1
|
Maïza A, Hamoudi R, Mabondzo A. Targeting the Multiple Complex Processes of Hypoxia-Ischemia to Achieve Neuroprotection. Int J Mol Sci 2024; 25:5449. [PMID: 38791487 PMCID: PMC11121719 DOI: 10.3390/ijms25105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of newborn brain damage stemming from a lack of oxygenated blood flow in the neonatal period. Twenty-five to fifty percent of asphyxiated infants who develop HIE die in the neonatal period, and about sixty percent of survivors develop long-term neurological disabilities. From the first minutes to months after the injury, a cascade of events occurs, leading to blood-brain barrier (BBB) opening, neuronal death and inflammation. To date, the only approach proposed in some cases is therapeutic hypothermia (TH). Unfortunately, TH is only partially protective and is not applicable to all neonates. This review synthesizes current knowledge on the basic molecular mechanisms of brain damage in hypoxia-ischemia (HI) and on the different therapeutic strategies in HI that have been used and explores a major limitation of unsuccessful therapeutic approaches.
Collapse
Affiliation(s)
- Auriane Maïza
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| | - Rifat Hamoudi
- Center of Excellence of Precision Medicine, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
| | - Aloïse Mabondzo
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| |
Collapse
|
2
|
Protection of insect neurons by erythropoietin/CRLF3-mediated regulation of pro-apoptotic acetylcholinesterase. Sci Rep 2022; 12:18565. [PMID: 36329181 PMCID: PMC9633726 DOI: 10.1038/s41598-022-22035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokine receptor-like factor 3 (CRLF3) is a conserved but largely uncharacterized orphan cytokine receptor of eumetazoan animals. CRLF3-mediated neuroprotection in insects can be stimulated with human erythropoietin. To identify mechanisms of CRLF3-mediated neuroprotection we studied the expression and proapoptotic function of acetylcholinesterase in insect neurons. We exposed primary brain neurons from Tribolium castaneum to apoptogenic stimuli and dsRNA to interfere with acetylcholinesterase gene expression and compared survival and acetylcholinesterase expression in the presence or absence of the CRLF3 ligand erythropoietin. Hypoxia increased apoptotic cell death and expression of both acetylcholinesterase-coding genes ace-1 and ace-2. Both ace genes give rise to single transcripts in normal and apoptogenic conditions. Pharmacological inhibition of acetylcholinesterases and RNAi-mediated knockdown of either ace-1 or ace-2 expression prevented hypoxia-induced apoptosis. Activation of CRLF3 with protective concentrations of erythropoietin prevented the increased expression of acetylcholinesterase with larger impact on ace-1 than on ace-2. In contrast, high concentrations of erythropoietin that cause neuronal death induced ace-1 expression and hence promoted apoptosis. Our study confirms the general proapoptotic function of AChE, assigns a role of both ace-1 and ace-2 in the regulation of apoptotic death and identifies the erythropoietin/CRLF3-mediated prevention of enhanced acetylcholinesterase expression under apoptogenic conditions as neuroprotective mechanism.
Collapse
|
3
|
Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current Evidence on the Protective Effects of Recombinant Human Erythropoietin and Its Molecular Variants against Pathological Hallmarks of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13120424. [PMID: 33255969 PMCID: PMC7760199 DOI: 10.3390/ph13120424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence in the literature demonstrates the pleiotropic effects of the administration of recombinant human erythropoietin (rhEPO) and its molecular variants in different tissues and organs, including the brain. Some of these reports suggest that the chemical properties of this molecule by itself or in combination with other agents (e.g., growth factors) could provide the necessary pharmacological characteristics to be considered a potential protective agent in neurological disorders such as Alzheimer’s disease (AD). AD is a degenerative disorder of the brain, characterized by an aberrant accumulation of amyloid β (Aβ) and hyperphosphorylated tau (tau-p) proteins in the extracellular and intracellular space, respectively, leading to inflammation, oxidative stress, excitotoxicity, and other neuronal alterations that compromise cell viability, causing neurodegeneration in the hippocampus and the cerebral cortex. Unfortunately, to date, it lacks an effective therapeutic strategy for its treatment. Therefore, in this review, we analyze the evidence regarding the effects of exogenous EPOs (rhEPO and its molecular variants) in several in vivo and in vitro Aβ and tau-p models of AD-type neurodegeneration, to be considered as an alternative protective treatment to this condition. Particularly, we focus on analyzing the differential effect of molecular variants of rhEPO when changes in doses, route of administration, duration of treatment or application times, are evaluated for the improved cellular alterations generated in this disease. This narrative review shows the evidence of the effectiveness of the exogenous EPOs as potential therapeutic molecules, focused on the mechanisms that establish cellular damage and clinical manifestation in the AD.
Collapse
Affiliation(s)
- José J. Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Martha C. Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM-Juriquilla, Querétaro 76230, Mexico;
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Ciudad de Mexico 07360, Mexico;
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| | - Carlos Beas-Zárate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| |
Collapse
|
4
|
Effect of erythropoietin on Fas/FasL expression in brain tissues of neonatal rats with hypoxic-ischemic brain damage. Neuroreport 2019; 30:262-268. [PMID: 30672890 PMCID: PMC6392204 DOI: 10.1097/wnr.0000000000001194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) occurs due to intrauterine hypoxia ischemia influencing the energy supply for fetal brain cells, which affects the metabolism of the brain to make the brain suffer a severe damage. Erythropoietin (EPO), which regulates hemacytopoiesis, is a kind of cytokine. EPO is sensitive to hypoxia ischemia. In this study, we aimed to investigate the effect of EPO on the expression of Fas/FasL in brain tissues of neonatal rats with HIBD. Neonatal rats were assigned randomly to sham, HIBD, and EPO groups. Five time points for observation were 6, 12, 24, 48, and 72 h after the HIBD rat model had been established, respectively. In the HIBD group, Fas/FasL expression began to rise at 6 h, reached the peak at 12–24 h, and dropped from 24 h. In the EPO group, the expression of Fas/FasL was lower than those in HIBD group at 12, 24, and 48 h (P<0.05). Our findings suggest that EPO may reduce cell apoptosis after hypoxic-ischemic damage through reduction of the expression of Fas and FasL, and that optimal therapeutic time window is 6–24 h after HIBD.
Collapse
|
5
|
Erythropoietin Reduces Neurodegeneration and Long-Term Memory Deficits Following Sevoflurane Exposure in Neonatal Rats. Neurotox Res 2019; 36:817-826. [DOI: 10.1007/s12640-019-00028-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
|
6
|
Neuroprotective Effects of neuroEPO Using an In Vitro Model of Stroke. Behav Sci (Basel) 2018; 8:bs8020026. [PMID: 29438293 PMCID: PMC5836009 DOI: 10.3390/bs8020026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/31/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein initially identified as a hormone synthesized and secreted by the kidney that regulates erythropoiesis. EPO, and a group of its derivatives, are being evaluated as possible neuroprotective agents in cerebral ischemia. The objective of this study, using an in vitro model, was to determine how neuroEPO—which is a variant of EPO with a low sialic acid content—protects neurons from the toxic action of glutamate. Primary neuronal cultures were obtained from the forebrains of Wistar rat embryos after 17 days of gestation. Excitotoxicity was induced after nine days of in vitro culture by treatment with a medium containing 100 µM glutamate for 15 min. After this time, a new medium containing 100 ng of neuroEPO/mL was added. Morphological cell change was assessed by phase-contrast microscopy. Oxidative stress was analysed by measuring antioxidant and oxidant activity. After 24 h, the treatment with 100 ng of neuroEPO/mL showed a significant (p < 0.01) decrease in mortality, compared to cells treated with glutamate alone. neuroEPO treatment decreased mortality and tended to reproduce the morphological characteristics of the control. The oxidative stress induced by glutamate is reduced after neuroEPO treatment. These results confirm that neuroEPO has a protective effect against neuronal damage induced by excitotoxicity, improving antioxidant activity in the neuron, and protecting it from oxidative stress.
Collapse
|
7
|
Erythropoietin Effects on Pathological Changes of Brain Tissues and Motor Balance Functions after Trauma Brain Injury in Animal Model. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2017. [DOI: 10.5812/rijm.65025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Hahn N, Knorr DY, Liebig J, Wüstefeld L, Peters K, Büscher M, Bucher G, Ehrenreich H, Heinrich R. The Insect Ortholog of the Human Orphan Cytokine Receptor CRLF3 Is a Neuroprotective Erythropoietin Receptor. Front Mol Neurosci 2017; 10:223. [PMID: 28769759 PMCID: PMC5509957 DOI: 10.3389/fnmol.2017.00223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/28/2017] [Indexed: 12/26/2022] Open
Abstract
The cytokine erythropoietin (Epo) mediates various cell homeostatic responses to environmental challenges and pathological insults. While stimulation of vertebrate erythrocyte production is mediated by homodimeric “classical” Epo receptors, alternative receptors are involved in neuroprotection. However, their identity remains enigmatic due to complex cytokine ligand and receptor interactions and conflicting experimental results. Besides the classical Epo receptor, the family of type I cytokine receptors also includes the poorly characterized orphan cytokine receptor-like factor 3 (CRLF3) present in vertebrates including human and various insect species. By making use of the more simple genetic makeup of insect model systems, we studied whether CRLF3 is a neuroprotective Epo receptor in animals. We identified a single ortholog of CRLF3 in the beetle Tribolium castaneum, and established protocols for primary neuronal cell cultures from Tribolium brains and efficient in vitro RNA interference. Recombinant human Epo as well as the non-erythropoietic Epo splice variant EV-3 increased the survival of serum-deprived brain neurons, confirming the previously described neuroprotective effect of Epo in insects. Moreover, Epo completely prevented hypoxia-induced apoptotic cell death of primary neuronal cultures. Knockdown of CRLF3 expression by RNA interference with two different double stranded RNA (dsRNA) fragments abolished the neuroprotective effect of Epo, indicating that CRLF3 is a crucial component of the insect Epo-responsive receptor. This suggests that a common urbilaterian ancestor of the orphan human and insect cytokine receptor CRLF3 served as a neuroprotective receptor for an Epo-like cytokine. Our work also suggests that vertebrate CRLF3, like its insect ortholog, might represent a tissue protection-mediating receptor.
Collapse
Affiliation(s)
- Nina Hahn
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University GoettingenGoettingen, Germany
| | - Debbra Y Knorr
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University GoettingenGoettingen, Germany
| | - Johannes Liebig
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University GoettingenGoettingen, Germany
| | - Liane Wüstefeld
- Clinical Neuroscience, Max Planck Institute of Experimental MedicineGoettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Goettingen, Germany
| | - Karsten Peters
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University GoettingenGoettingen, Germany
| | - Marita Büscher
- Department of Evolutionary Developmental Biology, Institute for Zoology, Georg-August-University GoettingenGoettingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Biology, Institute for Zoology, Georg-August-University GoettingenGoettingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental MedicineGoettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Goettingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University GoettingenGoettingen, Germany
| |
Collapse
|
9
|
Bonnas C, Wüstefeld L, Winkler D, Kronstein-Wiedemann R, Dere E, Specht K, Boxberg M, Tonn T, Ehrenreich H, Stadler H, Sillaber I. EV-3, an endogenous human erythropoietin isoform with distinct functional relevance. Sci Rep 2017; 7:3684. [PMID: 28623280 PMCID: PMC5473850 DOI: 10.1038/s41598-017-03167-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/25/2017] [Indexed: 01/14/2023] Open
Abstract
Generation of multiple mRNAs by alternative splicing is well known in the group of cytokines and has recently been reported for the human erythropoietin (EPO) gene. Here, we focus on the alternatively spliced EPO transcript characterized by deletion of exon 3 (hEPOΔ3). We show co-regulation of EPO and hEPOΔ3 in human diseased tissue. The expression of hEPOΔ3 in various human samples was low under normal conditions, and distinctly increased in pathological states. Concomitant up-regulation of hEPOΔ3 and EPO in response to hypoxic conditions was also observed in HepG2 cell cultures. Using LC-ESI-MS/MS, we provide first evidence for the existence of hEPOΔ3 derived protein EV-3 in human serum from healthy donors. Contrary to EPO, recombinant EV-3 did not promote early erythroid progenitors in cultures of human CD34+ haematopoietic stem cells. Repeated intraperitoneal administration of EV-3 in mice did not affect the haematocrit. Similar to EPO, EV-3 acted anti-apoptotic in rat hippocampal neurons exposed to oxygen-glucose deprivation. Employing the touch-screen paradigm of long-term visual discrimination learning, we obtained first in vivo evidence of beneficial effects of EV-3 on cognition. This is the first report on the presence of a naturally occurring EPO protein isoform in human serum sharing non-erythropoietic functions with EPO.
Collapse
Affiliation(s)
| | - Liane Wüstefeld
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Daniela Winkler
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Romy Kronstein-Wiedemann
- German Red Cross Blood Donor Service North-East, Institute of Transfusion Medicine, Dresden, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katja Specht
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Melanie Boxberg
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Torsten Tonn
- German Red Cross Blood Donor Service North-East, Institute of Transfusion Medicine, Dresden, Germany
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Desden, Dresden, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | | | | |
Collapse
|
10
|
Heinrich R, Günther V, Miljus N. Erythropoietin-Mediated Neuroprotection in Insects Suggests a Prevertebrate Evolution of Erythropoietin-Like Signaling. VITAMINS AND HORMONES 2017. [PMID: 28629517 DOI: 10.1016/bs.vh.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cytokine erythropoietin (Epo) mediates protective and regenerative functions in mammalian nervous systems via activation of poorly characterized receptors that differ from the "classical" homodimeric Epo receptor expressed on erythroid progenitor cells. Epo genes have been identified in vertebrate species ranging from human to fish, suggesting that Epo signaling evolved earlier than the vertebrate lineage. Studies on insects (Locusta migratoria, Chorthippus biguttulus, Tribolium castaneum) revealed Epo-mediated neuroprotection and neuroregeneration. Recombinant human Epo (rhEpo) prevents apoptosis by binding to a janus kinase-associated receptor, stimulation of STAT transcription factors, and generation of factors that prevent the activation of proapoptotic caspases. Insect neurons were also protected by a neuroprotective but nonerythropoietic Epo splice variant, suggesting similarity with mammalian neuroprotective but not with homodimeric "classical" Epo receptors. Additionally, rhEpo promotes the regeneration of neurites in primary cultured insect brain neurons and after nerve crush in an in vivo preparation. In contrast to neuroprotective and regenerative effects shared with mammalian species, no evidence for a role of Epo signaling in the regulation of neuro- or gliogenesis was found in insects. Similar structural and functional characteristics of the Epo binding receptors, partly shared transduction pathways that prevent apoptosis and the functional implication in neuroprotective and neuroregenerative processes in both mammalian and insect species, suggest that Epo-like signaling was already established in their last common ancestor. Originally functioning as a tissue-protective response to unfavorable physiological situations, cell injury, and pathogen invasion, Epo was later adapted as a humoral regulator of erythropoiesis in the vertebrate lineage.
Collapse
Affiliation(s)
- Ralf Heinrich
- Institute for Zoology and Anthropology, Georg-August-University Goettingen, Goettingen, Germany.
| | - Verena Günther
- Institute for Zoology and Anthropology, Georg-August-University Goettingen, Goettingen, Germany
| | - Natasa Miljus
- Institute for Zoology and Anthropology, Georg-August-University Goettingen, Goettingen, Germany
| |
Collapse
|
11
|
Miljus N, Massih B, Weis MA, Rison JV, Bonnas CB, Sillaber I, Ehrenreich H, Geurten BRH, Heinrich R. Neuroprotection and endocytosis: erythropoietin receptors in insect nervous systems. J Neurochem 2017; 141:63-74. [DOI: 10.1111/jnc.13967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Natasa Miljus
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Bita Massih
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Marissa A. Weis
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Jan Vincent Rison
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | | | | | - Hannelore Ehrenreich
- Clinical Neuroscience; Max Planck Institute of Experimental Medicine; Goettingen Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB); Goettingen Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| |
Collapse
|
12
|
Wang Y, Zhang H, Liu Y, Li P, Cao Z, Cao Y. Erythropoietin (EPO) protects against high glucose-induced apoptosis in retinal ganglional cells. Cell Biochem Biophys 2015; 71:749-55. [PMID: 25287674 DOI: 10.1007/s12013-014-0259-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the protective effect and mechanism of EPO on the apoptosis induced by high levels of glucose in retinal ganglial cells (RGCs). High glucose-induced apoptosis model was established in RGCs isolated from SD rats (1-3 days old) and identified with Thy1.1 mAb and MAP-2 pAb. The apoptosis was determined by Hochest assay. The levels of ROS were quantitated by staining the cells with dichloro-dihydro-fluorescein diacetate (DCFH-DA) and measure by flow cytometry. The SOD, GSH-Px, CAT activities, and levels of T-AOC and MDA were determined by ELISA. Change in mitochondrial membrane potential (Δψm) was also assessed by flow cytometry, and expressions of Bcl-2, Bax, caspase-3, caspase-9, and cytochrome C were assessed by western blotting. The RGCs treated with high glucose levels exhibited significantly increased apoptotic rate and concentrations of ROS and MDA. Pretreatment of the cells with EPO caused a significant blockade of the high glucose-induced increase in ROS and MDA levels and apoptotic rate. EPO also increased the activities of SOD, GSH-Px, and CAT, and recovered the levels of T-AOC levels. As a consequence, the mitochondrial membrane potential was improved and Cyt c release into the cytoplasm was prevented which led to significantly suppressed up-regulation of Bax reducing the Bax/Bcl-2 ratio. The expressions of caspase-3 and caspase-9 induced by high glucose exposure were also ameliorated in the RGCs treated with EPO. The protective effect of EPO against apoptosis was mediated through its antioxidant action. Thus, it blocked the generation of pro-apoptotic proteins and apoptotic degeneration of the RGCs by preventing the mitochondrial damage.
Collapse
Affiliation(s)
- Yunxiao Wang
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Certain groups of neonates are at high risk of developing long-term neurodevelopmental impairment and might be considered candidates for neuroprotective interventions. This article explores some of these high-risk groups, relevant mechanisms of brain injury, and specific mechanisms of cellular injury and death. The potential of erythropoietin (Epo) to act as a neuroprotective agent for neonatal brain injury is discussed. Clinical trials of Epo neuroprotection in preterm and term infants are updated.
Collapse
|
14
|
Erythropoietin Attenuates the Apoptosis of Adult Neurons After Brachial Plexus Root Avulsion by Downregulating JNK Phosphorylation and c-Jun Expression and Inhibiting c-PARP Cleavage. J Mol Neurosci 2015; 56:917-925. [PMID: 25877688 DOI: 10.1007/s12031-015-0543-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/09/2015] [Indexed: 01/05/2023]
Abstract
In the present study, the effects of erythropoietin (EPO) on preventing adult neurons from apoptosis (introduced by brachial plexus avulsion) were examined, and the mechanism was analyzed. Fifty injury rat models were established in this study by using micro-hemostat forceps to pull out brachial plexus root from the intervertebral foramen in supine position. These models were divided into EPO group (avulsion + 1000 U/kg subcutaneously on alternate days) and control group (avulsion + normal saline). C5-T1 spinal cord was harvested at days 1, 2, 4, 7, and 14. Compared with the control group, the apoptosis of spinal motoneurons was significantly decreased on days 4 and 7 in the EPO group, which was also approved by TUNEL examination results. The detection of p-JNK and expression of c-Jun and cleavage of cleaved PARP (c-PARP) were also examined by immunohistochemistry and were increased immediately at day 1, and peaked at day 2, day 2, and day 4 in control group, respectively. However, the amounts were decreased and delayed by EPO treatment significantly at the same time points. In conclusion, the apoptosis of adult spinal motorneurons was associated with JNK phosphorylation, c-Jun expression, and caspase activity, and EPO-mediated neuronal protective effect is proved by downregulating the JNK phosphorylation and c-Jun expression and inhibiting of c-PARP cleavage.
Collapse
|
15
|
Dhanushkodi A, Akano EO, Roguski EE, Xue Y, Rao SK, Matta SG, Rex TS, McDonald MP. A single intramuscular injection of rAAV-mediated mutant erythropoietin protects against MPTP-induced parkinsonism. GENES BRAIN AND BEHAVIOR 2012. [PMID: 23190369 DOI: 10.1111/gbb.12001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Erythropoietin (Epo) is neuroprotective in a number of preparations, but can lead to unacceptably high and even lethal hematocrit levels. Recent reports show that modified Epo variants confer neuroprotection in models of glaucoma and retinal degeneration without raising hematocrit. In this study, neuroprotective effects of two Epo variants (EpoR76E and EpoS71E) were assessed in a model of Parkinson's disease. The constructs were packaged in recombinant adeno-associated viral (rAAV) vectors and injected intramuscularly. After 3 weeks, mice received five daily injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and were killed 5 weeks later. The MPTP-lesioned mice pretreated with rAAV.eGFP (negative control) exhibited a 7- to 9-Hz tremor and slower latencies to move on a grid test (akinesia). Both of these symptomatic features were absent in mice pretreated with either modified Epo construct. The rAAV.eGFP-treated mice lesioned with MPTP exhibited a 41% reduction in tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rAAV.EpoS71E construct did not protect nigral neurons, but neuronal loss in mice pretreated with rAAV.EpoR76E was only half that of rAAV.eGFP controls. Although dopamine levels were normal in all groups, 3,4-dihydroxyphenylacetic acid (DOPAC) was significantly reduced only in MPTP-lesioned mice pretreated with rAAV.eGFP, indicating reduced dopamine turnover. Analysis of TH-positive fibers in the striatum showed normalized density in MPTP-lesioned mice pretreated with rAAV.EpoS71E, suggesting that enhanced sprouting induced by EpoS71E may have been responsible for normal behavior and dopaminergic tone in these mice. These results show that systemically administered rAAV-generated non-erythropoietic Epo may protect against MPTP-induced parkinsonism by a combination of neuroprotection and enhanced axonal sprouting.
Collapse
Affiliation(s)
- A Dhanushkodi
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sato K, Morimoto N, Kurata T, Mimoto T, Miyazaki K, Ikeda Y, Abe K. Impaired response of hypoxic sensor protein HIF-1α and its downstream proteins in the spinal motor neurons of ALS model mice. Brain Res 2012; 1473:55-62. [PMID: 22871270 DOI: 10.1016/j.brainres.2012.07.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 12/13/2022]
Abstract
We have recently reported spinal blood flow-metabolism uncoupling in an amyotrophic lateral sclerosis (ALS) animal model using Cu/Zn-superoxide dismutase 1 (SOD1)-transgenic (Tg) mice, suggesting a relative hypoxia in the spinal cord. However, the hypoxic stress sensor pathway has not been well studied in ALS. Here, we examined temporal and spatial changes of the hypoxic stress sensor proteins HIF-1α and its downstream proteins (VEGF, HO-1, and EPO) during the normoxiccourse of motor neuron (MN) degeneration in the spinal cord of these ALS model mice. We found that HIF-1α protein expression progressively increased both in the anterior large MNs and the surrounding glial cells in Tg mice from early symptomatic 14 week (W) and end stage 18 W. Double immunofluorescence analysis revealed that HIF-1α, plus GFAP and Iba-1 double-positive surrounding glial cells, progressively increased from 14 W to 18 W, although the immunohistochemistry in large MNs did not change. Expression levels of VEGF and HO-1 also showed a progressive increase but were significant only in the surrounding glial cells at 18 W. In contrast, EPO protein expression was decreased in the surrounding glial cells of Tg mice at 18 W. Because HIF1-α serves as an important mediator of the hypoxic response, these findings indicate that MNs lack the neuroprotective response to hypoxic stress through the HIF-1α system, which could be an important mechanism of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Kota Sato
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Kato S, Aoyama M, Kakita H, Hida H, Kato I, Ito T, Goto T, Hussein MH, Sawamoto K, Togari H, Asai K. Endogenous erythropoietin from astrocyte protects the oligodendrocyte precursor cell against hypoxic and reoxygenation injury. J Neurosci Res 2012; 89:1566-74. [PMID: 21833990 DOI: 10.1002/jnr.22702] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hypoxia-responsive cytokine erythropoietin (EPO) provides neuroprotective effects in the damaged brain during ischemic events and neurodegenerative diseases. The purpose of the present study is to evaluate the EPO/EPO receptor (EPOR) endogenous system between astrocyte and oligodendrocyte precursor cell (OPC) under hypoxia. We report here elevated EPO mRNA levels and protein release in cultured astrocytes following hypoxic stimulation by quantitative RT-PCR and ELISA. Furthermore, the EPOR gene expressions were detected in cultured OPCs as in astrocytes and microglias by quantitative RT-PCR. Cell staining revealed the EPOR expression in OPC. To evaluate the protective effect of endogenous EPO from astrocyte to OPCs, EPO/EPOR signaling was blocked by EPO siRNA or EPOR siRNA gene silencing in in vitro study. The suppression of endogenous EPO production in astrocytes by EPO siRNA decreased the protection to OPCs against hypoxic stress. Furthermore, OPC with EPOR siRNA had less cell survival after hypoxic/reoxygenation injury. This suggested that EPO/EPOR signaling from astrocyte to OPC could prevent OPC damage under hypoxic/reoxygenation condition. Our present finding of an interaction between astrocytes and OPCs may lead to a new therapeutic approach to OPCs for use against cellular stress and injury.
Collapse
Affiliation(s)
- Shin Kato
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Subirós N, Del Barco DG, Coro-Antich RM. Erythropoietin: still on the neuroprotection road. Ther Adv Neurol Disord 2012; 5:161-73. [PMID: 22590480 PMCID: PMC3349080 DOI: 10.1177/1756285611434926] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acute stroke is one of the major causes of death and disabilities. Since the 1980s many clinical studies have been conducted to evaluate neuroprotective approaches to treat this important brain vascular event. However, to date the only drug approved (recombinant tissue plasminogen activator [rtPA]) represents a thrombolytic, nonneuroprotective approach. An important neuroprotective strategy is based on erythropoietin (EPO). Exogenously administered EPO exhibits neuroprotective effects in numerous animal models, through the activation of anti-apoptotic, anti-oxidant and anti-inflammatory pathways as well as through the stimulation of angiogenic and neurogenic events. The capability of EPO to cross the blood-brain barrier after systemic administration and its effective therapeutic window are advantages for human acute stroke therapy. However, a multicenter stroke trial where recombinant human EPO (rhEPO) was combined with rtPA had negative outcomes. The present paper reviews the EPO neuroprotective strategy and its mechanisms in ischemic stroke and in other human nervous system diseases.
Collapse
Affiliation(s)
- Nelvys Subirós
- Center for Genetic Engineering and Biotechnology, 31 Avenue, P.O. Box 6162, Cubanacán, Playa 10600, Havana, Cuba
| | | | | |
Collapse
|
19
|
Zhi-Kun S, Hong-Qi Y, Zhi-Quan W, Jing P, Zhen H, Sheng-Di C. Erythropoietin prevents PC12 cells from beta-amyloid-induced apoptosis via PI3K⁄Akt pathway. Transl Neurodegener 2012; 1:7. [PMID: 23211059 PMCID: PMC3514084 DOI: 10.1186/2047-9158-1-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 02/29/2012] [Indexed: 12/04/2022] Open
Abstract
Background Several studies indicated that Erythropoietin (Epo) may provide remarkable neuroprotection in some neurological diseases. It also showed the significant decrease of Epo immunoreactivity in the cerebral cortex and hippocampus in aged rats, suggesting the role of Epo in the pathogenesis of age-related neurodegenerative diseases such as AD. Methods The protective effect of Epo was studied in differentiated PC12 cells treated with Abeta. The viability of the cells, the apoptosis of the cells and the level of Bax, Bcl-2, cleaved caspase-3 and cleaved PARP expression were detected by MTT, Hoechst 33258 staining and Western blotting respectively. Results 20 μM Abeta (25-35) could induce a decreased viability and a increased apoptosis in PC12 cell in a time-dependent manner. However, 20 μM Abeta (35-25) had no effect on cell viability and apoptosis. Western blot analysis also showed that Abeta(25-35) treatment could decrease the expression of Bcl-2 (P < 0.05) and increase the expression of Bax (P < 0.05), Cleaved casapase-3 (P < 0.05), and Cleaved PARP (P < 0.05). The pretreatment of Epo could effectively reverse all the above changes induced by Abeta(25-35) (P < 0.05). Furthermore, the protective effect of Epo could be blocked by PI3K inhibitor LY294002 (P < 0.05). Conclusions Epo prevented cell injuries in PC12 cells exposed to the Abeta(25-35) and this effect may depend on the PI3K⁄Akt pathway. Our study provided an important evidence for the potential application of Epo in the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Sun Zhi-Kun
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Erythropoietin in neonatal brain protection: the past, the present and the future. Brain Dev 2011; 33:632-43. [PMID: 21109375 DOI: 10.1016/j.braindev.2010.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 12/12/2022]
Abstract
Over the last decade, neuroprotective effects of erythropoietin (Epo) and its underlying mechanisms in terms of signal transduction pathways have been defined and there is a growing interest in the potential therapeutic use of Epo for neuroprotection. Several mechanisms by which Epo provides neuroprotection are recognized. In this review, we focused on the neuroprotective mechanisms of Epo and provide a short overview on both experimental and clinical studies, testing Epo as a neuroprotective agent in the neonatal brain injury, and the safety concerns with the clinical use of Epo treatment in neonates.
Collapse
|
22
|
Erythropoietin promotes survival and regeneration of insect neurons in vivo and in vitro. Neuroscience 2011; 188:95-108. [DOI: 10.1016/j.neuroscience.2011.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 12/11/2022]
|
23
|
Lanfranconi S, Locatelli F, Corti S, Candelise L, Comi GP, Baron PL, Strazzer S, Bresolin N, Bersano A. Growth factors in ischemic stroke. J Cell Mol Med 2011; 15:1645-87. [PMID: 20015202 PMCID: PMC4373358 DOI: 10.1111/j.1582-4934.2009.00987.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/26/2009] [Indexed: 12/31/2022] Open
Abstract
Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects.
Collapse
Affiliation(s)
- S Lanfranconi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - F Locatelli
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - S Corti
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - L Candelise
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - G P Comi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - P L Baron
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - S Strazzer
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - N Bresolin
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - A Bersano
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
24
|
Chen SJ, Wang YL, Lo WT, Wu CC, Hsieh CW, Huang CF, Lan YH, Wang CC, Chang DM, Sytwu HK. Erythropoietin enhances endogenous haem oxygenase-1 and represses immune responses to ameliorate experimental autoimmune encephalomyelitis. Clin Exp Immunol 2010; 162:210-223. [PMID: 21069936 PMCID: PMC2996588 DOI: 10.1111/j.1365-2249.2010.04238.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2010] [Indexed: 11/26/2022] Open
Abstract
Both erythropoietin (EPO) and haem oxygenase-1 (HO-1), an anti-oxidative stress protein, have proven protective roles in experimental autoimmune encephalomyelitis (EAE), a reliable animal model of multiple sclerosis. In this study, EPO delivered intraperitoneally could reduce disease severity in myelin oligodendrocyte glycoprotein (MOG)–EAE mice. To assess the effect of EPO on endogenous HO-1 in EAE, we investigated expression of HO-1 mRNA by real-time polymerase chain reaction (RT–PCR), protein expression centrally and peripherally by Western blot and immunohistochemistry and mean fluorescence intensity of splenic HO-1 by flow cytometry. A significantly higher expression of HO-1 in both the central nervous system (CNS) and spleen was shown in EPO-treated MOG–EAE mice than in controls.We further examined the immunomodulatory effect of EPO in EAE, and via RT–PCR demonstrated significantly lower expression of interferon-γ, interleukin (IL)-23, IL-6 and IL-17 mRNA, and significantly higher expression of IL-4 and IL-10 mRNA in CNS of EPO-treated MOG–EAE mice than in controls. Using flow cytometry, we also observed a significantly decreased ratio of both T helper type 1 (Th1) and Th17 lymphocyte subsets isolated from CNS and a significantly increased ratio of splenic regulatory CD4 T cells in EPO-treated MOG–EAE mice. In addition, we demonstrated that MOG-specific T cell proliferation was lower in the EPO-treated group than in controls and showed amelioration of EAE by adoptive transfer of splenocytes from EPO-treated MOG–EAE mice. Together, our data show that in EAE, EPO induction of endogenous HO-1 and modulation of adaptive immunity both centrally and peripherally may involve the repression of inflammatory responses.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Brain/cytology
- Brain/drug effects
- Brain/immunology
- Brain/metabolism
- Cell Count
- Cell Proliferation
- Cytokines/genetics
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Epoetin Alfa
- Erythropoietin/pharmacology
- Erythropoietin/therapeutic use
- Gene Expression/drug effects
- Gene Expression/genetics
- Glycoproteins/immunology
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Lymphocyte Activation/immunology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/immunology
- Recombinant Proteins
- Spinal Cord/cytology
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spleen/cytology
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/transplantation
- Th1 Cells/cytology
- Th1 Cells/immunology
- Th17 Cells/cytology
- Th17 Cells/immunology
- Th2 Cells/cytology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Shyi-Jou Chen
- Departments of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim MS, Seo YK, Park HJ, Lee KH, Lee KH, Choi EJ, Kim JK, Chung HL, Kim WT. The neuroprotective effect of recombinant human erythropoietin via an antiapoptotic mechanism on hypoxic-ischemic brain injury in neonatal rats. KOREAN JOURNAL OF PEDIATRICS 2010; 53:898-908. [PMID: 21189961 PMCID: PMC3004504 DOI: 10.3345/kjp.2010.53.10.898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/17/2010] [Accepted: 07/20/2010] [Indexed: 11/27/2022]
Abstract
PURPOSE The neuroprotective effects of erythropoietin (EPO) have been recently shown in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity; however, limited data are available for such effects during the neonatal periods. Therefore, we investigated whether recombinant human EPO (rHuEPO) can protect against perinatal HI brain injury via an antiapoptotic mechanism. METHODS The left carotid artery was ligated in 7-day-old Sprague-Dawley (SD) rat pups (in vivo model). The animals were divided into 6 groups: normoxia control (NC), normoxia sham-operated (NS), hypoxia only (H), hypoxia+vehicle (HV), hypoxia+rHuEPO before a hypoxic insult (HE-B), and hypoxia+rHuEPO after a hypoxic insult (HE-A). Embryonic cortical neuronal cell culture of SD rats at 18 days gestation (in vitro model) was performed. The cultured cells were divided into 5 groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated groups. RESULTS In the in vivo model, Bcl-2 expressions in the H and HV groups were lower than those in the NC and NS groups, whereas those in the HE-A and HE-B groups were greater than those of the H and HV groups. The expressions of Bax and caspase-3 and the ratio of Bax/Bcl-2 were in contrast to those of Bcl-2. In the in vitro model, the patterns of Bcl-2, Bax, and caspase-3 expression and Bax/Bcl-2 ratio were similar to the results obtained in the in vivo model. CONCLUSION rHuEPO exerts neuroprotective effect against perinatal HI brain injury via an antiapoptotic mechanism.
Collapse
Affiliation(s)
- Moon Sun Kim
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jerndal M, Forsberg K, Sena ES, Macleod MR, O'Collins VE, Linden T, Nilsson M, Howells DW. A systematic review and meta-analysis of erythropoietin in experimental stroke. J Cereb Blood Flow Metab 2010; 30:961-8. [PMID: 20040929 PMCID: PMC2949185 DOI: 10.1038/jcbfm.2009.267] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Erythropoietin (EPO) has shown promise as a neuroprotectant in animal models of ischemic stroke. EPO is thought not only to protect neurons from cell death, but also to promote regeneration after stroke. Here, we report a systematic review and meta-analysis of the efficacy of EPO in animal models of focal cerebral ischemia. Primary outcomes were infarct size and neurobehavioral outcome. Nineteen studies involving 346 animals for infarct size and 425 animals for neurobehavioral outcome met our inclusion criteria. Erythropoietin improved infarct size by 30.0% (95% CI: 21.3 to 38.8) and neurobehavioral outcome by 39.8% (33.7 to 45.9). Studies that randomized to treatment group or that blinded assessment of outcome showed lower efficacy. Erythropoietin was tested in animals with hypertension in no studies reporting infarct size and in 7.5% of the animals reporting neurobehavioral outcome. These findings show efficacy for EPO in experimental stroke, but when the impact of common sources of bias are considered, this efficacy falls, suggesting we may be overestimating its potential benefit. As common human co-morbidities may reduce therapeutic efficacy, broader testing to delineate the range of circumstances in which EPO works best would be beneficial.
Collapse
Affiliation(s)
- Mikael Jerndal
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Turner JD, Mammis A, Prestigiacomo CJ. Erythropoietin for the Treatment of Subarachnoid Hemorrhage: A Review. World Neurosurg 2010; 73:500-7. [DOI: 10.1016/j.wneu.2010.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
|
28
|
Anderson J, Sandhir R, Hamilton ES, Berman NEJ. Impaired expression of neuroprotective molecules in the HIF-1alpha pathway following traumatic brain injury in aged mice. J Neurotrauma 2009; 26:1557-66. [PMID: 19203226 DOI: 10.1089/neu.2008.0765] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elderly traumatic brain injury (TBI) patients have higher rates of mortality and worse functional outcome than non-elderly TBI patients. The mechanisms involved in poor outcomes in the elderly are not well understood. Hypoxia-inducible factor-1 alpha (HIF-1alpha) is a basic helix-loop-helix transcription factor that modulates expression of key genes involved in neuroprotection. In this study, we studied the expression of HIF-1alpha and its target survival genes, heme oxygenase-1 (HO-1), vascular endothelial growth factor (VEGF), and erythropoietin (EPO) in the brains of adult versus aged mice following controlled cortical impact (CCI) injury. Adult (5-6 months) and aged (23-24 months) C57Bl/6 mice were injured using a CCI device. At 72 h post-injury, mice were sacrificed and the injured cortex was used for mRNA and protein analysis using real-time reverse transcription--polymerase chain reaction (RT-PCR) and Western blotting protocols. Following injury, HIF-1alpha, HO-1, and VEGF showed upregulation in both the young and aged mice, but in the aged animals the increase in HIF-1alpha and VEGF in response to injury was much lower than in the adult injured animals. EPO was upregulated in the adult injured brain, but not in the aged injured brain. These results support the hypothesis that reduced expression of genes in the HIF-1alpha neuroprotective pathway in aging may contribute to poor prognosis in the elderly following TBI.
Collapse
Affiliation(s)
- Joshua Anderson
- Steve Palermo Nerve Regeneration Laboratory, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | |
Collapse
|
29
|
Byts N, Sirén AL. Erythropoietin: a multimodal neuroprotective agent. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2009; 1:4. [PMID: 20142991 PMCID: PMC2816866 DOI: 10.1186/2040-7378-1-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/21/2009] [Indexed: 05/28/2023]
Abstract
The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent.
Collapse
Affiliation(s)
- Nadiya Byts
- University of Würzburg, Department of Neurosurgery, Würzburg, Germany
| | - Anna-Leena Sirén
- University of Würzburg, Department of Neurosurgery, Würzburg, Germany
| |
Collapse
|
30
|
Chattopadhyay M, Walter C, Mata M, Fink DJ. Neuroprotective effect of herpes simplex virus-mediated gene transfer of erythropoietin in hyperglycemic dorsal root ganglion neurons. Brain 2009; 132:879-888. [PMID: 19244253 PMCID: PMC2724909 DOI: 10.1093/brain/awp014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/25/2008] [Accepted: 01/08/2009] [Indexed: 01/27/2023] Open
Abstract
We examined the efficacy of herpes simplex virus vector-mediated gene transfer of erythropoietin in preventing neuropathy in mouse model of streptozotocin-diabetes. A replication-incompetent herpes simplex virus vector with erythropoietin under the control of the human cytomegalovirus promoter (vector DHEPO) was constructed. DHEPO expressed and released erythropoietin from primary dorsal root ganglion neurons in vitro, and following subcutaneous inoculation in the foot, expressed erythropoietin in dorsal root ganglion neurons in vivo. At 2 weeks after induction of diabetes, subcutaneous inoculation of erythropoietin prevented the reduction in sensory nerve amplitude characteristic of diabetic neuropathy measured 4 weeks later, preserved autonomic function measured by pilocarpine-induced sweating, and prevented the loss of nerve fibres in the skin and reduction of neuropeptide calcitonin gene-related peptide in the dorsal horn of spinal cord of the diabetic mice. We further investigated whether vector-mediated local expression of erythropoietin in dorsal root ganglion neurons can protect in vivo as well as in vitro hyperglycemia-induced axonal degeneration. Our findings show that the AKT/GSK-3beta dependent pathway plays an important role in mediating the protection of erythropoietin against diabetic neuropathy. Herpes simplex virus-mediated transfer of erythropoietin to dorsal root ganglia may prove useful in treatment of diabetic neuropathy.
Collapse
|
31
|
Anderson J, Sandhir R, Hamilton ES, Berman NE. Impaired Expression of Neuroprotective Molecules in the HIF-1-α Pathway following Traumatic Brain Injury in Aged Mice. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
32
|
Sun ZK, Yang HQ, Pan J, Zhen H, Wang ZQ, Chen SD, Ding JQ. Protective effects of erythropoietin on tau phosphorylation induced by beta-amyloid. J Neurosci Res 2008; 86:3018-27. [PMID: 18512763 DOI: 10.1002/jnr.21745] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropathological studies have demonstrated that the presence of neurofibrillary tangles (NFTs) is one of the most prominent pathologic characteristics of Alzheimer's disease (AD). The microtubule-associated protein tau is the major component of NFTs, and its abnormal hyperphosphorylation leads to the destabilization of microtubules, impaired axonal transport, and eventual death of the neurons. The hematopoietic cytokine erythropoietin (Epo) is now considered as a viable agent with regard to central nervous system injury in a variety of cellular systems. Here we report that Epo prevented tau hyperphosphorylation in SH-SY5Y cells exposed to the beta-amyloid peptide and that this effect may depend on the PI3K/Akt-GSK-3beta pathway. This study provides new molecular insight into the neuroprotective effect of Epo and suggests its possible therapeutic role in the management of AD.
Collapse
Affiliation(s)
- Zhi-Kun Sun
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Yazihan N, Uzuner K, Salman B, Vural M, Koken T, Arslantas A. Erythropoietin improves oxidative stress following spinal cord trauma in rats. Injury 2008; 39:1408-13. [PMID: 18635178 DOI: 10.1016/j.injury.2008.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 12/02/2007] [Accepted: 03/14/2008] [Indexed: 02/02/2023]
Abstract
Spinal cord injury (SCI) is a very destructive process for both patients and society. Lipid peroxidation is the main cause of the further secondary damage which starts after mechanical destruction of tissues. Recent studies have shown that erythropoietin (EPO) has neuroprotective properties. In this study, we aimed to see the effect of EPO treatment after spinal cord injury on the oxidant and anti-oxidant enzyme systems and the relationship with the N-methyl-D-Aspartate (NMDA) blockage. Spinal cord injury was produced by epidural compression with a cerebral vascular clip that has a closing force of 40 g for 30s after a limited multilevel laminectomy (T9-11). Experiment was done in 5 groups: Group 1: Sham-operated untraumatised, Group 2: SCI untreated, Group 3: 150 i.u./kg EPO injected i.p. at the end of the first hour following the trauma. Group 4: NMDA receptor antagonist ketamine (100mg/kg) i.p. Group 5: EPO+ketamine i.p. The experiments were finished after 12h of the trauma. The spinal cords were excised for biochemical examinations. Anti-oxidant enzymes; catalase and reduced glutathione (GSH) levels increased and lipid peroxidation product, malonyldialdehyde (MDA) level decreased in EPO treated group when compared to the other groups. TNF-alpha levels decreased in EPO treated group. Application of ketamine before EPO treatment decreased effects of EPO. In conclusion, our results suggest that 150 i.u./kg i.p. EPO, a therapeutic dose in anaemic patients, applied after 1h of spinal cord injury significantly attenuated the oxidative damage of spinal cord injuries in rats. This activity is abolished via ketamine pretreatment.
Collapse
Affiliation(s)
- Nuray Yazihan
- Ankara University, Faculty of Medicine, Molecular Biology Research and Development Unite, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
34
|
Kuluz J, Huang T, Watson B, Vannucci S. Stroke in the immature brain: review of pathophysiology and animal models of pediatric stroke. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pediatric stroke research presents many challenges. Relatively low incidence, need for age stratification, diverse etiologies, delays in diagnosis, lack of an established age-based stroke severity scale and outcome measures are only some of the issues that have prevented the implementation of clinical trials in infants and children with stroke. Experimental animal models of pediatric stroke, therefore, are critical to understanding the pathophysiology and management of ischemic brain damage in the immature brain, and provide the necessary platform for future clinical trials. In this review we discuss the pertinent clinical aspects of pediatric stroke, the pathophysiology of stroke in the developing brain and the animal models established to study basic mechanisms as well as translational issues in pediatric stroke.
Collapse
Affiliation(s)
- John Kuluz
- Associate Professor of Pediatrics, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960, Miami, FL 33101, USA
| | - Tingting Huang
- Post-Doctoral Research Associate, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960 Miami, FL 33101, USA
| | - Brant Watson
- Professor of Neurology, University of Miami, Department of Neurology (D4–5), Miller School of Medicine, PO Box 016960, Miami, FL 33136, USA
| | - Susan Vannucci
- Research Professor of Neuroscience in Pediatrics/Newborn Medicine, Weill Cornell Medical College, 525 East 68th Street, N-506, NY 10065, USA
| |
Collapse
|
35
|
Kokhaei P, Abdalla AO, Hansson L, Mikaelsson E, Kubbies M, Haselbeck A, Jernberg-Wiklund H, Mellstedt H, Osterborg A. Expression of erythropoietin receptor and in vitro functional effects of epoetins in B-cell malignancies. Clin Cancer Res 2007; 13:3536-44. [PMID: 17575216 DOI: 10.1158/1078-0432.ccr-06-2828] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Erythropoietin (EPO) and EPO receptor (EPO-R) expression have been reported in solid tumors and are claimed to regulate tumor growth; however, no data have been published on this issue in B-cell malignancies or normal lymphoid cells. This report describes genomic/protein EPO-R expression and in vitro effects of recombinant human EPO (epoetin) in B-cell chronic lymphocytic leukemia (B-CLL), mantle-cell lymphoma (MCL), and multiple myeloma (MM). EXPERIMENTAL DESIGN Blood samples were obtained from patients with B-CLL, MCL, and healthy volunteers, and bone marrow was obtained from MM patients. EPO-R mRNA was detected by reverse transcription-PCR. EPO-R surface expression was investigated by flow cytometry using digoxigenin-labeled epoetin and polyclonal rabbit anti-EPO-R antibody for intracellular receptor. Tumor cell stimulation was determined in vitro using [(3)H]thymidine incorporation and CD69 expression after exposure to epoetin alpha or beta or darbepoetin alpha. RESULTS EPO-R mRNA was detected in mononuclear cells from 32 of 41 (78%) B-CLL and 5 of 7 (71%) MCL patients, and 21 of 21 (100%) MM samples. Expression was also detected in highly purified T cells from six of eight B-CLL patients, four of four MM patients, and normal donor B and T cells. Surface EPO-R protein was not detected. Intracellular EPO-R staining with anti-EPO-R antibodies was unspecific. No tumor-stimulatory effect was observed with high epoetin concentrations. CONCLUSIONS EPO-R gene is frequently expressed in lymphoid malignancies and normal B and T cells. However, there was no surface protein expression and no epoetin-induced in vitro stimulation of tumor B cells, indicating that epoetin therapy in vivo is likely to be safe in patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Parviz Kokhaei
- Department of Oncology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhong Y, Yao H, Deng L, Cheng Y, Zhou X. Promotion of neurite outgrowth and protective effect of erythropoietin on the retinal neurons of rats. Graefes Arch Clin Exp Ophthalmol 2007; 245:1859-67. [PMID: 17828550 DOI: 10.1007/s00417-007-0671-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 08/03/2007] [Accepted: 08/06/2007] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To clarify the effect of erythropoietin (EPO) on neurite outgrowth of the cultured retinal neurocytes, and investigate whether EPO might potentially be beneficial in protecting cultured retinal neurocytes suffering from glutamate-induced cytotoxity. METHODS After the retinal neurocytes were cultured for 48 hours, the culture media was replaced with serum-free media, and the cultured retinal cells were exposed to 1.0 U/ml, 3.0 U/ml and 6.0 U/ml EPO for another 48 hours; then the cells were stained with Sudan Black B, and the neurite outgrowth of those cells were evaluated by an image-analysis system. After the retinal neurocytes were cultured for 48 hours, the cells were cultured in serum-free media containing 5 mM or 10 mM glutamate, and the cells were incubated in the presence or absence of Epo (1.0 U/ml, 3.0 U/ml, 6.0 U/ml respectively) for another 48 hours. The survival and apoptosis rates of those cells were estimated by MTT assay and fluorescein isothiocyanate (FITC)-annexin V/propidium Iodide (PI) flow cytometry respectively. RESULTS EPO induced a stable improvement of neurite outgrowth of retinal neurocytes in a dose-dependent manner. Compared with the control group, the neurite outgrowth length increased to 162.8% at 6.0 U/ml EPO exposure. EPO had no any significant effect on the survival and apoptosis rates of the retinal neurocytes cultured in serum-free media, but it was beneficial in promoting the survival and decreasing the early and total apoptosis rates of the cultured retinal neurocytes suffering from glutamate-induced cytotoxicity. CONCLUSION EPO had a significant biological effect on neurite outgrowth of the dissociated retinal neurocytes in vitro. EPO was beneficial in promoting the survival and decreasing the apoptosis rates of the cultured retinal neurocytes suffering from glutamate-induced cytotoxicity.
Collapse
Affiliation(s)
- Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Shanghai Jiaotong University, 197 Ruijin No.2 Road, 200025, Shanghai, People's Republic of China.
| | | | | | | | | |
Collapse
|
37
|
Keogh CL, Yu SP, Wei L. The effect of recombinant human erythropoietin on neurovasculature repair after focal ischemic stroke in neonatal rats. J Pharmacol Exp Ther 2007; 322:521-8. [PMID: 17494864 DOI: 10.1124/jpet.107.121392] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cerebral ischemia disrupts the neurovascular unit, involving death of neuronal, glial, and endothelial cells (ECs) in the core and penumbra regions. Whereas the neuroprotective effect of recombinant human erythropoietin (rhEPO) has been widely investigated, its effects on ECs remain elusive. We now report the effects of rhEPO treatment on EC death and neurovasculature repair following a focal ischemic stroke in postnatal day 7 neonatal rats. rhEPO (5000 U/kg i.p.) was administered 60 min after ischemia and for the next 3 days. Western blot analysis revealed increased expression of neurovascular remodeling proteins, including Tie-1, angiopoietin-2, and basic fibroblast growth factor in rhEPO-treated pups. rhEPO treatment significantly reduced EC death in the ischemic penumbra region 12 to 72 h after ischemia examined by immunostaining of terminal deoxynucleotidyl transferase dUTP nick-end labeling and EC marker glucose transporter-1 (GLUT-1). Treatment with rhEPO increased proliferation of ECs and neuronal cells, revealed by costaining of 5-bromo-2'-deoxyuridine with GLUT-1 or with the neuronal marker protein (NeuN) 7 to 21 days after stroke. Specifically, rhEPO increased number of NeuN-positive cells in close proximity to proliferating microvessels. These results suggest for the first time that, in addition to its protection on neural cells, EPO protects ECs and promotes the neurovascular unit repair, which may contribute to its therapeutic benefits after neonatal ischemic stroke.
Collapse
Affiliation(s)
- Christine L Keogh
- Department of Pathology and Laboratory Medicine, 165 Ashley Ave. Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
38
|
Wang Y, Zhang ZG, Rhodes K, Renzi M, Zhang RL, Kapke A, Lu M, Pool C, Heavner G, Chopp M. Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia. Br J Pharmacol 2007; 151:1377-84. [PMID: 17603558 PMCID: PMC2189829 DOI: 10.1038/sj.bjp.0707285] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Recombinant human erythropoietin (rhEPO; Epoetin-alpha; PROCRITtrade mark) has been shown to exert neuroprotective and restorative effects in a variety of CNS injury models. However, limited information is available regarding the dose levels required for these beneficial effects or the neuronal responses that may underlie them. Here we have investigated the dose-response to rhEPO and compared the effects of rhEPO with those of carbamylated rhEPO (CEPO) in a model of cerebral stroke in rats. EXPERIMENTAL APPROACH Rats subjected to embolic middle cerebral artery occlusion (MCAo) were treated with rhEPO or CEPO, starting at 6 h and repeated at 24 and 48 h, after MCAo. Cerebral infarct volumes were assessed at 28 days and neurological impairment at 7, 14, 21 and 28 days, post-MCAo. KEY RESULTS rhEPO at dose levels of 500, 1150 or 5000 IU kg(-1) or CEPO at a dose level of 50 microg kg(-1) significantly reduced cortical infarct volume and reduced neurologic impairment. All doses of rhEPO, but not CEPO, produced a transient increase in haematocrit, while rhEPO and CEPO substantially reduced the number of apoptotic cells and activated microglia in the ischemic boundary region. CONCLUSIONS AND IMPLICATIONS These data indicate that rhEPO and CEPO have anti-inflammatory and anti-apoptotic effects, even with administration at 6 h following embolic MCAo in rats. Taken together, these actions of rhEPO and CEPO are likely to contribute to their reduction of neurologic impairment following cerebral ischemia.
Collapse
Affiliation(s)
- Y Wang
- Department of Neurology, Henry Ford Health Science Center Detroit, MI, USA
| | - Z G Zhang
- Department of Neurology, Henry Ford Health Science Center Detroit, MI, USA
| | - K Rhodes
- CNS Research Team, Johnson & Johnson Pharmaceutical Research & Development Spring House, PA, USA
| | - M Renzi
- CNS Research Team, Johnson & Johnson Pharmaceutical Research & Development Spring House, PA, USA
| | - R L Zhang
- Department of Neurology, Henry Ford Health Science Center Detroit, MI, USA
| | - A Kapke
- Department of Biostatistics and Research Epidemiology, Henry Ford Health Science Center Detroit, MI, USA
| | - M Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Health Science Center Detroit, MI, USA
| | - C Pool
- Protein Design, Centocor Radnor, PA, USA
| | - G Heavner
- Protein Design, Centocor Radnor, PA, USA
| | - M Chopp
- Department of Neurology, Henry Ford Health Science Center Detroit, MI, USA
- Department of Physics, Oakland University Rochester, MI, USA
- Author for correspondence:
| |
Collapse
|
39
|
Monnerie H, Le Roux PD. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro. Exp Neurol 2007; 205:367-82. [PMID: 17433299 DOI: 10.1016/j.expneurol.2007.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/25/2007] [Accepted: 02/15/2007] [Indexed: 02/02/2023]
Abstract
The vulnerability of brain cells to neurologic insults varies greatly, depending on their neuronal subpopulation. However, cells surviving pathological insults such as ischemia or brain trauma may undergo structural changes, e.g., altered process growth, that could compromise brain function. In this study, we examined the effect of glutamate excitotoxicity on dendrite growth from surviving cortical GABAergic neurons in vitro. Glutamate exposure did not affect GABAergic neuron viability, however, it significantly reduced dendrite growth from GABAergic neurons. This effect was blocked by the AMPA receptor antagonists NBQX and CFM-2, and mimicked by AMPA, but not NMDA. Glutamate excitotoxicity also caused an NMDA receptor-mediated decrease in the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67) immunoreactivity from GABAergic neurons, measured using immunocytochemical and Western blot techniques. GAD is necessary for GABA synthesis; however, reduction of GABA by 3-mercaptopropionic acid (3-MPA), which inhibits GABA synthesis, did not alter dendrite growth. These results suggest that GABAergic cortical neurons are relatively resistant to excitotoxic-induced cell death, but they can display morphological and biochemical alterations which may impair their function.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, 330 S 9th Street, 4th Floor, Philadelphia, PA 19107, USA
| | | |
Collapse
|
40
|
McPherson RJ, Demers EJ, Juul SE. Safety of high-dose recombinant erythropoietin in a neonatal rat model. Neonatology 2007; 91:36-43. [PMID: 17344650 DOI: 10.1159/000096969] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 03/09/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND High-dose recombinant erythropoietin (rEpo) is neuroprotective in neonatal animal models of brain injury, but the long-term consequences of neonatal exposure have not been studied. OBJECTIVES We hypothesized that multiple injections of high-dose rEpo during the neonatal period would be safe, and would improve neurologic outcomes after exposure to neonatal hypoxia or hypoxic-ischemic injury. METHODS Three experimental groups of Sprague-Dawley rats were assessed: (1) normoxia, (2) hypoxia and (3) hypoxia-ischemia. Groups 1 and 2 were given 0, 2,500 or 5,000 U/kg rEpo subcutaneously for the first 5 days of life (P1-P5). Group 2 animals also underwent 2 h of hypoxia (8% O(2)) daily from P1-P3. Group 3 animals underwent right carotid artery ligation followed by hypoxia (8% O(2) x 90 min) on P7, followed by either vehicle or rEpo (2,500 U/kg subcutaneously QD x3). We evaluated short- and long-term physiologic and behavioral outcomes. Major organs were evaluated grossly and histologically. RESULTS rEpo treatment transiently raised hematocrit, prevented hypoxia-induced delays in geotaxis and growth, improved forelimb strength, promoted liver growth in males, lowered the adult platelet count, but did not alter other CBC indices or histology. rEpo prevented hypoxia-ischemia-induced learning impairment and substantia nigra neuron loss. CONCLUSIONS Repeated treatment of newborn rats with high-dose rEpo was safe under all conditions tested. rEpo treatment improved the development of hypoxia-exposed newborns and prevented the learning impairment and dopamine neuron loss due to unilateral hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Ronald J McPherson
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA98195-6320, USA
| | | | | |
Collapse
|
41
|
Johnson DW, Forman C, Vesey DA. Novel renoprotective actions of erythropoietin: New uses for an old hormone (Review Article). Nephrology (Carlton) 2006; 11:306-12. [PMID: 16889570 DOI: 10.1111/j.1440-1797.2006.00585.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Erythropoietin (EPO) has been used widely for the treatment of anaemia associated with chronic kidney disease and cancer chemotherapy for nearly 20 years. More recently, EPO has been found to interact with its receptor (EPO-R) expressed in a large variety of non-haematopoietic tissues to induce a range of cytoprotective cellular responses, including mitogenesis, angiogenesis, inhibition of apoptosis and promotion of vascular repair through mobilization of endothelial progenitor cells from the bone marrow. Administration of EPO or its analogue, darbepoetin, promotes impressive renoprotection in experimental ischaemic and toxic acute renal failure, as evidenced by suppressed tubular epithelial apoptosis, enhanced tubular epithelial proliferation and hastened functional recovery. This effect is still apparent when administration is delayed up to 6 h after the onset of injury and can be dissociated from its haematological effects. Based on these highly encouraging results, at least one large randomized controlled trial of EPO therapy in ischaemic acute renal failure is currently underway. Preliminary experimental and clinical evidence also indicates that EPO may be renoprotective in chronic kidney disease. The purpose of the present article is to review the renoprotective benefits of different protocols of EPO therapy in the settings of acute and chronic kidney failure and the potential mechanisms underpinning these renoprotective actions. Gaining further insight into the pleiotropic actions of EPO will hopefully eventuate in much-needed, novel therapeutic strategies for patients with kidney disease.
Collapse
Affiliation(s)
- David W Johnson
- Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
42
|
Kang MJ, Kim HJ, Kim HK, Lee JY, Kim DH, Jung KJ, Kim KW, Baik HS, Yoo MA, Yu BP, Chung HY. The effect of age and calorie restriction on HIF-1-responsive genes in aged liver. Biogerontology 2006; 6:27-37. [PMID: 15834661 DOI: 10.1007/s10522-004-7381-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 09/20/2004] [Indexed: 12/22/2022]
Abstract
Hypoxia inducible factor-1 (HIF-1) regulates transactivation of several genes in response to hypoxia condition. We explore hepatic HIF-1 responsive gene regulation during aging and the age-related changes of the HIF-1 related gene activation in young and old rats. Results indicate that the aging process induces the activation of HIF-1alpha, which is accompanied by increased HIF-1 DNA binding. This increased binding activity is accompanied by the increase of HIF-1-dependent genes, heme oxygenase-1 (HO-1), vascular endothelial growth factor (VEGF), erythropoietin (EPO), and inducible nitric oxide synthase (iNOS), which all showed remarkable up-regulation during aging process. In contrast, the increased HIF-1 related gene expression was effectively blunted by the anti-oxidative action of calorie restriction in aged rat liver. We propose that age-related HIF-1 binding activity may well be influenced by the increased pro-oxidative conditions of aged animals, which up-regulate HIF-1-dependent gene expression.
Collapse
Affiliation(s)
- Min Ju Kang
- College of Pharmacy, Aging Tissue Bank, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Matchett G, Hahn J, Obenaus A, Zhang J. Surgically induced brain injury in rats: the effect of erythropoietin. J Neurosci Methods 2006; 158:234-41. [PMID: 16837052 DOI: 10.1016/j.jneumeth.2006.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/25/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
Brain tissue at the edge of a surgical resection site is at risk for damage from direct trauma, retractor stretch, hemorrhage, edema, and electrocautery. In this study we used a new rodent model of surgically induced brain injury (SBI) to study this tissue at the edge of a resection site. The SBI model entails stereotaxic resection of part of the right frontal lobe. We tested pretreatment with erythropoietin, a known neuroprotectant, for protective effects in this model. Three groups of male Sprague-Dawley rats (280-330g) were used: SBI without treatment (n=63), SBI with EPO treatment (n=76), and Sham surgery (n=12). Rats were sacrificed 24h, 72h, and 7 days after SBI or Sham surgery. Postoperative assessment included mortality, histology, immunohistochemistry, Evans blue exudation, brain water content, and magnetic resonance imaging. No difference was found between untreated and EPO-treated groups in mortality, histology, TUNEL, magnetic resonance imaging, or blood-brain-barrier breakdown. The EPO-treated group had statistically more brain water content at 24h than the untreated group. Immunohistochemistry demonstrated a qualitative increase in VEGF in the EPO-treatment group. We conclude that EPO does not ameliorate damage in SBI, and may increase brain edema early after surgery.
Collapse
Affiliation(s)
- Gerald Matchett
- Department of Anesthesiology, Loma Linda University, School of Medicine, Loma Linda, CA, United States
| | | | | | | |
Collapse
|
44
|
Hasselblatt M, Ehrenreich H, Sirén AL. The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. J Neurosurg Anesthesiol 2006; 18:132-8. [PMID: 16628067 DOI: 10.1097/00008506-200604000-00007] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The discovery of the broad neuroprotective potential of erythropoietin (EPO), an endogenous hematopoietic growth factor, has opened new therapeutic avenues in the treatment of brain diseases. EPO expression in the brain is induced by hypoxia. Practically all brain cells are capable of production and release of EPO and expression of its receptor. EPO exerts multifaceted protective effects on brain cells. It protects neuronal cells from noxious stimuli such as hypoxia, excess glutamate, serum deprivation or kainic acid exposure in vitro by targeting a variety of mechanisms and involves neuronal, glial and endothelial cell functions. In rodent models of ischemic stroke, EPO reduces infarct volume and improves functional outcome, but beneficial effects have also been observed in animal models of subarachnoid hemorrhage, intracerebral hemorrhage, traumatic brain injury, and spinal cord injury. EPO has a convenient therapeutic window upon ischemic stroke and favorable pharmacokinetics. Results from first therapeutic trials in humans are promising, but will need to be validated in larger trials. The safety profile and effectiveness of EPO in a wide variety of neurologic disease models make EPO a candidate compound for a potential first-line therapeutic for neurologic emergencies.
Collapse
Affiliation(s)
- Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | | | | |
Collapse
|
45
|
Meloni BP, Tilbrook PA, Boulos S, Arthur PG, Knuckey NW. Erythropoietin preconditioning in neuronal cultures: signaling, protection from in vitro ischemia, and proteomic analysis. J Neurosci Res 2006; 83:584-93. [PMID: 16435392 DOI: 10.1002/jnr.20755] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we confirmed the presence of the erythropoietin (EPO) receptor on both cultured cortical neurons and PC12 cells and showed that EPO can induce changes in p38, ERK, and JNK signaling molecules in these cells. We induced EPO preconditioning in cortical neuronal cultures that protected neurons from a subsequent in vitro ischemic insult (transient oxygen-glucose deprivation). To investigate downstream changes in protein expression in EPO-preconditioned cortical neuronal cultures, we used two-dimensional gel electrophoresis. Overall, EPO preconditioning resulted in protein up-regulation, and, from 84 of the most differentially expressed proteins selected for identification, the proteins or tentative proteins were identified in 57 cases, representing 40 different proteins. Different protein spots representing the same or closely related protein(s) occurred for 13 of the identified proteins and are likely to represent posttranslational modifications or proteolytic fragments of the protein. Two proteins (78-kD glucose-regulated protein and tropomyosin, fibroblast isoform 1) were detected in control neuronal cultures, but not following EPO preconditioning treatment, whereas one protein (40S ribosomal protein SA) was detected only following EPO preconditioning. Most of the other proteins identified had not previously been associated with EPO preconditioning and will aid in the understanding of EPO's neuroprotective response and possibly the development of new therapeutic interventions to inhibit neuronal death in acute and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery/Sir Charles Gairdner Hospital, Centre for Neuromuscular and Neurological Disorders/The University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
46
|
Liu J, Narasimhan P, Song YS, Nishi T, Yu F, Lee YS, Chan PH. Epo protects SOD2-deficient mouse astrocytes from damage by oxidative stress. Glia 2006; 53:360-5. [PMID: 16288465 DOI: 10.1002/glia.20289] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Erythropoietin (Epo) expression, which regulates erythropoiesis, has been shown in rat and mouse brain after hypoxia. A previous study from our laboratory showed that astrocytes from manganese-superoxide dismutase (SOD2) homozygous knockout (SOD2(-/-)) mice can survive under 5% O(2), but not under normal aerobic conditions. However, the mechanism involved is not clear. Our preliminary study using reverse transcriptase-polymerase chain reaction showed increased Epo mRNA expression in astrocytes cultured with 5% hypoxia compared with astrocytes under normal conditions. After administration of anti-sense Epo, protection decreased with time. Dose-dependent administration of Epo to SOD2(-/-) mouse astrocytes improved their survivability under normal conditions. Survivability of heterozygous SOD2(-/+) mutant and wild-type mouse astrocyte cultures was the same under normal conditions but, after administration of 2 mM of paraquat, a reactive oxygen species generator, survivability of the SOD2(-/+) astrocytes decreased remarkably compared with the wild-type cells. Epo administration 24 h before exposure to paraquat significantly improved the survivability of the SOD2(-/+) astrocytes. Western blot studies suggest that Jak-Stat signal transduction pathways are involved in this process. Our study demonstrates an important role for Epo in the protection of astrocytes from reactive oxygen species. We suggest that Epo can compensate in part for the antioxidant properties of mitochondrial SOD2 deficiency.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurosurgery, Program in Neurosciences, Stanford University School of Medicine, California, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Liu R, Suzuki A, Guo Z, Mizuno Y, Urabe T. Intrinsic and extrinsic erythropoietin enhances neuroprotection against ischemia and reperfusion injury in vitro. J Neurochem 2006; 96:1101-10. [PMID: 16417583 DOI: 10.1111/j.1471-4159.2005.03597.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was designed to investigate the neuroprotective effect of intrinsic and extrinsic erythropoietin (EPO) against hypoxia/ischemia, and determine the optimal time-window with respect to the EPO-induced neuroprotection. Experiments were conducted using primary mixed neuronal/astrocytic cultures and neuron-rich cultures. Hypoxia (2%) induces hypoxia-inducible factor-1alpha (HIF-1alpha) activity followed by strong EPO expression in mixed cultures and weak expression in neuron-rich cultures as documented by both western blot and RT-PCR. Immunoreactive EPO was strongly detected in astrocytes, whereas EPOR was only detected in neurons. Neurons were significantly damaged in neuron-rich cultures but were distinctly rescued in mixed cultures. Application of recombinant human EPO (rhEPO) (0.1 U/mL) within 6 h before or after hypoxia significantly increased neuronal survival compared with no rhEPO treatment. Application of rhEPO after onset of reoxygenation achieved the maximal neuronal protection against ischemia/reperfusion injury (6 h hypoxia followed 24 h reoxygenation). Our results indicate that HIF-1alpha induces EPO gene released by astrocytes and acts as an essential mediator of neuroprotection, prove the protective role of intrinsic astrocytic-neuronal signaling pathway in hypoxic/ischemic injury and demonstrate an optimal therapeutic time-window of extrinsic rhEPO in ischemia/reperfusion injury in vitro. The results point to the potential beneficial effects of HIF-1alpha and EPO for the possible treatment of stroke.
Collapse
Affiliation(s)
- Ruiqin Liu
- Department of Neurology, Juntendo University of School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Abstract
Ischaemic preconditioning (IPC), also known as ischaemic tolerance (IT), is a phenomenon whereby tissue is exposed to a brief, sublethal period of ischaemia, which activates endogenous protective mechanisms, thereby reducing cellular injury that may be caused by subsequent lethal ischaemic events. The first description of this phenomenon was in the heart, which was reported by Murry and co-workers in 1986. Subsequent studies demonstrated IPC in lung, kidney and liver tissue, whereas more recent studies have concentrated on the brain. The cellular mechanisms underlying the beneficial effects of IPC remain largely unknown. This phenomenon, which has been demonstrated by using various injury paradigms in both cultured neurons and animal brain tissue, may be utilised to identify and characterise therapeutic targets for small-molecule, antibody, or protein intervention. This review will examine the experimental evidence demonstrating the phenomenon termed IPC in models of cerebral ischaemia, the cellular mechanisms that may be involved and the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Kevin Pong
- Wyeth Research, Department of Neuroscience, Princeton, NJ 08543, USA.
| |
Collapse
|
49
|
Kaul M, Lipton SA. Experimental and potential future therapeutic approaches for HIV-1 associated dementia targeting receptors for chemokines, glutamate and erythropoietin. Neurotox Res 2005; 8:167-86. [PMID: 16260394 DOI: 10.1007/bf03033828] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe and debilitating neurological problems that include behavioral abnormalities, motor dysfunction and frank dementia can occur after infection with the human immunodeficiency virus-1 (HIV-1). Infected peripheral immune-competent cells, in particular macrophages, infiltrate the central nervous system (CNS) and provoke a neuropathological response involving all cell types in the brain. HIV-1 infection results in activation of chemokine receptors, inflammatory mediators, extracellular matrix-degrading enzymes and glutamate receptor-mediated excitotoxicity, all of which can trigger numerous downstream signaling pathways that result in disruption of neuronal and glial function. Despite many major improvements in the control of viral infection in the periphery, a truly effective therapy for HIV-1 associated dementia is currently not available. This review will discuss experimental and potentially future therapeutic strategies based on recently uncovered pathologic mechanisms contributing to neuronal damage induced by HIV-1.
Collapse
Affiliation(s)
- M Kaul
- Center for Neuroscience and Aging Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
50
|
Yamasaki M, Mishima HK, Yamashita H, Kashiwagi K, Murata K, Minamoto A, Inaba T. Neuroprotective effects of erythropoietin on glutamate and nitric oxide toxicity in primary cultured retinal ganglion cells. Brain Res 2005; 1050:15-26. [PMID: 15979589 DOI: 10.1016/j.brainres.2005.05.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/30/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Erythropoietin receptor (EpoR) is expressed in the central nervous system (CNS), however, no clear consensus has been obtained whether Epo acts as a prosurvival factor in neurons. Because retinal ganglion cell (RGC) death is a common cause of reduced visual function in several ocular diseases, we explored whether Epo might potentially be beneficial in protecting RGCs from glutamate and nitric oxide (NO)-induced cytotoxicity, using isolated RGCs by a two-step panning method. Brain-derived neurotrophic factor (BDNF) was used as a positive control. EpoR mRNA was expressed in isolated RGCs, and EpoR protein was expressed on the RGCs in the normal and ischemic retinas. Epo had less potential to improve the survival of primary RGCs in serum-free medium than BDNF. In these cells, BDNF, but not Epo, downregulated the expression of Bim, a proapoptotic Bcl-2 family member that plays a key role in cytokine-mediated cell survival, suggesting a possible mechanism for this difference. When RGCs were cultured with glutamate or an NO-generating reagent, the survival of RGCs was compromised, and Bcl-2 expression was decreased in these cells. Both Epo and BDNF significantly reduced RGC death induced by glutamate and NO. In agreement with this, these factors reversed the Bcl-2 expression. These findings suggest that Epo may be a potent neuroprotective therapeutic agent for the treatment of ocular diseases that are characterized by RGC death.
Collapse
Affiliation(s)
- Makiko Yamasaki
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|