1
|
Wang X, Dong F, Zhang S, Yang W, Yu W, Wang Z, Zhang S, Wang J, Ma S, Wu P, Gao Y, Dong J, Tang F, Cheng T, Ema H. TGF-β1 Negatively Regulates the Number and Function of Hematopoietic Stem Cells. Stem Cell Reports 2018; 11:274-287. [PMID: 29937145 PMCID: PMC6067088 DOI: 10.1016/j.stemcr.2018.05.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) plays a role in the maintenance of quiescent hematopoietic stem cells (HSCs) in vivo. We asked whether TGF-β1 controls the cell cycle status of HSCs in vitro to enhance the reconstitution activity. To examine the effect of TGF-β1 on the HSC function, we used an in vitro culture system in which single HSCs divide with the retention of their short- and long-term reconstitution ability. Extensive single-cell analyses showed that, regardless of its concentration, TGF-β1 slowed down the cell cycle progression of HSCs but consequently suppressed their self-renewal potential. Cycling HSCs were not able to go back to quiescence with TGF-β1. This study revealed a negative role of TGF-β1 in the regulation of the HSC number and reconstitution activity. TGF-β1 slows down the cell cycle progression of HSCs Cycling HSCs were unable to go back to the G0 state with TGF-β1 TGF-β1 suppresses the self-renewal potential in HSCs The reduced division rate with TGF-β1 is reversible
Collapse
Affiliation(s)
- Xiaofang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Sen Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Wenying Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Zhao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Shanshan Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Jinhong Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Yun Gao
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ji Dong
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Hideo Ema
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China.
| |
Collapse
|
2
|
Wiesmann A, Searles AE, Pierce LJ, Spangrude GJ. Effects of Caspase Inhibitors on Hematopoietic Engraftment after Short-Term Culture. Cell Transplant 2017. [DOI: 10.3727/000000002783985800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The induction of apoptosis during cytokine-induced proliferation of hematopoietic stem and progenitor cells (HSPC) may result in the loss of hematopoietic function. We tested the ability of several caspase inhibitors to maintain transplantation potential of mouse HSPC during in vitro culture. HSPC were isolated from mouse bone marrow by cell sorting and cultured in the presence of steel factor (STL) with or without various caspase inhibitors. After incubation, cells were harvested and tested for in vitro colony-forming cell (CFC) potential and transplantation activity in both short- and long-term in vivo assays. HSPC required STL to retain CFC activity during a 24-h culture at 37°C, and none of three caspase inhibitors could substitute for STL in this respect. In transplant assays, a twofold higher frequency of animals showed donor-derived blood cells 12 weeks after competitive transplantation of 50 HSPC cultured for 4 h in the presence of STL plus n-acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone (ac-YVAD) compared with 50 cells cultured in STL alone. To evaluate the effect of ac-YVAD on short-term engraftment, 500 cultured HSPC were transplanted into lethally irradiated mice. Animals transplanted with cells cultured in the presence of ac-YVAD showed a higher survival rate and a faster recovery of platelets and hematocrit compared with animals transplanted with cells cultured in STL alone. We conclude that both the short-term and the long-term engraftment potentials of HSPC cultured in the presence of STL + ac-YVAD were superior to that obtained from cells cultured in STL alone.
Collapse
Affiliation(s)
- Anne Wiesmann
- Departments of Oncological Sciences, Pathology, and Medicine, Division of Hematology, University of Utah, Salt Lake City, UT 84132
| | - A. Elena Searles
- Departments of Oncological Sciences, Pathology, and Medicine, Division of Hematology, University of Utah, Salt Lake City, UT 84132
| | - L. Jeanne Pierce
- Departments of Oncological Sciences, Pathology, and Medicine, Division of Hematology, University of Utah, Salt Lake City, UT 84132
| | - Gerald J. Spangrude
- Departments of Oncological Sciences, Pathology, and Medicine, Division of Hematology, University of Utah, Salt Lake City, UT 84132
| |
Collapse
|
3
|
Kim MJ, Kim MH, Kim SA, Chang JS. Age-related Deterioration of Hematopoietic Stem Cells. Int J Stem Cells 2014; 1:55-63. [PMID: 24855509 DOI: 10.15283/ijsc.2008.1.1.55] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2008] [Indexed: 01/12/2023] Open
Abstract
Aging is the process of system deterioration over time in the whole body. Stem cells are self-renewing and therefore have been considered exempt from the aging process. Earlier studies by Hayflick showed that there is an intrinsic limit to the number of divisions that mammalian somatic cells can undergo, and cycling kinetics and ontogeny-related studies strongly suggest that even the most primitive stem cell functions exhibit a certain degree of aging. Despite these findings, studies on the effects of aging on stem cell functions are inconclusive. Here we review the age-related properties of hematopoietic stem cells in terms of intrinsic and extrinsic alterations, proliferative potential, signaling molecules, telomere and telomerase, senescence and cancer issues, regenerative potential and other indications of stem cell aging are discussed in detail.
Collapse
Affiliation(s)
- Mi Jung Kim
- Department of Laboratory Medicine, University of Ulsan College of Medicine ; Cell and Molecular Biology Laboratory, Asan Institute for Life Sciences, AMC
| | - Min Hwan Kim
- Cell and Molecular Biology Laboratory, Asan Institute for Life Sciences, AMC
| | - Seung Ah Kim
- Cell and Molecular Biology Laboratory, Asan Institute for Life Sciences, AMC
| | - Jae Suk Chang
- Department of Orthopedic Surgery, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Lai L, Zhang M, Goldschneider I. Recombinant IL-7/HGFβ efficiently induces transplantable murine hematopoietic stem cells. J Clin Invest 2012; 122:3552-62. [PMID: 22996694 DOI: 10.1172/jci46055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/26/2012] [Indexed: 01/29/2023] Open
Abstract
Difficulty obtaining sufficient hematopoietic stem cells (HSCs) directly from the donor has limited the clinical use of HSC transplantation. Numerous attempts to stimulate the ex vivo growth of purified HSCs with cytokines and growth factors generally have induced only modest increases in HSC numbers while decreasing their in vivo reconstituting ability. We previously developed a recombinant single-chain form of a naturally occurring murine hybrid cytokine of IL-7 and the β chain of hepatocyte growth factor (rIL-7/HGFβ) that stimulates the in vitro proliferation and/or differentiation of common lymphoid progenitors, pre-pro-B cells, and hematopoietic progenitor cells (day 12 spleen colony-forming units) in cultures of mouse BM. Here we used the rIL-7/HGFβ in culture to induce large numbers of HSCs from multiple cell sources, including unseparated BM cells, purified HSCs, CD45- BM cells, and embryonic stem cells. In each instance, most of the HSCs were in the G0 phase of the cell cycle and exhibited reduced oxidative stress, decreased apoptosis, and increased CXCR4 expression. Furthermore, when injected i.v., these HSCs migrated to BM, self-replicated, provided radioprotection, and established long-term hematopoietic reconstitution. These properties were amplified by injection of rIL-7/HGFβ directly into the BM cavity but not by treatment with rIL-7, rHGF, and/or rHGFβ.
Collapse
Affiliation(s)
- Laijun Lai
- Department of Immunology, University of Connecticut, Stem Cell Institute, School of Medicine, Health Center, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
5
|
Matsuoka Y, Sasaki Y, Nakatsuka R, Takahashi M, Iwaki R, Uemura Y, Sonoda Y. Low level of c-kit expression marks deeply quiescent murine hematopoietic stem cells. Stem Cells 2012; 29:1783-91. [PMID: 21898688 DOI: 10.1002/stem.721] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although c-kit is expressed highly on murine hematopoietic stem cells (HSCs) and essential for bone marrow (BM) hematopoiesis, the significance of the high level of expression of c-kit on HSCs was not well determined. We show here that CD150(+) CD48(-) Lineage(-) Sca-1(+) c-kit(+) HSCs in adult BM are distributed within the range of roughly a 20-fold difference in the expression level of c-kit, and that c-kit density correlates with the cycling status of the HSC population. This predisposition is more evident in the BM of mice older than 30 weeks. The HSCs in G(0) phase express a lower level of c-kit both on the cell surface and inside the cells, which cannot be explained by ligand receptor binding and internalization. It is more likely that the low level of c-kit expression is a unique property of HSCs in G(0). Despite functional differences in the c-kit gradient, the HSCs are uniformly hypoxic and accessible to blood perfusion. Therefore, our data indicate the possibility that the hypoxic state of the HSCs is actively regulated, rather than them being passively hypoxic through a simple anatomical isolation from the circulation.
Collapse
Affiliation(s)
- Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Insights into signaling and function of hematopoietic stem cells at the single-cell level. Curr Opin Hematol 2009; 16:255-8. [PMID: 19465850 DOI: 10.1097/moh.0b013e32832c6705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Development of a technique prospectively to isolate hematopoietic stem cells (HSCs) to near homogeneity has enabled clonal analysis and thus converted our understanding of HSCs from conceptual and qualitative to realistic and quantitative. Recent studies have revealed that despite their high proliferation potential, most HSCs are in G0 and enter cell cycle only after a long interval. This dormancy of HSCs, which seems to be important for long-term maintenance of 'stemness', appears to be regulated by the exchange of signals between HSCs and the bone marrow niche. Analysis of intersignaling and intrasignaling events in HSCs in and out of the bone marrow niche has begun. RECENT FINDINGS With the help of advances in confocal microscopy, laser scanning microscopy, and personal computer computational power over the last decade, it has become evident that thrombopoietin/c-Mpl signaling plays a role in HSC self-renewal and AKT-forkhead box O signaling in HSC dormancy. Furthermore, transforming growth factor-beta has been indicated as a candidate niche signal to induce hibernation in HSCs. SUMMARY Understanding of the signaling events between HSCs and niche is critical not only for stem cell biology in general and for transplantation medicine but also for the development of novel cancer therapy.
Collapse
|
7
|
Colvin GA, Dooner MS, Dooner GJ, Sanchez-Guijo FM, Demers DA, Abedi M, Ramanathan M, Chung S, Pascual S, Quesenberry PJ. Stem cell continuum: directed differentiation hotspots. Exp Hematol 2007; 35:96-107. [PMID: 17198878 DOI: 10.1016/j.exphem.2006.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the technique of stem cell-directed differentiation in the context of cell-cycle position. The hypothesis was that stem cells would have different sensitivities to an identical inductive signal through cell-cycle transit and that this would affect the outcome of its progeny. MATERIALS AND METHODS Differentiation of murine marrow lineage(negative)rhodamine-123(low-)Hoechst-33342(low) (LRH) stem cells was determined at different points in cell cycle under stimulation by thrombopoietin, flt3 ligand, and steel factor. LRH stem cells were subcultured in granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and steel factor at different points in cell cycle and differentiation determined 14 days later. RESULTS There was a significant, reproducible, and pronounced reversible increase in differentiation to megakaryocytes in early S-phase and to nonproliferative granulocytes in mid S-phase. Megakaryocyte hotspots also were seen on a clonal basis. Elevations of the transcription factor FOG-1 were seen at the hotspot along with increases in Nfe2 and Fli1. CONCLUSIONS We show that the potential of marrow stem cells to differentiate changes reversibly with cytokine-induced cell-cycle transit, suggesting that stem cell regulation is not based on the classic hierarchical model, but instead on a functional continuum. We propose that there is a tight linkage of commitment to a lineage and a particular phase of cell cycle. Thus, windows of vulnerability for commitment can open and close depending on the phase of cell cycle. These data indicate that stem cell differentiation occurs on a cell-cycle-related continuum with fluctuating windows of transcriptional opportunity.
Collapse
Affiliation(s)
- Gerald A Colvin
- Department of Research, Roger Williams Medical Center, Providence, RI 02908-4735, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ruscetti FW, Akel S, Bartelmez SH. Autocrine transforming growth factor-beta regulation of hematopoiesis: many outcomes that depend on the context. Oncogene 2005; 24:5751-63. [PMID: 16123808 DOI: 10.1038/sj.onc.1208921] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a pleiotropic regulator of all stages of hematopoieis. The three mammalian isoforms (TGF-beta1, 2 and 3) have distinct but overlapping effects on hematopoiesis. Depending on the differentiation stage of the target cell, the local environment and the concentration and isoform of TGF-beta, in vivo or in vitro, TGF-beta can be pro- or antiproliferative, pro- or antiapoptotic, pro- or antidifferentiative and can inhibit or increase terminally differentiated cell function. TGF-beta is a major regulator of stem cell quiescence, at least in vitro. TGF-beta can act directly or indirectly through effects on the bone marrow microenvironment. In addition, paracrine and autocrine actions of TGF-beta have overlapping but distinct regulatory effects on hematopoietic stem/progenitor cells. Since TGF-beta can act in numerous steps in the hematopoietic cascade, loss of function mutations in hematopoeitic stem cells (HSC) have different effects on hematopoiesis than transient blockade of autocrine TGF-beta1. Transient neutralization of autocrine TGF-beta in HSC has therapeutic potential. In myeloid and erythroid leukemic cells, autocrine TGF-beta1 and/or its Smad signals controls the ability of these cells to respond to various differentiation inducers, suggesting that this pathway plays a role in determining the cell fate of leukemic cells.
Collapse
Affiliation(s)
- Francis W Ruscetti
- Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
9
|
Ahmed F, Ings SJ, Pizzey AR, Blundell MP, Thrasher AJ, Ye HT, Fahey A, Linch DC, Yong KL. Impaired bone marrow homing of cytokine-activated CD34+ cells in the NOD/SCID model. Blood 2004; 103:2079-87. [PMID: 14630817 DOI: 10.1182/blood-2003-06-1770] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The reduced engraftment potential of hematopoietic stem/progenitor cells (HSPCs) after exposure to cytokines may be related to the impaired homing ability of actively cycling cells. We tested this hypothesis by quantifying the short-term homing of human adult CD34+ cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID) animals. We show that the loss of engraftment ability of cytokine-activated CD34+ cells is associated with a reduction in homing of colony-forming cells (CFCs) to bone marrow (BM) at 24 hours after transplantation (from median 2.8% [range, 1.9%-6.1%] to 0.3% [0.0%-0.7%]; n = 3; P < .01), coincident with an increase in CFC accumulation in the lungs (P < .01). Impaired BM homing of cytokine-activated cells was not restored by using sorted cells in G0G1 or by inducing cell cycle arrest at the G1/S border. Blocking Fas ligation in vivo did not increase the BM homing of cultured cells. Finally, we tested cytokine combinations or culture conditions previously reported to restore the engraftment of cultured cells but did not find that any of these was able to reverse the changes in homing behavior of cytokine-exposed cells. We suggest that these changes in homing and, as a consequence, engraftment result from the increased migratory capacity of infused activated cells, leading to the loss of selectivity of the homing process.
Collapse
Affiliation(s)
- Forhad Ahmed
- Department of Haematology, Royal Free and University College Medical School, London, WC1E 6HX, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
OBJECTIVE Blood cells from patients with paroxysmal nocturnal hemoglobinuria lack glycosyl phosphatidylinositol (GPI)-linked proteins, due to a somatic mutation in the X-linked PIGA gene. It is believed that clonal expansion of PIGA- blood cells is due to a survival advantage in the hostile marrow environment of aplastic anemia. Here we investigated the effects of inhibitory cytokines in mice genetically engineered to have blood cells deficient in GPI-linked proteins. MATERIALS AND METHODS The effect of inhibitory cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], macrophage inflammatory protein-1 alpha [MIP-1alpha], and transforming growth factor-beta1 [TGF-beta1]) was investigated, using clonogenic assays, competitive repopulation, and in vivo induction of proinflammatory cytokines by double-stranded RNA. The expression of Fas on progenitor cells and its up-regulation by inhibitory cytokines were analyzed by flow cytometry. RESULTS TNF-alpha, IFN-gamma, MIP-1alpha, and TGF-beta1 suppressed colony formation in a dose-dependent fashion that was similar for PIGA+ and PIGA- blood bone marrow cells. Competitive repopulation of bone marrow cells cultured in IFN-gamma and TNF-alpha resulted in a comparable ability of PIGA+ and PIGA- hematopoietic stem cells to reconstitute hematopoiesis. Fas expression was minimal on PIGA+ and PIGA- progenitor cells and was up-regulated to the same extent in response to IFN-gamma and TNF-alpha as assessed by Fas antibody-mediated apoptosis. Similarly, in vivo induction of proinflammatory cytokines by double-stranded RNA had no effect on the proportion of circulating PIGA- blood cells. CONCLUSIONS These results indicate that PIGA+ and PIGA- hematopoietic progenitor cells respond similarly to inhibitory cytokines, suggesting that other factors are responsible for the clonal expansion of paroxysmal nocturnal hemoglobinuria cells.
Collapse
Affiliation(s)
- Shashikant Kulkarni
- Department of Internal Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, Mo. 63110, USA
| | | |
Collapse
|
11
|
Abstract
Although homing of hematopoietic cells to the bone marrow was described as a functional concept several decades ago, the analysis of its components and the molecular pathways involved remains an ongoing challenge. Because of the biologic and clinical significance of homing, a resurgence of studies delving into the mechanistic and molecular aspects of homing is appearing. These recent studies, highlighted in this brief review, emphasize newly appreciated roles of some known regulators and their interacting partners in homing, although some novel regulators also seem to enter the scene. The homing field still has disparities in experimental design and evaluation of data; however, the ever-expanding search for new information, together with the application of novel technologies, especially when combinations of approaches are used, will certainly bring our understanding of homing to a new level.
Collapse
|
12
|
Abstract
Hematopoiesis has been considered hierarchical in nature, but recent data suggest that the system is not hierarchical and is, in fact, quite functionally plastic. Existing data indicate that engraftment and progenitor phenotypes vary inversely with cell cycle transit and that gene expression also varies widely. These observations suggest that there is no progenitor/stem cell hierarchy, but rather a reversible continuum. This may, in turn, be dependent on shifting chromatin and gene expression with cell cycle transit. If the phenotype of these primitive marrow cells changes from engraftable stem cell to progenitor and back to engraftable stem cell with cycle transit, then this suggests that the identity of the engraftable stem cell may be partially masked in nonsynchronized marrow cell populations. A general model indicates a marrow cell that can continually change its surface receptor expression and thus responds to external stimuli differently at different points in the cell cycle.
Collapse
Affiliation(s)
- Peter J Quesenberry
- Center for Stem Cell Biology, Roger Williams Medical Center, Providence, RI 02908-4735, USA.
| | | | | |
Collapse
|
13
|
Luo Y, Cai J, Liu Y, Xue H, Chrest FJ, Wersto RP, Rao M. Microarray analysis of selected genes in neural stem and progenitor cells. J Neurochem 2002; 83:1481-97. [PMID: 12472902 DOI: 10.1046/j.1471-4159.2002.01260.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To access and compare gene expression in fetal neuroepithelial cells (NEPs) and progenitor cells, we have used microarrays containing approximately 500 known genes related to cell cycle regulation, apoptosis, growth and differentiation. We have identified 152 genes that are expressed in NEPs and 209 genes expressed by progenitor cells. The majority of genes (141) detected in NEPs are also present in progenitor populations. There are 68 genes specifically expressed in progenitors with little or no expression in NEPs, and a few genes that appear to be present exclusively in NEPs. Using cell sorting, RT-PCR, in situ hybridization or immunocytochemistry, we have examined the segregation of expression to neuronal and glial progenitors, and identified several that appeared to be enriched in neuronal (e.g. CDK5, neuropilin, EphrinB2, FGF11) or glial (e.g. CXCR4, RhoC, CD44, tenascin C) precursors. Our data provide a first report of gene expression profiles of neural stem and progenitor cells at early stages of development, and provide evidence for the potential roles of specific cell cycle regulators, chemokines, cytokines and extracellular matrix molecules in neural development and lineage segregation.
Collapse
Affiliation(s)
- Yongquan Luo
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, Room 4E02, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Moore MAS. Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing. J Cell Biochem 2002; 38:29-38. [PMID: 12046847 DOI: 10.1002/jcb.10105] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hematopoietic stem cell (HSC) is an attractive target for gene therapy of genetic diseases of the immune and hematopoietic system, and for drug-resistance strategies in which genes conferring resistance to a variety of chemotherapeutic agents can be transduced. Stem cells are relatively easy to obtain; e.g., by marrow aspiration or G-CSF mobilization into the peripheral blood, and can be enriched e.g., by the use of anti-CD34 + monoclonal antibody. For conventional retroviral transduction, normally quiescent HSC must be activated into the cell cycle by priming with appropriate cytokines, and it has been critical to identify cytokine combinations that preserve the self-renewal capacity of long-term repopulating HSC. It has become apparent that strategies designed to optimize HSC cycling and proviral integration can compromise the capacity of transduced HSC to compete in vivo against endogenous HSC or HSC that have not been activated into cell cycle. Lentiviral vectors can integrate genes into non-cycling cells but there is an increased efficiency of transduction if Go HSC are activated into G1-phase of the cell cycle. This reduced efficiency of long-term engraftment of ex vivo cultured HSC may be due to impaired self-renewal capacity or reduced marrow homing efficiency. The latter may be attributed to down modulation of chemokine receptors necessary for chemotactic homing to the marrow. Alternatively, or in addition, there may be down modulation of (1) HSC adhesion molecules necessary for endothelial adhesion and egress from the circulation: (2) metalloproteinases secreted by HSC that facilitate their migration through extracellular matrix and promote release of critical soluble regulatory factors in the marrow microenvironment. A more controversial view is that cell death pathways, for example those involving FasR (CD95) may be activated in cycling HSC, resulting in their selective destruction upon transplantation and localization to sites rich in Fas ligand such as the liver.
Collapse
Affiliation(s)
- Malcolm A S Moore
- Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute for Cancer Research, New York, New York 10021, USA.
| |
Collapse
|
15
|
Noach EJK, Ausema A, Dillingh JH, Dontje B, Weersing E, Akkerman I, Vellenga E, de Haan G. Growth factor treatment prior to low-dose total body irradiation increases donor cell engraftment after bone marrow transplantation in mice. Blood 2002; 100:312-7. [PMID: 12070042 DOI: 10.1182/blood.v100.1.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-toxicity conditioning regimens prior to bone marrow transplantation (BMT) are widely explored. We developed a new protocol using hematopoietic growth factors prior to low-dose total body irradiation (TBI) in recipients of autologous transplants to establish high levels of long-term donor cell engraftment. We hypothesized that treatment of recipient mice with growth factors would selectively deplete stem cells, resulting in successful long-term donor cell engraftment after transplantation. Recipient mice were treated for 1 or 7 days with growth factors (stem cell factor [SCF] plus interleukin 11 [IL-11], SCF plus Flt-3 ligand [FL], or granulocyte colony-stimulating factor [G-CSF]) prior to low-dose TBI (4 Gy). Donor cell chimerism was measured after transplantation of congenic bone marrow cells. High levels of donor cell engraftment were observed in recipients pretreated for 7 days with SCF plus IL-11 or SCF plus FL. Although 1-day pretreatments with these cytokines initially resulted in reduced donor cell engraftment, a continuous increase in time was observed, finally resulting in highly significantly increased levels of donor cell contribution. In contrast, G-CSF treatment showed no beneficial effects on long-term engraftment. In vitro stem cell assays demonstrated the effect of cytokine treatment on stem cell numbers. Donor cell engraftment and number of remaining recipient stem cells after TBI were strongly inversely correlated, except for groups treated for 1 day with SCF plus IL-11 or SCF plus FL. We conclude that long-term donor cell engraftment can be strongly augmented by treatment of recipient mice prior to low-dose TBI with hematopoietic growth factors that act on primitive cells.
Collapse
Affiliation(s)
- Estelle J K Noach
- Department of Stem Cell Biology, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Glimm H, Tang P, Clark-Lewis I, von Kalle C, Eaves C. Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor-1 enhances their ability to engraft NOD/SCID mice. Blood 2002; 99:3454-7. [PMID: 11964317 DOI: 10.1182/blood.v99.9.3454] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ex vivo proliferation of hematopoietic stem cells (HSCs) is important for cellular and gene therapy but is limited by the observation that HSCs do not engraft as they transit S/G(2)/M. Recently identified candidate inhibitors of human HSC cycling are transforming growth factor-beta(1) (TGF-beta(1)) and stroma-derived factor-1 (SDF-1). To determine the ability of these factors to alter the transplantability of human HSCs proliferating in vitro, lin(-) cord blood cells were first cultured for 96 hours in serum-free medium containing Flt3 ligand, Steel factor, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. These cells were then transferred to medium containing Steel factor and thrombopoietin with or without SDF-1 and/or TGF-beta(1) for 48 hours. Exposure to SDF-1 but not TGF-beta(1) significantly increased (> 2-fold) the recovery of HSCs able to repopulate nonobese diabetic/severe combined immunodeficiency mice. These results suggest new strategies for improving the engraftment activity of HSCs stimulated to proliferate ex vivo.
Collapse
Affiliation(s)
- Hanno Glimm
- Terry Fox Laboratory, British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
17
|
Bryder D, Ramsfjell V, Dybedal I, Theilgaard-Mönch K, Högerkorp CM, Adolfsson J, Borge OJ, Jacobsen SEW. Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J Exp Med 2001; 194:941-52. [PMID: 11581316 PMCID: PMC2193477 DOI: 10.1084/jem.194.7.941] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.
Collapse
Affiliation(s)
- David Bryder
- Department of Stem Cell Biology, Institute of Laboratory Medicine, University Hospital of Lund, 221 84 Lund, Sweden
| | - Veslemøy Ramsfjell
- Department of Stem Cell Biology, Institute of Laboratory Medicine, University Hospital of Lund, 221 84 Lund, Sweden
| | - Ingunn Dybedal
- Department of Stem Cell Biology, Institute of Laboratory Medicine, University Hospital of Lund, 221 84 Lund, Sweden
| | - Kim Theilgaard-Mönch
- The Granulocyte Research Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carl-Magnus Högerkorp
- Department of Stem Cell Biology, Institute of Laboratory Medicine, University Hospital of Lund, 221 84 Lund, Sweden
| | - Jörgen Adolfsson
- Department of Stem Cell Biology, Institute of Laboratory Medicine, University Hospital of Lund, 221 84 Lund, Sweden
| | - Ole Johan Borge
- Department of Stem Cell Biology, Institute of Laboratory Medicine, University Hospital of Lund, 221 84 Lund, Sweden
| | - Sten Eirik W. Jacobsen
- Department of Stem Cell Biology, Institute of Laboratory Medicine, University Hospital of Lund, 221 84 Lund, Sweden
| |
Collapse
|
18
|
Takatoku M, Sellers S, Agricola BA, Metzger ME, Kato I, Donahue RE, Dunbar CE. Avoidance of stimulation improves engraftment of cultured and retrovirally transduced hematopoietic cells in primates. J Clin Invest 2001; 108:447-55. [PMID: 11489938 PMCID: PMC209360 DOI: 10.1172/jci12593] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent reports suggest that cells in active cell cycle have an engraftment defect compared with quiescent cells. We used nonhuman primates to investigate this finding, which has direct implications for clinical transplantation and gene therapy applications. Transfer of rhesus CD34(+) cells to culture in stem cell factor (SCF) on the CH-296 fibronectin fragment (FN) after 4 days of culture in stimulatory cytokines maintained cell viability but decreased cycling. Using retroviral marking with two different gene transfer vectors, we compared the engraftment potential of cytokine-stimulated cells versus those transferred to nonstimulatory conditions (SCF on FN alone) before reinfusion. In vivo competitive repopulation studies showed that the level of marking originating from the cells continued in culture for 2 days with SCF on FN following a 4-day stimulatory transduction was significantly higher than the level of marking coming from cells transduced for 4 days and reinfused without the 2-day culture under nonstimulatory conditions. We observed stable in vivo overall gene marking levels of up to 29%. This approach may allow more efficient engraftment of transduced or ex vivo expanded cells by avoiding active cell cycling at the time of reinfusion.
Collapse
Affiliation(s)
- M Takatoku
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Ruscetti FW, Bartelmez SH. Transforming growth factor beta, pleiotropic regulator of hematopoietic stem cells: potential physiological and clinical relevance. Int J Hematol 2001; 74:18-25. [PMID: 11530800 DOI: 10.1007/bf02982545] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transforming growth factor beta (TGF-beta) is a pleiotropic regulator of all stages of hematopoieis. Depending on the differentiation stage of the target cell, the local environment, and the concentration of TGF-beta, TGF-beta can be proproliferative or antiproliferative, proapoptotic or antiapoptotic, and/or prodifferentiative or antidifferentiative. TGF-beta is the major regulator of stem cell quiescence and can act directly or indirectly through effects on the marrow microenvironment. In addition, paracrine and autocrine actions of TGF-beta have overlapping but distinct regulatory effects on hematopoietic stem/progenitor cells. Neutralization of autocrine TGF-beta has therapeutic potential.
Collapse
Affiliation(s)
- F W Ruscetti
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Maryland 21702-1201, USA.
| | | |
Collapse
|
20
|
Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not reenter G0. Blood 2000. [DOI: 10.1182/blood.v96.13.4185.h8004185_4185_4193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An understanding of mechanisms regulating hematopoietic stem cell engraftment is of pivotal importance to the clinical use of cultured and genetically modified transplants. Human cord blood (CB) cells with lymphomyeloid repopulating activity in NOD/SCID mice were recently shown to undergo multiple self-renewal divisions within 6 days in serum-free cultures containing Flt3-ligand, Steel factor, interleukin 3 (IL-3), IL-6, and granulocyte colony-stimulating factor. The present study shows that, on the fifth day, the transplantable stem cell activity is restricted to the G1fraction, even though both colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-ICs) in the same cultures are approximately equally distributed between G0/G1and S/G2/M. Interestingly, the G0 cells defined by their low levels of Hoechst 33342 and Pyronin Y staining, and reduced Ki67 and cyclin D expression (representing 21% of the cultured CB population) include some mature erythroid CFCs but very few primitive CFCs, LTC-ICs, or repopulating cells. Although these findings suggest a cell cycle–associated change in in vivo stem cell homing, the cultured G0/G1 and S/G2/M CD34+ CB cells exhibited no differences in levels of expression of VLA-4, VLA-5, or CXCR-4. Moreover, further incubation of these cells for 1 day in the presence of a concentration of transforming growth factor β1 that increased the G0/G1 fraction did not enhance detection of repopulating cells. The demonstration of a cell cycle–associated mechanism that selectively silences the transplantability of proliferating human hematopoietic stem cells poses both challenges and opportunities for the future improvement of ex vivo–manipulated grafts.
Collapse
|
21
|
Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not reenter G0. Blood 2000. [DOI: 10.1182/blood.v96.13.4185] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
An understanding of mechanisms regulating hematopoietic stem cell engraftment is of pivotal importance to the clinical use of cultured and genetically modified transplants. Human cord blood (CB) cells with lymphomyeloid repopulating activity in NOD/SCID mice were recently shown to undergo multiple self-renewal divisions within 6 days in serum-free cultures containing Flt3-ligand, Steel factor, interleukin 3 (IL-3), IL-6, and granulocyte colony-stimulating factor. The present study shows that, on the fifth day, the transplantable stem cell activity is restricted to the G1fraction, even though both colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-ICs) in the same cultures are approximately equally distributed between G0/G1and S/G2/M. Interestingly, the G0 cells defined by their low levels of Hoechst 33342 and Pyronin Y staining, and reduced Ki67 and cyclin D expression (representing 21% of the cultured CB population) include some mature erythroid CFCs but very few primitive CFCs, LTC-ICs, or repopulating cells. Although these findings suggest a cell cycle–associated change in in vivo stem cell homing, the cultured G0/G1 and S/G2/M CD34+ CB cells exhibited no differences in levels of expression of VLA-4, VLA-5, or CXCR-4. Moreover, further incubation of these cells for 1 day in the presence of a concentration of transforming growth factor β1 that increased the G0/G1 fraction did not enhance detection of repopulating cells. The demonstration of a cell cycle–associated mechanism that selectively silences the transplantability of proliferating human hematopoietic stem cells poses both challenges and opportunities for the future improvement of ex vivo–manipulated grafts.
Collapse
|