1
|
Lee H, Feranil JB, Jose PA. An Overview on Renal and Central Regulation of Blood Pressure by Neuropeptide FF and Its Receptors. Int J Mol Sci 2024; 25:13284. [PMID: 39769048 PMCID: PMC11675822 DOI: 10.3390/ijms252413284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed in rodent and human brains, participate in cardiovascular regulation. However, the expressions of NPFF and its receptors are not restricted within the central nervous system but are also found in peripheral organs, including the kidneys. Both NPFFR1 and NPFFR2 mainly couple to Gαi/o, which inhibits cyclic adenosine monophosphate (cAMP) production. NPFF also weakly binds to other RFamide receptors and the Mas receptor. Relevant published articles were searched in PubMed, Google Scholar, Web of Science, and Scopus. Herein, we review evidence for the role of NPFF in the regulation of blood pressure, in the central nervous system, particularly within the hypothalamic paraventricular nucleus and the brainstem, and the kidneys. NPFF is a potential target in the treatment of hypertension.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (J.B.F.); (P.A.J.)
| | - Jun B. Feranil
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (J.B.F.); (P.A.J.)
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (J.B.F.); (P.A.J.)
- Department of Pharmacology & Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
2
|
Morgan A, Shekhar N, Strnadová V, Pirník Z, Haasová E, Kopecký J, Pačesová A, Železná B, Kuneš J, Bardová K, Maletínská L. Deficiency of GPR10 and NPFFR2 receptors leads to sex-specific prediabetic syndrome and late-onset obesity in mice. Biosci Rep 2024; 44:BSR20241103. [PMID: 39440369 PMCID: PMC11499387 DOI: 10.1042/bsr20241103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
GPR10 and neuropeptide FF receptor 2 (NPFFR2) play important role in the regulation of food intake and energy homeostasis. Understanding the interaction between these receptors and their specific ligands, such as prolactin-releasing peptide, is essential for developing stable peptide analogs with potential for treating obesity. By breeding and characterizing double knockout (dKO) mice fed standard or high-fat diet (HFD), we provide insights into the metabolic regulation associated with the GPR10 and NPFFR2 deficiency. Both WT and dKO mice were subjected to behavioral tests and an oral glucose tolerance test. Moreover, dual-energy X-ray absorptiometry (DEXA) followed by indirect calorimetry were performed to characterize dKO mice. dKO mice of both sexes, when exposed to an HFD, showed reduced glucose tolerance, hyperinsulinemia, and insulin resistance compared with controls. Moreover, they displayed increased liver weight with worsened hepatic steatosis. Mice displayed significantly increased body weight, which was more pronounced in dKO males and caused by higher caloric intake on a standard diet, while dKO females displayed obesity characterized by increased white adipose tissue and enhanced hepatic lipid accumulation on an HFD. Moreover, dKO females exhibited anxiety-like behavior in the open field test. dKO mice on a standard diet had a lower respiratory quotient, with no significant changes in energy expenditure. These results provide insights into alterations associated with disrupted GPR10 and NPFFR2 signaling, contributing to the development of potential anti-obesity treatment.
Collapse
MESH Headings
- Animals
- Male
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Obesity/metabolism
- Obesity/genetics
- Female
- Mice, Knockout
- Mice
- Diet, High-Fat/adverse effects
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/deficiency
- Prediabetic State/metabolism
- Prediabetic State/genetics
- Energy Metabolism/genetics
- Insulin Resistance
- Mice, Inbred C57BL
- Sex Factors
- Adipose Tissue, White/metabolism
Collapse
Affiliation(s)
- Alena Morgan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Nivasini Shekhar
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zdenko Pirník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Eliška Haasová
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Kristina Bardová
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| |
Collapse
|
3
|
Lee H, Amatya B, Villar VAM, Asico LD, Jeong JK, Feranil J, Moore SC, Zheng X, Bishop M, Gomes JP, Polzin J, Smeriglio N, de Castro PASV, Armando I, Felder RA, Hao L, Jose PA. Renal autocrine neuropeptide FF (NPFF) signaling regulates blood pressure. Sci Rep 2024; 14:15407. [PMID: 38965251 PMCID: PMC11224344 DOI: 10.1038/s41598-024-64484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.
Collapse
Affiliation(s)
- Hewang Lee
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Bibhas Amatya
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Van Anthony M Villar
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Laureano D Asico
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Jun Feranil
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shaun C Moore
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Xiaoxu Zheng
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Michael Bishop
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Jerald P Gomes
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacob Polzin
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Noah Smeriglio
- Department of Chemistry, Columbian College of Arts and Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Pedro A S Vaz de Castro
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Ines Armando
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, 22908.5, USA
| | - Ling Hao
- Department of Chemistry, Columbian College of Arts and Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| |
Collapse
|
4
|
Wang Y, Zuo Z, Shi J, Fang Y, Yin Z, Wang Z, Yang Z, Jia B, Sun Y. Modulatory role of neuropeptide FF system in macrophages. Peptides 2024; 174:171164. [PMID: 38272240 DOI: 10.1016/j.peptides.2024.171164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Neuropeptide FF (NPFF) is an octapeptide that regulates various cellular processes, especially pain perception. Recently, there has been a growing interest in understanding the modulation of NPFF in neuroendocrine inflammation. This review aims to provide a thorough overview of the regulation of NPFF in macrophage-mediated biological processes. We delve into the impact of NPFF on macrophage polarization, self-renewal modulation, and the promotion of mitophagy, facilitating the transition from thermogenic fat to fat-storing adipose tissue. Additionally, we explore the NPFF-dependent regulation of the inflammatory response mediated by macrophages, its impact on the differentiation of macrophages, and its capacity to induce alterations in the transcriptome of macrophages. We also address the potential of NPFF as a therapeutic molecule in the field of neuroendocrine inflammation. Overall, our work offers an understanding of the influence of NPFF on macrophage, facilitating the exploration of its pharmacological significance in future studies.
Collapse
Affiliation(s)
- Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Jiajia Shi
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yanwei Fang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhongqian Yin
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
5
|
Koller J, Herzog H, Zhang L. The distribution of Neuropeptide FF and Neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control. Neuropeptides 2021; 90:102198. [PMID: 34534716 DOI: 10.1016/j.npep.2021.102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
Neuropeptide FF (NPFF) and Neuropeptide VF (NPVF) are part of the extended RFamide peptide family characterized by their common arginine (R) and amidated phenylalanine (F)-motif at the carboxyl terminus. Both peptides signal through their respective high affinity G-protein coupled receptors, NPFFR2 and NPFFR1, but also show binding affinity for the other receptor due to their sequence similarity. NPFF and NPVF are highly conserved throughout evolution and can be found across the whole animal kingdom. Both have been implicated in a variety of biological mechanisms, including nociception, locomotion, reproduction, and response to pain and stress. However, more recently a new major functional role in the control of energy homeostasis has been discovered. In this article we will summarise the current knowledge on the distribution of NPFF, NPVF, and their receptors in central and peripheral tissues, as well as how this relates to the regulation of food intake and energy balance, which will help to better understand their role in these processes and thus might help finding treatments for impaired energy homeostasis disorders, such as obesity or anorexia.
Collapse
Affiliation(s)
- Julia Koller
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, UNSW Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lei Zhang
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Sun S, Sun S, Meng Y, Shi B, Chen Y. Elevated Serum Neuropeptide FF Levels Are Associated with Cognitive Decline in Patients with Spinal Cord Injury. DISEASE MARKERS 2021; 2021:4549049. [PMID: 34804262 PMCID: PMC8601828 DOI: 10.1155/2021/4549049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) has high incidence globally and is frequently accompanied by subsequent cognitive decline. Accurate early risk-categorization of SCI patients for cognitive decline using biomarkers can enable the timely application of appropriate neuroprotective measures and the development of new agents for the management of SCI-associated cognitive decline. Neuropeptide FF is an endogenous neuropeptide with a multitude of functions and is associated with neuroinflammatory processes. This prospective study investigated the predictive value of serum neuropeptide FF levels measured after acute SCI for subsequent cognitive decline. METHODS 88 patients presenting with acute SCI without preexisting neurological injury, brain trauma, or severe systemic illness and 60 healthy controls were recruited. Serum neuropeptide FF levels, clinical, and routine laboratory variables including low-density lipoprotein, high-density lipoprotein, fasting blood glucose, total triiodothyronine (TT3), total thyroxine (TT4), and thyroid-stimulating hormone (TSH) levels collected from all subjects were assessed. Montreal cognitive assessment (MoCA) was performed 3 months after enrollment. SCI patients were grouped according to quartile of serum neuropeptide FF level and MoCA scores were compared using ANOVA. Additionally, multivariate linear regression with clinical and laboratory variables was performed to predict MoCA scores. RESULTS SCI patients displayed significantly higher baseline serum neuropeptide FF levels than healthy controls (38.5 ± 4.1 versus 23.4 ± 2.0 pg/ml, p < 0.001∗∗). SCI patients in higher quartiles of baseline serum neuropeptide FF displayed significantly lower MoCA scores at 3 months. Linear regression analysis indicated serum neuropeptide FF levels as a significant independent predictor of worse MoCA scores after SCI (r = 0.331, p = 0.034∗). CONCLUSION Early serum neuropeptide FF levels significantly and independently predicted cognitive decline after acute SCI among patients without preexisting neurological disorders.
Collapse
Affiliation(s)
- Shifei Sun
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Meng
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Bin Shi
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Yuanzhen Chen
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| |
Collapse
|
7
|
Sun Y, Zuo Z, Kuang Y. Prolactin-Releasing Peptide Differentially Regulates Gene Transcriptomic Profiles in Mouse Bone Marrow-Derived Macrophages. Int J Mol Sci 2021; 22:ijms22094456. [PMID: 33923285 PMCID: PMC8123224 DOI: 10.3390/ijms22094456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/24/2023] Open
Abstract
Prolactin-releasing Peptide (PrRP) is a neuropeptide whose receptor is GPR10. Recently, the regulatory role of PrRP in the neuroendocrine field has attracted increasing attention. However, the influence of PrRP on macrophages, the critical housekeeper in the neuroendocrine field, has not yet been fully elucidated. Here, we investigated the effect of PrRP on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) with RNA sequencing, bioinformatics, and molecular simulation. BMDMs were exposed to PrRP (18 h) and were subjected to RNA sequencing. Differentially expressed genes (DEGs) were acquired, followed by GO, KEGG, and PPI analysis. Eight qPCR-validated DEGs were chosen as hub genes. Next, the three-dimensional structures of the proteins encoded by these hub genes were modeled by Rosetta and Modeller, followed by molecular dynamics simulation by the Gromacs program. Finally, the binding modes between PrRP and hub proteins were investigated with the Rosetta program. PrRP showed no noticeable effect on the morphology of macrophages. A total of 410 DEGs were acquired, and PrRP regulated multiple BMDM-mediated functional pathways. Besides, the possible docking modes between PrRP and hub proteins were investigated. Moreover, GPR10 was expressed on the cell membrane of BMDMs, which increased after PrRP exposure. Collectively, PrRP significantly changed the transcriptome profile of BMDMs, implying that PrRP may be involved in various physiological activities mastered by macrophages.
Collapse
Affiliation(s)
- Yulong Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Z.); (Y.K.)
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: ; Tel.: +86-29-8846-0332
| | - Zhuo Zuo
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Z.); (Y.K.)
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yuanyuan Kuang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Z.); (Y.K.)
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
8
|
Pražienková V, Funda J, Pirník Z, Karnošová A, Hrubá L, Kořínková L, Neprašová B, Janovská P, Benzce M, Kadlecová M, Blahoš J, Kopecký J, Železná B, Kuneš J, Bardová K, Maletínská L. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 2021; 774:145427. [PMID: 33450349 DOI: 10.1016/j.gene.2021.145427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptor GPR10 is expressed in brain areas regulating energy metabolism. In this study, the effects of GPR10 gene deficiency on energy homeostasis in mice of both sexes fed either standard chow or a high-fat diet (HFD) were studied, with a focus on neuronal activation of PrRP neurons, and adipose tissue and liver metabolism. GPR10 deficiency in males upregulated the phasic and tonic activity of PrRP neurons in the nucleus of the solitary tract. GPR10 knockout (KO) males on a standard diet displayed a higher body weight than their wild-type (WT) littermates due to an increase in adipose tissue mass; however, HFD feeding did not cause weight differences between genotypes. Expression of lipogenesis genes was suppressed in the subcutaneous adipose tissue of GPR10 KO males. In contrast, GPR10 KO females did not differ in body weight from their WT controls, but showed elevated expression of lipid metabolism genes in the liver and subcutaneous adipose tissue compared to WT controls. An attenuated non-esterified fatty acids change after glucose load compared to WT controls suggested a defect in insulin-mediated suppression of lipolysis in GPR10 KO females. Indirect calorimetry did not reveal any differences in energy expenditure among groups. In conclusion, deletion of GPR10 gene resulted in changes in lipid metabolism in mice of both sexes, however in different extent. An increase in adipose tissue mass observed in only GPR10 KO males may have been prevented in GPR10 KO females owing to a compensatory increase in the expression of metabolic genes.
Collapse
Affiliation(s)
- Veronika Pražienková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jiří Funda
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Zdenko Pirník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Biomedical Research Center SAS of the Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Alena Karnošová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lucia Kořínková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Petra Janovská
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Michal Benzce
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Michaela Kadlecová
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Jaroslav Blahoš
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Kristina Bardová
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
9
|
Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. Int J Mol Sci 2019; 20:ijms20215297. [PMID: 31653061 PMCID: PMC6862262 DOI: 10.3390/ijms20215297] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored.
Collapse
|
10
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
11
|
Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway. Proc Natl Acad Sci U S A 2013; 110:2187-92. [PMID: 23284171 DOI: 10.1073/pnas.1215759110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinase-protein kinase B/AKT-mammalian target of rapamycin (PI3K/AKT-mTOR) pathway] is aberrantly expressed in uterine fibroids. The activation of GPR10 by its cognate ligand, prolactin releasing peptide, promotes PI3K-AKT-mTOR pathways and cell proliferation specifically in cultured primary leiomyoma cells. Additionally, we report that RE1 suppressing transcription factor/neuron-restrictive silencing factor (REST/NRSF), a known tumor suppressor, transcriptionally represses GPR10 in the normal myometrium, and that the loss of REST in fibroids permits GPR10 expression. Importantly, mice overexpressing human GPR10 in the myometrium develop myometrial hyperplasia with excessive extracellular matrix deposition, a hallmark of uterine fibroids. We demonstrate previously unrecognized roles for GPR10 and its upstream regulator REST in the pathogenesis of uterine fibroids. Importantly, we report a unique genetically modified mouse model for a gene that is misexpressed in uterine fibroids.
Collapse
|
12
|
Parhar I, Ogawa S, Kitahashi T. RFamide peptides as mediators in environmental control of GnRH neurons. Prog Neurobiol 2012; 98:176-96. [DOI: 10.1016/j.pneurobio.2012.05.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/25/2022]
|
13
|
In Vitro Activities of Kissorphin, a Novel Hexapeptide KiSS-1 Derivative, in Neuronal Cells. JOURNAL OF AMINO ACIDS 2012; 2012:691463. [PMID: 22848794 PMCID: PMC3400367 DOI: 10.1155/2012/691463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/11/2012] [Indexed: 01/14/2023]
Abstract
The primary products of the metastasis-suppressor KiSS-1 gene are the kisspeptin (KP) peptides that stimulate gonadotrophin-releasing-hormone (GnRH) release via GPR-54 receptor activation. Recent studies have suggested that the KP-10 peptide also activates neuropeptide FF (NPFF) receptors. The aim of the current study was to determine the activities of the KiSS-1 derivative kissorphin (KSO), which contains the first six amino acids of the KP-10 peptide, is C-terminally amidated, and shares amino acid similarities with the biologically active NPFF 3–8 sequence. The KSO peptide inhibited forskolin-stimulated cyclic adenosine monophosphate (cAMP) production in ND7/23 neuroblastoma cells via an action that could be inhibited by the NPFF receptor antagonist RF9. Release of GnRH by LA-N-1 neuroblastoma cells was not altered by the KSO peptide. In ND7/23 neuroblastoma cells, the KSO peptide was able to reduce forskolin neuroprotection against H2O2 toxicity. The KSO peptide was also able to prevent prostaglandin E2-induced apoptosis in rat cortical neurons. The NPFF receptor antagonist RF9 could inhibit these actions of the KSO peptide in oxidative stress and apoptosis models. In conclusion, the kissorphin peptide, comprising the amino acid sequence Tyr-Asn-Trp-Asn-Ser-Phe-NH2, has NPFF-like biological activity without showing any GnRH releasing activity and inhibits forskolin-activated cAMP release.
Collapse
|
14
|
Human kisspeptins activate neuropeptide FF2 receptor. Neuroscience 2010; 170:117-22. [PMID: 20600636 DOI: 10.1016/j.neuroscience.2010.06.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/02/2010] [Accepted: 06/23/2010] [Indexed: 11/20/2022]
Abstract
We studied the possible activation of a neuropeptide FF2 receptor (NPFF2R) by kisspeptins, neuropeptides derived from the mouse and human metastin or Kiss-1 precursor. The hypothesis was that the human kisspeptins, which share the C-terminal dipeptide RF-NH(2) with NPFF, might activate the NPFF2R, as has previously been shown for two related peptides, prolactin-releasing peptide and RF-amide-related peptide. Using two-electrode voltage clamp of Xenopus oocytes, we found that 100 nM NPFF strongly activated the human NPFF2R expressed together with rat GIRK1/4 inward rectifier potassium channels, and that 100 nM hKisspeptin-13 and hKisspeptin-8 had about 25% relative efficacy to that of NPFF. The current response induced by hKisspeptin-13 was proportional to its concentration (1-500 nM). The corresponding mouse peptides resulted in low activation only. When hNPFF2R was expressed in Chinese hamster ovary (CHO) cells, NPFF and its stable analog (1DMe)Y8Fa induced guanosine 5'-(gamma-[(35)S]thio)-triphosphate (GTP-gamma-[(35)S]) binding with EC(50) values of 13+/-4 and 16+/-4 nM, respectively. hKisspeptin-13 induced the binding with an EC(50) value of 110+/-50 nM, whereas mKisspeptin-13 induced very modestly activation with an EC(50) value>2 microM. The results suggest that, besides regulation of reproduction, kisspeptins have a potential to mediate physiological effects on, for example autonomic regulation and nociception in man via the NPFF2R pathways.
Collapse
|
15
|
Abstract
Prolactin-releasing peptide (PrRP) was initially isolated from the bovine hypothalamus as an activating component that stimulated arachidonic acid release from cells stably expressing the orphan G protein-coupled receptor hGR3 (Hinuma et al. 1998) [also known as GPR10 (Marchese et al. 1995), or UHR-1 for the rat orthologue (Welch et al. 1995)]. Initially touted as a prolactin-releasing factor (therefore aptly named prolactin-releasing peptide), the perspective on the function of this peptide in the organism has been greatly expanded. Over 120 papers have been published on this subject since its initial discovery in 1998. Herein I review the state of knowledge of the PrRP system, its putative function in the organism, and implications for therapy.
Collapse
|
16
|
Christian HC, Chapman LP, Morris JF. Thyrotrophin-releasing hormone, vasoactive intestinal peptide, prolactin-releasing peptide and dopamine regulation of prolactin secretion by different lactotroph morphological subtypes in the rat. J Neuroendocrinol 2007; 19:605-13. [PMID: 17620102 DOI: 10.1111/j.1365-2826.2007.01567.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the male rat anterior pituitary, three morphological subtypes of cells secreting primarily prolactin (PRL) (lactotrophs) have been described. Type I contain predominantly large irregularly shaped granules, whereas type II and type III lactotrophs contain smaller spherical granules. We have previously shown that oestradiol and testosterone exert a rapid stimulatory effect selectively on type II lactotrophs but it is not known how the lactotroph subtypes respond to peptide secretagogues. We have therefore examined which cell subtype(s) release PRL in response to vasoactive intestinal peptide (VIP), thyrotrophin-releasing hormone (TRH) and prolactin-releasing peptide (PrRP-31). Pituitary segments were incubated in medium containing tannic acid (to capture exocytosis of secretory granules), either alone or with secretagogue peptide. VIP (1-10 nM), TRH (10 nM) and PrRP-31 (10 nM) all caused a significant increase (P < 0.05) in the amount of PRL granule exocytosis from type II and III lactotrophs, but had no effect on PRL exocytosis from type I. Dopamine (100 nM) inhibited basal exocytosis of immunoreactive (ir)-PRL from type I, II and III lactotrophs and PrRP-31-stimulated ir-PRL granule exocytosis from II and III lactotrophs. Treatment of lactating female rats with the dopamine D(2) receptor antagonist sulpiride (40 microg/kg) produced a significant increase (P < 0.05) in PRL granule exocytosis from type I and type III lactotrophs and a significant increase (P < 0.05) in the proportion of type I and II cells undergoing exocytosis of PRL. In conclusion, VIP, TRH and PrRP-31 selectively stimulate exocytosis from type II and III lactotrophs in the male rat, whereas all three lactotroph types are sensitive to dopamine inhibition of exocytosis in male and female rats.
Collapse
Affiliation(s)
- H C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
17
|
Ankö ML, Ostergård M, Lintunen M, Panula P. Alternative splicing of human and mouse NPFF2 receptor genes: Implications to receptor expression. FEBS Lett 2006; 580:6955-60. [PMID: 17157836 DOI: 10.1016/j.febslet.2006.11.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/20/2006] [Accepted: 11/21/2006] [Indexed: 11/26/2022]
Abstract
Alternative splicing has an important role in the tissue-specific regulation of gene expression. Here we report that similar to the human NPFF2 receptor, the mouse NPFF2 receptor is alternatively spliced. In human the presence of three alternatively spliced receptor variants were verified, whereas two NPFF2 receptor variants were identified in mouse. The alternative splicing affected the 5' untranslated region of the mouse receptor and the variants in mouse were differently distributed. The mouse NPFF system may also have species-specific features since the NPFF2 receptor mRNA expression differs from that reported for rat.
Collapse
Affiliation(s)
- Minna-Liisa Ankö
- Department of Biology, Abo Akademi University, Tykistökatu 6A, 2nd floor, FI-20520 Turku, Finland
| | | | | | | |
Collapse
|
18
|
Nystedt JM, Brandt A, Vilim FS, Ziff EB, Panula P. Identification of transcriptional regulators of neuropeptide FF gene expression. Peptides 2006; 27:1020-35. [PMID: 16515822 DOI: 10.1016/j.peptides.2005.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/13/2005] [Indexed: 11/25/2022]
Abstract
Neuropeptide FF (NPFF) is an RF-amide peptide with pleiotropic functions in the mammalian central nervous system, including pain modulation, opiate interactions, cardiovascular regulation and neuroendocrine effects. To gain insights into the transcriptional mechanisms that regulate NPFF gene expression, we cloned and sequenced 9.8 and 1.5 kb of the mouse and rat NPFF 5'-flanking region, respectively. Regions with high sequence homology between mouse, rat and human were expected to have high probability to interact with regulatory proteins and were studied further. Electromobility shift assays revealed one region that may interact with the homeobox proteins Oct-1, PDX1, Pit-1 and MEIS and two consensus DRE sites that bind a nuclear protein, which was identified as the downstream regulatory element antagonistic modulator DREAM by supershift assays. The distribution of NPFF gene expression was examined in the mouse using in situ hybridization and RT-PCR. NPFF expression was also evident during mouse embryogenesis. A fixed transcription initiation site for the mouse NPFF gene was found. A novel splice variant with a retained intron of the NPFF gene was characterized. Chimeric luciferase reporter gene constructs for the mouse NPFF gene revealed a minimal promoter region and a region with transcriptional suppressor features. An NGF responsive area was found using mouse NPFF reporter gene constructs. We postulate that Oct-1, PDX1, Pit-1, MEIS and DREAM are likely transcriptional regulators of NPFF gene expression.
Collapse
Affiliation(s)
- Johanna M Nystedt
- Department of Biology, Abo Akademi University, Biocity 2. floor, Tykistökatu 6 A, 20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
19
|
Fukusumi S, Fujii R, Hinuma S. Recent advances in mammalian RFamide peptides: the discovery and functional analyses of PrRP, RFRPs and QRFP. Peptides 2006; 27:1073-86. [PMID: 16500002 DOI: 10.1016/j.peptides.2005.06.031] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/24/2005] [Indexed: 11/24/2022]
Abstract
Since the first discovery of a peptide with RFamide structure at its C-terminus (i.e., an RFamide peptide) from an invertebrate in 1977, numerous studies on RFamide peptides have been conducted, and a variety have been identified in various phyla throughout the animal kingdom. The first reported mammalian RFamide peptides were neuropeptide FF (NPFF) and neuropeptide AF (NPAF) in 1985. However, for many years after this, no new novel RFamide peptides were identified in mammals. A breakthrough in discovering mammalian RFamide peptides was made possible by reverse pharmacology on the basis of orphan G protein-coupled receptor (GPCR) research. The first report of an RFamide peptide identified from orphan GPCR research was prolactin (PRL)-releasing peptide (PrRP) in 1998. To date, a total of five RFamide peptide genes have been discovered in mammals. Orphan GPCR research has contributed considerably to the identification of these peptides and their receptor genes. This paper examines these mammalian RFamide peptides focusing especially on PrRP, RFamide-related peptides (RFRPs) and, the most recently identified, pyroglutamylated RFamide peptide (QRFP), the discovery of all of which the authors were at least partly involved in. We review here the strategies employed for the identification of these peptides and examine their characteristics, tissue distribution, receptors and functions.
Collapse
Affiliation(s)
- Shoji Fukusumi
- Frontier Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Wadai 10, Tsukuba-shi, Ibaraki 300-4293, Japan
| | | | | |
Collapse
|
20
|
Montefusco-Siegmund RA, Romero A, Kausel G, Muller M, Fujimoto M, Figueroa J. Cloning of the prepro C-RFa gene and brain localization of the active peptide in Salmo salar. Cell Tissue Res 2006; 325:277-85. [PMID: 16557384 DOI: 10.1007/s00441-006-0168-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
In all vertebrates, the synthesis and release of prolactin (Prl) from pituitary lactotroph cells is tightly controlled by hypothalamic factors. We have cloned and characterized a hypothalamic cDNA from Atlantic salmon (Salmo salar) encoding C-RFa, a peptide structurally related to mammalian Prl-releasing peptide (PrRP). The deduced preprohormone precursor is composed of 155 amino acid residues presenting a 87.1% similarity to chum salmon C-RFa and a 100% similarity to all fish C-RFa in the bioactive precursor motifs. C-RFa-immunoreactive perikarya and fibres were located in the brain of S. salar, especially in the hypothalamus, olfactory tract, optic tectum and cerebellum. In contrast, immunolabelled fibres were not observed in the pituitary stalk or in the hypophysis. However, interestingly, we detected immunolabelled cells in the rostral pars distalis of the pituitary in the basolateral region in which Prl is synthesized. These results were confirmed by obtaining a strong signal by using reverse transcription/polymerase chain reaction (RT-PCR) on mRNA from both hypothalamus and pituitary. These data show, for the first time, by immunohistochemistry and RT-PCR, that C-RFa is produced in pituitary cells. Finally, based on these results, a possible function for C-RFa as a locally produced PrRP in this teleost is discussed.
Collapse
Affiliation(s)
- R A Montefusco-Siegmund
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | | | | | | | | | | |
Collapse
|
21
|
Pertovaara A, Ostergård M, Ankö ML, Lehti-Koivunen S, Brandt A, Hong W, Korpi ER, Panula P. RFamide-related peptides signal through the neuropeptide FF receptor and regulate pain-related responses in the rat. Neuroscience 2005; 134:1023-32. [PMID: 16039797 DOI: 10.1016/j.neuroscience.2005.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/13/2005] [Accepted: 04/22/2005] [Indexed: 12/20/2022]
Abstract
The mammalian RFamide-related peptide RFRP1 was found to signal through the neuropeptide FF 2 receptor expressed in Xenopus oocytes. The peptide induced a dose-dependent outward current, which was dependent on the simultaneous expression of GIRK1 and GIRK4 potassium channels. In neuropathic rats, RFRP1 administered intrathecally induced tactile antiallodynia and thermal antinociception, whereas in the solitary tract nucleus it produced only mechanical antihyperalgesia. Expression of the RFamide-related peptide mRNA in the rat CNS was distinctly different from that of neuropeptide FF. Most notably, the gene was not expressed in the hindbrain or spinal cord at detectable levels. However, there was a prominent group of RFamide-related peptide mRNA-expressing neurons in the central hypothalamus, in the area in and between the dorsomedial and ventromedial nuclei. The results suggest that RFamide-related peptides are potentially involved in pain regulation through a hypothalamo-medullary projection system, and possibly via action on neuropeptide FF 2 receptors. In neuropathic animals, the pain suppressive effect of RFamide-related peptide varies depending on the submodality of noxious test stimulation and the site of RFamide-related peptide administration.
Collapse
Affiliation(s)
- A Pertovaara
- Department of Physiology, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Boyle RG, Downham R, Ganguly T, Humphries J, Smith J, Travers S. Structure-activity studies on prolactin-releasing peptide (PrRP). Analogues of PrRP-(19-31)-peptide. J Pept Sci 2005; 11:161-5. [PMID: 15635649 DOI: 10.1002/psc.612] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An investigation of a series of single replacement analogues of PrRP-(19-31)-peptide has shown that good functional activity was retained when Phe31 was replaced with His(Bzl), Phe(4Cl), Nle, Trp, Cys(Bzl) or Glu(OBzl); when Val28 or Ile25 was replaced with Phg; when Gly24 was replaced with D-Ala, L-Ala, Pro or Sar; when Ser22 was replaced with Gly and when Ala21 was replaced with Thr or MeAla. The results confirm that the functionally important residues are located within the carboxyl terminal segment, -Ile-Arg-Pro-Val-Gly-Arg-Phe-NH2.
Collapse
Affiliation(s)
- Robert G Boyle
- Millennium Pharmaceuticals Limited, Granta Park, Great Abingdon, Cambridge CB1 6ET, UK
| | | | | | | | | | | |
Collapse
|
23
|
Swinnen E, Boussemaere M, Denef C. Stimulation and inhibition of prolactin release by prolactin-releasing Peptide in rat anterior pituitary cell aggregates. J Neuroendocrinol 2005; 17:379-86. [PMID: 15929743 DOI: 10.1111/j.1365-2826.2005.01313.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the G-protein coupled receptor GPR10 is highly expressed in the anterior pituitary, the action of its ligand prolactin-releasing peptide-31 (PrRP) in this tissue is controversial. The present study examined the acute effect of this peptide on prolactin secretion in perifused rat pituitary reaggregate cell cultures from adult male rats. PrRP readily and dose-dependently stimulated prolactin release at concentrations of 10 and 100 nM, although with a magnitude several times lower than that of thyrotropin-releasing hormone. Surprisingly, PrRP inhibited prolactin release at 0.1 and 1 nm in a pertussis toxin-sensitive manner. Inhibition was markedly favoured by long-term culture. Stimulation and inhibition were differentially affected by the presence of hormones during culture: dexamethasone favoured the inhibitory effect and decreased the magnitude of the stimulatory effect, while oestradiol and triiodothyronine strongly reduced stimulation, as well as inhibition. PrRP, even at 1 nm, counteracted the inhibition of prolactin release by dopamine. There was no effect of PrRP on growth hormone release in aggregates cultured either in the absence or presence of hormones. The present results confirm the prolactin-releasing capacity of PrRP at nanomolar doses and reveal a hitherto unrecognized inhibitory activity of this peptide. Furthermore, dopamine inhibition of prolactin release is antagonized by PrRP, irrespective of the PrRP dose.
Collapse
Affiliation(s)
- E Swinnen
- Laboratory of Cell Pharmacology, University of Leuven, Medical School, Campus Gasthuisberg, Belgium
| | | | | |
Collapse
|
24
|
Ellacott KLJ, Donald EL, Clarkson P, Morten J, Masters D, Brennand J, Luckman SM. Characterization of a naturally-occurring polymorphism in the UHR-1 gene encoding the putative rat prolactin-releasing peptide receptor. Peptides 2005; 26:675-81. [PMID: 15752583 DOI: 10.1016/j.peptides.2004.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/23/2004] [Accepted: 11/24/2004] [Indexed: 10/26/2022]
Abstract
The rat orphan receptor UHR-1 and its human orthologue, GPR10, were first isolated in 1995. The ligand for this receptor, prolactin-releasing peptide (PrRP), was identified in 1998 by reverse pharmacology and has subsequently been implicated in a number of physiological processes. As supported by its localization and regulation in the hypothalamus and brainstem, we have shown previously that PrRP is involved in energy homeostasis. Here we describe a naturally occurring polymorphism in the UHR-1 gene that results in an ATG to ATA change at the putative translational initiation site. The presence of the polymorphism abolished the binding of 125I PrRP in rat brain slices but did not affect the ability of PrRP to reduce fast-induced food intake. Together this data suggest that PrRP may be exerting its feeding effects through a receptor other than UHR-1.
Collapse
Affiliation(s)
- Kate L J Ellacott
- Faculty of Life Sciences, University of Manchester, 1.124 Stopford Building, Oxford Rd, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Fujiwara K, Matsumoto H, Yada T, Inoue K. Identification of the prolactin-releasing peptide-producing cell in the rat adrenal gland. ACTA ACUST UNITED AC 2005; 126:97-102. [PMID: 15620421 DOI: 10.1016/j.regpep.2004.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prolactin-releasing peptide (PrRP) is a novel peptide found in bovine hypothalamus as an endogenous ligand of an orphan G-protein-coupled receptor (hGR3). It is known that PrRP is widely distributed and plays roles in the central nervous system (CNS). In particular, PrRP acts as a neurotransmitter that mediates stress and activates the hypothalamo-pituitary-adrenal axis. On the other hand, only a few studies have so far been performed on PrRP in peripheral tissues. Among peripheral tissues, appreciable levels of PrRP are found only in the adrenal gland; however, the PrRP-producing cells in the adrenal gland have not been identified. In this study, we detected PrRP mRNA in the rat adrenal medulla. So, we tried to identify the PrRP-producing cells in primary culture cells of the adrenal medulla. We found immunopositive PrRP cells among the cultured cells from the adrenal gland, but not in the adrenal gland tissue, by means of immunocytochemistry. The PrRP immunopositive cells were double positive for tyrosine hydroxylase (TH) and for phenylethanolamine N-methyltransferase (PNMT), which indicates that PrRP may be produced in a part of the adrenaline cells in the adrenal gland. This is the first report that PrRP is produced in the adrenaline-containing cells of the adrenal gland.
Collapse
Affiliation(s)
- Ken Fujiwara
- Department of Regulation Biology, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Saitama 338-0825, Japan
| | | | | | | |
Collapse
|
26
|
Abstract
Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus as an orphan G-protein-coupled receptor using the strategy of reverse pharmacology. The initial studies showed that PrRP was a potent and specific prolactin-releasing factor. Morphological and physiological studies, however, indicated that PrRP may play a wide range of roles in neuroendocrinology other than prolactin release, i.e., metabolic homeostasis, stress responses, cardiovascular regulation, gonadotropin secretion, GH secretion and sleep regulation. This review will provide the current knowledge of PrRP, especially its roles in energy metabolism and stress responses.
Collapse
Affiliation(s)
- Binggui Sun
- Department of Regulation Biology, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Saitama 338-0825, Japan
| | | | | | | |
Collapse
|
27
|
Nystedt JM, Lemberg K, Lintunen M, Mustonen K, Holma R, Kontinen VK, Kalso E, Panula P. Pain- and morphine-associated transcriptional regulation of neuropeptide FF and the G-protein-coupled NPFF2 receptor gene. Neurobiol Dis 2004; 16:254-62. [PMID: 15207282 DOI: 10.1016/j.nbd.2004.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 02/05/2004] [Accepted: 02/10/2004] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide FF (NPFF) is involved in pain modulation, especially plasticity during inflammatory and neuropathic pain, and opiate interactions. Its nociceptive functions may be mediated by the NPFF2 receptor. To elucidate the role of the NPFF system in plasticity associated with pathologic pain, we studied the changes of NPFF mRNA and NPFF2 receptor mRNA in rat models of acute colonic inflammation, inflammatory pain, and neuropathic pain. Furthermore, we studied the mRNA levels of both NPFF and NPFF2 receptor in morphine-tolerant rats and after acute morphine injections. We found an activation of spinal NPFF and NPFF2 receptor during early inflammatory pain. Supraspinally, we found an up-regulation of NPFF2 receptor mRNA during acute colonic inflammation and neuropathic pain. Acute, but not chronic, morphine activated the genes supraspinally. The results give further evidence for the involvement of the NPFF system in pain modulation and may provide new therapeutic opportunities for pathologic pain.
Collapse
|
28
|
Kaslin J, Nystedt JM, Ostergård M, Peitsaro N, Panula P. The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J Neurosci 2004; 24:2678-89. [PMID: 15028760 PMCID: PMC6729510 DOI: 10.1523/jneurosci.4908-03.2004] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The orexin/hypocretin (ORX) system is involved in physiological processes such as feeding, energy metabolism, and the control of sleep and wakefulness. The ORX system may drive the aminergic and cholinergic activities that control sleep and wakefulness states because of the ORX fiber projections to the aminergic and cholinergic cell clusters. The biological mechanisms and relevance of the interactions between these neurotransmitter systems are poorly understood. We studied these systems in zebrafish, a model organism in which it is possible to simultaneously study these systems and their interactions. We cloned a zebrafish prepro-ORX gene that encodes for the two functional neuropeptides orexin-A (ORX-A) and orexin-B (ORX-B). The prepro-ORX gene of the zebrafish consisted of one exon in contrast to mammals. The sequence of the ORX-A peptide of the zebrafish was less conserved than the ORX-B peptide compared with other vertebrates. By using in situ hybridization and immunohistochemistry, we found that the organization of the ORX system of zebrafish was similar to the ORX system in mammals, including a hypothalamic cell cluster and widespread fiber projections. The ORX system of the zebrafish showed a unique characteristic with an additional putatively ORX-containing cell group. The ORX system innervated several aminergic nuclei, raphe, locus ceruleus, the mesopontine-like area, dopaminergic clusters, and histaminergic neurons. A reciprocal relationship was found between the ORX system and several aminergic systems. Our results suggest that the architecture of these neurotransmitter systems is conserved in vertebrates and that these neurotransmitter systems in zebrafish may be involved in regulation of states of wakefulness and energy homeostasis by similar mechanisms as those in mammals.
Collapse
Affiliation(s)
- Jan Kaslin
- Department of Biology, Abo Akademi University, Biocity, FIN-20520 Turku/Abo, Finland
| | | | | | | | | |
Collapse
|
29
|
Kalliomäki ML, Panula P. Neuropeptide ff, but not prolactin-releasing peptide, mRNA is differentially regulated in the hypothalamic and medullary neurons after salt loading. Neuroscience 2004; 124:81-7. [PMID: 14960341 DOI: 10.1016/j.neuroscience.2003.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2003] [Indexed: 10/26/2022]
Abstract
Hypothalamic paraventricular and supraoptic nuclei are involved in the body fluid homeostasis. Especially vasopressin peptide and mRNA levels are regulated by hypo- and hyperosmolar stimuli. Other neuropeptides such as dynorphin, galanin and neuropeptide FF are coregulated with vasopressin. In this study neuropeptide FF and another RF-amide peptide, the prolactin-releasing peptide mRNA levels were studied by quantitative in situ hybridization after chronic salt loading, a laboratory model of chronic dehydration. The neuropeptide FF mRNA expressing cells virtually disappeared from the hypothalamic supraoptic and paraventricular nuclei after salt loading, suggesting that hyperosmolar stress downregulated the NPFF gene transcription. The neuropeptide FF mRNA signal levels were returned to control levels after the rehydration period of 7 days. No changes were observed in those medullary nuclei that express neuropeptide FF mRNA. No significant changes were observed in the hypothalamic or medullary prolactin-releasing peptide mRNA levels. Neuropeptide FF mRNA is drastically downregulated in the hypothalamic magnocellular neurons after salt loading. Other neuropeptides studied in this model are concomitantly coregulated with vasopressin: i.e. their peptide levels are downregulated and mRNA levels are upregulated which is in contrast to neuropeptide FF regulation. It can thus be concluded that neuropeptide FF is not regulated through the vasopressin regulatory system but via an independent pathway. The detailed mechanisms underlying the downregulation of neuropeptide FF mRNA in neurons remain to be clarified.
Collapse
Affiliation(s)
- M-L Kalliomäki
- Neuroscience Center and Institute of Biomedicine/Anatomy, Biomedicum Helsinki, University of Helsinki, Finland
| | | |
Collapse
|
30
|
Sakamoto T, Fujimoto M, Andot M. Fishy tales of prolactin-releasing peptide. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:91-130. [PMID: 12696591 DOI: 10.1016/s0074-7696(05)25003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prolactin (PRL) is an important regulator of multiple biological functions, but a specific PRL-releasing factor, PRL-releasing peptide (PrRP), was isolated only recently from mammals and teleosts. Although this peptide seems to be a strong candidate for being a physiologically relevant stimulator of PRL expression and secretion in teleost pituitary and peripheral organs, it may not be a typical or classic hypothalamic releasing factor in rats. We now know that its biological actions are not limited solely to PRL stimulation, because it is also a neuromodulator of several hypothalamus-pituitary axes and is involved in some brain circuits with the regulation of food intake and cardiovascular functions. Moreover, it plays a direct role in hypertension and retinal information processing. It is the purpose of this review to provide a comprehensive survey of our current knowledge of PrRP and to provide a comparative point of view.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Okayama University, Okayama 701-4303, Japan
| | | | | |
Collapse
|
31
|
Nanmoku T, Takekoshi K, Isobe K, Kawakami Y, Nakai T, Okuda Y. Prolactin-releasing peptide stimulates catecholamine release but not proliferation in rat pheochromocytoma PC12 cells. Neurosci Lett 2003; 350:33-6. [PMID: 12962911 DOI: 10.1016/s0304-3940(03)00836-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the effect of prolactin-releasing peptide (PrRP) on catecholamine secretion and DNA synthesis in rat pheochromocytoma PC12 cells. We initially confirmed the expression of both PrRP and its receptor in PC12 cells. PrRP31 and PrRP20 (> or =10 nM) significantly increased dopamine secretion from PC12 cells. However, PrRP20-stimulated dopamine secretion was markedly weaker than that of PrRP31. Both EDTA (extracellular Ca2+ chelator) and BAPTA-AM (intracellular Ca2+ chelator) effectively suppressed PrRP31 (100 nM)-induced dopamine secretion. PrRP31and PrRP20 (> or =1 nM) significantly induced an increase in the level of cAMP. The PKA inhibitor H89 (at 10 microM) impeded PrRP31- and PrRP20-induced dopamine secretion. Finally, we confirmed that PrRP did not affect DNA synthesis. These results indicate that PrRP may regulate catecholamine secretion but not the mitogenic effects in chromaffin cells.
Collapse
Affiliation(s)
- Toru Nanmoku
- Department of Clinical Pathology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Zeng Z, McDonald TP, Wang R, Liu Q, Austin CP. Neuropeptide FF receptor 2 (NPFF2) is localized to pain-processing regions in the primate spinal cord and the lower level of the medulla oblongata. J Chem Neuroanat 2003; 25:269-78. [PMID: 12842272 DOI: 10.1016/s0891-0618(03)00038-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies have suggested that NPFF-like peptides and their receptors play important roles in physiological and pathological conditions. Here, we show, using multiple expression modalities, that the type 2 NPFF receptor (hNPFF2) is expressed in regions of the primate spinal cord and brainstem mediating pain sensation. In situ hybridization using an NPFF2 riboprobe, and immunohistochemistry using a novel NPFF2 antibody, demonstrated strong NPFF2 expression in the superficial layer of the dorsal horn, and in the spinal trigeminal nucleus of the brainstem of the African green monkey (AGM). In addition, autoradiography using a radiolabeled NPFF analog ([125I]1DMe) revealed dense binding signal in the superficial layer of the dorsal horn in the spinal cord. The distribution pattern of hNPFF2 in the AGM spinal cord and the lower level of the brainstem are consistent with a hypothesized potential role for NPFF peptides in modulation of sensory input, opioid analgesia and morphine tolerance through spinal and supraspinal mechanisms.
Collapse
Affiliation(s)
- Zhizhen Zeng
- Department of Neuroscience, Merck Research Laboratories, WP26A-3000, P.O. Box 4, West Point, PA 19486, USA.
| | | | | | | | | |
Collapse
|
33
|
Nieminen ML, Nystedt J, Panula P. Expression of neuropeptide FF, prolactin-releasing peptide, and the receptor UHR1/GPR10 genes during embryogenesis in the rat. Dev Dyn 2003; 226:561-9. [PMID: 12619141 DOI: 10.1002/dvdy.10261] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Recently, several RF-amide peptides have been identified in mammals. These peptides have a similar C-terminal RF-motif and share some G-protein coupled receptors. Neuropeptide FF (NPFF) and prolactin-releasing peptide (PrRP) are expressed in the same brain areas in the adult rat and act both in prolactin release and cardiovascular regulation. Here, we characterized the embryonal expression from embryonal day 14 to postnatal day 0 of both peptide mRNAs and the mRNA distribution of UHR1/GPR10-like receptor by using in situ hybridization (ISH) and quantitative reverse transcriptase-polymerase chain reaction. NPFF mRNA was found in the spinal cord, caudal solitary tract nucleus, and surprisingly, in the medullary reticular formation. The only peripheral organs displaying NPFF mRNA expression were the lungs and the spleen. PrRP gene expression was seen in the caudal solitary tract nucleus, medullary reticular formation, pontine isthmus and liver, kidney, and testis. The receptor UHR1/GPR10 gene was expressed consistently in the medullary reticular formation and the adrenal gland but also transiently in several locations. All three genes showed weak but even ISH signal in the pituitary. These findings suggest different roles for the peptides during development and indicate that UHR1/GPR10-like receptor could also bind other ligands in addition to PrRP.
Collapse
|
34
|
Kemp DM, Lin JC, Ubeda M, Habener JF. NRSF/REST confers transcriptional repression of the GPR10 gene via a putative NRSE/RE-1 located in the 5' promoter region. FEBS Lett 2002; 531:193-8. [PMID: 12417311 DOI: 10.1016/s0014-5793(02)03502-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The G protein-coupled receptor GPR10 is highly localized to areas of the brain. In an effort to reveal transcriptional determinants of this tissue specificity, we recognized a putative NRSE (neuron-restrictive silencer element) located in the 5' promoter region of the gene. The cognate NRSE binding protein NRSF (neuron-restrictive silencer factor) restricts gene expression to mature neurons and endocrine cells by repressing their transcription in non-neuronal/-endocrine cells. In cell lines where NRSF-mediated gene repression has been functionally established, the activity of the GPR10 promoter was repressed in a manner consistent with NRSE-dependent regulation. A specific point mutation to confer non-functionality of the NRSE revealed a 10-fold de-repression of reporter gene expression. In contrast, in the GPR10-expressing cell line GH3, mRNA transcripts of NRSF were undetectable and suppression of promoter activity was not observed. However, transfection of a rat NRSF expression vector resulted in significant repression of transcription, which was reversed by mutation of the NRSE. In conclusion, we demonstrate that the GPR10 gene is specifically regulated by NRSF, and suggest this to be a contributory factor in the tissue-specific distribution of GPR10 in vivo.
Collapse
Affiliation(s)
- Daniel M Kemp
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, 55 Fruit Street WEL320, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
35
|
Nystedt JM, Brandt AM, Mandelin J, Vilim FS, Ziff EB, Panula P. Analysis of human neuropeptide FF gene expression. J Neurochem 2002; 82:1330-42. [PMID: 12354280 DOI: 10.1046/j.1471-4159.2002.01035.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As an initial step to study the function of the gene encoding the human neuropeptide FF (NPFF), we cloned a 4.7-kb sequence from the promoter region. Primer extension and 5'-rapid amplification of cDNA ends revealed multiple transcription initiation sites. Northern blot analysis of the mRNA expression revealed a specific signal only in poly(A) + RNA from medulla and spinal cord. Chimeric luciferase reporter gene constructs were transiently transfected in A549, U-251 MG, SK-N-SH, SK-N-AS and PC12 cells. The promoter activity was directly comparable with the level of endogenous NPFF mRNA as determined by real-time quantitative RT-PCR. The highest promoter activity was measured when a region from - 552 to - 830 bp of the 5'-flanking region was fused to the constructs, and a potential silencer element was localized between nucleotides -220 and -551. A twofold increase in NPFF mRNA was observed after 72 h of nerve growth factor stimulation of PC12 cells and the region between - 61 and - 214 bp of the 5'-flanking region was found to be responsive to this stimulation. We postulate that control of human NPFF gene expression is the result of both positive and negative regulatory elements and the use of multiple transcription initiation sites.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- 5' Flanking Region/genetics
- Animals
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oligopeptides/biosynthesis
- Oligopeptides/genetics
- PC12 Cells/cytology
- PC12 Cells/metabolism
- Promoter Regions, Genetic/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Regulatory Sequences, Nucleic Acid
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Deletion
- Transcription Initiation Site
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Johanna M Nystedt
- Department of Biology, Abo Akademi University, Biocity, Turku, Finland
| | | | | | | | | | | |
Collapse
|