1
|
Sáez PL, Vallejos V, Sancho-Knapik D, Cavieres LA, Ramírez CF, Bravo LA, Javier Peguero-Pina J, Gil-Pelegrín E, Galmés J. Leaf hydraulic properties of Antarctic plants: effects of growth temperature and its coordination with photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2013-2026. [PMID: 38173309 DOI: 10.1093/jxb/erad474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
One of the well-documented effects of regional warming in Antarctica is the impact on flora. Warmer conditions modify several leaf anatomical traits of Antarctic vascular plants, increasing photosynthesis and growth. Given that CO2 and water vapor partially share their diffusion pathways through the leaf, changes in leaf anatomy could also affect the hydraulic traits of Antarctic plants. We evaluated the effects of growth temperature on several anatomical and hydraulic parameters of Antarctic plants and assessed the trait co-variation between these parameters and photosynthetic performance. Warmer conditions promoted an increase in leaf and whole plant hydraulic conductivity, correlating with adjustments in carbon assimilation. These adjustments were consistent with changes in leaf vasculature, where Antarctic species displayed different strategies. At higher temperature, Colobanthus quitensis decreased the number of leaf xylem vessels, but increased their diameter. In contrast, in Deschampsia antarctica the diameter did not change, but the number of vessels increased. Despite this contrasting behavior, some traits such as a small leaf diameter of vessels and a high cell wall rigidity were maintained in both species, suggesting a water-conservation response associated with the ability of Antarctic plants to cope with harsh environments.
Collapse
Affiliation(s)
- Patricia L Sáez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
| | - Valentina Vallejos
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Lohengrin A Cavieres
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Constanza F Ramírez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - José Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Eustaquio Gil-Pelegrín
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, INAGEA-Universitat de les Illes Balears, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
2
|
Torres-Ruiz JM, Cochard H, Delzon S, Boivin T, Burlett R, Cailleret M, Corso D, Delmas CEL, De Caceres M, Diaz-Espejo A, Fernández-Conradi P, Guillemot J, Lamarque LJ, Limousin JM, Mantova M, Mencuccini M, Morin X, Pimont F, De Dios VR, Ruffault J, Trueba S, Martin-StPaul NK. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. THE NEW PHYTOLOGIST 2024; 241:984-999. [PMID: 38098153 DOI: 10.1111/nph.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.
Collapse
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Sylvain Delzon
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | | - Regis Burlett
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Maxime Cailleret
- INRAE, Aix-Marseille Université, UMR RECOVER, Aix-en-Provence, 13100, France
| | - Déborah Corso
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140, Villenave d'Ornon, France
| | | | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41012, Spain
| | | | - Joannes Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, 34394, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, 34394, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, 05508-060, São Paulo, Brazil
| | - Laurent J Lamarque
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, G9A 5H7, Québec, Canada
| | | | - Marylou Mantova
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Xavier Morin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34394, France
| | | | - Victor Resco De Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lleida, 25198, Spain
- JRU CTFC-AGROTECNIO-CERCA Center, Lleida, 25198, Spain
| | | | - Santiago Trueba
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | |
Collapse
|
3
|
Martínez-Vilalta J, García-Valdés R, Jump A, Vilà-Cabrera A, Mencuccini M. Accounting for trait variability and coordination in predictions of drought-induced range shifts in woody plants. THE NEW PHYTOLOGIST 2023; 240:23-40. [PMID: 37501525 DOI: 10.1111/nph.19138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Functional traits offer a promising avenue to improve predictions of species range shifts under climate change, which will entail warmer and often drier conditions. Although the conceptual foundation linking traits with plant performance and range shifts appears solid, the predictive ability of individual traits remains generally low. In this review, we address this apparent paradox, emphasizing examples of woody plants and traits associated with drought responses at the species' rear edge. Low predictive ability reflects the fact not only that range dynamics tend to be complex and multifactorial, as well as uncertainty in the identification of relevant traits and limited data availability, but also that trait effects are scale- and context-dependent. The latter results from the complex interactions among traits (e.g. compensatory effects) and between them and the environment (e.g. exposure), which ultimately determine persistence and colonization capacity. To confront this complexity, a more balanced coverage of the main functional dimensions involved (stress tolerance, resource use, regeneration and dispersal) is needed, and modelling approaches must be developed that explicitly account for: trait coordination in a hierarchical context; trait variability in space and time and its relationship with exposure; and the effect of biotic interactions in an ecological community context.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Raúl García-Valdés
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), E25280, Solsona, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, School of Experimental Sciences and Technology, Rey Juan Carlos University, E28933, Móstoles, Madrid, Spain
| | - Alistair Jump
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Albert Vilà-Cabrera
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, E08010, Barcelona, Spain
| |
Collapse
|
4
|
Huo J, Shi Y, Chen J, Zhang H, Feng L, Zhao Y, Zhang Z. Hydraulic trade-off and coordination strategies mediated by leaf functional traits of desert shrubs. FRONTIERS IN PLANT SCIENCE 2022; 13:938758. [PMID: 36388496 PMCID: PMC9662791 DOI: 10.3389/fpls.2022.938758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Desert shrubs play important roles in desertification control and vegetation restoration, which are particularly affected by droughts caused by climate change. However, the hydraulic strategies associated with hydraulic functional traits of desert shrubs remain unclear. Here, eight desert shrub species with different life forms and morphologies were selected for a common garden experiment at the southeast edge of the Tengger Desert in northern China to study the hydraulic strategies mediated by leaf hydraulic functional traits. Diurnal leaf water potential change, leaf hydraulic efficiency and safety, hydraulic safety margin, hydraulic capacitance, and water potential and relative water content at the turgor loss point were observed to significantly differ among species, suggesting that leaf hydraulic functional traits were strongly associated with species even when living in the same environment. Additionally, shrubs with greater leaf hydraulic efficiency had lower midday leaf water potential and leaf hydraulic safety, suggesting that leaf hydraulic efficiency had a strong trade-off with hydraulic safety and minimum leaf water potential, whereas there was also a coordination between leaf hydraulic safety and the leaf minimal water potential. Moreover, shrubs with higher leaf hydraulic capacitance had greater hydraulic safety margins, indicating coordination between leaf hydraulic capacitance and hydraulic safety margin. Overall, this study indicated that minimal daily leaf water potential, as an easily measured parameter, may be used preliminarily to predict leaf hydraulic conductivity and the resistance to embolism of desert shrubs, providing critical insights into hydraulic trade-off and coordination strategies for native shrubs as priority species in desert vegetation restoration and reconstruction.
Collapse
Affiliation(s)
- Jianqiang Huo
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafei Shi
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiajia Chen
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Li Feng
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Zhao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Zhishan Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
5
|
Karatassiou M, Karaiskou P, Verykouki E, Rhizopoulou S. Hydraulic Response of Deciduous and Evergreen Broadleaved Shrubs, Grown on Olympus Mountain in Greece, to Vapour Pressure Deficit. PLANTS 2022; 11:plants11081013. [PMID: 35448741 PMCID: PMC9030577 DOI: 10.3390/plants11081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
Abstract
In this study, leaf hydraulic functionality of co-occurring evergreen and deciduous shrubs, grown on Olympus Mountain, has been compared. Four evergreen species (Arbutus andrachne, Arbutus unedo, Quercus ilex and Quercus coccifera) and four deciduous species (Carpinus betulus, Cercis siliquastrum, Coronilla emeroides and Pistacia terebinthus) were selected for this study. Predawn and midday leaf water potential, transpiration, stomatal conductance, leaf temperature and leaf hydraulic conductance were estimated during the summer period. The results demonstrate different hydraulic tactics between the deciduous and evergreen shrubs. Higher hydraulic conductance and lower stomatal conductance were obtained in deciduous plants compared to the evergreens. Additionally, positive correlations were detected between water potential and transpiration in the deciduous shrubs. The seasonal leaf hydraulic conductance declined in both deciduous and evergreens under conditions of elevated vapor pressure deficit during the summer; however, at midday, leaf water potential reached comparable low values, but the deciduous shrubs exhibited higher hydraulic conductance compared to the evergreens. It seems likely that hydraulic traits of the coexisting evergreen and deciduous plants indicate water spending and saving tactics, respectively; this may also represent a limit to drought tolerance of these species grown in a natural environment, which is expected to be affected by global warming.
Collapse
Affiliation(s)
- Maria Karatassiou
- Laboratory of Rangeland Ecology, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-992302
| | - Panagiota Karaiskou
- Laboratory of Rangeland Ecology, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Verykouki
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece;
| | - Sophia Rhizopoulou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| |
Collapse
|
6
|
Sánchez-Pinillos M, D'Orangeville L, Boulanger Y, Comeau P, Wang J, Taylor AR, Kneeshaw D. Sequential droughts: A silent trigger of boreal forest mortality. GLOBAL CHANGE BIOLOGY 2022; 28:542-556. [PMID: 34606657 DOI: 10.1111/gcb.15913] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Despite great concern for drought-driven forest mortality, the effects of frequent low-intensity droughts have been largely overlooked in the boreal forest because of their negligible impacts over the short term. In this study, we used data from 6876 permanent plots distributed across most of the Canadian boreal zone to assess the effects of repeated low-intensity droughts on forest mortality. Specifically, we compared the relative impact of sequential years under low-intensity dry conditions with the effects of variables related to the intensity of dry conditions, stand characteristics, and local climate. Then, we searched for thresholds in forest mortality as a function of the number of years between two forest surveys affected by dry conditions of any intensity. Our results showed that, in general, frequent low-intensity dry conditions had stronger effects on forest mortality than the intensity of the driest conditions in the plot. Frequent low-intensity dry conditions acted as an inciting factor of forest mortality exacerbated by stand characteristics and environmental conditions. Overall, the mortality of forests dominated by shade-tolerant conifers was significantly and positively related to frequent low-intensity dry conditions, supporting, in some cases, the existence of thresholds delimiting contrasting responses to drought. In mixtures with broadleaf species, however, sequential dry conditions had a negligible impact. The effects of frequent dry conditions on shade-intolerant forests mainly depended on local climate, inciting or mitigating the mortality of forests located in wet places and dominated by broadleaf species or jack pine, respectively. Our results highlight the importance of assessing not only climate-driven extreme events but also repeated disturbances of low intensity. In the long term, the smooth response of forests to dry conditions might abruptly change leading to disproportional mortality triggered by accumulated stress conditions. Forest and wildlife managers should consider the cumulative effects of climate change on mortality to avoid shortfalls in timber and habitat.
Collapse
Affiliation(s)
- Martina Sánchez-Pinillos
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Loïc D'Orangeville
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Yan Boulanger
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Quebec, Canada
| | - Phil Comeau
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jiejie Wang
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Anthony R Taylor
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - Daniel Kneeshaw
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Using Optimisation Meta-Heuristics for the Roughness Estimation Problem in River Flow Analysis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change threats make it difficult to perform reliable and quick predictions on floods forecasting. This gives rise to the need of having advanced methods, e.g., computational intelligence tools, to improve upon the results from flooding events simulations and, in turn, design best practices for riverbed maintenance. In this context, being able to accurately estimate the roughness coefficient, also known as Manning’s n coefficient, plays an important role when computational models are employed. In this piece of research, we propose an optimal approach for the estimation of ‘n’. First, an objective function is designed for measuring the quality of ‘candidate’ Manning’s coefficients relative to specif cross-sections of a river. Second, such function is optimised to return coefficients having the highest quality as possible. Five well-known meta-heuristic algorithms are employed to achieve this goal, these being a classic Evolution Strategy, a Differential Evolution algorithm, the popular Covariance Matrix Adaptation Evolution Strategy, a classic Particle Swarm Optimisation and a Bayesian Optimisation framework. We report results on two real-world case studies based on the Italian rivers ‘Paglia’ and ‘Aniene’. A comparative analysis between the employed optimisation algorithms is performed and discussed both empirically and statistically. From the hydrodynamic point of view, the experimental results are satisfactory and produced within significantly less computational time in comparison to classic methods. This shows the suitability of the proposed approach for optimal estimation of the roughness coefficient and, in turn, for designing optimised hydrological models.
Collapse
|
8
|
Xylem and Phloem Formation Dynamics in Quercus ilex L. at a Dry Site in Southern Italy. FORESTS 2021. [DOI: 10.3390/f12020188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Quercus ilex L. dieback has been recently reported at numerous Mediterranean sites. Wood and phloem formation dynamics and tree-ring series of anatomical traits can be used to evaluate growth conditions of trees. We monitored cambial activity in Q. ilex trees growing at a site in southern Italy in order to assess how xylem and phloem production are affected by harsh seasonal climatic variation during a dry year. We followed xylogenesis by counting the number of cambial cells and detecting the occurrence of post-cambial cells throughout the year. As phloem did not show clear growth rings and boundaries between them, we followed the development of phloem fibres—their morphological traits during development and the distance from the cambium served as a reference point to evaluate the phloem production during the year. We detected a multimodal pattern in cambial activity, with wood production in three periods of the year and consequent formation of intra-annual density fluctuations (IADFs). The lowest production of xylem cells was observed in the dry late spring and summer period (likely due to the low water availability), while the highest occurred in autumn (the wettest period). Although we could not differentiate between early and late phloem, the analysis of phloem traits was useful to follow the dynamics of phloem production, which is generally difficult in Mediterranean tree species. We found cambial production of phloem throughout the year, even in the periods without xylem production. The results showed that if tree growth was constrained by environmental limitations, the ratio between xylem to phloem cells decreased and, in the most severely affected trees, more cells were formed preferentially in the phloem compared to xylem. We also briefly report the way in which to solve technical problems with tissue preparation due to extreme hardness and to the peculiar structure of Q. ilex wood and outer bark.
Collapse
|
9
|
De Guzman ME, Acosta-Rangel A, Winter K, Meinzer FC, Bonal D, Santiago LS. Hydraulic traits of Neotropical canopy liana and tree species across a broad range of wood density: implications for predicting drought mortality with models. TREE PHYSIOLOGY 2021; 41:24-34. [PMID: 32803244 DOI: 10.1093/treephys/tpaa106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Wood density (WD) is often used as a proxy for hydraulic traits such as vulnerability to drought-induced xylem cavitation and maximum water transport capacity, with dense-wooded species generally being more resistant to drought-induced xylem cavitation, having lower rates of maximum water transport and lower sapwood capacitance than light-wooded species. However, relationships between WD and the hydraulic traits that they aim to predict have not been well established in tropical forests, where modeling is necessary to predict drought responses for a high diversity of unmeasured species. We evaluated WD and relationships with stem xylem vulnerability by measuring cavitation curves, sapwood water release curves and minimum seasonal water potential (Ψmin) on upper canopy branches of six tree species and three liana species from a single wet tropical forest site in Panama. The objective was to better understand coordination and trade-offs among hydraulic traits and the potential utility of these relationships for modeling purposes. We found that parameters from sapwood water release curves such as capacitance, saturated water content and sapwood turgor loss point (Ψtlp,x) were related to WD, whereas stem vulnerability curve parameters were not. However, the water potential corresponding to 50% loss of hydraulic conductivity (P50) was related to Ψtlp,x and sapwood osmotic potential at full turgor (πo,x). Furthermore, species with lower Ψmin showed lower P50, Ψtlp,x and πo,x suggesting greater drought resistance. Our results indicate that WD is a good easy-to-measure proxy for some traits related to drought resistance, but not others. The ability of hydraulic traits such as P50 and Ψtlp,x to predict mortality must be carefully examined if WD values are to be used to predict drought responses in species without detailed physiological measurements.
Collapse
Affiliation(s)
- Mark E De Guzman
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Aleyda Acosta-Rangel
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá 0843-03092, Republic of Panamá
| | - Frederick C Meinzer
- Pacific Northwest Station, USDA Forest Service, Corvallis, 3200 SW Jefferson Way, OR 97331, USA
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 14 Rue Girardet, 54000 Nancy, France
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá 0843-03092, Republic of Panamá
| |
Collapse
|
10
|
Carbon Limitation and Drought Sensitivity at Contrasting Elevation and Competition of Abies pinsapo Forests. Does Experimental Thinning Enhance Water Supply and Carbohydrates? FORESTS 2019. [DOI: 10.3390/f10121132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stand-level competition and local climate influence tree responses to increased drought at the regional scale. To evaluate stand density and elevation effects on tree carbon and water balances, we monitored seasonal changes in sap-flow density (SFD), gas exchange, xylem water potential, secondary growth, and non-structural carbohydrates (NSCs) in Abies pinsapo. Trees were subjected to experimental thinning within a low-elevation stand (1200 m), and carbon and water balances were compared to control plots at low and high elevation (1700 m). The hydraulic conductivity and the resistance to cavitation were also characterized, showing relatively high values and no significant differences among treatments. Trees growing at higher elevations presented the highest SFD, photosynthetic rates, and secondary growth, mainly because their growing season was extended until summer. Trees growing at low elevation reduced SFD during late spring and summer while SFD and secondary growth were significantly higher in the thinned stands. Declining NSC concentrations in needles, branches, and sapwood suggest drought-induced control of the carbon supply status. Our results might indicate potential altitudinal shifts, as better performance occurs at higher elevations, while thinning may be suitable as adaptive management to mitigate drought effects in endangered Mediterranean trees.
Collapse
|
11
|
McDowell NG, Brodribb TJ, Nardini A. Hydraulics in the 21 st century. THE NEW PHYTOLOGIST 2019; 224:537-542. [PMID: 31545889 DOI: 10.1111/nph.16151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
| | - Timothy J Brodribb
- School of Biological Science, University of Tasmania, Hobart, TAS, Australia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| |
Collapse
|
12
|
Martinez-Vilalta J, Anderegg WRL, Sapes G, Sala A. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. THE NEW PHYTOLOGIST 2019; 223:22-32. [PMID: 30560995 DOI: 10.1111/nph.15644] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/06/2018] [Indexed: 05/23/2023]
Abstract
Drought-induced tree mortality has major impacts on ecosystem carbon and water cycles, and is expected to increase in forests across the globe with climate change. A large body of research in the past decade has advanced our understanding of plant water and carbon relations under drought. However, despite intense research, we still lack generalizable, cross-scale indicators of mortality risk. In this Viewpoint, we propose that a more explicit consideration of water pools could improve our ability to monitor and anticipate mortality risk. Specifically, we focus on the relative water content (RWC), a classic metric in plant water relations, as a potential indicator of mortality risk that is physiologically relevant and integrates different aspects related to hydraulics, stomatal responses and carbon economy under drought. Measures of plant water content are likely to have a strong mechanistic link with mortality and to be integrative, threshold-prone and relatively easy to measure and monitor at large spatial scales, and may complement current mortality metrics based on water potential, loss of hydraulic conductivity and nonstructural carbohydrates. We discuss some of the potential advantages and limitations of these metrics to improve our capacity to monitor and predict drought-induced tree mortality.
Collapse
Affiliation(s)
- Jordi Martinez-Vilalta
- CREAF, Cerdanyola del Valles, 08193, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Valles, 08193, Barcelona, Spain
| | | | - Gerard Sapes
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
13
|
Trifilò P, Kiorapostolou N, Petruzzellis F, Vitti S, Petit G, Lo Gullo MA, Nardini A, Casolo V. Hydraulic recovery from xylem embolism in excised branches of twelve woody species: Relationships with parenchyma cells and non-structural carbohydrates. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:513-520. [PMID: 31015090 DOI: 10.1016/j.plaphy.2019.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 05/26/2023]
Abstract
Embolism repair ability has been documented in numerous species. Although the actual mechanism driving this phenomenon is still debated, experimental findings suggest that non-structural carbohydrates (NSC) stored in wood parenchyma would provide the osmotic forces to drive the refilling of embolized conduits. We selected 12 broadleaved species differing in vulnerability to xylem embolism (P50) and amount of wood parenchyma in order to check direct evidence about the possible link(s) between parenchyma cells abundance, NSC availability and species-specific capacity to reverse xylem embolism. Branches were dehydrated until ∼50% loss of hydraulic conductivity was recorded (PLC ∼50%). Hydraulic recovery (ΔPLC) and NSC content was, then, assessed after 1h of rehydration. Species showed a different ability to recover their hydraulic conductivity from PLC∼50%. Removing the bark in the species showing hydraulic recovery inhibited the embolism reversal. Strong correlations between the ΔPLC and: a) the amount of parenchyma cells (mainly driven by the pith area), b) the consumption of soluble NSC have been recorded. Our results support the hypothesis that refilling of embolized vessels is mediated by the mobilization of soluble NSC and it is mainly recorded in species with a higher percentage of parenchyma cells that may be important in the hydraulic recovery mechanism as a source of carbohydrates and/or as a source of water.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Natasa Kiorapostolou
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Stefano Vitti
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy; Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, Via delle Scienze 91, 33100, Udine, Italy
| | - Giai Petit
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Maria A Lo Gullo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Valentino Casolo
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, Via delle Scienze 91, 33100, Udine, Italy
| |
Collapse
|
14
|
Mencuccini M, Manzoni S, Christoffersen B. Modelling water fluxes in plants: from tissues to biosphere. THE NEW PHYTOLOGIST 2019; 222:1207-1222. [PMID: 30636295 DOI: 10.1111/nph.15681] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/18/2018] [Indexed: 05/02/2023]
Abstract
Contents Summary 1207 I. Introduction 1207 II. A brief history of modelling plant water fluxes 1208 III. Main components of plant water transport models 1208 IV. Stand-scale water fluxes and coupling to climate and soil 1213 V. Water fluxes in terrestrial biosphere models and feedbacks to community dynamics 1215 VI. Outstanding challenges in modelling water fluxes in the soil-plant-atmosphere continuum 1217 Acknowledgements 1218 References 1218 SUMMARY: Models of plant water fluxes have evolved from studies focussed on understanding the detailed structure and functioning of specific components of the soil-plant-atmosphere (SPA) continuum to architectures often incorporated inside eco-hydrological and terrestrial biosphere (TB) model schemes. We review here the historical evolution of this field, examine the basic structure of a simplified individual-based model of plant water transport, highlight selected applications for specific ecological problems and conclude by examining outstanding issues requiring further improvements in modelling vegetation water fluxes. We particularly emphasise issues related to the scaling from tissue-level traits to individual-based predictions of water transport, the representation of nonlinear and hysteretic behaviour in soil-xylem hydraulics and the need to incorporate knowledge of hydraulics within broader frameworks of plant ecological strategies and their consequences for predicting community demography and dynamics.
Collapse
Affiliation(s)
| | - Stefano Manzoni
- Stockholm University, Stockholm, 10691, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-10691, Stockholm, Sweden
| | | |
Collapse
|
15
|
Feng X, Ackerly DD, Dawson TE, Manzoni S, Skelton RP, Vico G, Thompson SE. The ecohydrological context of drought and classification of plant responses. Ecol Lett 2018; 21:1723-1736. [DOI: 10.1111/ele.13139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 07/16/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Xue Feng
- Department of Civil, Environmental, and Geo‐Engineering University of Minnesota Minneapolis MN USA
| | - David D. Ackerly
- Department of Integrative Biology University of California Berkeley CA USA
| | - Todd E. Dawson
- Department of Integrative Biology University of California Berkeley CA USA
- Department of Environmental Sciences, Policy, and Management University of California Berkeley CA USA
| | - Stefano Manzoni
- Department of Physical Geography Stockholm University Stockholm Sweden
- Bolin Centre for Climate Research Stockholm Sweden
| | - Rob P. Skelton
- Department of Integrative Biology University of California Berkeley CA USA
| | - Giulia Vico
- Department of Crop Production Ecology Swedish University of Agricultural Sciences (SLU) Uppsala Sweden
| | - Sally E. Thompson
- Department of Civil and Environmental Engineering University of California Berkeley CA USA
| |
Collapse
|
16
|
Hultine KR, Bush SE, Ward JK, Dawson TE. Does sexual dimorphism predispose dioecious riparian trees to sex ratio imbalances under climate change? Oecologia 2018; 187:921-931. [PMID: 29955993 DOI: 10.1007/s00442-018-4190-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 06/05/2018] [Indexed: 11/30/2022]
Abstract
Environmental changes have resulted in significant declines in native riparian forests that are comprised largely of dioecious tree taxa, including boxelder and iconic cottonwood/willow gallery forests. Dioecious species may be especially vulnerable to the effects of climate change given that they often exhibit skewed sex ratios that are reinforced by physiological and morphological specialization of each sex to specific microhabitats. A comprehensive data synthesis suggests that male individuals of boxelder and cottonwood taxa have a higher representation on dry microhabitats than females and are less physiologically sensitive to increased aridity than co-occurring females. Consequently, extreme male-biased sex ratios are possible under future climate conditions that could reduce population fitness below a sustainable threshold. Riparian willows, on the other hand, generally do not express obvious sexual dimorphism in habitat preference or physiological sensitivity to aridity. Thus, it is unclear whether climate change will impact population structure of willows in ways that parallel other dioecious riparian tree taxa. Future riparian tree restoration programs should aim to maintain future sex ratio balance that maximizes population fitness under projected hydro-climatological conditions. Recent advances in genomics will likely provide the critical tools for early sex determination in pre-reproductive trees across riparian tree species such that sex ratio balance could be targeted during initial stages of restoration, along with adaptations for drought tolerance and other key traits that are essential for survival under future conditions.
Collapse
Affiliation(s)
- Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA.
| | - Susan E Bush
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Joy K Ward
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KA, 66045, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA
| |
Collapse
|
17
|
Santiago LS, De Guzman ME, Baraloto C, Vogenberg JE, Brodie M, Hérault B, Fortunel C, Bonal D. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. THE NEW PHYTOLOGIST 2018; 218:1015-1024. [PMID: 29457226 DOI: 10.1111/nph.15058] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Predicting responses of tropical forests to climate change-type drought is challenging because of high species diversity. Detailed characterization of tropical tree hydraulic physiology is necessary to evaluate community drought vulnerability and improve model parameterization. Here, we measured xylem hydraulic conductivity (hydraulic efficiency), xylem vulnerability curves (hydraulic safety), sapwood pressure-volume curves (drought avoidance) and wood density on emergent branches of 14 common species of Eastern Amazonian canopy trees in Paracou, French Guiana across species with the densest and lightest wood in the plot. Our objectives were to evaluate relationships among hydraulic traits to identify strategies and test the ability of easy-to-measure traits as proxies for hard-to-measure hydraulic traits. Xylem efficiency was related to capacitance, sapwood water content and turgor loss point, and other drought avoidance traits, but not to xylem safety (P50 ). Wood density was correlated (r = -0.57 to -0.97) with sapwood pressure-volume traits, forming an axis of hydraulic strategy variation. In contrast to drier sites where hydraulic safety plays a greater role, tropical trees in this humid tropical site varied along an axis with low wood density, high xylem efficiency and high capacitance at one end of the spectrum, and high wood density and low turgor loss point at the other.
Collapse
Affiliation(s)
- Louis S Santiago
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, Republic of Panamá
| | - Mark E De Guzman
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
| | - Christopher Baraloto
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Jacob E Vogenberg
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
| | - Max Brodie
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
| | - Bruno Hérault
- CIRAD, UMR Ecologie des Forêts de Guyane, Kourou, 97379, France
| | - Claire Fortunel
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Damien Bonal
- INRA, UMR Silva, AgroParisTech, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
18
|
Martín-Gómez P, Aguilera M, Pemán J, Gil-Pelegrín E, Ferrio JP. Contrasting ecophysiological strategies related to drought: the case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica). TREE PHYSIOLOGY 2017; 37:1478-1492. [PMID: 29040771 DOI: 10.1093/treephys/tpx101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Submediterranean forests are considered an ecotone between Mediterranean and Eurosiberian ecosystems, and are very sensitive to global change. A decline of Scots pine (Pinus sylvestris L.) and a related expansion of oak species (Quercus spp.) have been reported in the Spanish Pre-Pyrenees. Although this has been associated with increasing drought stress, the underlying mechanisms are not fully understood, and suitable monitoring protocols are lacking. The aim of this study is to bring insight into the physiological mechanisms anticipating selective decline of the pines, with particular focus on carbon and water relations. For this purpose, we performed a sampling campaign covering two growing seasons in a mixed stand of P. sylvestris and Quercus subpyrenaica E.H del Villar. We sampled seasonally twig xylem and soil for water isotope composition (δ18O and δ2H), leaves for carbon isotope composition (δ13C) and stems to quantify non-structural carbohydrates (NSC) concentration, and measured water potential and leaf gas exchange. The first summer drought was severe for both species, reaching low predawn water potential (-2.2 MPa), very low stomatal conductance (12 ± 1.0 mmol m-2 s-1) and near-zero or even negative net photosynthesis, particularly in P. sylvestris (-0.6 ± 0.34 μmol m-2 s-1 in oaks, -1.3 ± 0.16 μmol m-2 s-1 in pines). Hence, the tighter stomatal control and more isohydric strategy of P. sylvestris resulted in larger limitations on carbon assimilation, and this was also reflected in carbon storage, showing twofold larger total NSC concentration in oaks than in pines (7.8 ± 2.4% and 4.0 ± 1.3%, respectively). We observed a faster recovery of predawn water potential after summer drought in Q. subpyrenaica than in P. sylvestris (-0.8 MPa and -1.1 MPa, respectively). As supported by the isotopic data, this was probably associated with a deeper and more reliable water supply in Q. subpyrenaica. In line with these short-term observations, we found a more pronounced negative effect of steadily increasing drought stress on long-term growth in pines compared with oaks. All these observations confer evidence of early warning of P. sylvestris decline and indicate the adaptive advantage of Q. subpyrenaica in the area.
Collapse
Affiliation(s)
- Paula Martín-Gómez
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Mònica Aguilera
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Jesús Pemán
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, CITA de Aragón, Av. Montañana, 930, 50059 Zaragoza, Spain
| | - Juan Pedro Ferrio
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
19
|
De Guzman ME, Santiago LS, Schnitzer SA, Álvarez-Cansino L. Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species. TREE PHYSIOLOGY 2017; 37:1404-1414. [PMID: 27672189 DOI: 10.1093/treephys/tpw086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
In tropical forest canopies, it is critical for upper shoots to efficiently provide water to leaves for physiological function while safely preventing loss of hydraulic conductivity due to cavitation during periods of soil water deficit or high evaporative demand. We compared hydraulic physiology of upper canopy trees and lianas in a seasonally dry tropical forest to test whether trade-offs between safety and efficiency of water transport shape differences in hydraulic function between these two major tropical woody growth forms. We found that lianas showed greater maximum stem-specific hydraulic conductivity than trees, but lost hydraulic conductivity at less negative water potentials than trees, resulting in a negative correlation and trade-off between safety and efficiency of water transport. Lianas also exhibited greater diurnal changes in leaf water potential than trees. The magnitude of diurnal water potential change was negatively correlated with sapwood capacitance, indicating that lianas are highly reliant on conducting capability to maintain leaf water status, whereas trees relied more on stored water in stems to maintain leaf water status. Leaf nitrogen concentration was related to maximum leaf-specific hydraulic conductivity only for lianas suggesting that greater water transport capacity is more tied to leaf processes in lianas compared to trees. Our results are consistent with a trade-off between safety and efficiency of water transport and may have implications for increasing liana abundance in neotropical forests.
Collapse
Affiliation(s)
- Mark E De Guzman
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-0392, Balboa, Panamá
| | - Stefan A Schnitzer
- Smithsonian Tropical Research Institute, Apartado 0843-0392, Balboa, Panamá
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Leonor Álvarez-Cansino
- Smithsonian Tropical Research Institute, Apartado 0843-0392, Balboa, Panamá
- Department of Plant Ecology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
20
|
Huang Y, Yu X, Li E, Chen H, Li L, Wu X, Li X. A process-based water balance model for semi-arid ecosystems: A case study of psammophytic ecosystems in Mu Us Sandland, Inner Mongolia, China. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Pratt RB, Jacobsen AL. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. PLANT, CELL & ENVIRONMENT 2017; 40:897-913. [PMID: 27861981 DOI: 10.1111/pce.12862] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/31/2016] [Indexed: 05/26/2023]
Abstract
The secondary xylem of woody plants transports water mechanically supports the plant body and stores resources. These three functions are interdependent giving rise to tradeoffs in function. Understanding the relationships among these functions and their structural basis forms the context in which to interpret xylem evolution. The tradeoff between xylem transport efficiency and safety from cavitation has been carefully examined with less focus on other functions, particularly storage. Here, we synthesize data on all three xylem functions in angiosperm branch xylem in the context of tradeoffs. Species that have low safety and efficiency, examined from a resource economics perspective, are predicted to be adapted for slow resource acquisition and turnover as characterizes some environments. Tradeoffs with water storage primarily arise because of differences in fibre traits, while tradeoffs in carbohydrate storage are driven by parenchyma content of tissue. We find support for a tradeoff between safety from cavitation and storage of both water and starch in branch xylem tissue and between water storage capacity and mechanical strength. Living fibres may facilitate carbohydrate storage without compromising mechanical strength. The division of labour between different xylem cell types allows for considerable functional and structural diversity at multiple scales.
Collapse
Affiliation(s)
- R Brandon Pratt
- California State University, Bakersfield, Department of Biology, Bakersfield, CA, 93311, USA
| | - Anna L Jacobsen
- California State University, Bakersfield, Department of Biology, Bakersfield, CA, 93311, USA
| |
Collapse
|
22
|
Gessler A, Schaub M, McDowell NG. The role of nutrients in drought-induced tree mortality and recovery. THE NEW PHYTOLOGIST 2017; 214:513-520. [PMID: 27891619 DOI: 10.1111/nph.14340] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/08/2016] [Indexed: 05/21/2023]
Abstract
Contents 513 I. 513 II. 514 III. 517 518 References 518 SUMMARY: Global forests are experiencing rising temperatures and more severe droughts, with consistently dire forecasts for negative future impacts. Current research on the physiological mechanisms underlying drought impacts is focused on the water- and carbon-associated mechanisms. The role of nutrients is notably missing from this research agenda. Here, we investigate what role, if any, forest nutrition plays for survival and recovery of forests during and after drought. High nutrient availability may play a detrimental role in drought survival due to preferential biomass allocation aboveground that (1) predispose plants to hydraulic constraints limiting photosynthesis and promoting hydraulic failure, (2) increases carbon costs during periods of carbon starvation, and (3) promote biotic attack due to low tissue carbon: nitrogen (C : N). When nutrient uptake occurs during drought, high nutrient availability can increase water use efficiency thus minimizing negative feedbacks between carbon and nutrient balance. Nutrients are released after drought ceases, which might promote faster recovery but the temporal dynamics of microbial immobilization and nutrient leaching have a significant impact on nutrient availability. We provide a framework for understanding nutrient impacts on drought survival that allows a more complete analysis of forest ecosystem responses.
Collapse
Affiliation(s)
- Arthur Gessler
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Nate G McDowell
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
23
|
Garcia-Forner N, Sala A, Biel C, Savé R, Martínez-Vilalta J. Individual traits as determinants of time to death under extreme drought in Pinus sylvestris L. TREE PHYSIOLOGY 2016; 36:1196-1209. [PMID: 27217530 DOI: 10.1093/treephys/tpw040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Plants exhibit a variety of drought responses involving multiple interacting traits and processes, which makes predictions of drought survival challenging. Careful evaluation of responses within species, where individuals share broadly similar drought resistance strategies, can provide insight into the relative importance of different traits and processes. We subjected Pinus sylvestris L. saplings to extreme drought (no watering) leading to death in a greenhouse to (i) determine the relative effect of predisposing factors and responses to drought on survival time, (ii) identify and rank the importance of key predictors of time to death and (iii) compare individual characteristics of dead and surviving trees sampled concurrently. Time until death varied over 3 months among individual trees (from 29 to 147 days). Survival time was best predicted (higher explained variance and impact on the median survival time) by variables related to carbon uptake and carbon/water economy before and during drought. Trees with higher concentrations of monosaccharides before the beginning of the drought treatment and with higher assimilation rates prior to and during the treatment survived longer (median survival time increased 25-70 days), even at the expense of higher water loss. Dead trees exhibited less than half the amount of nonstructural carbohydrates (NSCs) in branches, stem and relative to surviving trees sampled concurrently. Overall, our results indicate that the maintenance of carbon assimilation to prevent acute depletion of NSC content above some critical level appears to be the main factor explaining survival time of P. sylvestris trees under extreme drought.
Collapse
Affiliation(s)
- Núria Garcia-Forner
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Anna Sala
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Carme Biel
- Environmental Horticulture, IRTA, Caldes de Montbui 08140, Spain
| | - Robert Savé
- Environmental Horticulture, IRTA, Caldes de Montbui 08140, Spain
| | - Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
24
|
Hultine KR, Grady KC, Wood TE, Shuster SM, Stella JC, Whitham TG. Climate change perils for dioecious plant species. NATURE PLANTS 2016; 2:16109. [PMID: 28221374 DOI: 10.1038/nplants.2016.109] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/17/2016] [Indexed: 05/23/2023]
Abstract
Climate change, particularly increased aridity, poses a significant threat to plants and the biotic communities they support. Dioecious species may be especially vulnerable to climate change given that they often exhibit spatial segregation of the sexes, reinforced by physiological and morphological specialization of each sex to different microhabitats. In dimorphic species, the overexpression of a trait by one gender versus the other may become suppressed in future climates. Data suggest that males will generally be less sensitive to increased aridity than co-occurring females and, consequently, extreme male-biased sex ratios are possible in a significant number of populations. The effects of male-biased sex ratios are likely to cascade to dependent community members, especially those that are specialized on one sex.
Collapse
Affiliation(s)
- Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, 85008, USA
| | - Kevin C Grady
- School of Forestry, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Troy E Wood
- US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona 86011, USA
| | - Stephen M Shuster
- Merriam-Powell Center for Environmental Research and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - John C Stella
- Department of Forest and Natural Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, New York 13210, USA
| | - Thomas G Whitham
- Merriam-Powell Center for Environmental Research and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
25
|
Anderegg WRL, Martinez-Vilalta J, Cailleret M, Camarero JJ, Ewers BE, Galbraith D, Gessler A, Grote R, Huang CY, Levick SR, Powell TL, Rowland L, Sánchez-Salguero R, Trotsiuk V. When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes. Ecosystems 2016. [DOI: 10.1007/s10021-016-9982-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady AK, McDowell N, Pan Y, Raffa K, Sala A, Shaw JD, Stephenson NL, Tague C, Zeppel M. Tree mortality from drought, insects, and their interactions in a changing climate. THE NEW PHYTOLOGIST 2015; 208:674-83. [PMID: 26058406 DOI: 10.1111/nph.13477] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/23/2015] [Indexed: 05/20/2023]
Abstract
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change.
Collapse
Affiliation(s)
- William R L Anderegg
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Jeffrey A Hicke
- Department of Geography, University of Idaho, Moscow, ID, 83844, USA
| | - Rosie A Fisher
- National Center for Atmospheric Research, Boulder, CO, 80305, USA
| | - Craig D Allen
- US Geological Survey, Fort Collins Science Center, Jemez Mountains Field Station, Los Alamos, NM, 87544, USA
| | - Juliann Aukema
- National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, 93117, USA
| | - Barbara Bentz
- USDA Forest Service, Rocky Mountain Research Station, Logan, UT, 84321, USA
| | - Sharon Hood
- Division of Biological Sciences, The University of Montana, Missoula, MT, 59812, USA
| | - Jeremy W Lichstein
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Alison K Macalady
- School of Geography and Development, University of Arizona, Tucson, AZ, 85712, USA
| | - Nate McDowell
- Earth and Environmental Sciences Division, Los Alamos National Lab, Los Alamos, NM, 87545, USA
| | - Yude Pan
- Northern Research Station, US Forest Service, Newtown Square, PA, 19073, USA
| | - Kenneth Raffa
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | - Anna Sala
- Division of Biological Sciences, The University of Montana, Missoula, MT, 59812, USA
| | - John D Shaw
- Rocky Mountain Research Station, US Forest Service, Ogden, UT, 84401, USA
| | - Nathan L Stephenson
- US Geological Survey, Western Ecological Research Center, 47050 Generals Highway No. 4, Three Rivers, CA, 93271, USA
| | - Christina Tague
- Bren School of Environmental Science and Management, University of California - Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Melanie Zeppel
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
27
|
Trifilò P, Nardini A, Lo Gullo MA, Barbera PM, Savi T, Raimondo F. Diurnal changes in embolism rate in nine dry forest trees: relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits. TREE PHYSIOLOGY 2015; 35:694-705. [PMID: 26116926 DOI: 10.1093/treephys/tpv049] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/09/2015] [Indexed: 05/02/2023]
Abstract
Recent studies have reported correlations between stem sapwood capacitance (C(wood)) and xylem vulnerability to embolism, but it is unclear how C(wood) relates to the eventual ability of plants to reverse embolism. We investigated possible functional links between embolism reversal efficiency, C(wood), wood density (WD), vulnerability to xylem embolism and hydraulic safety margins in nine woody species native to dry sclerophyllous forests with different degrees of iso versus anisohydry. Substantial inter-specific differences in terms of seasonal/diurnal changes of xylem and leaf water potential, maximum diurnal values of transpiration rate and xylem vulnerability to embolism formation were recorded. Significant diurnal changes in percentage loss of hydraulic conductivity (PLC) were recorded for five species. Significant correlations were recorded between diurnal PLC changes and P50 and P88 values (i.e., xylem pressure inducing 50 and 88% PLC, respectively) as well as between diurnal PLC changes and safety margins referenced to P50 and P88. WD was linearly correlated with minimum diurnal leaf water potential, diurnal PLC changes and wood capacitance across all species. In contrast, significant relationships between P50, safety margin values referenced to P50 and WD were recorded only for the isohydric species. Functional links between diurnal changes in PLC, hydraulic strategies and WD and C(wood) are discussed.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, Salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Maria A Lo Gullo
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, Salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Piera M Barbera
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Fabio Raimondo
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, Salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
28
|
González-Sanchis MA, Del Campo AD, Molina AJ, Fernandes TSJ. Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Dickman LT, McDowell NG, Sevanto S, Pangle RE, Pockman WT. Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. PLANT, CELL & ENVIRONMENT 2015; 38:729-39. [PMID: 25159277 DOI: 10.1111/pce.12441] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 08/07/2014] [Indexed: 05/16/2023]
Abstract
Drought-induced forest mortality is an increasing global problem with wide-ranging consequences, yet mortality mechanisms remain poorly understood. Depletion of non-structural carbohydrate (NSC) stores has been implicated as an important mechanism in drought-induced mortality, but experimental field tests are rare. We used an ecosystem-scale precipitation manipulation experiment to evaluate leaf and twig NSC dynamics of two co-occurring conifers that differ in patterns of stomatal regulation of water loss and recent mortality: the relatively desiccation-avoiding piñon pine (Pinus edulis) and the relatively desiccation-tolerant one-seed juniper (Juniperus monosperma). Piñon pine experienced 72% mortality after 13-25 months of experimental drought and juniper experienced 20% mortality after 32-47 months. Juniper maintained three times more NSC in the foliage than twigs, and converted NSC to glucose and fructose under drought, consistent with osmoregulation requirements to maintain higher stomatal conductance during drought than piñon. Despite these species differences, experimental drought caused decreased leaf starch content in dying trees of both species (P < 0.001). Average dry-season leaf starch content was also a good predictor of drought-survival time for both species (R(2) = 0.93). These results, along with observations of drought-induced reductions to photosynthesis and growth, support carbon limitation as an important process during mortality of these two conifer species.
Collapse
Affiliation(s)
- Lee T Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | | | | | | | |
Collapse
|
30
|
Baert A, De Schepper V, Steppe K. Variable hydraulic resistances and their impact on plant drought response modelling. TREE PHYSIOLOGY 2015; 35:439-449. [PMID: 25273815 DOI: 10.1093/treephys/tpu078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/17/2014] [Indexed: 06/03/2023]
Abstract
Plant drought responses are still not fully understood. Improved knowledge on drought responses is, however, crucial to better predict their impact on individual plant and ecosystem functioning. Mechanistic models in combination with plant measurements are promising for obtaining information on plant water status and can assist us in understanding the effect of limiting soil water availability and drought stress. While existing models are reliable under sufficient soil water availability, they generally fail under dry conditions as not all appropriate mechanisms seem yet to have been implemented. We therefore aimed at identifying mechanisms underlying plant drought responses, and in particular investigated the behaviour of hydraulic resistances encountered in the soil and xylem for grapevine (Vitis vinifera L.) and oak (Quercus robur L.). A variable hydraulic soil-to-stem resistance was necessary to describe plant drought responses. In addition, implementation of a variable soil-to-stem hydraulic resistance enabled us to generate an in situ soil-to-stem vulnerability curve, which might be an alternative to the conventionally used vulnerability curves. Furthermore, a daily recalibration of the model revealed a drought-induced increase in radial hydraulic resistance between xylem and elastic living tissues. Accurate information on plant hydraulic resistances and simulation of plant drought responses can foster important discussions regarding the functioning of plants and ecosystems during droughts.
Collapse
Affiliation(s)
- Annelies Baert
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Veerle De Schepper
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
31
|
Collins S, Belnap J, Grimm N, Rudgers J, Dahm C, D'Odorico P, Litvak M, Natvig D, Peters D, Pockman W, Sinsabaugh R, Wolf B. A Multiscale, Hierarchical Model of Pulse Dynamics in Arid-Land Ecosystems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091650] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S.L. Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131;
| | - J. Belnap
- US Geological Survey, Southwest Biological Science Center, Moab, Utah 84532
| | - N.B. Grimm
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - J.A. Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131;
| | - C.N. Dahm
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131;
| | - P. D'Odorico
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904
| | - M. Litvak
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131;
| | - D.O. Natvig
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131;
| | - D.C. Peters
- USDA Jornada Experimental Range, New Mexico State University, Las Cruces, New Mexico 88012
| | - W.T. Pockman
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131;
| | - R.L. Sinsabaugh
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131;
| | - B.O. Wolf
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131;
| |
Collapse
|
32
|
Ogaya R, Llusià J, Barbeta A, Asensio D, Liu D, Alessio GA, Peñuelas J. Foliar CO₂ in a holm oak forest subjected to 15 years of climate change simulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:101-107. [PMID: 25113455 DOI: 10.1016/j.plantsci.2014.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/04/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
A long-term experimental drought to simulate future expected climatic conditions for Mediterranean forests, a 15% decrease in soil moisture for the following decades, was conducted in a holm oak forest since 1999. Net photosynthetic rate, stomatal conductance and leaf water potential were measured from 1999 to 2013 in Quercus ilex and Phillyrea latifolia, two co-dominant species of this forest. These measurements were performed in four plots, two of them received the drought treatment and the two other plots were control plots. The three studied variables decreased with increases in VPD and decreases in soil moisture in both species, but the decrease of leaf water potential during summer drought was larger in P. latifolia, whereas Q. ilex reached higher net photosynthetic rates and stomatal conductance values during rainy periods than P. latifolia. The drought treatment decreased ca. 8% the net photosynthetic rates during the overall studied period in both Q. ilex and P. latifolia, whereas there were just non-significant trends toward a decrease in leaf water potential and stomatal conductance induced by drought treatment. Future drier climate may lead to a decrease in the carbon balance of Mediterranean species, and some shrub species well resistant to drought could gain competitive advantage relative to Q. ilex, currently the dominant species of this forest.
Collapse
Affiliation(s)
- Romà Ogaya
- CREAF, Cerdanyola del Vallès, E-08193 Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Catalonia, Spain.
| | - Joan Llusià
- CREAF, Cerdanyola del Vallès, E-08193 Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Catalonia, Spain
| | - Adrià Barbeta
- CREAF, Cerdanyola del Vallès, E-08193 Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Catalonia, Spain
| | - Dolores Asensio
- CREAF, Cerdanyola del Vallès, E-08193 Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Catalonia, Spain
| | - Daijun Liu
- CREAF, Cerdanyola del Vallès, E-08193 Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Catalonia, Spain
| | - Giorgio Arturo Alessio
- CREAF, Cerdanyola del Vallès, E-08193 Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Catalonia, Spain
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, E-08193 Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Catalonia, Spain
| |
Collapse
|
33
|
Shen Y, Santiago LS, Shen H, Ma L, Lian J, Cao H, Lu H, Ye W. Determinants of change in subtropical tree diameter growth with ontogenetic stage. Oecologia 2014; 175:1315-24. [PMID: 24938832 DOI: 10.1007/s00442-014-2981-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/24/2014] [Indexed: 11/25/2022]
Abstract
We evaluated the degree to which relative growth rate (RGR) of saplings and large trees is related to seven functional traits that describe physiological behavior and soil environmental factors related to topography and fertility for 57 subtropical tree species in Dinghushan, China. The mean values of functional traits and soil environmental factors for each species that were related to RGR varied with ontogenetic stage. Sapling RGR showed greater relationships with functional traits than large-tree RGR, whereas large-tree RGR was more associated with soil environment than was sapling RGR. The strongest single predictors of RGR were wood density for saplings and slope aspect for large trees. The stepwise regression model for large trees accounted for a larger proportion of variability (R(2) = 0.95) in RGR than the model for saplings (R(2) = 0.55). Functional diversity analysis revealed that the process of habitat filtering likely contributes to the substantial changes in regulation of RGR as communities transition from saplings to large trees.
Collapse
Affiliation(s)
- Yong Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Trifilò P, Barbera PM, Raimondo F, Nardini A, Lo Gullo MA. Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens. TREE PHYSIOLOGY 2014; 34:109-22. [PMID: 24488800 DOI: 10.1093/treephys/tpt119] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Embolism repair and ionic effects on xylem hydraulic conductance have been documented in different tree species. However, the diurnal and seasonal patterns of both phenomena and their actual role in plants' responses to drought-induced xylem cavitation have not been thoroughly investigated. This study provides experimental evidence of the ability of three Mediterranean species to maintain hydraulic function under drought stress by coordinating the refilling of xylem conduits and ion-mediated enhancement of stem hydraulic conductance (K stem). Vessel grouping indices and starch content in vessel-associated parenchyma cells were quantified to verify eventual correlations with ionic effects and refilling, respectively. Experiments were performed on stems of Ceratonia siliqua L., Olea europaea L. and Laurus nobilis L. Seasonal, ion-mediated changes in K stem (ΔK stem) and diurnal and/or seasonal embolism repair were recorded for all three species, although with different temporal patterns. Field measurements of leaf specific stem hydraulic conductivity showed that it remained quite constant during the year, despite changes in the levels of embolism. Starch content in vessel-associated parenchyma cells changed on diurnal and seasonal scales in L. nobilis and O. europaea but not in C. siliqua. Values of ΔK stem were significantly correlated with vessel multiple fraction values (the ratio of grouped vessels to total number of vessels). Our data suggest that the regulation of xylem water transport in Mediterranean plants relies on a close integration between xylem refilling and ionic effects. These functional traits apparently play important roles in plants' responses to drought-induced xylem cavitation.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | | | | | | | | |
Collapse
|
36
|
Cariñanos P, Alcázar P, Galán C, Domínguez E. Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:480-487. [PMID: 24176695 DOI: 10.1016/j.scitotenv.2013.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
The Amaranthaceae family includes a number of species which, through a series of specific adaptations, thrive in salty soils, arid environments and altered human settlements. Their ability to tolerate high temperatures favours summer flowering, giving rise to the widespread involvement of Amaranthaceae pollen grains in summer allergies, both in Mediterranean Europe and in areas with arid climates. This study analysed a 21-year set of historical airborne Amaranthaceae pollen records for an area located in the southern part of the Iberian Peninsula, in order to chart species' environmental reaction to changing climate conditions which occurred in the last decades. Airborne pollen data were collected from January 1991 to December 2011 using a Hirst-type volumetric impact sampler. Results showed that Amaranthaceae pollen remained in the atmosphere for over 6 months along the year, from early spring until early autumn. The annual Pollen Index ranged from barely 200 grains to almost 2000 grains, and was strongly influenced by rainfall during the flowering period, which prompted the development of new individuals and thus an increase in pollen production. A trend was noted towards increasingly early pollen peak dates; peaks were recorded in August-September in years with summer rainfall, but as early as May-June in years when over 50% of annual rainfall was recorded in the months prior to flowering. The gradual decline in the annual Pollen Index over later years is attributable not only to growing urbanisation of the area but also to a change in rainfall distribution pattern. High maximum temperatures in spring were also directly related to the peak date and the Pollen Index. This ability to adapt to changeable and occasionally stressful and restrictive, environmental conditions places Amaranthaceae at a competitive advantage with respect to other species sharing the same ecological niche. An increased presence of Amaranthaceae is likely to have a greater impact on future scenarios for pollen allergy diseases associated with climate change.
Collapse
Affiliation(s)
- Paloma Cariñanos
- Dept. of Botany, Faculty of Pharmacy, Campus de Cartuja, University of Granada, Spain.
| | - Purificación Alcázar
- Dept. of Plant Biology, Plant Physiology and Ecology, Campus de Rabanales, Edif. Celestino Mutis, University of Córdoba, Spain
| | - Carmen Galán
- Dept. of Plant Biology, Plant Physiology and Ecology, Campus de Rabanales, Edif. Celestino Mutis, University of Córdoba, Spain
| | - Eugenio Domínguez
- Dept. of Plant Biology, Plant Physiology and Ecology, Campus de Rabanales, Edif. Celestino Mutis, University of Córdoba, Spain
| |
Collapse
|
37
|
McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martínez-Vilalta J, Mencuccini M, Plaut JA, Ogée J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williams AP, Yepez EA, Pockman WT. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. THE NEW PHYTOLOGIST 2013; 200:304-321. [PMID: 24004027 DOI: 10.1111/nph.12465] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/19/2013] [Indexed: 05/05/2023]
Abstract
Model-data comparisons of plant physiological processes provide an understanding of mechanisms underlying vegetation responses to climate. We simulated the physiology of a piñon pine-juniper woodland (Pinus edulis-Juniperus monosperma) that experienced mortality during a 5 yr precipitation-reduction experiment, allowing a framework with which to examine our knowledge of drought-induced tree mortality. We used six models designed for scales ranging from individual plants to a global level, all containing state-of-the-art representations of the internal hydraulic and carbohydrate dynamics of woody plants. Despite the large range of model structures, tuning, and parameterization employed, all simulations predicted hydraulic failure and carbon starvation processes co-occurring in dying trees of both species, with the time spent with severe hydraulic failure and carbon starvation, rather than absolute thresholds per se, being a better predictor of impending mortality. Model and empirical data suggest that limited carbon and water exchanges at stomatal, phloem, and below-ground interfaces were associated with mortality of both species. The model-data comparison suggests that the introduction of a mechanistic process into physiology-based models provides equal or improved predictive power over traditional process-model or empirical thresholds. Both biophysical and empirical modeling approaches are useful in understanding processes, particularly when the models fail, because they reveal mechanisms that are likely to underlie mortality. We suggest that for some ecosystems, integration of mechanistic pathogen models into current vegetation models, and evaluation against observations, could result in a breakthrough capability to simulate vegetation dynamics.
Collapse
Affiliation(s)
- Nate G McDowell
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Rosie A Fisher
- Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, 80305, USA
| | - Chonggang Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - J C Domec
- University of Bordeaux, Bordeaux Sciences Agro, UMR INRA-TCEM 1220, 33140, Villenave d'Ornon, France
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708, USA
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, PO Box 24, 00014, Helsinki, Finland
| | - D Scott Mackay
- Department of Geography, State University of New York at Buffalo, 105 Wilkeson Quadrangle, Buffalo, NY, 14261, USA
| | - John S Sperry
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Amanda Boutz
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Lee Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Nathan Gehres
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Jean Marc Limousin
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Alison Macalady
- School of Geography and Development and Laboratory of Tree-Ring Research, University of Arizona, 1215 Lowell Street, Tucson, AZ, 85721-0058, USA
| | - Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, 08193, Spain
- Univ Autònoma Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Maurizio Mencuccini
- ICREA at CREAF, Cerdanyola del Vallès, 08193, Spain
- School of GeoSciences, University of Edinburgh Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
| | - Jennifer A Plaut
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Jérôme Ogée
- INRA, UR1263 EPHYSE, F-33140, Villenave d'Ornon, France
| | - Robert E Pangle
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Daniel P Rasse
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Ås, Norway
| | - Michael G Ryan
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523-1499, USA
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 80526, USA
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Richard H Waring
- College of Forestry, Oregon State University, Corvallis, OR, 97331-5704, USA
| | - A Park Williams
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Enrico A Yepez
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, Mexico
| | - William T Pockman
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
38
|
del Cacho M, Estiarte M, Peñuelas J, Lloret F. Inter-annual variability of seed rain and seedling establishment of two woody Mediterranean species under field-induced drought and warming. POPUL ECOL 2013. [DOI: 10.1007/s10144-013-0365-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Rosas T, Galiano L, Ogaya R, Peñuelas J, Martínez-Vilalta J. Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought. FRONTIERS IN PLANT SCIENCE 2013; 4:400. [PMID: 24130568 PMCID: PMC3795346 DOI: 10.3389/fpls.2013.00400] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/20/2013] [Indexed: 05/08/2023]
Abstract
Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.). In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought.
Collapse
Affiliation(s)
- Teresa Rosas
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)Cerdanyola del Vallès, Spain
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de BarcelonaCerdanyola del Vallès, Spain
- *Correspondence: Teresa Rosas, Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Universitat Autònoma de Barcelona, Edifici C, Cerdanyola del Vallès 08193, Spain e-mail:
| | - Lucía Galiano
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)Cerdanyola del Vallès, Spain
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de BarcelonaCerdanyola del Vallès, Spain
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape BiogeochemistryMüncheberg, Germany
| | - Romà Ogaya
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)Cerdanyola del Vallès, Spain
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit CREAF-CEAB-CSIC-UABCerdanyola del Vallès, Spain
| | - Josep Peñuelas
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)Cerdanyola del Vallès, Spain
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit CREAF-CEAB-CSIC-UABCerdanyola del Vallès, Spain
| | - Jordi Martínez-Vilalta
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)Cerdanyola del Vallès, Spain
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de BarcelonaCerdanyola del Vallès, Spain
| |
Collapse
|
40
|
Anderegg WRL, Berry JA, Field CB. Linking definitions, mechanisms, and modeling of drought-induced tree death. TRENDS IN PLANT SCIENCE 2012; 17:693-700. [PMID: 23099222 DOI: 10.1016/j.tplants.2012.09.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 08/31/2012] [Accepted: 09/20/2012] [Indexed: 05/08/2023]
Abstract
Tree death from drought and heat stress is a critical and uncertain component in forest ecosystem responses to a changing climate. Recent research has illuminated how tree mortality is a complex cascade of changes involving interconnected plant systems over multiple timescales. Explicit consideration of the definitions, dynamics, and temporal and biological scales of tree mortality research can guide experimental and modeling approaches. In this review, we draw on the medical literature concerning human death to propose a water resource-based approach to tree mortality that considers the tree as a complex organism with a distinct growth strategy. This approach provides insight into mortality mechanisms at the tree and landscape scales and presents promising avenues into modeling tree death from drought and temperature stress.
Collapse
|
41
|
Plaut JA, Yepez EA, Hill J, Pangle R, Sperry JS, Pockman WT, McDowell NG. Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought. PLANT, CELL & ENVIRONMENT 2012; 35:1601-1617. [PMID: 22462824 DOI: 10.1111/j.1365-3040.2012.02512.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Drought-related tree mortality occurs globally and may increase in the future, but we lack sufficient mechanistic understanding to accurately predict it. Here we present the first field assessment of the physiological mechanisms leading to mortality in an ecosystem-scale rainfall manipulation of a piñon-juniper (Pinus edulis-Juniperus monosperma) woodland. We measured transpiration (E) and modelled the transpiration rate initiating hydraulic failure (E(crit) ). We predicted that isohydric piñon would experience mortality after prolonged periods of severely limited gas exchange as required to avoid hydraulic failure; anisohydric juniper would also avoid hydraulic failure, but sustain gas exchange due to its greater cavitation resistance. After 1 year of treatment, 67% of droughted mature piñon died with concomitant infestation by bark beetles (Ips confusus) and bluestain fungus (Ophiostoma spp.); no mortality occurred in juniper or in control piñon. As predicted, both species avoided hydraulic failure, but safety margins from E(crit) were much smaller in piñon, especially droughted piñon, which also experienced chronically low hydraulic conductance. The defining characteristic of trees that died was a 7 month period of near-zero gas exchange, versus 2 months for surviving piñon. Hydraulic limits to gas exchange, not hydraulic failure per se, promoted drought-related mortality in piñon pine.
Collapse
Affiliation(s)
- Jennifer A Plaut
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Kumagai T, Porporato A. Drought-induced mortality of a Bornean tropical rain forest amplified by climate change. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jg001835] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Galiano L, Martínez-Vilalta J, Sabaté S, Lloret F. Determinants of drought effects on crown condition and their relationship with depletion of carbon reserves in a Mediterranean holm oak forest. TREE PHYSIOLOGY 2012; 32:478-89. [PMID: 22499595 DOI: 10.1093/treephys/tps025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Severe droughts may increase physiological stress on long-lived woody vegetation, occasionally leading to rapid defoliation and progressive increase in mortality of overstorey trees. Over the last few years, episodes of drought-induced tree dieback have been documented in a variety of woodlands and forests around the world. However, the factors determining tree survival and subsequent recovery are still poorly understood, especially in resprouter species. We have studied the effects of a single drought episode on crown condition in a holm oak (Quercus ilex L.) forest located in NE Spain 7 years after the drought event. Generalized linear models were used to study the environmental correlates of forest crown condition 7 years after the drought event. Additionally, we evaluated the association between crown condition and the carbon and nutrient reserves stored in lignotubers 7 years after the drought. Our study reveals the multifactor nature of a drought-driven forest dieback in which soil depth and the characteristics of individual trees, particularly their number of stems, determined a complex spatial pattern of tree-level responses. This dieback was associated with a depletion of the carbon reserves in lignotubers 7 years after the episode, representing a reduction of up to 60% in highly drought-damaged trees. Interestingly, in the absence of new acute droughts, successive surveys in 2007-11 showed a direct association between carbon reserves depletion and further deterioration of crown condition. More frequent droughts, as predicted by climate change projections, may lead to a progressive depletion of carbon reserves and to a loss of resilience in Mediterranean resprouter species.
Collapse
Affiliation(s)
- Lucía Galiano
- Unitat d'Ecologia, Department Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| | | | | | | |
Collapse
|
44
|
Drought-tolerance of an invasive alien tree, Acacia mearnsii and two native competitors in fynbos riparian ecotones. Biol Invasions 2011. [DOI: 10.1007/s10530-011-0103-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Ortiz C, Karltun E, Stendahl J, Gärdenäs AI, Ågren GI. Modelling soil carbon development in Swedish coniferous forest soils—An uncertainty analysis of parameters and model estimates using the GLUE method. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.05.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
|
47
|
Mitchell S, Beven K, Freer J, Law B. Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2009jg001146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Galiano L, Martínez-Vilalta J, Lloret F. Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. THE NEW PHYTOLOGIST 2011; 190:750-9. [PMID: 21261625 DOI: 10.1111/j.1469-8137.2010.03628.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
• Severe drought may increase physiological stress on long-lived woody vegetation, occasionally leading to mortality of overstory trees. Little is known about the factors determining tree survival and subsequent recovery after drought. • We used structural equation modeling to analyse the recovery of Scots pine (Pinus sylvestris) trees 4 yr after an extreme drought episode occurred in 2004-2005 in north-east Spain. Measured variables included the amount of green foliage, carbon reserves in the stem, mistletoe (Viscum album) infection, needle physiological performance and stem radial growth before, during and after the drought event. • The amount of green leaves and the levels of carbon reserves were related to the impact of drought on radial growth, and mutually correlated. However, our most likely path model indicated that current depletion of carbon reserves was a result of reduced photosynthetic tissue. This relationship potentially constitutes a feedback limiting tree recovery. In addition, mistletoe infection reduced leaf nitrogen content, negatively affecting growth. Finally, successive surveys in 2009-2010 showed a direct association between carbon reserves depletion and drought-induced mortality. • Severe drought events may induce long-term physiological disorders associated with canopy defoliation and depletion of carbon reserves, leading to prolonged recovery of surviving individuals and, eventually, to delayed tree death.
Collapse
Affiliation(s)
- L Galiano
- CREAF/Unitat d'Ecologia, Departamento Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.
| | | | | |
Collapse
|
49
|
Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM, Merganičová K, Netherer S, Arpaci A, Bontemps JD, Bugmann H, González-Olabarria JR, Lasch P, Meredieu C, Moreira F, Schelhaas MJ, Mohren F. Modelling natural disturbances in forest ecosystems: a review. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2010.09.040] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Centritto M, Tognetti R, Leitgeb E, Střelcová K, Cohen S. Above Ground Processes: Anticipating Climate Change Influences. FOREST MANAGEMENT AND THE WATER CYCLE 2010. [DOI: 10.1007/978-90-481-9834-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|