1
|
Mougkogiannis P, Adamatzky A. On Effect of Chloroform on Electrical Activity of Proteinoids. Biomimetics (Basel) 2024; 9:380. [PMID: 39056821 PMCID: PMC11275190 DOI: 10.3390/biomimetics9070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Proteinoids, or thermal proteins, produce hollow microspheres in aqueous solutions. Ensembles of the microspheres produce endogenous spikes of electrical activity, similar to that of neurons. To make the first step toward the evaluation of the mechanisms of such electrical behaviour, we decided to expose proteinoids to chloroform. We found that while chloroform does not inhibit the electrical oscillations of proteinoids, it causes substantial changes in the patterns of electrical activity. Namely, incremental chloroform exposure strongly affects proteinoid microsphere electrical activity across multiple metrics. As chloroform levels rise, the spike potential drops from 0.9 mV under control conditions to 0.1 mV at 25 mg/mL. This progressive spike potential decrease suggests chloroform suppresses proteinoid electrical activity. The time between spikes, the interspike period, follows a similar pattern. Minimal chloroform exposure does not change the average interspike period, while higher exposures do. It drops from 23.2 min under control experiments to 3.8 min at 25 mg/mL chloroform, indicating increased frequency of the electrical activity. These findings might lead to a deeper understanding of the electrical activity of proteinoids and their potential application in the domain of bioelectronics.
Collapse
|
2
|
Meroueh C, Warasnhe K, Tizhoosh HR, Shah VH, Ibrahim SH. Digital pathology and spatial omics in steatohepatitis: Clinical applications and discovery potentials. Hepatology 2024:01515467-990000000-00815. [PMID: 38517078 PMCID: PMC11669472 DOI: 10.1097/hep.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Steatohepatitis with diverse etiologies is the most common histological manifestation in patients with liver disease. However, there are currently no specific histopathological features pathognomonic for metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, or metabolic dysfunction-associated steatotic liver disease with increased alcohol intake. Digitizing traditional pathology slides has created an emerging field of digital pathology, allowing for easier access, storage, sharing, and analysis of whole-slide images. Artificial intelligence (AI) algorithms have been developed for whole-slide images to enhance the accuracy and speed of the histological interpretation of steatohepatitis and are currently employed in biomarker development. Spatial biology is a novel field that enables investigators to map gene and protein expression within a specific region of interest on liver histological sections, examine disease heterogeneity within tissues, and understand the relationship between molecular changes and distinct tissue morphology. Here, we review the utility of digital pathology (using linear and nonlinear microscopy) augmented with AI analysis to improve the accuracy of histological interpretation. We will also discuss the spatial omics landscape with special emphasis on the strengths and limitations of established spatial transcriptomics and proteomics technologies and their application in steatohepatitis. We then highlight the power of multimodal integration of digital pathology augmented by machine learning (ML)algorithms with spatial biology. The review concludes with a discussion of the current gaps in knowledge, the limitations and premises of these tools and technologies, and the areas of future research.
Collapse
Affiliation(s)
- Chady Meroueh
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Khaled Warasnhe
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - H. R. Tizhoosh
- Department of Artificial Intelligence & Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H. Shah
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
de Coene Y, Jooken S, Deschaume O, Van Steenbergen V, Vanden Berghe P, Van den Haute C, Baekelandt V, Callewaert G, Van Cleuvenbergen S, Verbiest T, Bartic C, Clays K. Label-Free Imaging of Membrane Potentials by Intramembrane Field Modulation, Assessed by Second Harmonic Generation Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200205. [PMID: 35355419 DOI: 10.1002/smll.202200205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Optical interrogation of cellular electrical activity has proven itself essential for understanding cellular function and communication in complex networks. Voltage-sensitive dyes are important tools for assessing excitability but these highly lipophilic sensors may affect cellular function. Label-free techniques offer a major advantage as they eliminate the need for these external probes. In this work, it is shown that endogenous second-harmonic generation (SHG) from live cells is highly sensitive to changes in transmembrane potential (TMP). Simultaneous electrophysiological control of a living human embryonic kidney (HEK293T) cell, through a whole-cell voltage-clamp reveals a linear relation between the SHG intensity and membrane voltage. The results suggest that due to the high ionic strengths and fast optical response of biofluids, membrane hydration is not the main contributor to the observed field sensitivity. A conceptual framework is further provided that indicates that the SHG voltage sensitivity reflects the electric field within the biological asymmetric lipid bilayer owing to a nonzero χeff(2) tensor. Changing the TMP without surface modifications such as electrolyte screening offers high optical sensitivity to membrane voltage (≈40% per 100 mV), indicating the power of SHG for label-free read-out. These results hold promise for the design of a non-invasive label-free read-out tool for electrogenic cells.
Collapse
Affiliation(s)
- Yovan de Coene
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Stijn Jooken
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Olivier Deschaume
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Valérie Van Steenbergen
- Laboratory for Enteric NeuroScience (LENS), TAGRID, Department of Chronic Diseases Metabolism and Ageing, Ku Leuven, ON I Herestraat 49, Leuven, 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TAGRID, Department of Chronic Diseases Metabolism and Ageing, Ku Leuven, ON I Herestraat 49, Leuven, 3000, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Ku Leuven, RK-Herestraat 49, Leuven, 3000, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Ku Leuven, RK-Herestraat 49, Leuven, 3000, Belgium
| | - Geert Callewaert
- Department of Cellular and Molecular Medicine, Ku Leuven, KULAK Kortrijk Campus, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Stijn Van Cleuvenbergen
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Thierry Verbiest
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Koen Clays
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| |
Collapse
|
4
|
Beaujean P, Champagne B, Grimme S, de Wergifosse M. All-Atom Quantum Mechanical Calculation of the Second-Harmonic Generation of Fluorescent Proteins. J Phys Chem Lett 2021; 12:9684-9690. [PMID: 34590850 DOI: 10.1021/acs.jpclett.1c02911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescent proteins (FPs) are biotags of choice for second-harmonic imaging microscopy (SHIM). Because of their large size, computing their second-harmonic generation (SHG) response represents a great challenge for quantum chemistry. In this contribution, we propose a new all-atom quantum mechanics methodology to compute SHG of large systems. This is now possible because of two recent implementations: the tight-binding GFN2-xTB method to optimize geometries and a related version of the simplified time-dependent density functional theory (sTD-DFT-xTB) to evaluate quadratic response functions. In addition, a new dual-threshold configuration selection scheme is introduced to reduce the computational costs while retaining overall similar accuracy. This methodology was tested to evaluate the SHG of the proteins iLOV and bacteriorhodopsin (bR). In the case of bR, quantitative agreement with respect to experiment was reached for the out-of-resonance low-energy part of the βHRS frequency dispersion. This work paves the way toward an accurate prediction of the SHG of large structures-a requirement for the design of new and improved SHIM biotags.
Collapse
Affiliation(s)
- Pierre Beaujean
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Berings. 4, D-53115 Bonn, Germany
| | - Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Berings. 4, D-53115 Bonn, Germany
| |
Collapse
|
5
|
De Meulenaere E, de Coene Y, Russier-Antoine I, Vanpraet L, Van den Haute C, Thevissen K, Baekelandt V, Bartic C, Hofkens J, Brevet PF, Clays K. Fluorescence-free First Hyperpolarizability Values of Fluorescent Proteins and Channel Rhodopsins. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Lim H. Harmonic Generation Microscopy 2.0: New Tricks Empowering Intravital Imaging for Neuroscience. Front Mol Biosci 2019; 6:99. [PMID: 31649934 PMCID: PMC6794408 DOI: 10.3389/fmolb.2019.00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Optical harmonic generation, e.g., second- (SHG) and third-harmonic generation (THG), provides intrinsic contrasts for three-dimensional intravital microscopy. Contrary to two-photon excited fluorescence (TPEF), however, they have found relatively specialized applications, such as imaging collagenous and non-specific tissues, respectively. Here we review recent advances that broaden the capacity of SHG and THG for imaging the central nervous system in particular. The fundamental contrast mechanisms are reviewed as they encode novel information including molecular origin, spectroscopy, functional probes, and image analysis, which lay foundations for promising future applications in neuroscience.
Collapse
Affiliation(s)
- Hyungsik Lim
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
7
|
de Wergifosse M, Botek E, De Meulenaere E, Clays K, Champagne B. ONIOM Investigation of the Second-Order Nonlinear Optical Responses of Fluorescent Proteins. J Phys Chem B 2018; 122:4993-5005. [DOI: 10.1021/acs.jpcb.8b01430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marc de Wergifosse
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Edith Botek
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Evelien De Meulenaere
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
- Laboratory for Molecular Electronics and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Koen Clays
- Laboratory for Molecular Electronics and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
8
|
de Wergifosse M, Champagne B, Ito S, Fukuda K, Nakano M. Challenging compounds for calculating molecular second hyperpolarizabilities: the triplet state of the trimethylenemethane diradical and two derivatives. Phys Chem Chem Phys 2016; 18:6420-9. [PMID: 26679401 DOI: 10.1039/c5cp06547j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The second hyperpolarizability γ of trimethylenemethane (TMM) and two 1,3-dipole derivatives (NXA and OXA) in their triplet ground state has been evaluated at the UCCSD(T) level with the d-aug-cc-pVDZ extended basis set, highlighting that γ decreases from TMM to NXA and OXA, following the opposite order of their permanent dipole moments. These results are then used to benchmark a broad range of levels of approximation. So, the UMP2, UMP4, and UCCSD methods can be used to characterize γ of TMM and NXA but not of OXA. In that case, the large field-induced charge transfer contribution is difficult to handle using the MPn methods and only the UCCSD method provides values close to the UCCSD(T) reference. Turning to the performance of DFT with typical exchange-correlation functionals, the UM06-2X functional, which contains 54% of HF exchange, performs very well with a maximum of 4.5% of difference with respect to the reference values. On the other hand, employing less HF exchange leads to an overestimation of the responses whereas range-separated hybrids generally underestimate the second hyperpolarizabilities. Finally, the use of spin-projected methods for these 1,3-dipole triplet molecules has a little impact since the spin contamination is almost negligible.
Collapse
Affiliation(s)
- Marc de Wergifosse
- University of Namur, Laboratory of Theoretical Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Jinno Y, Shoda K, Rial-Verde E, Yuste R, Miyawaki A, Tsutsui H. Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane. Front Mol Neurosci 2014; 7:93. [PMID: 25505870 PMCID: PMC4245886 DOI: 10.3389/fnmol.2014.00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/08/2014] [Indexed: 11/22/2022] Open
Abstract
Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its β-barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3°) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential.
Collapse
Affiliation(s)
- Yuka Jinno
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University Suita, Japan
| | - Keiko Shoda
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN Wako, Japan
| | - Emiliano Rial-Verde
- Department of Biological Sciences, Neurotechnology Center, Columbia University New York, NY, USA
| | - Rafael Yuste
- Department of Biological Sciences, Neurotechnology Center, Columbia University New York, NY, USA
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN Wako, Japan
| | - Hidekazu Tsutsui
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN Wako, Japan ; Formation of and Information Processing by Neural Networks, and Control, PRESTO, Japan Science and Technology Agency (JST) Kawaguchi, Japan ; Department of Material Science, Japan Advanced Institute of Science and Technology Nomi, Japan
| |
Collapse
|
11
|
Bhattacharya D, Shil S, Goswami T, Misra A, Klein DJ. A note on second-order nonlinear optical response of high-spin bis-TEMPO diradicals with possible application. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Pauszek RF, Kodali G, Stanley RJ. Excited state electronic structures of 5,10-methenyltetrahydrofolate and 5,10-methylenetetrahydrofolate determined by Stark spectroscopy. J Phys Chem A 2014; 118:8320-8. [PMID: 24814224 DOI: 10.1021/jp501143u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Folates are ubiquitous cofactors that participate in a wide variety of critical biological processes. 5,10-Methenyltetrahydrofolate and its photodegradation product 5,10-methylenetetrahydrofolate are both associated with the light-driven DNA repair protein DNA photolyase and its homologues (e.g., cryptochromes). The excited state electronic properties of these folate molecules have been studied here using Stark spectroscopy and complementary quantum calculations. The tetrahydrofolates have relatively large difference dipole moments (ca. 6-8 Debye) and difference polarizabilities (ca. 100 Å(3)). This extensive excited state charge redistribution appears to be due largely to the pendant p-aminobenzoic acid group, which helps shuttle charge over the entirety of the molecule. Simple calculations based on the experimental difference dipole moments suggest that tetrahydrofolates should have large two photon cross sections sufficient to enable two photon microscopy to selectively detect and follow folate-containing proteins both in vitro and in vivo.
Collapse
Affiliation(s)
- Raymond F Pauszek
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | | | | |
Collapse
|
13
|
WEI JING, ZHANG MINYI, WANG JINYUN, CHAI GUOLIANG, LIN CHENSHENG, CHENG WENDAN. SECOND-HARMONIC GENERATION OF FLUORESCENT PROTEINS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613410071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We theoretically study the second-order nonlinear optical properties of six fluorescent proteins (FPs), such as green fluorescent protein (GFP), BFP, enhanced BFP (eBFP), CFP, YFP, and DsRed. To begin with, the geometries of all these FP chromophores are optimized at B3LYP/6-311++G** level in a water medium and the polarized continuum model (PCM in water) method is adopted. Using a time-dependent density functional theory (TDDFT) method, the electronic structures and excited-state properties of chromophores are determined. Here we employ TDDFT combining with the sum-over-states (SOS) method to calculate the first-order hyperpolarizability for second-harmonic generation (SHG) optical process. Moreover, we discuss the origin of the nonlinear optical response and determine what caused the variation of first-order hyperpolarizability. Our calculations show that the charge transfers of π → π* in the central conjugated structure and p → π* charge transfers from the side chain R1 to conjugated structure of chromophores markedly affect the first-order hyperpolarizability.
Collapse
Affiliation(s)
- JING WEI
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - MIN-YI ZHANG
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - JIN-YUN WANG
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - GUO-LIANG CHAI
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - CHEN-SHENG LIN
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - WEN-DAN CHENG
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Pauszek RF, Kodali G, Caldwell ST, Fitzpatrick B, Zainalabdeen NY, Cooke G, Rotello VM, Stanley RJ. Excited state charge redistribution and dynamics in the donor-π-acceptor flavin derivative ABFL. J Phys Chem B 2013; 117:15684-94. [PMID: 24020957 DOI: 10.1021/jp406420h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromophores containing a donor-π-acceptor (D-π-A) motif have been shown to exhibit many interesting photophysical properties. The lowest electronic transition of a flavin derivative containing this motif, azobenzylflavin (ABFL), has previously been shown to be highly sensitive to solvent environment and hydrogen bonding ligands. To better understand this sensitivity, we have investigated the excited state charge redistribution and dynamics of ABFL in a low-dielectric, non-hydrogen bonding solvent by steady-state Stark and femtosecond optical transient absorption spectroscopies. The Stark measurements reveal the difference dipole moment, Δμ01, between the ground and first excited states to be 22.3 ± 0.9 D. The direction of Δμ01 in the molecular frame was assigned with the aid of TD-DFT and finite field calculations, verifying the hypothesis that electron density moves from the diethylaniline donor to the flavin acceptor in the excited state. The magnitude of the difference dipole moment was used to estimate the hyperpolarizability of ABFL, β0 = 720 × 10(-30) esu. Subsequent excited state decay via charge recombination was shown to take place in a few picoseconds. The data was best fit to a kinetic model composed of a sub-picosecond internal conversion step from S2→S1, followed by a 5 ps decay to the ground state. A competing process involving formation of an additional long-lived state from S1 was also observed. Cyclic voltammetry shows one oxidation and two reduction waves and is completely reversible. This analysis lays the groundwork for developing new flavin dyads with the desired excited electronic state properties for applications such as nonlinear optical devices, molecular electronics applications, or dye-sensitized solar cells.
Collapse
Affiliation(s)
- Raymond F Pauszek
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Rafael Yuste
- HHMI, Departments of Biological Sciences and Neuroscience, and Kavli Institute for Brain Science, Columbia University, New York, NY 10027;
| |
Collapse
|
16
|
Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. Single cell optical imaging and spectroscopy. Chem Rev 2013; 113:2469-527. [PMID: 23410134 PMCID: PMC3624028 DOI: 10.1021/cr300336e] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony S. Stender
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Kyle Marchuk
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Chang Liu
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Suzanne Sander
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Matthew W. Meyer
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Emily A. Smith
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Bhanu Neupane
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Ning Fang
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| |
Collapse
|
17
|
Abstract
In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles, and intrinsic approaches) and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic, or electro-optical phenomena to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods.
Collapse
Affiliation(s)
- Darcy S Peterka
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | |
Collapse
|
18
|
Reeve JE, Anderson HL, Clays K. Dyes for biological second harmonic generation imaging. Phys Chem Chem Phys 2010; 12:13484-98. [DOI: 10.1039/c003720f] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
De Meulenaere E, Asselberghs I, de Wergifosse M, Botek E, Spaepen S, Champagne B, Vanderleyden J, Clays K. Second-order nonlinear optical properties of fluorescent proteins for second-harmonic imaging. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b907789h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Asselberghs I, Flors C, Ferrighi L, Botek E, Champagne B, Mizuno H, Ando R, Miyawaki A, Hofkens J, Van der Auweraer M, Clays K. Second-harmonic generation in GFP-like proteins. J Am Chem Soc 2008; 130:15713-9. [PMID: 18950177 DOI: 10.1021/ja805171q] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The second-order nonlinear optical properties of green fluorescent proteins (GFPs), such as the photoswitchable Dronpa and enhanced GFP (EGFP), have been studied at both the theoretical and experimental levels. In the case of Dronpa, both approaches are consistent in showing the rather counterintuitive result of a larger second-order nonlinear polarizability (or first hyperpolarizability, beta) for the protonated state, which has a higher transition energy, than for the deprotonated, fluorescent state with its absorption at lower energy. Moreover, the value of beta for the protonated form of Dronpa is among the highest reported for proteins. In addition to the pH dependence, we have found a wavelength dependence in the beta values. These properties are essential for the practical use of Dronpa or other GFP-like fluorescent proteins as second-order nonlinear fluorophores for symmetry-sensitive nonlinear microscopy imaging and as nonlinear optical sensors for electrophysiological processes. An accurate value of the first hyperpolarizability is also essential for any qualitative analysis of the nonlinear images.
Collapse
Affiliation(s)
- Inge Asselberghs
- Department of Chemistry and Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D and F, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jin Y, Honig T, Ron I, Friedman N, Sheves M, Cahen D. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chem Soc Rev 2008; 37:2422-32. [DOI: 10.1039/b806298f] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
GUALDA EJ, FILIPPIDIS G, VOGLIS G, MARI M, FOTAKIS C, TAVERNARAKIS N. In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy. J Microsc 2008; 229:141-50. [DOI: 10.1111/j.1365-2818.2007.01876.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Barsu C, Fortrie R, Nowika K, Baldeck PL, Vial JC, Barsella A, Fort A, Hissler M, Bretonnière Y, Maury O, Andraud C. Synthesis of chromophores combining second harmonic generation and two photon induced fluorescence properties. Chem Commun (Camb) 2006:4744-6. [PMID: 17109056 DOI: 10.1039/b610557b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of new chromophores presenting simultaneous SHG and TPEF properties is reported.
Collapse
Affiliation(s)
- Cyril Barsu
- Chimie pour l'optique, Laboratoire de chimie, UMR CNRS-ENS-Lyon 5182, 46 Allée d'Italie, F-69364 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Acebal P, Blaya S, Carretero L, Fimia A. Upper limits of dielectric permittivity modulation in bacteriorhodopsin films. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:011909. [PMID: 16090003 DOI: 10.1103/physreve.72.011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 11/09/2004] [Indexed: 05/03/2023]
Abstract
A theoretical study of light-induced modulation of the dielectric permittivity in bacteriorhodopsin films has been done (including B--> M and B --> Q transitions). Analysis of dielectric permittivity modulation enables us to determine the fundamental limits of BR to be used in a holographic data storage system, together with the optimum experimental and material conditions. In order to carry out this analysis, the macroscopic dielectric permittivity was related to the microscopic polarizability of the three states of BR considered (B, M and Q). This parameter was calculated using a modelization procedure that includes the effect of ASP85, TRP86, and TYR185 amino acid residues (the B3LYP/6-31+ G(*) method was used for the calculations). Good concordance between theoretical calculations and experimental data was found for the linear optical properties (absorption wavelength, transition dipole moment, and dielectric permittivity modulation). The theoretical upper limits of Deltaepsilson at 750 nm (far from the resonance of the molecule) in a randomly oriented material are about 0.01 and 0.012 for B--> M and B--> Q transitions, respectively. The values of Deltaepsilon obtained were used to simulate diffraction efficiencies (eta) of a volume phase hologram recorded in a BR film. The high absorptive losses at low wavelengths (about 625 nm ) cause an interesting behavior, since the highest Deltaepsilom do not produce the greatest eta. The highest eta is produced for a hologram thickness in the range of 900-1000 microm and working wavelength of 700-750 nm.
Collapse
Affiliation(s)
- P Acebal
- Departamento de Ciencia y Tecnología de Materiales, Universidad Miguel Hernández, Elx (Alicante), Spain
| | | | | | | |
Collapse
|
25
|
Filippidis G, Kouloumentas C, Voglis G, Zacharopoulou F, Papazoglou TG, Tavernarakis N. Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:024015. [PMID: 15910089 DOI: 10.1117/1.1886729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Second-harmonic generation (SHG) and two-photon excitation fluorescence (TPEF) are relatively new and promising tools for the detailed imaging of biological samples and processes at the microscopic level. By exploiting these nonlinear phenomena phototoxicity and photobleaching effects on the specimens are reduced dramatically. The main target of this work was the development of a compact inexpensive and reliable experimental apparatus for nonlinear microscopy measurements. Femtosecond laser pulses were utilized for excitation. We achieved high-resolution imaging and mapping of Caenorhabditis elegans (C. elegans) neurons and muscular structures of the pharynx, at the microscopic level by performing SHG and TPEF measurements. By detecting nonlinear phenomena such as SHG and TPEF it is feasible to extract valuable information concerning the structure and the function of nematode neurons.
Collapse
Affiliation(s)
- George Filippidis
- Foundation of Research and Technology-Hellas, Institute of Electronic Structure and Laser, PO Box 1527, Heraklion, Greece 71110.
| | | | | | | | | | | |
Collapse
|
26
|
Nemet BA, Nikolenko V, Yuste R. Second harmonic imaging of membrane potential of neurons with retinal. JOURNAL OF BIOMEDICAL OPTICS 2004; 9:873-81. [PMID: 15447008 DOI: 10.1117/1.1783353] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a method to optically measure and image the membrane potential of neurons, using the nonlinear optical phenomenon of second harmonic generation (SHG) with a photopigment retinal as the chromophore [second harmonic retinal imaging of membrane potential (SHRIMP)]. We show that all-trans retinal, when adsorbed to the plasma membrane of living cells, can report on the local electric field via its change in SHG. Using a scanning mode-locked Ti-sapphire laser, we collect simultaneous two-photon excited fluorescence (TPEF) and SHG images of retinal-stained kidney cells and cultured pyramidal neurons. Patch clamp experiments on neurons stained with retinal show an increase of 25% in SHG intensity per 100-mV depolarization. Our data are the first demonstration of optical measurements of membrane potential of mammalian neurons with SHG. SHRIMP could have wide applicability in neuroscience and, by modifying rhodopsin, could in principle be subject for developing genetically engineered voltage sensors.
Collapse
Affiliation(s)
- Boaz A Nemet
- Columbia University, Department of Biological Sciences, 1212 Amsterdam Avenue, New York, New York 10027, USA.
| | | | | |
Collapse
|
27
|
Ries RS, Choi H, Blunck R, Bezanilla F, Heath JR. Black Lipid Membranes: Visualizing the Structure, Dynamics, and Substrate Dependence of Membranes. J Phys Chem B 2004. [DOI: 10.1021/jp048098h] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan S. Ries
- Department of Chemistry, Division of Chemistry and Chemical Engineering, MC 127-72, The California Institute of Technology, Pasadena, California 91125, and The Departments of Physiology and Anesthesiology, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Hyeon Choi
- Department of Chemistry, Division of Chemistry and Chemical Engineering, MC 127-72, The California Institute of Technology, Pasadena, California 91125, and The Departments of Physiology and Anesthesiology, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Rikard Blunck
- Department of Chemistry, Division of Chemistry and Chemical Engineering, MC 127-72, The California Institute of Technology, Pasadena, California 91125, and The Departments of Physiology and Anesthesiology, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Francisco Bezanilla
- Department of Chemistry, Division of Chemistry and Chemical Engineering, MC 127-72, The California Institute of Technology, Pasadena, California 91125, and The Departments of Physiology and Anesthesiology, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - James R. Heath
- Department of Chemistry, Division of Chemistry and Chemical Engineering, MC 127-72, The California Institute of Technology, Pasadena, California 91125, and The Departments of Physiology and Anesthesiology, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| |
Collapse
|
28
|
Roorda RD, Hohl TM, Toledo-Crow R, Miesenböck G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J Neurophysiol 2004; 92:609-21. [PMID: 14999051 DOI: 10.1152/jn.00087.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biological membranes decorated with suitable contrast agents give rise to nonlinear optical signals such as two-photon fluorescence and harmonic up-conversion when illuminated with ultra-short, high-intensity pulses of infrared laser light. Microscopic images based on these nonlinear contrasts were acquired at video or higher frame rates by scanning a focused illuminating spot rapidly across neural tissues. The scan engine relied on an acousto-optic deflector (AOD) to produce a fast horizontal raster and on corrective prisms to offset the AOD-induced dispersion of the ultra-short excitation light pulses in space and time. Two membrane-bound derivatives of the green fluorescent protein (GFP) were tested as nonlinear contrast agents. Synapto-pHluorin, a pH-sensitive GFP variant fused to a synaptic vesicle membrane protein, provided a time-resolved fluorescent read-out of neurotransmitter release at genetically specified synaptic terminals in the intact brain. Arrays of dually lipidated GFP molecules at the plasma membrane generated intense two-photon fluorescence but no detectable second-harmonic power. Comparison with second-harmonic generation by membranes stained with a synthetic styryl dye suggested that the genetically encoded chromophore arrangement lacked the orientational anisotropy and/or dipole density required for efficient coherent scattering of the incident optical field.
Collapse
MESH Headings
- Animals
- Cell Membrane/chemistry
- Cell Membrane/genetics
- Cell Membrane/physiology
- DNA, Complementary/analysis
- DNA, Complementary/physiology
- Drosophila melanogaster
- Female
- Green Fluorescent Proteins
- Luminescent Proteins/genetics
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Microscopy, Fluorescence, Multiphoton/instrumentation
- Microscopy, Fluorescence, Multiphoton/methods
- Microscopy, Video/instrumentation
- Microscopy, Video/methods
- Olfactory Receptor Neurons/chemistry
- Olfactory Receptor Neurons/physiology
- Optics and Photonics
- Xenopus
Collapse
Affiliation(s)
- Robert D Roorda
- Laboratory of Neural Systems, Memorial-Sloan-Kettering Cancer Center, Box 205, 1275 York Ave., New York, NY 10021, USA
| | | | | | | |
Collapse
|
29
|
Lewis A, Taha H, Strinkovski A, Manevitch A, Khatchatouriants A, Dekhter R, Ammann E. Near-field optics: from subwavelength illumination to nanometric shadowing. Nat Biotechnol 2003; 21:1378-86. [PMID: 14595366 DOI: 10.1038/nbt898] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Near-field optics uniquely addresses problems of x, y and z resolution by spatially confining the effect of a light source to nanometric domains. The problems in using far-field optics (conventional optical imaging through a lens) to achieve nanometric spatial resolution are formidable. Near-field optics serves a bridging role in biology between optical imaging and scanned probe microscopy. The integration of near-field and scanned probe imaging with far-field optics thus holds promise for solving the so-called inverse problem of optical imaging.
Collapse
MESH Headings
- Delivery of Health Care, Integrated
- Equipment Design
- Microscopy, Atomic Force/instrumentation
- Microscopy, Atomic Force/methods
- Microscopy, Atomic Force/trends
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Microscopy, Confocal/trends
- Microscopy, Fluorescence/instrumentation
- Microscopy, Fluorescence/methods
- Microscopy, Fluorescence/trends
- Nanotechnology/instrumentation
- Nanotechnology/methods
- Nanotechnology/trends
- Tomography, Optical Coherence/instrumentation
- Tomography, Optical Coherence/methods
- Tomography, Optical Coherence/trends
Collapse
Affiliation(s)
- Aaron Lewis
- Division of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 93707 Israel.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bechem M, Beutner S, Burkhardt N, Fuchs C, Kryschi C, Paffhausen W, Reiffers B, Schade A, Schlue WR, Schmid D, Schneider L, Schulte P, Wimmer T, Witzak D, Martin HD. Novel hyperpolarizable and fluorescent dyes in lipid membranes: studying membrane potentials using nonlinear optical and fluorescence. Electrochim Acta 2003. [DOI: 10.1016/s0013-4686(03)00409-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Aharoni A, Khatchatouriants A, Manevitch A, Lewis A, Sheves M. Protein−β-Ionone Ring Interactions Enhance the Light-Induced Dipole of the Chromophore in Bacteriorhodopsin. J Phys Chem B 2003. [DOI: 10.1021/jp027702q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Aharoni
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Artium Khatchatouriants
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexandra Manevitch
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Aaron Lewis
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
32
|
Abstract
Two-photon microscopy has revolutionized life sciences by enabling long-term imaging of living preparations in highly scattering tissue while minimizing photodamage. At the same time, commercial two-photon microscopes are expensive and this has prevented the widespread application of this technique to the biological community. As an alternative to commercial systems, we provide an update of our efforts designing custom-built two-photon instruments by modifying the Olympus FluoView laser scanning confocal microscope. With the newer version of our instrument we modulate the intensity of the laser beam in arbitrary spatiotemporal patterns using a Pockels cell and software control over the scanning. We can also perform simultaneous optical imaging and optical stimulation experiments and combine them with second harmonic generation measurements.
Collapse
Affiliation(s)
- Volodymyr Nikolenko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Andrew C Millard
- Department of Physiology, Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
34
|
Schaller RD, Johnson JC, Wilson KR, Lee LF, Haber LH, Saykally RJ. Nonlinear Chemical Imaging Nanomicroscopy: From Second and Third Harmonic Generation to Multiplex (Broad-Bandwidth) Sum Frequency Generation Near-Field Scanning Optical Microscopy. J Phys Chem B 2002. [DOI: 10.1021/jp0144653] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard D. Schaller
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Justin C. Johnson
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Kevin R. Wilson
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Lynn F. Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Louis H. Haber
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Richard J. Saykally
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
35
|
Abstract
We describe the principles and characteristics of second-harmonic generation imaging (SHGI) and explore various methods for optimization of the technique. Second-harmonic imaging is optimized for ultrashort laser pulses, high numerical aperture microscope objectives, a highly sensitive non-descanned large area detector, pseudo-phase-matching, and specimens with large second-order non linearity or which exhibit surface plasmon enhanced phenomena. We also compare and contrast the techniques of SHGI and two-photon excited fluorescence imaging.
Collapse
Affiliation(s)
- R Gauderon
- Department of Physical Optics, School of Physics A28, University of Sydney, 2006, Sydney, NSW, Australia
| | | | | |
Collapse
|
36
|
Moreaux L, Sandre O, Charpak S, Blanchard-Desce M, Mertz J. Coherent scattering in multi-harmonic light microscopy. Biophys J 2001; 80:1568-74. [PMID: 11222317 PMCID: PMC1301348 DOI: 10.1016/s0006-3495(01)76129-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
By focusing a pulsed laser beam into a sample, harmonic up-conversion can be generated as well as multi-photon excited fluorescence. Whereas multi-photon excited fluorescence microscopy is well established, the use of multi-harmonic generation for three-dimensional image contrast is very recent. Both techniques can provide similar resolution and, for adequate radiating source density, comparable signal levels, allowing them to be combined in a single versatile instrument. However, harmonic generation differs fundamentally from fluorescence generation in that it is coherent and produces radiation patterns that are highly sensitive to phase. As such, multi-harmonic generation microscopy provides a unique window into molecular spatial organization that is inaccessible to fluorescence.
Collapse
Affiliation(s)
- L Moreaux
- Laboratoire de Neurophysiologie INSERM EPI 00-02, ESPCI, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Khatchatouriants A, Lewis A, Rothman Z, Loew L, Treinin M. GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans. Biophys J 2000; 79:2345-52. [PMID: 11053114 PMCID: PMC1301122 DOI: 10.1016/s0006-3495(00)76480-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Electrophysiology of the nematode Caenorhabditis elegans has the potential to bridge the wealth of information on the molecular biology and anatomy of this organism with the responses of selected cells and cellular neural networks associated with a behavioral response. In this paper we report that the nonlinear optical phenomenon of second harmonic generation (SHG) can be detected using green fluorescent protein (GFP) chimeras expressed in selected cells of living animals. Alterations in the SHG signal as a result of receptor ligand interactions and mechanical stimulation of the mechanosensory cells indicate that this signal is very sensitive to membrane potential. The results suggest that this approach to membrane potential measurements in C. elegans and in other biological systems could effectively couple data on selective locations within specific cells with functional responses that are associated with behavioral and sensory processes.
Collapse
Affiliation(s)
- A Khatchatouriants
- Division of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
38
|
Schaller RD, Roth C, Raulet DH, Saykally RJ. Near-field Second Harmonic Imaging of Granular Membrane Structures in Natural Killer Cells. J Phys Chem B 2000. [DOI: 10.1021/jp000276t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard D. Schaller
- Department of Chemistry, University of California, Berkeley, CA, 94720 and Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720
| | - Claude Roth
- Department of Chemistry, University of California, Berkeley, CA, 94720 and Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720
| | - David H. Raulet
- Department of Chemistry, University of California, Berkeley, CA, 94720 and Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720
| | - Richard J. Saykally
- Department of Chemistry, University of California, Berkeley, CA, 94720 and Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720
| |
Collapse
|
39
|
Campagnola PJ, Wei MD, Lewis A, Loew LM. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys J 1999; 77:3341-9. [PMID: 10585956 PMCID: PMC1300605 DOI: 10.1016/s0006-3495(99)77165-1] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By adapting a laser scanning microscope with a titanium sapphire femtosecond pulsed laser and transmission optics, we are able to produce live cell images based on the nonlinear optical phenomenon of second harmonic generation (SHG). Second harmonic imaging (SHIM) is an ideal method for probing membranes of living cells because it offers the high resolution of nonlinear optical microscopy with the potential for near-total avoidance of photobleaching and phototoxicity. The technique has been implemented on three cell lines labeled with membrane-staining dyes that have large nonlinear optical coefficients. The images can be obtained within physiologically relevant time scales. Both achiral and chiral dyes were used to compare image formation for the case of single- and double-leaflet staining, and it was found that chirality plays a significant role in the mechanism of contrast generation. It is also shown that SHIM is highly sensitive to membrane potential, with a depolarization of 25 mV resulting in an approximately twofold loss of signal intensity.
Collapse
Affiliation(s)
- P J Campagnola
- Department of Physiology and Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, Connecticut 06030 USA.
| | | | | | | |
Collapse
|