1
|
Orchard I, Leyria J, Al-Dailami AN, Nachman RJ, Lange AB. Functional characterization of the kinin receptor in the Chagas disease vector Rhodnius prolixus; activity of native kinins and potent biostable Aib-containing insect kinin analogs. Peptides 2024; 172:171135. [PMID: 38103839 DOI: 10.1016/j.peptides.2023.171135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The causative agent for Chagas disease, Trypanosoma cruzi, is transmitted to a human host in the urine/feces of the kissing bug, Rhodnius prolixus, following blood feeding. Kinins are important chemical messengers in the overall control of blood feeding physiology in R. prolixus, including hindgut contractions and excretion. Thus, disruption in kinin signaling would have damaging consequences to the insect but also interfere with the transmission of Chagas Disease. Here, a heterologous functional receptor assay was used to confirm the validity of the previously cloned putative kinin G-protein-coupled receptor, RhoprKR, in Rhodnius prolixus. Three native R. prolixus kinins were chosen for analysis; two possessing the typical kinin WGamide C-terminal motif and one that possesses an atypical C-terminal WAamide. All three are potent (EC50 values in the nM range), with high efficacy, on CHO-K1-aeq cells expressing the RhoprKR, thereby confirming ligand binding. Members of three other R. prolixus peptide families, which are also myotropins (tachykinins, pyrokinins and sulfakinins) elicited little or no response. In addition, this heterologous receptor assay was used to test characteristics of kinin mimetics previously tested on tick and mosquito kinin receptors. Five α-aminoisobutyric acid (Aib) containing analogs were tested, and four found to have considerably higher potencies than the native kinins, with EC50 values in the pM range. Interestingly, adding Aib to the atypical WAamide kinin improves its EC50 value from 2 nM to 39 pM. Biostable kinin analogs may prove useful leads for novel pest control strategies. Since T. cruzi is transmitted to a human host in the urine/feces after blood feeding, disruption in kinin signaling would also interfere with the transmission of Chagas Disease.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Areej N Al-Dailami
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ronald J Nachman
- Southern Plains Agricultural Research Center, USDA, College Station, TX, USA
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
2
|
Haddad AN, Leyria J, Lange AB. Identification of a tachykinin receptor and its implication in carbohydrate and lipid homeostasis in Rhodnius prolixus, a chagas disease vector. Gen Comp Endocrinol 2022; 320:114010. [PMID: 35231487 DOI: 10.1016/j.ygcen.2022.114010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/03/2023]
Abstract
Neuropeptides and their receptors are fundamentally important in regulating many physiological and behavioural processes in insects. In this work, we have identified, cloned, and sequenced the tachykinin receptor (Rhopr-TKR) from Rhodnius prolixus, a vector of Chagas disease. The receptor is a G protein-coupled receptor belonging to the Rhodopsin Family A. The total length of the open reading frame of the Rhopr-TKR transcript is 1110 bp, which translates into a receptor of 338 amino acids. Fluorescent in-situ RNA-hybridization (FISH) for the Rhopr-TKR transcript shows a signal in a group of six bilaterally paired neurons in the protocerebrum of the brain, localized in a similar region as the insulin producing cells. To examine the role of tachykinin signaling in lipid and carbohydrate homeostasis we used RNA interference. Downregulation of the Rhopr-TKR transcript led to a decrease in the size of blood meal consumed and a significant increase in circulating carbohydrate and lipid levels. Further investigation revealed a close relationship between tachykinin and insulin signaling since the downregulation of the Rhopr-TKR transcript negatively affected the transcript expression for insulin-like peptide 1 (Rhopr-ILP1), insulin-like growth factor (Rhopr-IGF) and insulin receptor 1 (Rhopr-InR1) in both the central nervous system and fat body. Taken together, these findings suggest that tachykinin signaling regulates lipid and carbohydrate homeostasis via the insulin signaling pathway.
Collapse
Affiliation(s)
- A N Haddad
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - J Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - A B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
3
|
Borella Marfil Anhê AC, Maia Godoy RS, Nacif-Pimenta R, Barbosa WF, Lacerda MV, Monteiro WM, Costa Secundino NF, Paolucci Pimenta PF. Microanatomical and secretory characterization of the salivary gland of the Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae), a main vector of Chagas disease. Open Biol 2021; 11:210028. [PMID: 34129783 PMCID: PMC8205540 DOI: 10.1098/rsob.210028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rhodnius prolixus is the principal vector of Trypanosoma cruzi, the aetiological agent of Chagas disease in American countries. This insect is haematophagous during all life cycles and, to antagonize its haemostatic, inflammatory and immune systems, it secretes saliva while feeding on the vertebrate host's blood. Here, we investigated characteristic changes of the salivary glands (SG) that occur during insect development. Two pairs of lobules and ducts comprise the SG of R. prolixus. The organ's size increases over time, but the microanatomical structures are preserved during insect development. Both lobules have a single layer epithelium formed by binucleated cells, which surrounds the saliva reservoir. The principal lobule presents higher polysaccharide and total protein contents than the accessory lobe. A network of external muscle layers is responsible for organ contraction and saliva release. Apocrine, merocrine and holocrine secretion types occur in the secretory epithelium. Dopamine, serotonin and tyrosine-hydroxylase are neural-related molecules that regulate SG function both during and after feeding.
Collapse
Affiliation(s)
- Ana Carolina Borella Marfil Anhê
- Departamento de Engenharia Ambiental, Instituto de Ciências Tecnológicas e Exatas, Universidade Federal do Triângulo Mineiro, Av. Randolfo Borges Júnior, 1400, CEP 38064-200, Uberaba, MG, Brazil
| | - Raquel Soares Maia Godoy
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Av. Augusto de Lima, 1715, CEP 30190-002, Belo Horizonte, MG, Brazil
| | - Rafael Nacif-Pimenta
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Av. Augusto de Lima, 1715, CEP 30190-002, Belo Horizonte, MG, Brazil
| | - Wagner Faria Barbosa
- Departamento de Entomologia, Universidade Federal de Viçosa, Av. PH Holfs, CEP 36570-900, Viçosa, MG, Brazil
| | - Marcus Vinicius Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, 25, Dom Pedro, CEP 69040-000, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, CEP 69040-000, Manaus, AM, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, 25, Dom Pedro, CEP 69040-000, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, CEP 69040-000, Manaus, AM, Brazil
| | - Nágila Francinete Costa Secundino
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Av. Augusto de Lima, 1715, CEP 30190-002, Belo Horizonte, MG, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, 25, Dom Pedro, CEP 69040-000, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, CEP 69040-000, Manaus, AM, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Av. Augusto de Lima, 1715, CEP 30190-002, Belo Horizonte, MG, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, 25, Dom Pedro, CEP 69040-000, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, CEP 69040-000, Manaus, AM, Brazil
| |
Collapse
|
4
|
Sangha V, Lange AB, Orchard I. Identification and cloning of the kinin receptor in the Chagas disease vector, Rhodnius prolixus. Gen Comp Endocrinol 2020; 289:113380. [PMID: 31891689 DOI: 10.1016/j.ygcen.2019.113380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022]
Abstract
Within invertebrates, the kinin family of neuropeptides is responsible for the modulation of a host of physiological and behavioural processes. In Rhodnius prolixus, kinins are primarily responsible for eliciting myotropic effects on various feeding and diuresis-related tissues. Here, the R. prolixus kinin receptor (RhoprKR) has been identified, cloned and sequenced from the central nervous system (CNS) and hindgut of R. prolixus. Sequence analyses show high similarity and identity between RhoprKR and other cloned invertebrate kinin receptors. The expression profile of RhoprKR shows the RhoprKR transcript throughout the R. prolixus gut, with highest expression in the hindgut, suggesting a role of Rhopr-kinins in various aspects of feeding and digestion. RNA interference (RNAi)-mediated knockdown of the RhoprKR transcript resulted in a significant reduction of hindgut contractions in response to Rhopr-kinin 2 and an Aib-containing kinin analog. dsRhoprKR- injected insects also consumed a significantly larger meal, suggesting a role of Rhopr-kinins in satiety.
Collapse
Affiliation(s)
- Vishal Sangha
- Department of Biology University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
5
|
Sangha V, Nachman RJ, Lange A, Orchard I. Physiological effects of biostable kinin and CAPA analogs in the Chagas disease vector, Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103223. [PMID: 31465823 DOI: 10.1016/j.ibmb.2019.103223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
In the Chagas disease vector Rhodnius prolixus, the kinin and CAPA family of neuropeptides are implicated in feeding and diuresis-related behaviours, with Rhopr-kinins stimulating contractions of the midgut, salivary glands, and hindgut, and RhoprCAPA-2 functioning as an anti-diuretic hormone. The current study examined the effects of kinin and CAPA neuropeptides and their analogs on feeding and diuresis, and on hindgut contractions and MT fluid secretion in R. prolixus. The biostable Aib-containing kinin analog 2139[Φ1]wp-2 was found to have antifeedant effects, and to be more potent than Rhopr-kinin 2 in stimulating hindgut contractions. The CAPA analog 2129-SP3[Φ3]wp-2 induced the intake of a larger blood meal, and increased the rate of post-prandial rapid diuresis. RhoprCAPA-2, but not its analog, potentiated hindgut contractions induced by Rhopr-kinin 2. Potentiation was observed with the CAPA analog on 5-HT-stimulated increases in frequency of hindgut contractions, whereas RhoprCAPA-2 inhibited this 5-HT-mediated stimulation. The CAPA analog induced hindgut contractions and prevented the inhibition induced by RhoprCAPA-2 on 5-HT-stimulated MT secretion. These results demonstrate novel interactions between Rhopr-kinin and RhoprCAPA-2 on the hindgut, possibly influencing post-feeding excretion. The kinin analog is a potent agonist of the kinin receptor, and the CAPA analog an antagonist of the CAPA receptor. The use of neuropeptide mimetics is a promising approach to vector control as they can disrupt behaviours, and the effects of these neuropeptide analogs highlight their value as lead compounds, given their ability to interfere with epidemiologically-relevant behaviours.
Collapse
Affiliation(s)
- Vishal Sangha
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research, Southern Plains Agricultural Research Centre, U.S Department of Agriculture, College Station, TX, 77845, USA
| | - Angela Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
6
|
Haddad ANS, Defferrari MS, Hana S, Szeto SG, Lange AB. Expression and functional characterization of tachykinin-related peptides in the blood-feeding bug, Rhodnius prolixus. Peptides 2018; 99:247-254. [PMID: 29133203 DOI: 10.1016/j.peptides.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
Tachykinins (tachykinin-related peptides, TRPs) are multifunctional neuropeptides that have widespread distribution in the central nervous system (CNS) and in the gastrointestinal tract of many insects, and most have been shown to stimulate contractions of visceral muscles. Invertebrate TRPs carry a characteristic conserved C-terminal pentapeptide (FXGXR-amide) and most of them share some amino acid sequence similarities (approx. 45%) with the vertebrate and mammalian tachykinin family. We have functionally characterized the tachykinins in R. prolixus (Rhopr-TKs) and partially cloned the transcript that encodes for the peptide precursor. The transcript encodes 8 Rhopr-TKs, 7 of which are unique with Rhopr-TK 5 having 2 copies. The spatial distribution analysis of the Rhopr-TK transcript indicates that the highest expression levels are in the CNS, but transcript expression is also associated with salivary glands, fat body, dorsal vessel, and the various gut compartments. Rhopr-TK 1, 2 and 5 significantly increase the frequency and amplitude of peristaltic contractions of the salivary glands. Hindgut muscle also displayed a dose-dependent increase in basal tonus in response to Rhopr-TK1, 2 and 5. TK-like immunoreactivity was seen in a small group of processes that are situated on the lateral margins of the hindgut. Interestingly, kinin-like immunoreactivity is seen in immunoreactive processes on the lateral margin of the hindgut as well as fine processes covering the entire hindgut. Co-localization studies show that TK-like staining is always co-localized with kinin-like immunoreactivity, whereas kinin-like staining is seen in the fine processes that are devoid of TK-like immunoreactivity indicating that TKs are most likely released together with kinins to act on the hindgut. Rhopr-Kinin 2 is a potent stimulator of hindgut muscle contraction in R. prolixus. Addition of Rhopr-Kinin 2 and Rhopr-TK 2 to the hindgut leads to a contraction that was additive of the effects of Rhopr-Kinin 2 and Rhopr-TK 2 alone.
Collapse
Affiliation(s)
- A N S Haddad
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - M S Defferrari
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - S Hana
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - S G Szeto
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - A B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
7
|
Paluzzi JPV, Bhatt G, Wang CHJ, Zandawala M, Lange AB, Orchard I. Identification, functional characterization, and pharmacological profile of a serotonin type-2b receptor in the medically important insect, Rhodnius prolixus. Front Neurosci 2015; 9:175. [PMID: 26041983 PMCID: PMC4436800 DOI: 10.3389/fnins.2015.00175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
In the Chagas disease vector, Rhodnius prolixus, two diuretic hormones act synergistically to dramatically increase fluid secretion by the Malpighian tubules (MTs) during the rapid diuresis that is initiated upon engorgement of vertebrate blood. One of these diuretic hormones is the biogenic amine, serotonin (5-hydroxytryptamine, 5-HT), which controls a variety of additional activities including cuticle plasticization, salivary gland secretion, anterior midgut absorption, cardioacceleratory activity, and myotropic activities on a number of visceral tissues. To better understand the regulatory mechanisms linked to these various physiological actions of serotonin, we have isolated and characterized a serotonin type 2b receptor in R. prolixus, Rhopr5HTR2b, which shares sequence similarity to the vertebrate serotonin type 2 receptors. Rhopr5HTR2b transcript is enriched in well-recognized physiological targets of serotonin, including the MTs, salivary glands and dorsal vessel (i.e., insect heart). Notably, Rhopr5HTR2b was not enriched in the anterior midgut where serotonin stimulates absorption and elicits myotropic control. Using a heterologous functional receptor assay, we examined Rhopr5HTR2b activation characteristics and its sensitivity to potential agonists, antagonists, and other biogenic amines. Rhopr5HTR2b is dose-dependently activated by serotonin with an EC50 in the nanomolar range. Rhopr5HTR2b is sensitive to alpha-methyl serotonin and is inhibited by a variety of serotonin receptor antagonists, including propranolol, spiperone, ketanserin, mianserin, and cyproheptadine. In contrast, the cardioacceleratory activity of serotonin revealed a unique pharmacological profile, with no significant response induced by alpha-methyl serotonin and insensitivity to ketanserin and mianserin. This distinct agonist/antagonist profile indicates that a separate serotonin receptor type may mediate cardiomodulatory effects controlled by serotonin in R. prolixus.
Collapse
Affiliation(s)
| | - Garima Bhatt
- Department of Biology, York University Toronto, ON, Canada ; Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Chang-Hui J Wang
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Meet Zandawala
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
8
|
Masood M, Orchard I. Molecular characterization and possible biological roles of allatotropin in Rhodnius prolixus. Peptides 2014; 53:159-71. [PMID: 24177575 DOI: 10.1016/j.peptides.2013.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 11/28/2022]
Abstract
Allatotropins (ATs) are a family of neuropeptides that have been shown to stimulate the biosynthesis of juvenile hormone in certain insect species, and to have stimulatory activity on some visceral muscles. Here, we have examined the AT in Rhodnius prolixus. Molecular analysis revealed a cDNA fragment of 973 bp encoding one mature amidated AT (Rhopr-AT) with transcript levels observed in the central nervous system (CNS) and pool of fat body, trachea and associated peripheral nerves. AT-like immunoreactive neurons were found throughout the CNS and AT-like immunoreactive processes were present on some peripheral tissues. Bioassays based upon changes in hindgut and dorsal vessel contractions failed to demonstrate any myotropic effects of Rhopr-AT on these tissues; however Rhopr-AT stimulated contractions of muscles surrounding the salivary glands and secretion of saliva, as judged by the reduction in content of the cherry red saliva from the salivary glands. Serotonin stimulated an increase in peristaltic contractions of the gland though no secretion was observed. Co-application of Rhopr-AT and serotonin resulted in a more rapid secretion than either chemical alone.
Collapse
Affiliation(s)
- Maryam Masood
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
9
|
Lee D, Vanden Broeck J, Lange AB. Identification and expression of the CCAP receptor in the Chagas' disease vector, Rhodnius prolixus, and its involvement in cardiac control. PLoS One 2013; 8:e68897. [PMID: 23874803 PMCID: PMC3706402 DOI: 10.1371/journal.pone.0068897] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/09/2013] [Indexed: 01/31/2023] Open
Abstract
Rhodnius prolixus is the vector of Chagas' disease, by virtue of transmitting the parasite Trypanosoma cruzi. There is no cure for Chagas' disease and therefore controlling R. prolixus is currently the only method of prevention. Understanding the physiology of the disease vector is an important step in developing control measures. Crustacean cardioactive peptide (CCAP) is an important neuropeptide in insects because it has multiple physiological roles such as controlling heart rate and modulating ecdysis behaviour. In this study, we have cloned the cDNA sequence of the CCAP receptor (RhoprCCAPR) from 5(th) instar R. prolixus and found it to be a G-protein coupled receptor (GPCR). The spatial expression pattern in 5(th) instars reveals that the RhoprCCAPR transcript levels are high in the central nervous system, hindgut and female reproductive systems, and lower in the salivary glands, male reproductive tissues and a pool of tissues including the dorsal vessel, trachea, and fat body. Interestingly, the RhoprCCAPR expression is increased prior to ecdysis and decreased post-ecdysis. A functional receptor expression assay confirms that the RhoprCCAPR is activated by CCAP (EC50 = 12 nM) but not by adipokinetic hormone, corazonin or an extended FMRFamide. The involvement of CCAP in controlling heartbeat frequency was studied in vivo and in vitro by utilizing RNA interference. In vivo, the basal heartbeat frequency is decreased by 31% in bugs treated with dsCCAPR. Knocking down the receptor in dsCCAPR-treated bugs also resulted in loss of function of applied CCAP in vitro. This is the first report of a GPCR knock-down in R. prolixus and the first report showing that a reduction in CCAPR transcript levels leads to a reduction in cardiac output in any insect.
Collapse
Affiliation(s)
- Dohee Lee
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | | | | |
Collapse
|
10
|
Lange AB, Alim U, Vandersmissen HP, Mizoguchi A, Vanden Broeck J, Orchard I. The distribution and physiological effects of the myoinhibiting peptides in the kissing bug, rhodnius prolixus. Front Neurosci 2012; 6:98. [PMID: 22783161 PMCID: PMC3390896 DOI: 10.3389/fnins.2012.00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/13/2012] [Indexed: 11/13/2022] Open
Abstract
The myoinhibiting peptides (MIPs), also designated as allatostatin-Bs or prothoracicostatic peptides in some insects, are neuropeptides that are characterized by two tryptophan (W) residues at the C-terminal, denoted as the W(X6)Wamide motif. They are believed to be the ancestral ligands for the Drosophila sex peptide (SP) receptor. Physiological functions of MIPs include the inhibition of contraction of insect visceral muscles, in addition to allatostatic and prothoracicostatic activities. The MIP precursor in Rhodnius prolixus encodes MIPs that have an unusual W(X7)Wamide motif. In the present study, MIP-like immunoreactivity was detected within neurons in the central nervous system and within the innervation to the salivary glands, hindgut, and female and male reproductive systems of adult R. prolixus. The effects of peptides with the unusual W(X7)Wamide motif (Rhopr-MIP-4) and with the typical W(X6)Wamide motif (Rhopr-MIP-7) were tested for physiological activity on R. prolixus hindgut contractions. Both peptides reduce the frequency and amplitude of hindgut contractions in a dose-dependent manner. In addition, both peptides activate the Drosophila SP receptor. The MIP/SP receptors are therefore activated by peptides with the unusual W(X7)Wamide motif.
Collapse
Affiliation(s)
- Angela B Lange
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Su YL, Li JM, Li M, Luan JB, Ye XD, Wang XW, Liu SS. Transcriptomic analysis of the salivary glands of an invasive whitefly. PLoS One 2012; 7:e39303. [PMID: 22745728 PMCID: PMC3379992 DOI: 10.1371/journal.pone.0039303] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/18/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. METHODOLOGY/PRINCIPAL FINDINGS We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. CONCLUSIONS/SIGNIFICANCE The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly-plant interactions and virus transmission.
Collapse
Affiliation(s)
- Yun-Lin Su
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Min Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meng Li
- State Key Laboratory of Identification and Quarantine of Peony Germplasm Resource, Luoyang Entry-Exit Inspection and Quarantine Bureau, Luoyang, China
| | - Jun-Bo Luan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Dong Ye
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (XWW); (SSL)
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (XWW); (SSL)
| |
Collapse
|
12
|
Lee D, Taufique H, da Silva R, Lange AB. An unusual myosuppressin from the blood-feeding bug Rhodnius prolixus. J Exp Biol 2012; 215:2088-95. [DOI: 10.1242/jeb.067447] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The myosuppressin (MS) gene was cloned from a central nervous system (CNS) cDNA library of the hematophagous insect Rhodnius prolixus and is predicted to contain two introns and three exons. The mRNA transcribed from the myosuppressin gene encodes an 88 amino acid prepropeptide, which results in a mature decapeptide after post-translational modification. When compared with the myosuppressins isolated from other insects, the R. prolixus myosuppressin has a unique amino acid sequence (pQDIDHVFMRFamide), with isoleucine (I) in position 3 and methionine (M) in position 8. Reverse transcriptase (RT)-PCR shows that Rhopr-MS is expressed in the CNS and posterior midgut in R. prolixus and immunohistochemistry suggests that an RFamide-like peptide is present in endocrine-like cells in the midgut. Physiological assays using Rhopr-MS indicate that, despite the unusual M at position 8, it still retains myoinhibitory activity, inhibiting the frequency and reducing the amplitude of contractions in the anterior midgut and hindgut, and decreasing heart rate.
Collapse
Affiliation(s)
- Dohee Lee
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Hamza Taufique
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Rosa da Silva
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Angela B. Lange
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| |
Collapse
|
13
|
Spit J, Badisco L, Verlinden H, Van Wielendaele P, Zels S, Dillen S, Vanden Broeck J. Peptidergic control of food intake and digestion in insects 1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Like all heterotrophic organisms, insects require a strict control of food intake and efficient digestion of food into nutrients to maintain homeostasis and to fulfill physiological tasks. Feeding and digestion are steered by both external and internal signals that are transduced by a multitude of regulatory factors, delivered either by neurons innervating the gut or mouthparts, or by midgut endocrine cells. The present review gives an overview of peptide regulators known to control feeding and digestion in insects. We describe the discovery and functional role in these processes for insect allatoregulatory peptides, diuretic hormones, FMRFamide-related peptides, (short) neuropeptide F, proctolin, saliva production stimulating peptides, kinins, and tachykinins. These peptides control either gut myoactivity, food intake, and (or) release of digestive enzymes. Some peptides exert their action at multiple levels, possibly having a biological function that depends on their site of delivery. Many regulatory peptides have been physically extracted from different insect species. However, multiple peptidomics, proteomics, transcriptomics, and genome sequencing projects have led to increased discovery and prediction of peptide (precursor) and receptor sequences. In combination with physiological experiments, these large-scale projects have already led to important steps forward in unraveling the physiology of feeding and digestion in insects.
Collapse
Affiliation(s)
- J. Spit
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - L. Badisco
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - H. Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - P. Van Wielendaele
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - S. Zels
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - S. Dillen
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - J. Vanden Broeck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| |
Collapse
|
14
|
Orchard I, Lee DH, da Silva R, Lange AB. The Proctolin Gene and Biological Effects of Proctolin in the Blood-Feeding Bug, Rhodnius prolixus. Front Endocrinol (Lausanne) 2011; 2:59. [PMID: 22654816 PMCID: PMC3356076 DOI: 10.3389/fendo.2011.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022] Open
Abstract
We have reinvestigated the possible presence or absence of the pentapeptide proctolin in Rhodnius prolixus and report here the cloning of the proctolin cDNA. The transcript is expressed in the central nervous system (CNS) and some peripheral tissues. The proctolin prepropeptide encodes a single copy of proctolin along with a possible proctolin-precursor-associated peptide. We have biochemically identified proctolin in CNS extracts and shown its distribution using proctolin-like immunoreactivity. Immunostained processes are found on the salivary glands, female and male reproductive tissues, and heart and associated alary muscles. Proctolin-like immunoreactive bipolar neurons are found on the lateral margins of the common oviduct and bursa. Proctolin is biologically active on R. prolixus tissues, stimulating increases in contraction of anterior midgut and hindgut muscles, and increasing heartbeat frequency. Contrary to the previous suggestion that proctolin is absent from R. prolixus, proctolin is indeed present and biologically active in this medically important bug.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
- *Correspondence: Ian Orchard, Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6. e-mail:
| | - Do Hee Lee
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| | - Rosa da Silva
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| |
Collapse
|
15
|
Stanisçuaski F, Te Brugge V, Carlini CR, Orchard I. Jack bean urease alters serotonin-induced effects on Rhodnius prolixus anterior midgut. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1078-1086. [PMID: 20223243 DOI: 10.1016/j.jinsphys.2010.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 05/28/2023]
Abstract
Urease isoforms from jack bean seeds are toxic to insects, and this entomotoxic effect is mostly due to the release of a peptide by insect digestive enzymes. We previously demonstrated that jack bean urease (JBU) has antidiuretic effects on Rhodnius prolixus Malpighian tubules, decreasing the serotonin-stimulated secretion of fluid. Now, we evaluate the toxicity of the intact JBU and its effect on R. prolixus anterior midgut, to further elucidate the mechanism of action of JBU in insects. JBU decreases the serotonin-induced fluid transport by the anterior midgut in vitro when injected into the lumen. A decrease in the levels of cAMP is observed in tissues treated with JBU (in the presence of serotonin). JBU also causes a dose-dependent increase in the frequency of serotonin-induced contractions in the anterior midgut, but does not alter the frequency of spontaneous contractions. The cyclooxygenase inhibitor indomethacin and the prostaglandin antagonist AH6809 block JBU's potentiation of serotonin-induced contractions, indicating that prostaglandins might act as second messengers for JBU action. Prostaglandin E(2) (PGE(2)) increases the frequency of serotonin-induced contractions, again supporting the role of prostaglandins as second messengers for JBU action. JBU and PGE(2) increase cGMP levels in the anterior midgut, indicating that this molecule might also be part of the JBU pathway.
Collapse
Affiliation(s)
- F Stanisçuaski
- Department of Biophysics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
16
|
Te Brugge V, Ianowski JP, Orchard I. Biological activity of diuretic factors on the anterior midgut of the blood-feeding bug, Rhodnius prolixus. Gen Comp Endocrinol 2009; 162:105-12. [PMID: 19408362 DOI: 10.1016/j.ygcen.2009.01.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Probing of a host and ingestion of a blood-meal in a fifth instar Rhodnius prolixus results in a cascade of tightly integrated events, including salivary gland secretion, plasticization of the abdominal cuticle, increased ion and water movement across the anterior midgut (crop) and Malpighian tubules (which rapidly produce urine) and the regular expulsion of urine from the hindgut. In this study we have focussed on the role of the anterior midgut during the rapid postprandial diuresis. The huge blood-meal is pumped into the anterior midgut, during feeding, then modified by diuresis and stored until it is digested. Changes in the anterior midgut activity are rapid. Within minutes of the commencement of feeding there is an increase in the frequency of anterior midgut contractions and diuresis begins with the movement of salt and water across the epithelium of the anterior midgut into the haemolymph. While serotonin, a diuretic hormone in R. prolixus, is known to play a role in the physiological activity of the anterior midgut, we were interested in exploring further the role of serotonin, and other diuretic peptides. We have tested the activity of several peptides, including R. prolixus calcitonin-like diuretic hormone (Rhopr-DH 31), corticotropin-releasing factor (CRF)-like peptide from Zootermopsis nevadensis DH (Zoone-DH) and a kinin from Leucophaea maderae, Leucokinin 1 (LK1). These peptides families are known to be present in the central nervous system of R. prolixus, are putative neurohormones released into the haemolymph after the start of feeding, and have been shown to have activity on a variety of tissues involved in post-feeding diuresis. We show here that both serotonin and Zoone-DH increase the cAMP content of the anterior midgut and that serotonin, Zoone-DH and cAMP analogues increase absorption of water from the anterior midgut, increase the short circuit current and voltage, while decreasing the resistance across the epithelium. While LK1 and Rhopr-DH 31 do not significantly increase absorption, or short circuit current, LK1 does significantly decrease the resistance and transepithelial voltage of the anterior midgut epithelium. All of the factors studied increase the frequency of contractions of the anterior midgut.
Collapse
Affiliation(s)
- Victoria Te Brugge
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada.
| | | | | |
Collapse
|
17
|
Mousley A, Maule AG, Halton DW, Marks NJ. Inter-phyla studies on neuropeptides: the potential for broad-spectrum anthelmintic and/or endectocide discovery. Parasitology 2007; 131 Suppl:S143-67. [PMID: 16569287 DOI: 10.1017/s0031182005008553] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flatworm, nematode and arthropod parasites have proven their ability to develop resistance to currently available chemotherapeutics. The heavy reliance on chemotherapy and the ability of target species to develop resistance has prompted the search for novel drug targets. In view of its importance to parasite/pest survival, the neuromusculature of parasitic helminths and pest arthropod species remains an attractive target for the discovery of novel endectocide targets. Exploitation of the neuropeptidergic system in helminths and arthropods has been hampered by a limited understanding of the functional roles of individual peptides and the structure of endogenous targets, such as receptors. Basic research into these systems has the potential to facilitate target characterization and its offshoots (screen development and drug identification). Of particular interest to parasitologists is the fact that selected neuropeptide families are common to metazoan pest species (nematodes, platyhelminths and arthropods) and fulfil specific roles in the modulation of muscle function in each of the three phyla. This article reviews the inter-phyla activity of two peptide families, the FMRFamide-like peptides and allatostatins, on motor function in helminths and arthropods and discusses the potential of neuropeptide signalling as a target system that could uncover novel endectocidal agents.
Collapse
Affiliation(s)
- A Mousley
- Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | | | |
Collapse
|
18
|
Orchard I. Serotonin: A coordinator of feeding-related physiological events in the blood-gorging bug, Rhodnius prolixus. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:316-24. [PMID: 16377224 DOI: 10.1016/j.cbpa.2005.11.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 11/13/2005] [Accepted: 11/17/2005] [Indexed: 12/31/2022]
Abstract
Rhodnius prolixus is an obligatory blood-feeder that can ingest blood meals of up to 10 times its mass. Rapid production of urine commences within 2-3 min of the start of feeding in order to eliminate the load of water and salts, and so there is an increase of Malpighian tubule secretion greater than 1,000 fold in response to feeding. Feeding and post-prandial diuresis in Rhodnius are highly coordinated events, including for example, host recognition, probing, injection of saliva, cuticle plasticization, passage of blood through the digestive system, diuresis and excretion. This review illustrates that many of the known functions of serotonin in Rhodnius are feeding-related. Serotonin coordinates or 'orchestrates' feeding-related physiological events either as a neurotransmitter/neuromodulator, delivered to target tissues in the nerve supply, or as a neurohormone, delivered by the haemolymph. Thus, serotonin has physiological effects upon the salivary glands, cuticle, digestive tract, cardiac muscle, and Malpighian tubules. By discussing these aspects, the review illustrates that serotonin acts in a coordinated manner to prepare Rhodnius for this energy-demanding process of feeding and diuresis.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| |
Collapse
|
19
|
Abstract
This minireview considers various aspects of the control of hydromineral balance in insects with particular reference to the control of diuresis and natriuresis in mosquitoes, with new information on the diuretic peptides of Anopheles gambiae.
Collapse
Affiliation(s)
- Geoffrey M Coast
- School of Biological and Chemical Sciences, Birkbeck, University of London, UK.
| | | |
Collapse
|
20
|
Yamanaka N, Hua YJ, Mizoguchi A, Watanabe K, Niwa R, Tanaka Y, Kataoka H. Identification of a novel prothoracicostatic hormone and its receptor in the silkworm Bombyx mori. J Biol Chem 2005; 280:14684-90. [PMID: 15701625 DOI: 10.1074/jbc.m500308200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insect brain regulates the activity of the prothoracic glands to secrete ecdysteroids, which affect growth, molting, and metamorphosis. Here we report the identification of a novel prothoracicostatic factor and its receptor in the silkworm Bombyx mori. The prothoracicostatic factor purified from pupal brains of B. mori is a decapeptide with the conserved structure of an insect myosuppressin and thus named Bommo-myosuppressin. Bommo-myosuppressin dose dependently suppressed the cAMP level and inhibited ecdysteroidogenesis in the larval prothoracic glands at much lower concentrations than the prothoracicostatic peptide, the other prothoracicostatic factor reported previously. In vitro analyses using a prothoracic gland incubation method revealed that Bommo-myosuppressin and prothoracicostatic peptide regulate the prothoracic gland activity via different receptors. In situ hybridization and immunohistochemistry revealed the existence of Bommo-myosuppressin in the brain neurosecretory cells projecting to neurohemal organs in which it is stored. We also identified and functionally characterized a specific receptor for Bommo-myosuppressin and showed its high expression in the prothoracic glands. All these results suggest that Bommo-myosuppressin functions as a prothoracicostatic hormone and plays an important role in controlling insect development.
Collapse
Affiliation(s)
- Naoki Yamanaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Te Brugge VA, Lombardi VC, Schooley DA, Orchard I. Presence and activity of a Dippu-DH31-like peptide in the blood-feeding bug, Rhodnius prolixus. Peptides 2005; 26:29-42. [PMID: 15626502 DOI: 10.1016/j.peptides.2004.08.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
The blood-feeding bug, Rhodnius prolixus, ingests large blood meals, then undergoes a period of rapid diuresis which is under neurohormonal control. In both cockroach (Diploptera punctata) and fruit fly (Drosophila melanogaster) a calcitonin-like DH31 neuropeptide has been identified [Coast GM, Webster SG, Schegg KM, Tobe SS, Schooley DA. The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 2001;204:1795-804; Furuya K, Milchak RJ, Schegg KM, Zhang J, Tobe SS, Coast GM, et al. Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. Proc Natl Acad Sci USA 2000;97:6469-74] and demonstrated to be active on Malpighian tubule secretion [Coast GM, Webster SG, Schegg KM, Tobe SS, Schooley DA. The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 2001;204:1795-804; Furuya K, Milchak RJ, Schegg KM, Zhang J, Tobe SS, Coast GM, et al. Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. Proc Natl Acad Sci USA 2000;97:6469-74]. Using an antibody raised against D. punctata (Dippu) DH31, we demonstrate the presence of Dippu-DH31-like immunoreactivity in the CNS, salivary glands, hindgut and neurohemal sites of 5th instar Rhodnius. Double-label immunohistochemistry for Dippu-DH31-like and serotonin-like immunoreactivity demonstrates some co-localization of these factors in cells of the mesothoracic ganglionic mass (MTGM) and in neurohemal sites on the abdominal nerves. When tested on Rhodnius 5th instar Malpighian tubules, Dippu-DH31 stimulated minor increases in rate of secretion. Dippu-DH31 tested in combination with serotonin resulted in increases in the rate of secretion which were at least additive.
Collapse
Affiliation(s)
- V A Te Brugge
- Department of Biology, University of Toronto, Mississauga, Ont., Canada L5L 1C6.
| | | | | | | |
Collapse
|
22
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
23
|
Settembrini BP, Villar MJ. Distribution of serotonin in the central nervous system of the blood-feeding heteropteran,Triatoma infestans (Heteroptera: Reduviidae). J Morphol 2004; 260:21-32. [PMID: 15052594 DOI: 10.1002/jmor.10211] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of serotonin was studied in the Triatoma infestans central nervous system by using immunocytochemistry. Serotonin immunoreactive cell bodies and fibers were observed in the brain, subesophageal ganglion, and thoracic ganglia. In the brain, serotonin-like immunoreactivity was detected in a limited number of somata, which gave rise to an extensive network of labeled neurites in patterned as well as in nonglomerular neuropils. Immunolabeled perikarya were observed in the optic lobe and in the anteromedial and caudolateral soma rinds of the protocerebrum. Deutocerebral immunoreactive somata were mainly found in the medial layer surrounding the antennal lobe glomeruli, as well as in relationship to the antennal mechanosensory and motor center. The subesophageal ganglion contained serotonin immunoreactive perikarya of variable sizes and moderate to low density of positive fibers. In the prothoracic ganglion, immunoreactive somata were detected near the cephalic connectives as well as in its caudal end. Serotonin immunoreactive somata and fibers were observed in the posterior ganglion of the thorax, with the abdominal neuromeres harboring the highest number of immunolabeled perikarya. These results show that there is a widespread unique serotonergic system in the CNS of Triatoma infestans and suggest that the indolamine could act as a neuromodulator or as a neurohormone.
Collapse
|
24
|
Mispelon M, Thakur K, Chinn L, Owen R, Nichols R. A nonpeptide provides insight into mechanisms that regulate Drosophila melanogaster heart contractions. Peptides 2003; 24:1599-605. [PMID: 14706539 DOI: 10.1016/j.peptides.2003.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report the effect of a nonpeptide, benzethonium chloride (bztc), on Drosophila melanogaster larval, pupal, and adult heart rates in vivo. Benzethonium chloride reduced the frequency of spontaneous contractions in the D. melanogaster pupal heart, but not in the larval heart or the adult heart as measured in noninvasive whole animal preparations. When applied directly to the D. melanogaster heart, in the absence of hemolymph, bztc reduced the frequency of spontaneous contractions in larval, pupal, and adult hearts. These findings are consistent with the conclusion that bztc acts through or is regulated by different mechanisms in these three developmental stages. An alternative explanation is that larval hemolymph and adult hemolymph contain a material that interferes with the effect of the nonpeptide on heart contractions. Bztc mimicked the effect of the peptide dromyosuppressin (DMS) on the heart at an equivalent concentration; in contrast, 103-fold more nonpeptide is required to mimic the effect of DMS on fly gut. These findings are consistent with the presence of tissue-specific myosuppressin receptors or mechanisms.
Collapse
Affiliation(s)
- Melissa Mispelon
- Undergraduate Cell and Molecular Biology Program, Biological Chemistry Department, University of Michigan Medical School, 4444 Medical Sciences Building I, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | |
Collapse
|
25
|
Reis MM, Meirelles RMS, Soares MJ. Fine structure of the salivary glands of Triatoma infestans (Hemiptera: Reduviidae). Tissue Cell 2003; 35:393-400. [PMID: 14517105 DOI: 10.1016/s0040-8166(03)00059-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fine structure of the salivary glands of adult Triatoma infestans (Hemiptera: Reduviidae) bugs has been analyzed. Stereomicroscopy and scanning electron microscopy showed that each insect presents a pair of salivary glands, each pair containing three distinct units (main, supplementary, and accessory) with different sizes and colors. Transmission electron microscopy demonstrated that all gland units consist of a monolayer of epithelial cells surrounding a large central lumen. The gland units are enveloped by a thick basal lamina containing bundles of muscle cells. Microvilli are present at the apical plasma membrane domain of the gland cells, thus enlarging the available membrane area for saliva secretion towards the large gland lumen, although occasionally budding vesicles could be observed among the microvilli. Cytochemical analysis showed that the salivary gland cells of T. infestans present abundant endoplasmic reticulum profiles and several lipid droplets.
Collapse
Affiliation(s)
- Marcos M Reis
- Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz/FIOCRUZ, Avenida Brasil 4365, Manguinhos, 21045-900 RJ, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
26
|
Egerod K, Reynisson E, Hauser F, Cazzamali G, Williamson M, Grimmelikhuijzen CJP. Molecular cloning and functional expression of the first two specific insect myosuppressin receptors. Proc Natl Acad Sci U S A 2003; 100:9808-13. [PMID: 12907701 PMCID: PMC188343 DOI: 10.1073/pnas.1632197100] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Indexed: 11/18/2022] Open
Abstract
The Drosophila Genome Project database contains the sequences of two genes, CG8985 and CG13803, which are predicted to code for G protein-coupled receptors. We cloned the cDNAs corresponding to these genes and found that their gene structures had not been correctly annotated. We subsequently expressed the coding regions of the two corrected receptor genes in Chinese hamster ovary cells and found that each of them coded for a receptor that could be activated by low concentrations of Drosophila myosuppressin (EC50,4 x 10(-8) M). The insect myosuppressins are decapeptides that generally inhibit insect visceral muscles. Other tested Drosophila neuropeptides did not activate the two receptors. In addition to the two Drosophila myosuppressin receptors, we identified a sequence in the genomic database from the malaria mosquito Anopheles gambiae that also very likely codes for a myosuppressin receptor. To our knowledge, this paper is the first report on the molecular identification of specific insect myosuppressin receptors.
Collapse
Affiliation(s)
- Kristoffer Egerod
- Department of Cell Biology, Zoological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|