pathogens12040586. [PMID: 37111472 PMCID: PMC10143249 DOI: 10.3390/pathogens12040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Trichomonas vaginalis is one of the most common sexually transmitted parasites in humans. This protozoan has high iron requirements for growth, metabolism, and virulence. However, iron concentrations also differentially modulate T. vaginalis gene expression as in the genes encoding cysteine proteinases TvCP4 and TvCP12. Our goal was to identify the regulatory mechanism mediating the upregulation of tvcp12 under iron-restricted (IR) conditions. Here, we showed by RT-PCR, Western blot, and immunocytochemistry assays that IR conditions increase mRNA stability and amount of TvCP12. RNA electrophoretic mobility shift assay (REMSA), UV cross-linking, and competition assays demonstrated that a non-canonical iron-responsive element (IRE)-like structure at the 3'-untranslated region of the tvcp12 transcript (IRE-tvcp12) specifically binds to human iron regulatory proteins (IRPs) and to atypical RNA-binding cytoplasmic proteins from IR trichomonads, such as HSP70 and α-Actinin 3. These data were confirmed by REMSA supershift and Northwestern blot assays. Thus, our findings show that a positive gene expression regulation under IR conditions occurs at the posttranscriptional level possibly through RNA-protein interactions between atypical RNA-binding proteins and non-canonical IRE-like structures at the 3'-UTR of the transcript by a parallel mechanism to the mammalian IRE/IRP system that can be applied to other iron-regulated genes of T. vaginalis.
Collapse
Affiliation(s)
- Claudia R León-Sicairos
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Elisa E Figueroa-Angulo
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Jaeson S Calla-Choque
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Rossana Arroyo
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| |
Collapse
|
4
|
Development of antibodies to the iron-binding proteins transferrin and ferritin in dogs and mice infected with Leishmania parasites. Acta Trop 2022; 232:106522. [PMID: 35597263 DOI: 10.1016/j.actatropica.2022.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
Abstract
Most microorganisms including Leishmania parasites compete with the innate immune defenses of the infected hosts to acquire iron, an essential nutrient necessary for their growth and replication. In mammals, iron is predominantly bound to protein carriers such as transferrin and ferritin and the strategies adopted by the infected host to restrict its uptake by pathogens are still not elucidated. We compared herein the development of anti-transferrin and anti-ferritin antibodies in hosts that differs by their susceptibility to Leishmania infection. Results showed that Leishmania infantum naturally-infected dogs which have developed canine leishmaniasis (CanL) demonstrated higher titers of IgG antibodies anti-leishmanial antigens and anti-iron binding proteins than those infected without clinical signs. In the experimental mouse model, C57BL/6 mice resisted L. major infection, developed lower titers of Leishmania-specific IgG antibodies than BALB/c susceptible mice but demonstrated also the production of anti-transferrin and anti-ferritin IgG antibodies. Overall, results are in favor that mechanisms, other than the polyclonal activation of B cells associated-hypergammaglobulinemia, a characteristic of susceptible animals, are likely involved and require a replicating parasite for the limitation of iron uptake.
Collapse
|
5
|
Gruden Š, Poklar Ulrih N. Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. Int J Mol Sci 2021; 22:ijms222011264. [PMID: 34681923 PMCID: PMC8541349 DOI: 10.3390/ijms222011264] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Lactoferrins are an iron-binding glycoprotein that have important protective roles in the mammalian body through their numerous functions, which include antimicrobial, antitumor, anti-inflammatory, immunomodulatory, and antioxidant activities. Among these, their antimicrobial activity has been the most studied, although the mechanism behind antimicrobial activities remains to be elucidated. Thirty years ago, the first lactoferrin-derived peptide was isolated and showed higher antimicrobial activity than the native lactoferrin lactoferricin. Since then, numerous studies have investigated the antimicrobial potencies of lactoferrins, lactoferricins, and other lactoferrin-derived peptides to better understand their antimicrobial activities at the molecular level. This review defines the current antibacterial, antiviral, antifungal, and antiparasitic activities of lactoferrins, lactoferricins, and lactoferrin-derived peptides. The primary focus is on their different mechanisms of activity against bacteria, viruses, fungi, and parasites. The role of their structure, amino-acid composition, conformation, charge, hydrophobicity, and other factors that affect their mechanisms of antimicrobial activity are also reviewed.
Collapse
|
6
|
Isah MB, Goldring JPD, Coetzer THT. Expression and copper binding properties of the N-terminal domain of copper P-type ATPases of African trypanosomes. Mol Biochem Parasitol 2019; 235:111245. [PMID: 31751595 DOI: 10.1016/j.molbiopara.2019.111245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Copper is an essential component of cuproproteins but can be toxic to cells, therefore copper metabolism is very carefully regulated within cells. To gain insight into trypanosome copper metabolism, Trypanosoma spp. genomic databases were screened for the presence of copper-containing and -transporting proteins. Among other genes encoding copper-binding proteins, a copper-transporting P-type ATPase (CuATPase) gene was identified. Sequence and phylogenetic analyses suggest that the gene codes for a Cu+ transporter belonging to the P1B-1 ATPase subfamily that has an N-terminal domain with copper binding motifs. The N-terminal cytosolic domains of the proteins from Trypanosoma congolense and Trypanosoma brucei brucei were recombinantly expressed in Escherichia coli as maltose binding protein (MBP) fusion proteins. These N-terminal domains bound copper in vitro and within E. coli cells, more than the control MBP fusion partner alone. The copper binding properties of the recombinant proteins were further confirmed when they inhibited copper catalysed ascorbate oxidation. Native CuATPases were detected in a western blot of lysates of T. congolense IL3000 and T. b. brucei ILTat1.1 bloodstream form parasites using affinity purified IgY antibodies against N-terminal domain peptides. The CuATPase was also detected by immunofluorescence in T. b. brucei bloodstream form parasites where it was associated with subcellular vesicles. In conclusion, Trypanosoma species express a copper-transporting P1B-1-type ATPase and together with other copper-binding proteins identified in the genomes of kinetoplastid parasites may constitute potential targets for anti-trypanosomal drug discovery.
Collapse
Affiliation(s)
- Murtala Bindawa Isah
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - J P Dean Goldring
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
7
|
Kariuki CK, Stijlemans B, Magez S. The Trypanosomal Transferrin Receptor of Trypanosoma Brucei-A Review. Trop Med Infect Dis 2019; 4:tropicalmed4040126. [PMID: 31581506 PMCID: PMC6958415 DOI: 10.3390/tropicalmed4040126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions.
Collapse
Affiliation(s)
- Christopher K. Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), 00502 Nairobi, Kenya
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, 9052 Gent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon 219220, Korea
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| |
Collapse
|
8
|
Xiao SH, Sun J. Schistosoma hemozoin and its possible roles. Int J Parasitol 2016; 47:171-183. [PMID: 28012717 DOI: 10.1016/j.ijpara.2016.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
More than 95years ago Schistosoma pigment had been deemed as a degradation product of haemoglobin. Until the 1950s, scientists initiated to pay attention to understand the hematophagous habit of schistosomes, and to study the degradation of haemoglobin as well as the formation of hemozoin inside the gut of the worms. For a long time, the formation of hemozoin in both Plasmodium and in Schistosoma was considered to be the major route of heme detoxification, and hemozoin served a role in waste disposal. At the beginning of this century, the chemical structure of Schistosoma pigment was confirmed to be identical to that of malarial pigment (hemozoin) and its synthetic analogue, β-hematin. Since then, studies on Schistosoma hemozoin have been investigated by some workers and the results showed that Schistosoma hemozoin may play important roles in pathogenicity, immune modulation, iron supply for egg formation, and interaction with some anti-schistosomal drugs. In this review, we briefly review and discuss the hematophagous habit of schistosomes, degradation of haemoglobin, formation of hemozoin in the worm gut, and possible roles of hemozoin.
Collapse
Affiliation(s)
- Shu-Hua Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Shanghai 200025, China.
| | - Jun Sun
- Institute for Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
9
|
Figueroa-Angulo EE, Calla-Choque JS, Mancilla-Olea MI, Arroyo R. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins. Biomolecules 2015; 5:3354-95. [PMID: 26703754 PMCID: PMC4693282 DOI: 10.3390/biom5043354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.
Collapse
Affiliation(s)
- Elisa E Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Jaeson S Calla-Choque
- Laboratorio de Inmunopatología en Neurocisticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima 15102, Peru.
| | - Maria Inocente Mancilla-Olea
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| |
Collapse
|
10
|
Kim WS, Shimazaki KI, Tamura T. Expression of Bovine Lactoferrin C-lobe inRhodococcus erythropolisand Its Purification and Characterization. Biosci Biotechnol Biochem 2014; 70:2641-5. [PMID: 17090917 DOI: 10.1271/bbb.60245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A Rhodococcus erythropolis expression system for the bovine lactoferrin C-lobe was constructed. The DNA fragments encoding the BLF C-lobe were amplified and cloned into vector pTip LCH1.2. R. erythropolis carrying the pTip-C-lobe was cultured at 30 degrees C with shaking, and expression of the rBLF C-lobe was induced by adding 1 microg/ml (final concentration) thiostrepton. The rBLF C-lobe was isolated in native and denatured (8 M urea) form by Ni-NTA affinity chromatography. To obtain a bioactive rBLF C-lobe, the protein isolated in the denatured form was refolded by stepwise dialysis against refolding buffers. The antibacterial activity of the rBLF C-lobe was tested by the filter-disc plate assay method. The refolded rBLF C-lobe demonstrated antibacterial activity against selected strains of Escherichia coli.
Collapse
Affiliation(s)
- Woan-Sub Kim
- Dairy Science Laboratory, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | |
Collapse
|
11
|
Dean P, Major P, Nakjang S, Hirt RP, Embley TM. Transport proteins of parasitic protists and their role in nutrient salvage. FRONTIERS IN PLANT SCIENCE 2014; 5:153. [PMID: 24808897 PMCID: PMC4010794 DOI: 10.3389/fpls.2014.00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/01/2014] [Indexed: 05/02/2023]
Abstract
The loss of key biosynthetic pathways is a common feature of important parasitic protists, making them heavily dependent on scavenging nutrients from their hosts. This is often mediated by specialized transporter proteins that ensure the nutritional requirements of the parasite are met. Over the past decade, the completion of several parasite genome projects has facilitated the identification of parasite transporter proteins. This has been complemented by functional characterization of individual transporters along with investigations into their importance for parasite survival. In this review, we summarize the current knowledge on transporters from parasitic protists and highlight commonalities and differences in the transporter repertoires of different parasitic species, with particular focus on characterized transporters that act at the host-pathogen interface.
Collapse
Affiliation(s)
- Paul Dean
- The Medical School, Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, UK
| | | | | | | | - T. Martin Embley
- The Medical School, Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
12
|
Wang W, Qiu Z, Tan H, Cao L. Siderophore production by actinobacteria. Biometals 2014; 27:623-31. [PMID: 24770987 DOI: 10.1007/s10534-014-9739-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/13/2014] [Indexed: 11/25/2022]
Abstract
Produced by bacteria, fungi and plants, siderophores are low-molecular-weight chelating agents (200-2,000 Da) to facilitate uptake of iron (Fe). They play an important role in extracellular Fe solubilization from minerals to make it available to microorganisms. Siderophores have various chemical structures and form a family of at least 500 different compounds. Some antibiotics (i.e., albomycins, ferrimycins, danomycins, salmycins, and tetracyclines) can bind Fe and some siderophores showed diverse biological activities. Functions and applications of siderophores derived from actinobacteria were reviewed to better understand the diverse metabolites.
Collapse
Affiliation(s)
- Wenfeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Quintal S, Morais TS, Matos CP, Paula Robalo M, Piedade MFM, Villa de Brito MJ, Helena Garcia M, Marques M, Maia C, Campino L, Madureira J. Synthesis, structural characterization and leishmanicidal activity evaluation of ferrocenyl N-heterocyclic compounds. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Cellular growth and mitochondrial ultrastructure of leishmania (Viannia) braziliensis promastigotes are affected by the iron chelator 2,2-dipyridyl. PLoS Negl Trop Dis 2013; 7:e2481. [PMID: 24147167 PMCID: PMC3798463 DOI: 10.1371/journal.pntd.0002481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/26/2013] [Indexed: 12/02/2022] Open
Abstract
Background Iron is an essential element for the survival of microorganisms in vitro and in vivo, acting as a cofactor of several enzymes and playing a critical role in host-parasite relationships. Leishmania (Viannia) braziliensis is a parasite that is widespread in the new world and considered the major etiological agent of American tegumentary leishmaniasis. Although iron depletion leads to promastigote and amastigote growth inhibition, little is known about the role of iron in the biology of Leishmania. Furthermore, there are no reports regarding the importance of iron for L. (V.) braziliensis. Methodology/Principal Findings In this study, the effect of iron on the growth, ultrastructure and protein expression of L. (V.) braziliensis was analyzed by the use of the chelator 2,2-dipyridyl. Treatment with 2,2-dipyridyl affected parasites' growth in a dose- and time-dependent manner. Multiplication of the parasites was recovered after reinoculation in fresh culture medium. Ultrastructural analysis of treated promastigotes revealed marked mitochondrial swelling with loss of cristae and matrix and the presence of concentric membranar structures inside the organelle. Iron depletion also induced Golgi disruption and intense cytoplasmic vacuolization. Fluorescence-activated cell sorting analysis of tetramethylrhodamine ester-stained parasites showed that 2,2-dipyridyl collapsed the mitochondrial membrane potential. The incubation of parasites with propidium iodide demonstrated that disruption of mitochondrial membrane potential was not associated with plasma membrane permeabilization. TUNEL assays indicated no DNA fragmentation in chelator-treated promastigotes. In addition, two-dimensional electrophoresis showed that treatment with the iron chelator induced up- or down-regulation of proteins involved in metabolism of nucleic acids and coordination of post-translational modifications, without altering their mRNA levels. Conclusions Iron chelation leads to a multifactorial response that results in cellular collapse, starting with the interruption of cell proliferation and culminating in marked mitochondrial impairment in some parasites and their subsequent cell death, whereas others may survive and resume proliferating. American tegumentary leishmaniasis (ATL) is a neglected disease that is widely distributed in the Americas. The protozoan parasite Leishmania (Viannia) braziliensis is one of the main causative agents of ATL, being responsible for the development of different clinical manifestations of the disease, which ranges from self-healing cutaneous lesions to disseminated and mucocutaneous forms. Because iron is essential for the survival and growth of Leishmania, as it is required for colonization of macrophages and development of lesions in mice, several chelating compounds have been tested for their effects on the growth of these parasites. In the present work, treatment of L. (V.) braziliensis with the iron chelator 2,2-dipyridyl inhibited the growth of promastigote forms in a dose- and time-dependent manner. However, multiplication of the parasites was recovered after reinoculation in fresh culture medium. The iron chelator also induced mitochondrial dysfunction and altered expression of proteins involved in metabolism of nucleic acids and coordination of post-translational modifications. The events described above ultimately caused the death of some parasites, most likely due to mitochondrial dysfunction, whereas others adapted and survived, suggesting a plasticity or resilience of the mitochondrion in this parasite.
Collapse
|
15
|
Mielke RE, Priester JH, Werlin RA, Gelb J, Horst AM, Orias E, Holden PA. Differential growth of and nanoscale TiO₂ accumulation in Tetrahymena thermophila by direct feeding versus trophic transfer from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:5616-24. [PMID: 23851096 PMCID: PMC3754167 DOI: 10.1128/aem.01680-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/03/2013] [Indexed: 11/20/2022] Open
Abstract
Nanoscale titanium dioxide (TiO2) is increasingly used in consumer goods and is entering waste streams, thereby exposing and potentially affecting environmental microbes. Protozoans could either take up TiO2 directly from water and sediments or acquire TiO2 during bactivory (ingestion of bacteria) of TiO2-encrusted bacteria. Here, the route of exposure of the ciliated protozoan Tetrahymena thermophila to TiO2 was varied and the growth of, and uptake and accumulation of TiO2 by, T. thermophila were measured. While TiO2 did not affect T. thermophila swimming or cellular morphology, direct TiO2 exposure in rich growth medium resulted in a lower population yield. When TiO2 exposure was by bactivory of Pseudomonas aeruginosa, the T. thermophila population yield and growth rate were lower than those that occurred during the bactivory of non-TiO2-encrusted bacteria. Regardless of the feeding mode, T. thermophila cells internalized TiO2 into their food vacuoles. Biomagnification of TiO2 was not observed; this was attributed to the observation that TiO2 appeared to be unable to cross the food vacuole membrane and enter the cytoplasm. Nevertheless, our findings imply that TiO2 could be transferred into higher trophic levels within food webs and that the food web could be affected by the decreased growth rate and yield of organisms near the base of the web.
Collapse
Affiliation(s)
- Randall E. Mielke
- Bren School of Environmental Science and Management, Earth Research Institute, and UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California, USA
- Jet Propulsion Laboratory, California Institute of Technology—NASA, Planetary Science, Pasadena, California, USA
| | - John H. Priester
- Bren School of Environmental Science and Management, Earth Research Institute, and UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California, USA
| | - Rebecca A. Werlin
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Jeff Gelb
- Xradia Corporation, Pleasanton, California, USA
| | - Allison M. Horst
- Bren School of Environmental Science and Management, Earth Research Institute, and UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California, USA
| | - Eduardo Orias
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Patricia A. Holden
- Bren School of Environmental Science and Management, Earth Research Institute, and UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California, USA
| |
Collapse
|
16
|
Mittra B, Andrews NW. IRONy OF FATE: role of iron-mediated ROS in Leishmania differentiation. Trends Parasitol 2013; 29:489-96. [PMID: 23948431 DOI: 10.1016/j.pt.2013.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
The protozoan parasite Leishmania experiences extreme environmental changes as it alternates between insect and mammalian hosts. In some species, differentiation of insect promastigotes into mammalian-infective amastigotes is induced by elevated temperature and low pH, conditions found within macrophage parasitophorous vacuoles (PVs). However, the signaling events controlling amastigote differentiation remain poorly understood. Recent studies revealed a novel role for iron uptake in orchestrating the differentiation of amastigotes, through a mechanism that involves production of reactive oxygen species (ROS) and is independent from pH and temperature changes. ROS are generally thought to be deleterious for pathogens, but it is becoming increasingly apparent that they can also function as signaling molecules regulating Leishmania differentiation, in a process that is tightly controlled by iron availability.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
17
|
Dziadek B, Brzostek A. Recombinant ROP2, ROP4, GRA4 and SAG1 antigen-cocktails as possible tools for immunoprophylaxis of toxoplasmosis: what's next? Bioengineered 2012; 3:358-64. [PMID: 22892593 DOI: 10.4161/bioe.21541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toxoplasmosis is a globally distributed foodborne zoonosis caused by a protozoan parasite Toxoplasma gondii. Usually asymptomatic in immunocompetent humans, toxoplasmosis is a serious clinical and veterinary problem often leading to lethal damage in an infected host. In order to overcome the exceptionally strong clinical and socio-economic impact of Toxoplasma infection, the construction of an effective vaccine inducing full immunoprotection against the parasite is an urgent issue. In the last two decades many live attenuated, subunit and DNA-based vaccines against toxoplasmosis have been studied, however only partial protection conferred by vaccination against chronic as well as acute infection has been achieved. Among various immunization strategies, no viable subunit vaccines based on recombinant secretory (ROP2, ROP4 and GRA4) and surface (SAG1) T. gondii proteins have been found as attractive tools for further studies. This is due to their high, but still partial, protective efficacy correlated with the induction of cellular and humoral immune responses.
Collapse
Affiliation(s)
- Bozena Dziadek
- Department of Immunoparasitology; University of Lodz, Lodz, Poland.
| | | |
Collapse
|
18
|
Abstract
The immune system's battle against pathogens includes the "respiratory burst," a rapid release of ROS from leukocytes, thought to play a role in destroying the invading species. In this issue of the JCI, Paiva et al. demonstrate that oxidative stress actually enhances infection with the protozoan Trypanosoma cruzi, by a mechanism that may involve facilitating parasite access to iron. Their findings suggest a novel direction for the development of drugs against intracellular parasites.
Collapse
|
19
|
Ortíz-Estrada G, Luna-Castro S, Piña-Vázquez C, Samaniego-Barrón L, León-Sicairos N, Serrano-Luna J, de la Garza M. Iron-saturated lactoferrin and pathogenic protozoa: could this protein be an iron source for their parasitic style of life? Future Microbiol 2012; 7:149-64. [PMID: 22191452 DOI: 10.2217/fmb.11.140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron is an essential nutrient for the survival of pathogens inside a host. As a general strategy against microbes, mammals have evolved complex iron-withholding systems for efficiently decreasing the iron accessible to invaders. Pathogens that inhabit the respiratory, intestinal and genitourinary tracts encounter an iron-deficient environment on the mucosal surface, where ferric iron is chelated by lactoferrin, an extracellular glycoprotein of the innate immune system. However, parasitic protozoa have developed several mechanisms to obtain iron from host holo-lactoferrin. Tritrichomonas fetus, Trichomonas vaginalis, Toxoplasma gondii and Entamoeba histolytica express lactoferrin-binding proteins and use holo-lactoferrin as an iron source for growth in vitro; in some species, these binding proteins are immunogenic and, therefore, may serve as potential vaccine targets. Another mechanism to acquire lactoferrin iron has been reported in Leishmania spp. promastigotes, which use a surface reductase to recognize and reduce ferric iron to the accessible ferrous form. Cysteine proteases that cleave lactoferrin have been reported in E. histolytica. This review summarizes the available information on how parasites uptake and use the iron from lactoferrin to survive in hostile host environments.
Collapse
Affiliation(s)
- Guillermo Ortíz-Estrada
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. 14-740, México DF 07000, México
| | | | | | | | | | | | | |
Collapse
|
20
|
Sánchez-Cruz C, López-Casamichana M, Cruz-Castañeda A, de Jesús Olivares-Trejo J. Transferrin regulates mRNA levels of a gene involved in iron utilization in Entamoeba histolytica. Mol Biol Rep 2011; 39:4545-51. [PMID: 21947947 DOI: 10.1007/s11033-011-1244-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/14/2011] [Indexed: 11/29/2022]
Abstract
Entamoeba histolytica is a human pathogen, which can survive using haemoglobin (Hb) as only iron supply. Two probable haemophores (Ehhmbp26 and Ehhmbp45) are involved in iron acquisition in this parasite. However, mechanisms related to their transcriptional regulation have not been studied yet. In the present work, transcriptional profiles of both genes were evaluated in trophozoites cultures grown with different iron sources. ehhmbp26 gene was repressed totally by free iron, whereas ehhmbp45 gene showed clearly detectable mRNA levels. Expression profiles for both genes were significantly increased under iron privation condition. Interestingly, ehhmbp26 transcript was highly expressed by Holo-transferrin presence. This induction appears to be independent of direct contact between these proteins, because, in vitro assays evidenced that Ehhmbp26 protein was unable to bind this metalloprotein. Besides, in silico analysis of promoter nucleotide sequences of ehhmbp26 and ehhmbp45 genes revealed some distinctive core promoter elements described in E. histolytica and T-rich regions. Taking altogether these data suggest in E. histolytica dissimilar transcriptional mechanisms involved on iron acquisition control the expression of these genes, and they are unlike to those previously described for instance: in bacteria. Our findings evidenced this pathogen regulates the expression of ehhmbp26 and ehhmbp45 genes depending on the available iron supply, always ensuring the success of its infective process.
Collapse
Affiliation(s)
- Cristhian Sánchez-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290 C.P. 03100, México, D.F., México
| | | | | | | |
Collapse
|
21
|
Soares CO, Alves MJM, Bechara EJH. 1,4-Diamino-2-butanone, a wide-spectrum microbicide, yields reactive species by metal-catalyzed oxidation. Free Radic Biol Med 2011; 50:1760-70. [PMID: 21466850 DOI: 10.1016/j.freeradbiomed.2011.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
The α-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB's cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37°C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other α-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml-1) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(•), and those with α-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(•) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 μM) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity.
Collapse
Affiliation(s)
- Chrislaine O Soares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | |
Collapse
|
22
|
Identification and characterization of a surface-associated, subtilisin-like serine protease inTrichomonas vaginalis. Parasitology 2010; 137:1621-35. [DOI: 10.1017/s003118201000051x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYTrichomonas vaginalisis a protozoan parasite causing trichomonosis, a sexually transmitted infection in humans. This parasite has numerous proteases, most of which are cysteine proteases that appear to be involved in adherence and cytotoxicity of host cells. In this report we identify and characterize a putative subtilisin-like serine protease (SUB1). Thesub1gene encodes a 101-kDa protein.In silicoanalyses predict signal and pro-peptides at the N-terminus, and a transmembrane helix at the carboxy-terminal region. Thesub1gene was found as single copy by Southern analysis, albeit additional serine protease related genes are annotated in theT. vaginalisgenome. The expression ofsub1could only be detected by RT-PCR and Ribonuclease Protection Assays, suggesting a low abundant mRNA. Thesub1gene transcription start site was correctly assigned by RPA. The transcript abundance was found to be modulated by the availability of iron in the growth medium. Antibodies raised to a specific SUB1 peptide recognized a single protein band (~82 kDa) in Western blots, possibly representing the mature form of the protein. Immunofluorescence showed SUB1 on the trichomonad surface, and in dispersed vesicles throughout the cytoplasm. A bioinformatic analysis of genes annotated as serine proteases in theT. vaginalisgenome is also presented. To our knowledge this is the first putative serine protease experimentally described forT. vaginalis.
Collapse
|
23
|
Microbicidal effect of the lactoferrin peptides lactoferricin17-30, lactoferrampin265-284, and lactoferrin chimera on the parasite Entamoeba histolytica. Biometals 2010; 23:563-8. [PMID: 20140481 DOI: 10.1007/s10534-010-9295-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
Entamoeba histolytica is a parasitic protozoan that produces amoebiasis, an intestinal disease characterized by ulcerative colitis and dysentery. In some cases, trophozoites can travel to the liver leading to hepatic abscesses and death. Recently, lactoferrin and lactoferricin B have been shown to be amoebicidal in axenic cultures. The aim of this work was to determine whether the lactoferrin-peptides lactoferricin amino acids 17-30, lactoferrampin amino acids 265-284, and lactoferrin chimera which is a fusion product of the two peptides, are capable of producing a microbicidal effect to trophozoites of E. histolytica. We evaluated the killing effect of these peptides in growth kinetics carried out in axenic culture medium to which different concentrations of peptides were added. At 50 muM of peptide concentration, lactoferricin and lactoferrampin had a moderate amoebicidal effect, since a 45-50% of trophozoites remained viable at 24 h culture. However, at 50 microM of the lactoferrin chimera 75% amoeba were killed whereas at 100 microM all cells died. These data indicate that of lactoferrin-peptides mainly the chimera have amoebicidal activity in a time- and concentration-dependent manner. The lactoferrin-peptides might be useful as therapeutic agents against amoebiasis and thereby diminish the use of metronidazole, which is extremely toxic for the host.
Collapse
|
24
|
Responsiveness of Trichomonas vaginalis to iron concentrations: Evidence for a post-transcriptional iron regulation by an IRE/IRP-like system. INFECTION GENETICS AND EVOLUTION 2009; 9:1065-74. [DOI: 10.1016/j.meegid.2009.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 05/28/2009] [Accepted: 06/08/2009] [Indexed: 01/06/2023]
|
25
|
Use and endocytosis of iron-containing proteins by Entamoeba histolytica trophozoites. INFECTION GENETICS AND EVOLUTION 2009; 9:1038-50. [PMID: 19539057 DOI: 10.1016/j.meegid.2009.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/16/2009] [Accepted: 05/19/2009] [Indexed: 11/20/2022]
Abstract
Iron is essential for nearly all organisms; in mammals, it is part of proteins such as haemoglobin, and it is captured by transferrin and lactoferrin. Transferrin is present in serum, and lactoferrin is secreted by the mucosa and by neutrophils at infection sites, as a host iron-withholding response, sequestering iron away from invading microorganisms. Additionally, all cells contain ferritin, which sequesters iron when its intracellular levels are increased, detoxifying and preventing damage. Liver ferritin contains 50% of iron corporal reserves. During evolution, pathogens have evolved diverse strategies to obtain iron from their hosts in order to survive. The protozoan Entamoeba histolytica invades the intestinal mucosa, causing dysentery, and the trophozoites often travel to the liver producing hepatic abscesses; thus, intestine and liver proteins could be important iron supplies for E. histolytica. We found that E. histolytica trophozoites can grow in both ferrous and ferric iron, and that they can use haemoglobin, holo-transferrin, holo-lactoferrin, and ferritin as in vitro iron sources. These proteins supported the amoeba growth throughout consecutive passages, similarly to ferric citrate. By confocal microscopy and immunoblotting, iron-binding proteins were observed specifically bound to the amoeba surface, and they were endocytosed, trafficked through the endosomal/lysosomal route, and degraded by neutral and acidic cysteine-proteases. Transferrin and ferritin were mainly internalized through clathrin-coated vesicles, and holo-lactoferrin was mainly internalized by caveola-like structures. In contrast, apo-lactoferrin bound to membrane lipids and cholesterol, inducing cell death. The results suggest that in vivo trophozoites secrete products that can destroy enterocytes, erythrocytes, and hepatocytes, releasing transferrin, haemoglobin, ferritin, and other iron-containing proteins, which, together with lactoferrin derived from neutrophils and acinar cells, could be used as abundant iron supplies by amoebas.
Collapse
|
26
|
Trichomonas vaginalis: The adhesins AP51 and AP65 bind heme and hemoglobin. Exp Parasitol 2009; 121:300-6. [DOI: 10.1016/j.exppara.2008.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 11/20/2008] [Accepted: 11/28/2008] [Indexed: 11/19/2022]
|
27
|
Lee J, Park SJ, Yong TS. Effect of iron on adherence and cytotoxicity of Entamoeba histolytica to CHO cell monolayers. THE KOREAN JOURNAL OF PARASITOLOGY 2008; 46:37-40. [PMID: 18344676 DOI: 10.3347/kjp.2008.46.1.37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Iron is an essential element for almost all living organisms. The possible role of iron for growth, adherence and cytotoxicity of Entamoeba histolytica was evaluated in this study. The absence of iron from TYI-S-33 medium stopped amebic growth in vitro. However, iron concentrations in the culture media of 21.4-285.6 microM did not affect the growth of the amebae. Although growth was not retarded at these concentrations, the adhesive abilities of E. histolytica and their cytotoxicities to CHO cell monolayer were correlated with iron concentration. Amebic adhesion to CHO cell monolayers was significantly reduced by low-iron (24.6 +/- 2.1%) compared with 62.7 +/- 2.8 and 63.1 +/- 1.4% of amebae grown in a normal-iron and high-iron media, respectively. E. histolytica cultured in the normal- and high-iron media destroyed 69.1 +/- 4.3% and 72.6 +/- 5.7% of cultured CHO cell monolayers, but amebae grown in the low-iron medium showed a significantly reduced level of cytotoxicity to CHO cells (2.8 +/- 0.2%). Addition of divalent cations other than iron to amebic trophozoites grown in the low-iron medium failed to restore levels of the cytotoxicity. However, when E. histolytica grown in low-iron medium were transferred to normal-iron medium, the amebae showed completely restored cytotoxicity within 7 days. The result suggests that iron is an important factor in the adherence and cytotoxicity of E. histolytica to CHO cell monolayer.
Collapse
Affiliation(s)
- Jongweon Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
28
|
Huynh C, Andrews NW. Iron acquisition within host cells and the pathogenicity of Leishmania. Cell Microbiol 2007; 10:293-300. [PMID: 18070118 DOI: 10.1111/j.1462-5822.2007.01095.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe(2+) and Mn(2+) ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania, indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens. Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron-poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe(2+) transporter that is required for intracellular growth and virulence.
Collapse
Affiliation(s)
- Chau Huynh
- Section of Microbial Pathogenesis, School of Medicine, Yale University, 295 Congress avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
29
|
Glanfield A, McManus DP, Anderson GJ, Jones MK. Pumping iron: a potential target for novel therapeutics against schistosomes. Trends Parasitol 2007; 23:583-8. [PMID: 17962074 PMCID: PMC2756500 DOI: 10.1016/j.pt.2007.08.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/13/2007] [Accepted: 08/06/2007] [Indexed: 11/17/2022]
Abstract
Parasites, as with the vast majority of organisms, are dependent on iron. Pathogens must compete directly with the host for this essential trace metal, which is sequestered within host proteins and inorganic chelates. Not surprisingly, pathogenic prokaryotes and eukaryotic parasites have diverse adaptations to exploit host iron resources. How pathogenic bacteria scavenge host iron is well characterized and is reasonably well known for a few parasitic protozoa, but is poorly understood for metazoan parasites. Strategies of iron acquisition by schistosomes are examined here, with emphasis on possible mechanisms of iron absorption from host serum iron transporters or from digested haem. Elucidation of these metabolic mechanisms could lead to the development of new interventions for the control of schistosomiasis and other helminth diseases.
Collapse
Affiliation(s)
- Amber Glanfield
- Division of Infectious Diseases and Immunology, The Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland 4006, Australia.
| | | | | | | |
Collapse
|
30
|
Solano-González E, Burrola-Barraza E, León-Sicairos C, Avila-González L, Gutiérrez-Escolano L, Ortega-López J, Arroyo R. The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element. FEBS Lett 2007; 581:2919-28. [PMID: 17553495 DOI: 10.1016/j.febslet.2007.05.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 11/22/2022]
Abstract
The differential expression of the Trichomonas vaginalis cysteine proteinase TVCP4 by iron at the protein synthesis level and the prediction of an iron-responsive element (IRE)-like stem-loop structure at the 5'-region of the T. vaginalis cysteine proteinase 4 gene (tvcp4) mRNA suggest a post-transcriptional mechanism of iron regulation in trichomonads mediated by an IRE/IRP-like system. Gel-shifting, UV cross-linking and competition experiments demonstrated that this IRE-like structure specifically bound to human iron regulatory protein-1. IRP-like cytoplasmic proteins that bound human ferritin IRE sequence transcripts at low-iron conditions were also found in trichomonads. Thus, a post-transcriptional regulatory mechanism by iron for tvcp4 mediated by IRE/IRP-like interactions was found.
Collapse
Affiliation(s)
- Eduardo Solano-González
- Department of Biotechnology and Bioengineering, Centro de Investigación y Estudios Avanzados del IPN CINVESTAV-IPN, Col. San Pedro Zacatenco, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
31
|
Jones MK, McManus DP, Sivadorai P, Glanfield A, Moertel L, Belli SI, Gobert GN. Tracking the fate of iron in early development of human blood flukes. Int J Biochem Cell Biol 2007; 39:1646-58. [PMID: 17556009 PMCID: PMC2758302 DOI: 10.1016/j.biocel.2007.04.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/01/2007] [Accepted: 04/18/2007] [Indexed: 11/30/2022]
Abstract
Iron (Fe) is an important trace element found in nearly all organisms, and is used as a cofactor in many biological reactions. One role for Fe in some invertebrates is in stabilization of extracellular matrices. The human blood fluke, Schistosoma japonicum, is responsible for significant human disease in developing and tropical nations. Disease in humans arises from host immunological reaction to parasite eggs that lodge in tissues. Schistosomes require Fe for development in their hosts, and store abundant Fe in vitelline (eggshell-forming) cells of the female system. The understanding of Fe metabolism and functionality are aspects of its biology that may be exploited in future therapeutics. The biology of Fe stores in vitelline cells of S. japonicum was investigated to illuminate possible functions of this element in early development of these parasites. Vitelline Fe is stored in yolk ferritin that is upregulated in females and is also expressed at low levels in egg-stages and adult males. Laser microdissection microscopy, coupled with reverse transcriptase- and real time-PCR amplification of schistosome ferritin sequences, confirmed that the vitelline cells are the likely progenitor cells of yolk ferritin. Assessment of Fe concentrations in whole male and whole female adult worms, eggs and purified eggshells by colorimetric assays and mass spectroscopy demonstrated higher levels of Fe in the female parasite, but also high levels of the element in whole parasite eggs and purified eggshell. Qualitative energy dispersive spectroscopy of purified eggshells, revealed that Fe is abundant in the eggshell, the matrix of which is composed of heavily cross-linked eggshell precursor proteins. Thus, vitelline stores of Fe are implicated in eggshell cross-linking in platyhelminths. These observations emphasise the importance of Fe in schistosome metabolism and egg formation and suggest new avenues for disruption of egg formation in these pathogenic parasites.
Collapse
Affiliation(s)
- Malcolm K Jones
- Queensland Institute of Medical Research, Herston, Qld 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Dziadek B, Dziadek J, Dlugonska H. Identification of Toxoplasma gondii proteins binding human lactoferrin: A new aspect of rhoptry proteins function. Exp Parasitol 2007; 115:277-82. [PMID: 17069806 DOI: 10.1016/j.exppara.2006.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 11/21/2022]
Abstract
In this paper, we report on the isolation, purification and identification of two Toxoplasma gondii membrane proteins binding human lactoferrin. Parasite membrane proteins were isolated using the commercial Mem-PER Eukaryotic Membrane Protein Extraction System. After purification by lactoferrin affinity chromatography, three protein bands were detected with the molecular mass of 74, 63 and 58 kDa, two of which (63 and 58 kDa) specifically bound biotin labeled human lactoferrin as examined by competitive inhibition. Further identification of latter proteins by ESI/MS/MS amino acid sequencing technique revealed those proteins as Toxoplasma ROP4 (band 63 kDa) and ROP2 (band 58 kDa) antigens known to be involved in many mechanisms essential for the parasite pathogenicity, including host lactoferrin acquisition as determined in this study.
Collapse
Affiliation(s)
- Bozena Dziadek
- Department of Immunoparasitology, University of Lodz, Lodz, Poland.
| | | | | |
Collapse
|
33
|
De Jesus JB, Ferreira MA, Cuervo P, Britto C, e Silva-Filho FC, Meyer-Fernandes JR. Iron modulates ecto-phosphohydrolase activities in pathogenic trichomonads. Parasitol Int 2006; 55:285-90. [PMID: 17010660 DOI: 10.1016/j.parint.2006.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/21/2006] [Accepted: 08/21/2006] [Indexed: 11/27/2022]
Abstract
The presence of iron in the extracellular medium is essential for both in vivo and in vitro survival of pathogenic microorganisms, including Trichomonas vaginalis and Tritrichomonas foetus. In these parasites, iron is directly involved in the proliferation, protein expression and activation of critical enzymes. The purpose of this study was to investigate the role of iron in ecto-ATPase, ecto-phophatase and secreted phosphatase activities of these trichomonads. We observed that trichomonads grown in iron-depleted medium exhibited a remarkable decrease in both ecto-ATPase and ecto-phosphatase activities, when compared to those cultivated under control conditions (iron-rich medium). Furthermore, parasites grown in iron-depleted medium restored their enzyme activities when they were re-inoculated into fresh iron-rich medium. We demonstrated that modulation of ecto-phosphohydrolase activities is due neither to enzyme-iron nor to substrate-iron complex formation, since iron addition directly to the medium where the enzymatic reactions occurred did not alter their activities. Previously, we had reported that a fresh clinical isolate of T. vaginalis was much more cytotoxic to epithelial cell monolayers than a long-term cultured one. In this study we witnessed that the fresh isolate of T. vaginalis presented higher activities to all herein investigated enzymes than the long-term cultured one. Altogether, our data clearly point out that iron has a pivotal role in the expression of phosphohydrolases in both trichomonads.
Collapse
Affiliation(s)
- José Batista De Jesus
- Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, Pav Leônidas Deane, Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
34
|
Huynh C, Sacks DL, Andrews NW. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. ACTA ACUST UNITED AC 2006; 203:2363-75. [PMID: 17000865 PMCID: PMC2118100 DOI: 10.1084/jem.20060559] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection of mammalian hosts with Leishmania amazonensis depends on the remarkable ability of these parasites to replicate within macrophage phagolysosomes. A critical adaptation for survival in this harsh environment is an efficient mechanism for gaining access to iron. In this study, we identify and characterize LIT1, a novel L. amazonensis membrane protein with extensive similarity to IRT1, a ZIP family ferrous iron transporter from Arabidopsis thaliana. The ability of LIT1 to promote iron transport was demonstrated after expression in yeast and in L. amazonensis LIT1-null amastigotes. Endogenous LIT1 was only detectable in amastigotes replicating intracellularly, and its intracellular expression was accelerated under conditions predicted to result in iron deprivation. Although L. amazonensis lacking LIT1 grew normally in axenic culture and had no defects differentiating into infective forms, replication within macrophages was abolished. Consistent with an essential role for LIT1 in intracellular growth as amastigotes, Δlit1 parasites were avirulent. After inoculation into highly susceptible mice, no lesions were detected, even after extensive periods of time. Despite the absence of pathology, viable Δlit1 parasites were recovered from the original sites of inoculation, indicating that L. amazonensis can persist in vivo independently of the ability to grow in macrophages. Our findings highlight the essential role played by intracellular iron acquisition in Leishmania virulence and identify this pathway as a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Chau Huynh
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
35
|
Dziadek B, Dzitko K, Dlugonska H. Toxoplasma gondii binds human lactoferrin but not transferrin. Exp Parasitol 2005; 110:165-7. [PMID: 15888300 DOI: 10.1016/j.exppara.2005.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/03/2005] [Accepted: 03/07/2005] [Indexed: 11/19/2022]
Affiliation(s)
- Bozena Dziadek
- Department of Immunoparasitology, University of Lodz, Lodz, Poland.
| | | | | |
Collapse
|
36
|
Krishnamurthy G, Vikram R, Singh SB, Patel N, Agarwal S, Mukhopadhyay G, Basu SK, Mukhopadhyay A. Hemoglobin receptor in Leishmania is a hexokinase located in the flagellar pocket. J Biol Chem 2004; 280:5884-91. [PMID: 15579464 DOI: 10.1074/jbc.m411845200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hb endocytosis in Leishmania is mediated through a 46-kDa protein located in the flagellar pocket. To understand the nature of the Hb receptor (HbR), we have purified the 46-kDa protein to homogeneity from Leishmania promastigote membrane. Purified HbR specifically binds Hb. The gene for HbR was cloned, and sequence analysis of the full-length HbR gene indicates the presence of hexokinase (HK) signature sequences, ATP-binding domain, and PTS-II motif. Four lines of evidence indicate that HbR in Leishmania is a hexokinase: 1) the recombinant HbR binds Hb, and the Hb-binding domain resides in the N terminus of the protein; 2) recombinant proteins and cell lysate prepared from HbR-overexpressing Leishmania promastigotes show enhanced HK activity in comparison with untransfected cells; 3) immunolocalization studies using antibodies against the N-terminal fragment (Ld-HbR-DeltaC) of Ld-HbR indicate that this protein is located in the flagellar pocket of Leishmania; and 4) binding and uptake of (125)I-Hb by Leishmania is significantly inhibited by anti-Ld-HbR-DeltaC antibody and Ld-HbR-DeltaC, respectively. Taken together, these results indicate that HK present in the flagellar pocket of Leishmania is involved in Hb endocytosis.
Collapse
Affiliation(s)
- Ganga Krishnamurthy
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
37
|
León-Sicairos CR, León-Félix J, Arroyo R. tvcp12: a novel Trichomonas vaginalis cathepsin L-like cysteine proteinase-encoding gene. MICROBIOLOGY-SGM 2004; 150:1131-1138. [PMID: 15133072 DOI: 10.1099/mic.0.26927-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Trichomonas vaginalis is the causative agent of trichomoniasis, one of the most common sexually transmitted diseases in humans. This protozoan has multiple proteinases that are mainly of the cysteine proteinase (CP) type, some of which are known to be involved in the parasite's virulence. Here, a novel T. vaginalis CP-encoding gene, tvcp12, was identified and characterized. tvcp12 is 948 bp long and encodes a predicted 34.4 kDa protein that has the characteristics of the papain-like CP family. TvCP12 does not appear to have a signal peptide, suggesting that this is a cytoplasmic CP. By Southern blot assays, the tvcp12 gene was found as a single copy in the T. vaginalis genome. Remarkably, Northern blot experiments showed a single transcript band of approximately 1.3 kb in the mRNA obtained from parasites grown in low iron conditions and no transcript was observed in the mRNA from parasites grown in high iron conditions. By RT-PCR assays, a 270 bp band was amplified from the cDNA of parasites grown in low iron medium, which was very faint when cDNA from parasites grown in high iron conditions was used. Transcripts of the 3' region obtained in both iron conditions presented differences in their poly(A) tail length. These data suggest that tvcp12 is another gene that is negatively regulated by iron and that the length of the poly(A) tail may be one of the factors involved in the iron-modulated protein expression.
Collapse
Affiliation(s)
- Claudia R León-Sicairos
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), AP 14-740, Mexico City, 07000, Mexico
| | - Josefina León-Félix
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), AP 14-740, Mexico City, 07000, Mexico
| | - Rossana Arroyo
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), AP 14-740, Mexico City, 07000, Mexico
| |
Collapse
|
38
|
Tanaka T, Abe Y, Inoue N, Kim WS, Kumura H, Nagasawa H, Igarashi I, Shimazaki KI. The Detection of Bovine Lactoferrin Binding Protein on Trypanosoma brucei. J Vet Med Sci 2004; 66:619-25. [PMID: 15240935 DOI: 10.1292/jvms.66.619] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei, the causative agent of sleeping sickness in humans, requires transferrin (TF) for growth. Therefore, T. brucei has a TF receptor that allows it to obtain iron from TF. Lactoferrin (LF), a member of the TF family protein, is an iron-binding protein that is found in most biological fluids of mammals. LF has been shown to interact with some bacteria species by specific receptor-ligand binding. We examined the ability of T. brucei to bind bovine LF (bLF) by using a fluorescence test, streptavidin-biotin (SAB) microplate analysis, and far Western blotting using a biotin-streptavidin system. We found that bLF bound to components of T. brucei, and that bLF hydrolysate disrupted the sites responsible for binding to parasite proteins. Furthermore, bLF, human LF, bovine TF, and ovotransferrin bound same proteins of T. brucei, which exhibited molecular masses of 40 and 43 kDa. The N-terminal amino acid sequence of the 40 kDa bLF binding protein was identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Collapse
Affiliation(s)
- Tetsuya Tanaka
- Dairy Science Laboratory, Graduate School of Agriculture, Hokkaido University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wilson ME, Lewis TS, Miller MA, McCormick ML, Britigan BE. Leishmania chagasi: uptake of iron bound to lactoferrin or transferrin requires an iron reductase. Exp Parasitol 2002; 100:196-207. [PMID: 12173405 DOI: 10.1016/s0014-4894(02)00018-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Leishmania chagasi can utilize iron bound to transferrin, lactoferrin, or other chelates. We investigated the mechanism of iron uptake. Promastigotes preferentially took up iron in a reduced rather than an oxidized form, suggesting that extracellular iron must be reduced prior to internalization. Similar to literature reports, a 70-kDa protein in promastigote membrane-containing microsomes bound to [125I]-labeled transferrin. However, [125I]lactoferrin and [125I]albumin also bound a similar 70-kDa protein, suggesting that binding might not be specific. Both total and fractionated promastigotes exhibited an NADPH-dependent iron reductase activity. In contrast to trypanosomes, which take up transferrin through a specific receptor, these data support a model in which a parasite-associated or secreted reductase reduces ferric to ferrous iron, decreasing its affinity for the extracellular chelate and allowing it to be readily internalized by the parasite. This could account for the ability of the parasite to utilize iron from multiple sources in diverse host environments. Index Descriptors and Abbreviations. Index descriptors: Cryptococcus neoformans, Histoplasma capsulatum, iron, iron reductase, lactoferrin, L. chagasi, leishmaniasis, nutrient acquisition, protozoan, Saccharomyces cerevisiae, Trypanosoma brucei, Trypanosoma cruzi, transferrin; Abbreviations used: DNA, deoxyribonucleic acid; DTT, dithiothreitol; HBSS, Hanks' balanced salt solution; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NEM, N-ethylmaleimide; RNA, ribonucleic acid.
Collapse
Affiliation(s)
- Mary E Wilson
- Veterans' Affairs Medical Center, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
40
|
Lowenberger CA. Form, function and phylogenetic relationships of mosquito immune peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:113-29. [PMID: 11418977 DOI: 10.1007/978-1-4615-1291-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- C A Lowenberger
- Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1655 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
41
|
Reyes-López M, Serrano-Luna JJ, Negrete-Abascal E, León-Sicairos N, Guerrero-Barrera AL, de la Garza M. Entamoeba histolytica: transferrin binding proteins. Exp Parasitol 2001; 99:132-40. [PMID: 11846523 DOI: 10.1006/expr.2001.4647] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Entamoeba histolytica trophozoites depend on iron for their growth; thus, they must use some host iron-containing molecules to fulfill this requirement. In this work we report that amoebas are able to utilize human holo-Tf as iron source and to recognize it through transferrin binding proteins. By use of an anti-human transferrin antiserum in an immunoblotting assay, two main polypeptides with apparent molecular masses of 70 and 140 kDa were found in total extract of trophozoites cultured in vitro. However, when a monoclonal anti-human transferrin receptor antibody was used, only one band with molecular mass of 140 kDa was observed. Both the human transferrin and the monoclonal antibody recognized a protein on the amoebic surface, demonstrated by confocal microscopy. Furthermore, the complex transferrin-transferrin binding protein was internalized by an endocytic process and probably dissociated inside the cell. This mechanism could be one manner in which E. histolytica acquires iron from the human host transferrin.
Collapse
Affiliation(s)
- M Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del I.P.N., México, D.F., México
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Tritrichomonas foetus is a common, sexually transmitted, protozoan parasite of cattle. It has an essential requirement for iron, which it obtains from host lactoferrin. However, specific lactoferrin-binding protein receptors have not yet been identified in T. foetus. To differentiate specific and nonspecific binding of lactoferrin, lactoferrin affinity chromatography and Western blotting was used to identify metabolically or surface-labeled T. foetus lactoferrin-binding proteins. Bovine lactoferrin was shown to bind more efficiently than human lactoferrin, and each of these bound much better than bovine transferrin. This is relevant because T. foetus is both species-specific and only infects the mucosal surface of the reproductive tract, which has little transferrin. Whereas the majority of lactoferrin binding was specific, competitive inhibition studies showed that nonspecific, charge-related binding of lactoferrin to T. foetus may also be involved. In the presence of bovine cervical mucus, binding of lactoferrin to T. foetus was diminished, suggesting that mucus has an effect on lactoferrin binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of surface biotinylated proteins affinity-purified on lactoferrin-Sepharose showed biotinylated bands at Mr values of 22, 49, 55, 72, and 155 kDa. Because lactoferrin-binding proteins may be susceptible to digestion by T. foetus extracellular cysteine proteinases, it is suspected that the 155-kDa protein is the specific lactoferrin-binding protein and that the lower-Mr lactoferrin-binding molecules may be fragmentation products that contain the lactoferrin-binding site; however, other interpretations are clearly feasible. It is possible that there may be multiple proteins or multimers of the same protein. In summary, the data showed that binding of lactoferrin to T. foetus may be regulated by an interplay of specific receptor interactions as well as by hydrophobic and charge-related interactions.
Collapse
Affiliation(s)
- D J Grab
- Department of Parasitology, Kurume University School of Medicine, Fukuoka, Japan
| | | | | | | |
Collapse
|
43
|
|
44
|
Wilson M. Reply. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:207. [PMID: 10322356 DOI: 10.1016/s0169-4758(99)01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Affiliation(s)
- M Wilson
- (Current address) Departments of Medicine and Microbiology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
45
|
|