1
|
Alvarez JA, Gas-Pascual E, Malhi S, Sánchez-Arcila JC, Njume FN, van der Wel H, Zhao Y, García-López L, Ceron G, Posada J, Souza SP, Yap GS, West CM, Jensen KDC. The GPI sidechain of Toxoplasma gondii inhibits parasite pathogenesis. mBio 2024; 15:e0052724. [PMID: 39302131 PMCID: PMC11481522 DOI: 10.1128/mbio.00527-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are highly conserved anchors for eukaryotic cell surface proteins. The apicomplexan parasite, Toxoplasma gondii, is a widespread intracellular parasite of warm-blooded animals whose plasma membrane is covered with GPI-anchored proteins, and free GPIs called GIPLs. While the glycan portion is conserved, species differ in sidechains added to the triple mannose core. The functional significance of the Glcα1,4GalNAcβ1- sidechain reported in Toxoplasma gondii has remained largely unknown without understanding its biosynthesis. Here we identify and disrupt two glycosyltransferase genes and confirm their respective roles by serology and mass spectrometry. Parasites lacking the sidechain on account of deletion of the first glycosyltransferase, PIGJ, exhibit increased virulence during primary and secondary infections, suggesting it is an important pathogenesis factor. Cytokine responses, antibody recognition of GPI-anchored SAGs, and complement binding to PIGJ mutants are intact. By contrast, the scavenger receptor CD36 shows enhanced binding to PIGJ mutants, potentially explaining a subtle tropism for macrophages detected early in infection. Galectin-3, which binds GIPLs, exhibits an enhancement of binding to PIGJ mutants, and the protection of galectin-3 knockout mice from lethality suggests that Δpigj parasite virulence in this context is sidechain dependent. Parasite numbers are not affected by Δpigj early in the infection in wild-type mice, suggesting a breakdown of tolerance. However, increased tissue cysts in the brains of mice infected with Δpigj parasites indicate an advantage over wild-type strains. Thus, the GPI sidechain of T. gondii plays a crucial and diverse role in regulating disease outcomes in the infected host.IMPORTANCEThe functional significance of sidechain modifications to the glycosylphosphatidylinositol (GPI) anchor in parasites has yet to be determined because the glycosyltransferases responsible for these modifications have not been identified. Here we present identification and characterization of both Toxoplasmsa gondii GPI sidechain-modifying glycosyltransferases. Removal of the glycosyltransferase that adds the first GalNAc to the sidechain results in parasites without a sidechain on the GPI, and increased host susceptibility to infection. Loss of the second glycosyltransferase results in a sidechain with GalNAc alone, and no glucose added, and has negligible effect on disease outcomes. This indicates GPI sidechains are fundamental to host-parasite interactions.
Collapse
Affiliation(s)
- Julia A. Alvarez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Sahil Malhi
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Ferdinand Ngale Njume
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Yanlin Zhao
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Laura García-López
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Gabriella Ceron
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jasmine Posada
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Scott P. Souza
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Christopher M. West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| |
Collapse
|
2
|
Thalén NB, Karlander M, Lundqvist M, Persson H, Hofström C, Turunen SP, Godzwon M, Volk AL, Malm M, Ohlin M, Rockberg J. Mammalian cell display with automated oligo design and library assembly allows for rapid residue level conformational epitope mapping. Commun Biol 2024; 7:805. [PMID: 38961245 PMCID: PMC11222437 DOI: 10.1038/s42003-024-06508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Precise epitope determination of therapeutic antibodies is of great value as it allows for further comprehension of mechanism of action, therapeutic responsiveness prediction, avoidance of unwanted cross reactivity, and vaccine design. The golden standard for discontinuous epitope determination is the laborious X-ray crystallography method. Here, we present a combinatorial method for rapid mapping of discontinuous epitopes by mammalian antigen display, eliminating the need for protein expression and purification. The method is facilitated by automated workflows and tailored software for antigen analysis and oligonucleotide design. These oligos are used in automated mutagenesis to generate an antigen receptor library displayed on mammalian cells for direct binding analysis by flow cytometry. Through automated analysis of 33930 primers an optimized single condition cloning reaction was defined allowing for mutation of all surface-exposed residues of the receptor binding domain of SARS-CoV-2. All variants were functionally expressed, and two reference binders validated the method. Furthermore, epitopes of three novel therapeutic antibodies were successfully determined followed by evaluation of binding also towards SARS-CoV-2 Omicron BA.2. We find the method to be highly relevant for rapid construction of antigen libraries and determination of antibody epitopes, especially for the development of therapeutic interventions against novel pathogens.
Collapse
Affiliation(s)
- Niklas Berndt Thalén
- Department Protein science, KTH-Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Maximilian Karlander
- Department Protein science, KTH-Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Magnus Lundqvist
- Department Protein science, KTH-Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development Platform & School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Camilla Hofström
- Science for Life Laboratory, Drug Discovery and Development Platform & School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - S Pauliina Turunen
- Science for Life Laboratory, Drug Discovery and Development Platform & School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | - Anna-Luisa Volk
- Department Protein science, KTH-Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Magdalena Malm
- Department Protein science, KTH-Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Johan Rockberg
- Department Protein science, KTH-Royal Institute of Technology, Stockholm, SE-106 91, Sweden.
| |
Collapse
|
3
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023; 13:994. [PMID: 37371574 DOI: 10.3390/biom13060994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ezema CA, Okagu IU, Ezeorba TPC. Escaping the enemy's bullets: an update on how malaria parasites evade host immune response. Parasitol Res 2023:10.1007/s00436-023-07868-6. [PMID: 37219610 DOI: 10.1007/s00436-023-07868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Malaria continues to cause untold hardship to inhabitants of malaria-endemic regions, causing significant morbidity and mortality that severely impact global health and the economy. Considering the complex life cycle of malaria parasites (MPs) and malaria biology, continued research efforts are ongoing to improve our understanding of the pathogenesis of the diseases. Female Anopheles mosquito injects MPs into its hosts during a blood meal, and MPs invade the host skin and the hepatocytes without causing any serious symptoms. Symptomatic infections occur only during the erythrocytic stage. In most cases, the host's innate immunity (for malaria-naïve individuals) and adaptive immunity (for pre-exposed individuals) mount severe attacks and destroy most MPs. It is increasingly understood that MPs have developed several mechanisms to escape from the host's immune destruction. This review presents recent knowledge on how the host's immune system destroys invading MPs as well as MPs survival or host immune evasion mechanisms. On the invasion of host cells, MPs release molecules that bind to cell surface receptors to reprogram the host in a way to lose the capacity to destroy them. MPs also hide from the host immune cells by inducing the clustering of both infected and uninfected erythrocytes (rosettes), as well as inducing endothelial activation. We hope this review will inspire more research to provide a complete understanding of malaria biology and promote interventions to eradicate the notorious disease.
Collapse
Affiliation(s)
- Chinonso Anthony Ezema
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Division of Soft Matter, Hokkaido University, Sapporo, 060-0810, Japan
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria.
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria.
- Department of Molecular Biotechnology, School of Biosciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
7
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
8
|
Zhang J, Dai Y, Fan Y, Jiang N, Zhou Y, Zeng L, Li Y. Glycosylphosphatidylinositol Mannosyltransferase Ⅰ Protects Chinese Giant Salamander, Andrias davidianus, against Iridovirus. Int J Mol Sci 2022; 23:ijms23169009. [PMID: 36012277 PMCID: PMC9409044 DOI: 10.3390/ijms23169009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylphosphatidylinositol mannosyltransferase I (GPI-MT-I) is an essential glycosyltransferase of glycosylphosphatidylinositol-anchor proteins (GPI-APs) that transfers the first of the four mannoses in GPI-AP precursors, which have multiple functions, including immune response and signal transduction. In this study, the GPI-MT-I gene that regulates GPI-AP biosynthesis in Andrias davidianus (AdGPI-MT-I) was characterized for the first time. The open reading frame (ORF) of AdGPI-MT-I is 1293 bp and encodes a protein of 430 amino acids that contains a conserved PMT2 superfamily domain. AdGPI-MT-I mRNA was widely expressed in the tissues of the Chinese giant salamander. The mRNA expression level of AdGPI-MT-I in the spleen, kidney, and muscle cell line (GSM cells) was significantly upregulated post Chinese giant salamander iridovirus (GSIV) infection. The mRNA expression of the virus major capsid protein (MCP) in AdGPI-MT-I-overexpressed cells was significantly reduced. Moreover, a lower level of virus MCP synthesis and gene copying in AdGPI-MT-I-overexpressed cells was confirmed by western blot and ddPCR. These results collectively suggest that GSIV replication in GSM cells was significantly reduced by the overexpression of the AdGPI-MT-I protein, which may contribute to a better understanding of the antiviral mechanism against iridovirus infection.
Collapse
Affiliation(s)
- Jingjing Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yanlin Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.Z.); (Y.L.); Tel.: +86-027-8178-5190 (L.Z.); +86-027-8178-5182 (Y.L.)
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (L.Z.); (Y.L.); Tel.: +86-027-8178-5190 (L.Z.); +86-027-8178-5182 (Y.L.)
| |
Collapse
|
9
|
Müller GA, Müller TD. Biological Role of the Intercellular Transfer of Glycosylphosphatidylinositol-Anchored Proteins: Stimulation of Lipid and Glycogen Synthesis. Int J Mol Sci 2022; 23:7418. [PMID: 35806423 PMCID: PMC9267055 DOI: 10.3390/ijms23137418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs), which are anchored at the outer leaflet of plasma membranes (PM) only by a carboxy-terminal GPI glycolipid, are known to fulfill multiple enzymic and receptor functions at the cell surface. Previous studies revealed that full-length GPI-APs with the complete GPI anchor attached can be released from and inserted into PMs in vitro. Moreover, full-length GPI-APs were recovered from serum, dependent on the age and metabolic state of rats and humans. Here, the possibility of intercellular control of metabolism by the intercellular transfer of GPI-APs was studied. Mutant K562 erythroleukemia (EL) cells, mannosamine-treated human adipocytes and methyl-ß-cyclodextrin-treated rat adipocytes as acceptor cells for GPI-APs, based on their impaired PM expression of GPI-APs, were incubated with full-length GPI-APs, prepared from rat adipocytes and embedded in micelle-like complexes, or with EL cells and human adipocytes with normal expression of GPI-APs as donor cells in transwell co-cultures. Increases in the amounts of full-length GPI-APs at the PM of acceptor cells as a measure of their transfer was assayed by chip-based sensing. Both experimental setups supported both the transfer and upregulation of glycogen (EL cells) and lipid (adipocytes) synthesis. These were all diminished by serum, serum GPI-specific phospholipase D, albumin, active bacterial PI-specific phospholipase C or depletion of total GPI-APs from the culture medium. Serum inhibition of both transfer and glycogen/lipid synthesis was counteracted by synthetic phosphoinositolglycans (PIGs), which closely resemble the structure of the GPI glycan core and caused dissociation of GPI-APs from serum proteins. Finally, large, heavily lipid-loaded donor and small, slightly lipid-loaded acceptor adipocytes were most effective in stimulating transfer and lipid synthesis. In conclusion, full-length GPI-APs can be transferred between adipocytes or between blood cells as well as between these cell types. Transfer and the resulting stimulation of lipid and glycogen synthesis, respectively, are downregulated by serum proteins and upregulated by PIGs. These findings argue for the (patho)physiological relevance of the intercellular transfer of GPI-APs in general and its role in the paracrine vs. endocrine (dys)regulation of metabolism, in particular. Moreover, they raise the possibility of the use of full-length GPI-APs as therapeutics for metabolic diseases.
Collapse
Affiliation(s)
- Günter A. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany;
- German Center for Diabetes Research (DZD, Deutsches Zentrum für Diabetesforschung), International Helmholtz Research School for Diabetes, 85764 Oberschleissheim, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany;
- German Center for Diabetes Research (DZD, Deutsches Zentrum für Diabetesforschung), International Helmholtz Research School for Diabetes, 85764 Oberschleissheim, Germany
| |
Collapse
|
10
|
Alkaline Phosphatase: An Old Friend as Treatment Target for Cardiovascular and Mineral Bone Disorders in Chronic Kidney Disease. Nutrients 2022; 14:nu14102124. [PMID: 35631265 PMCID: PMC9144546 DOI: 10.3390/nu14102124] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Alkaline phosphatase (ALP) is an evolutionary conserved enzyme and widely used biomarker in clinical practice. Tissue-nonspecific alkaline phosphatase (TNALP) is one of four human isozymes that are expressed as distinct TNALP isoforms after posttranslational modifications, mainly in bone, liver, and kidney tissues. Beyond the well-known effects on bone mineralization, the bone ALP (BALP) isoforms (B/I, B1, B1x, and B2) are also involved in the pathogenesis of ectopic calcification. This narrative review summarizes the recent clinical investigations and mechanisms that link ALP and BALP to inflammation, metabolic syndrome, vascular calcification, endothelial dysfunction, fibrosis, cardiovascular disease, and mortality. The association between ALP, vitamin K, bone metabolism, and fracture risk in patients with chronic kidney disease (CKD) is also discussed. Recent advances in different pharmacological strategies are highlighted, with the potential to modulate the expression of ALP directly and indirectly in CKD–mineral and bone disorder (CKD-MBD), e.g., epigenetic modulation, phosphate binders, calcimimetics, vitamin D, and other anti-fracture treatments. We conclude that the significant evidence for ALP as a pathogenic factor and risk marker in CKD-MBD supports the inclusion of concrete treatment targets for ALP in clinical guidelines. While a target value below 120 U/L is associated with improved survival, further experimental and clinical research should explore interventional strategies with optimal risk–benefit profiles. The future holds great promise for novel drug therapies modulating ALP.
Collapse
|
11
|
Chip-Based Sensing of the Intercellular Transfer of Cell Surface Proteins: Regulation by the Metabolic State. Biomedicines 2021; 9:biomedicines9101452. [PMID: 34680568 PMCID: PMC8533487 DOI: 10.3390/biomedicines9101452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are anchored at the surface of mammalian blood and tissue cells through a carboxy-terminal GPI glycolipid. Eventually, they are released into incubation medium in vitro and blood in vivo and subsequently inserted into neighboring cells, potentially leading to inappropriate surface expression or lysis. To obtain first insight into the potential (patho)physiological relevance of intercellular GPI-AP transfer and its biochemical characterization, a cell-free chip- and microfluidic channel-based sensing system was introduced. For this, rat or human adipocyte or erythrocyte plasma membranes (PM) were covalently captured by the TiO2 chip surface operating as the acceptor PM. To measure transfer between PM, donor erythrocyte or adipocyte PM were injected into the channels of a flow chamber, incubated, and washed out, and the type and amount of proteins which had been transferred to acceptor PM evaluated with specific antibodies. Antibody binding was detected as phase shift of horizontal surface acoustic waves propagating over the chip surface. Time- and temperature-dependent transfer, which did not rely on fusion of donor and acceptor PM, was detected for GPI-APs, but not typical transmembrane proteins. Transfer of GPI-APs was found to be prevented by α-toxin, which binds to the glycan core of GPI anchors, and serum proteins in concentration-dependent fashion. Blockade of transfer, which was restored by synthetic phosphoinositolglycans mimicking the glycan core of GPI anchors, led to accumulation in the chip channels of full-length GPI-APs in association with phospholipids and cholesterol in non-membrane structures. Strikingly, efficacy of transfer between adipocytes and erythrocytes was determined by the metabolic state (genotype and feeding state) of the rats, which were used as source for the PM and sera, with upregulation in obese and diabetic rats and counterbalance by serum proteins. The novel chip-based sensing system for GPI-AP transfer may be useful for the prediction and stratification of metabolic diseases as well as elucidation of the putative role of intercellular transfer of cell surface proteins, such as GPI-APs, in (patho)physiological mechanisms.
Collapse
|
12
|
Interaction of Full-Length Glycosylphosphatidylinositol-Anchored Proteins with Serum Proteins and Their Translocation to Cells In Vitro Depend on the (Pre-)Diabetic State in Rats and Humans. Biomedicines 2021; 9:biomedicines9030277. [PMID: 33802150 PMCID: PMC8000876 DOI: 10.3390/biomedicines9030277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), which are anchored at the surface of mammalian cultured and tissue cells through a carboxy-terminal GPI glycolipid, are susceptible to release into incubation medium and (rat and human) blood, respectively, in response to metabolic stress and ageing. Those GPI-APs with the complete GPI still attached form micelle-like complexes together with (lyso)phospholipids and cholesterol and are prone to degradation by serum GPI-specific phospholipase D (GPLD1), as well as translocation to the surface of acceptor cells in vitro. In this study, the interaction of GPI-APs with GPLD1 or other serum proteins derived from metabolically deranged rat and humans and their translocation were measured by microfluidic chip- and surface acoustic wave-based sensing of micelle-like complexes reconstituted with model GPI-APs. The effect of GPI-AP translocation on the integrity of the acceptor cell surface was studied as lactate dehydrogenase release. For both rats and humans, the dependence of serum GPLD1 activity on the hyperglycemic/hyperinsulinemic state was found to be primarily based on upregulation of the interaction of GPLD1 with micelle-like GPI-AP complexes, rather than on its amount. In addition to GPLD1, other serum proteins were found to interact with the GPI phosphoinositolglycan of full-length GPI-APs. Upon incubation of rat adipocytes with full-length GPI-APs, their translocation from the micelle-like complexes (and also with lower efficacy from reconstituted high-density lipoproteins and liposomes) to acceptor cells was observed, accompanied by upregulation of their lysis. Both GPI-AP translocation and adipocyte lysis became reduced in the presence of serum proteins, including (inhibited) GPLD1. The reduction was higher with serum from hyperglycemic/hyperinsulinemic rats and diabetic humans compared to healthy ones. These findings suggest that the deleterious effects of full-length GPI-APs following spontaneous release into the circulation of metabolically deranged rats and humans are counterbalanced by upregulated interaction of their GPI anchor with GPLD1 and other serum proteins. Thereby, translocation of GPI-APs to blood and tissue cells and their lysis are prevented. The identification of GPI-APs and serum proteins interacting within micelle-like complexes may facilitate the prediction and stratification of diseases that are associated with impaired cell-surface anchorage of GPI-APs, such as obesity and diabetes.
Collapse
|
13
|
Yang G, Banfield DK. Cdc1p is a Golgi-localized glycosylphosphatidylinositol-anchored protein remodelase. Mol Biol Cell 2020; 31:2883-2891. [PMID: 33112703 PMCID: PMC7927193 DOI: 10.1091/mbc.e20-08-0539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive posttranslational modifications and remodeling, including the addition and subsequent removal of phosphoethanolamine (EtNP) from mannose 1 (Man1) and mannose 2 (Man2) of the glycan moiety. Removal of EtNP from Man1 is catalyzed by Cdc1p, an event that has previously been considered to occur in the endoplasmic reticulum (ER). We establish that Cdc1p is in fact a cis/medial Golgi membrane protein that relies on the COPI coatomer for its retention in this organelle. We also determine that Cdc1p does not cycle between the Golgi and the ER, and consistent with this finding, when expressed at endogenous levels ER-localized Cdc1p-HDEL is unable to support the growth of cdc1Δ cells. Our cdc1 temperature-sensitive alleles are defective in the transport of a prototypical GPI-AP-Gas1p to the cell surface, a finding we posit reveals a novel Golgi-localized quality control warrant. Thus, yeast cells scrutinize GPI-APs in the ER and also in the Golgi, where removal of EtNP from Man2 (via Ted1p in the ER) and from Man1 (by Cdc1p in the Golgi) functions as a quality assurance signal.
Collapse
Affiliation(s)
- Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR of China
| | - David K. Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR of China
| |
Collapse
|
14
|
Müller GA, Ussar S, Tschöp MH, Müller TD. Age-dependent membrane release and degradation of full-length glycosylphosphatidylinositol-anchored proteins in rats. Mech Ageing Dev 2020; 190:111307. [PMID: 32628941 DOI: 10.1016/j.mad.2020.111307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 01/28/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are associated with the surface of eucaryotic cells only through a covalently coupled carboxy-terminal GPI glycolipid structure which is anchored at the outer leaflet of plasma membranes. This mode of membrane association may be responsible for the recent observations that full-length GPI-APs harbouring the complete GPI anchor are (i) released from isolated rat adipocytes in vitro and (ii) expressed in rat and human serum. The upregulation of the adipocyte release in response to increased cell size and blood glucose/insulin levels of the donor rats and downregulation of the expression in serum of insulin resistant and diabetic rats have been reconciled with enhanced degradation of the full-length GPI-APs released into micelle-like complexes together with (lyso) phospholipids and cholesterol by serum GPI-specific phospholipase D (GPI-PLD). Here by using a sensitive and reliable sensing method for full-length GPI-APs, which relies on surface acoustic waves propagating over microfluidic chips, the upregulation of (i) the release of the full-length GPI-APs CD73, alkaline phosphatase and CD55 from isolated adipocyte plasma membranes monitored in a "lab-on-the-chip" configuration, (ii) their release from isolated rat adipocytes into the incubation medium and (iii) the lipolytic cleavage of their GPI anchors in serum was demonstrated to increase with age (3-16 weeks) and body weight (87-477 g) of (healthy) donor rats. In contrast, the amount of full-length GPI-APs in rat serum, as determined by chip-based sensing, turned out to decline with age/body weight. These correlations suggest that age-/weight-induced alterations (in certain biophysical/biochemical characteristics) of plasma membranes are responsible for the release of full-length GPI-APs which becomes counteracted by elevated GPI-PLD activity in serum. Thus, sensitive and specific measurement of these GPI-AP-relevant parameters may be useful for monitoring of age-related cell surface changes, in general, and diseases, in particular.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Department Biology I, Genetics, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany.
| | - Siegfried Ussar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
15
|
Davids M, Menezes M, Guo Y, McLean SD, Hakonarson H, Collins F, Worgan L, Billington CJ, Maric I, Littlejohn RO, Onyekweli T, Adams DR, Tifft CJ, Gahl WA, Wolfe LA, Christodoulou J, Malicdan MCV. Homozygous splice-variants in human ARV1 cause GPI-anchor synthesis deficiency. Mol Genet Metab 2020; 130:49-57. [PMID: 32165008 PMCID: PMC7303973 DOI: 10.1016/j.ymgme.2020.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mutations in the ARV1 Homolog, Fatty Acid Homeostasis Modulator (ARV1), have recently been described in association with early infantile epileptic encephalopathy 38. Affected individuals presented with epilepsy, ataxia, profound intellectual disability, visual impairment, and central hypotonia. In S. cerevisiae, Arv1 is thought to be involved in sphingolipid metabolism and glycophosphatidylinositol (GPI)-anchor synthesis. The function of ARV1 in human cells, however, has not been elucidated. METHODS Mutations were discovered through whole exome sequencing and alternate splicing was validated on the cDNA level. Expression of the variants was determined by qPCR and Western blot. Expression of GPI-anchored proteins on neutrophils and fibroblasts was analyzed by FACS and immunofluorescence microscopy, respectively. RESULTS Here we describe seven patients from two unrelated families with biallelic splice mutations in ARV1. The patients presented with early onset epilepsy, global developmental delays, profound hypotonia, delayed speech development, cortical visual impairment, and severe generalized cerebral and cerebellar atrophy. The splice variants resulted in decreased ARV1 expression and significant decreases in GPI-anchored protein on the membranes of neutrophils and fibroblasts, indicating that the loss of ARV1 results in impaired GPI-anchor synthesis. CONCLUSION Loss of GPI-anchored proteins on our patients' cells confirms that the yeast Arv1 function of GPI-anchor synthesis is conserved in humans. Overlap between the phenotypes in our patients and those reported for other GPI-anchor disorders suggests that ARV1-deficiency is a GPI-anchor synthesis disorder.
Collapse
Affiliation(s)
- Mariska Davids
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Minal Menezes
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
| | - Yiran Guo
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott D McLean
- Department of Clinical Genetics, The Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Felicity Collins
- Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia; Department of Clinical Genetics, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Lisa Worgan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Charles J Billington
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irina Maric
- Hematology Service, Clinical Center, NIH, Bethesda, MD, USA
| | | | - Tito Onyekweli
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia.
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Jaiswal M, Zhu S, Jiang W, Guo Z. Synthesis and evaluation of N α,N ε-diacetyl-l-lysine-inositol conjugates as cancer-selective probes for metabolic engineering of GPIs and GPI-anchored proteins. Org Biomol Chem 2020; 18:2938-2948. [PMID: 32242600 DOI: 10.1039/d0ob00333f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two myo-inositol derivatives having an Nα,Nε-diacetyl-l-lysine (Ac2Lys) moiety linked to the inositol 1-O-position through a self-cleavable linker and a metabolically stable 2-azidoethyl group linked to the inositol 3-O- and 4-O-positions, respectively, were designed and synthesized. The Ac2Lys moiety blocking the inositol 1-O-position required for GPI biosynthesis was expected to be removable by a combination of two enzymes, histone deacetylase (HDAC) and cathepsin L (CTSL), abundantly expressed in cancer cells, but not in normal cells, to transform these inositol derivatives into biosynthetically useful products with a free 1-O-position. As a result, it was found that these inositol derivatives could be incorporated into the glycosylphosphatidylinositol (GPI) biosynthetic pathway by cancer cells, but not by normal cells, to express azide-labeled GPIs and GPI-anchored proteins on cell surfaces. Consequently, this study has established a novel strategy and new molecular tools for selective metabolic labeling of cancer cells, which should be useful for various biological studies and applications.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Sanyong Zhu
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Wenjie Jiang
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
17
|
Müller GA, Tschöp MH, Müller TD. Upregulated phospholipase D activity toward glycosylphosphatidylinositol-anchored proteins in micelle-like serum complexes in metabolically deranged rats and humans. Am J Physiol Endocrinol Metab 2020; 318:E462-E479. [PMID: 31961708 DOI: 10.1152/ajpendo.00504.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-AP) with the complete glycolipid anchor attached have previously been shown to be released from the outer plasma membrane leaflet of rat adipocytes in positive correlation to cell size and blood glucose/insulin levels of the donor rats. Furthermore, they are present in rat and human serum, however, at amounts that are lower in insulin-resistant/obese rats compared with normal ones. These findings prompted further evaluation of the potential of full-length GPI-AP for the prediction and stratification of metabolically deranged states. A comparison of the signatures of horizontal surface acoustic waves that were generated by full-length GPI-AP in the course of their specific capture by and subsequent dissociation from a chip-based sensor between those from rat serum and those reconstituted into lipidic structures strongly argues for expression of full-length GPI-AP in serum in micelle-like complexes in concert with phospholipids, lysophospholipids, and cholesterol. Both the reconstituted and the rat serum complexes were highly sensitive toward mechanical forces, such as vibration. Furthermore, full-length GPI-AP reconstituted into micelle-like complexes represented efficient substrates for cleavage by serum glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD). These findings raised the possibility that the upregulated release of full-length GPI-AP into micelle-like serum complexes from metabolically deranged cells is compensated by elevated GPI-PLD activity. In fact, serum GPI-PLD activity toward full-length GPI-AP in micelle-like complexes, but not in detergent micelles, was positively correlated to early states of insulin resistance and obesity in genetic and diet-induced rat models as well as to the body weight in humans. Moreover, the differences in the degradation of GPI-AP in micelle-like complexes were found to rely in part on the interaction of serum GPI-PLD with an activating serum factor. These data suggest that serum GPI-PLD activity measured with GPI-AP in micelle-like complexes is indicative of enhanced release of full-length GPI-AP from relevant tissues into the circulation as a consequence of early metabolic derangement in rats and humans.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department Biology I, Genetics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
18
|
Müller GA, Herling AW, Stemmer K, Lechner A, Tschöp MH. Chip-based sensing for release of unprocessed cell surface proteins in vitro and in serum and its (patho)physiological relevance. Am J Physiol Endocrinol Metab 2019; 317:E212-E233. [PMID: 31039006 DOI: 10.1152/ajpendo.00079.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To study the possibility that certain components of eukaryotic plasma membranes are released under certain (patho)physiological conditions, a chip-based sensor was developed for the detection of cell surface proteins, which are anchored at the outer leaflet of eukaryotic plasma membranes by a covalently attached glycolipid, exclusively, and might be prone to spontaneous or regulated release on the basis of their amphiphilic character. For this, unprocessed, full-length glycosylphosphatidylinositol-anchored proteins (GPI-AP), together with associated phospholipids, were specifically captured and detected by a chip- and microfluidic channel-based sensor, leading to changes in phase and amplitude of surface acoustic waves (SAW) propagating over the chip surface. Unprocessed GPI-AP in complex with lipids were found to be released from rat adipocyte plasma membranes immobilized on the chip, which was dependent on the flow rate and composition of the buffer stream. The complexes were identified in the incubation medium of primary rat adipocytes, in correlation to the cell size, and in rat as well as human serum. With rats, the measured changes in SAW phase shift, reflecting specific mass/size or amount of the unprocessed GPI-AP in complex with lipids, and SAW amplitude, reflecting their viscoelasticity, enabled the differentiation between the lean and obese (high-fat diet) state, and the normal (Wistar) and hyperinsulinemic (Zucker fatty) as well as hyperinsulinemic hyperglycemic (Zucker diabetic fatty) state. Thus chip-based sensing for complexes of unprocessed GPI-AP and lipids reveals the inherently labile anchorage of GPI-AP at plasma membranes and their susceptibility for release in response to (intrinsic/extrinsic) cues of metabolic relevance and may, therefore, be useful for monitoring of (pre-)diabetic disease states.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas W Herling
- Sanofi Deutschland GmbH, Diabetes Research Division , Frankfurt am Main , Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas Lechner
- Diabetes Research Group, Medizinische Klinik IV, Medical Center, Ludwig-Maximilians-Universität München (Klinikum der Universität München) , München , Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Oberschleissheim/Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München , München , Germany
- German Center for Diabetes Research, Oberschleissheim/Neuherberg, Germany
| |
Collapse
|
19
|
Metabolic Labeling and Structural Analysis of Glycosylphosphatidylinositols from Parasitic Protozoa. Methods Mol Biol 2019. [PMID: 31256378 DOI: 10.1007/978-1-4939-9055-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Glycosylphosphatidylinositol (GPI) is a complex glycolipid structure that acts as a membrane anchor for many cell-surface proteins of eukaryotes. GPI-anchored proteins are particularly abundant in protozoa and represent the major carbohydrate modification of many cell-surface parasite proteins. A minimal GPI-anchor precursor consists of core glycan (ethanolamine-PO4-Manα1-2Manα1-6Manα1-4GlcNH2) linked to the 6-position of the D-myo-inositol ring of phosphatidylinositol. Although the GPI core glycan is conserved in all organisms, many differences in additional modifications to GPI structures and biosynthetic pathways have been reported. The preassembled GPI-anchor precursor is post-translationally transferred to a variety of membrane proteins in the lumen of the endoplasmic reticulum in a transamidase-like reaction during which a C-terminal GPI attachment signal is released. Increasing evidence shows that a significant proportion of the synthesized GPIs are not used for protein anchoring, particularly in protozoa in which a large amount of free GPIs are being displayed at the cell surface. The characteristics of GPI biosynthesis are currently being explored for the development of parasite-specific inhibitors. Especially this pathway, at least for Trypanosoma brucei, has been validated as a drug target. Furthermore, thanks to an increase of new innovative strategies to produce pure synthetic carbohydrates, a novel era in the use of GPIs in diagnostic, anti-GPI antibody production, as well as parasitic protozoa GPI-based vaccine approach is developing fast.
Collapse
|
20
|
Müller GA. The release of glycosylphosphatidylinositol-anchored proteins from the cell surface. Arch Biochem Biophys 2018; 656:1-18. [DOI: 10.1016/j.abb.2018.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
|
21
|
Abstract
Membrane biology seeks to understand how lipids and proteins within bilayers assemble into large structures such as organelles and the plasma membranes. Historically, lipids were thought to merely provide structural support for bilayer formation and membrane protein function. Research has now revealed that phospholipid metabolism regulates nearly all cellular processes. Sophisticated techniques helped identify >10,000 lipid species suggesting that lipids support many biological processes. Here, we highlight the synthesis of the most abundant glycerophospholipid classes and their distribution in organelles. We review vesicular and nonvesicular transport pathways shuttling lipids between organelles and discuss lipid regulators of membrane trafficking and second messengers in eukaryotic cells.
Collapse
Affiliation(s)
- Yanbo Yang
- From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, and
| | - Minhyoung Lee
- From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, and
| | - Gregory D Fairn
- From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, .,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, and.,the Department of Surgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
22
|
Liu HY, Grant H, Hsu HL, Sorkin R, Bošković F, Wuite G, Daniel S. Supported Planar Mammalian Membranes as Models of in Vivo Cell Surface Architectures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35526-35538. [PMID: 28930438 DOI: 10.1021/acsami.7b07500] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Emerging technologies use cell plasma membrane vesicles or "blebs" as an intermediate to form molecularly complete, planar cell surface mimetics that are compatible with a variety of characterization tools and microscopy methods. This approach enables direct incorporation of membrane proteins into supported lipid bilayers without using detergents and reconstitution and preserves native lipids and membrane species. Such a system can be advantageous as in vitro models of in vivo cell surfaces for study of the roles of membrane proteins as drug targets in drug delivery, host-pathogen interactions, tissue engineering, and many other bioanalytical and sensing applications. However, the impact of methods used to induce cell blebbing (vesiculation) on protein and membrane properties is still unknown. This study focuses on characterization of cell blebs created under various bleb-inducing conditions and the result on protein properties (orientation, mobility, activity, etc.) and lipid scrambling in this platform. The orientation of proteins in the cell blebs and planar bilayers is revealed using a protease cleavage assay. Lipid scrambling in both cell blebs and planar bilayers is indicated through an annexin V binding assay. To quantify protein confinement, immobility, etc., incorporation of GPI-linked yellow fluorescent protein (GPI-YFP) was used in conjunction with single-molecule tracking (SMT) microscopy. Finally, to investigate the impact of the bleb induction method on protein activity and expression level, cell blebs expressing human aminopeptidase N (hAPN) were analyzed by an enzyme activity assay and immunoblotting. This work enriches our understanding of cell plasma membrane bleb bilayers as a biomimetic platform, reveals conditions under which specific properties are met, and represents one of the few ways to make molecularly complete supported bilayers directly from cell plasma membranes.
Collapse
Affiliation(s)
- Han-Yuan Liu
- School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| | - Hannah Grant
- School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| | - Hung-Lun Hsu
- School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| | - Raya Sorkin
- Department of Physics and Astronomy and Laser Lab, Vrije Universiteit Amsterdam , Amsterdam 1081 HV, The Netherlands
| | - Filip Bošković
- Department of Physics and Astronomy and Laser Lab, Vrije Universiteit Amsterdam , Amsterdam 1081 HV, The Netherlands
| | - Gijs Wuite
- Department of Physics and Astronomy and Laser Lab, Vrije Universiteit Amsterdam , Amsterdam 1081 HV, The Netherlands
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Sarnataro D, Pepe A, Zurzolo C. Cell Biology of Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:57-82. [PMID: 28838675 DOI: 10.1016/bs.pmbts.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The precise function of PrPC remains elusive but may depend upon its cellular localization. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. Nonetheless some forms of prion disease develop in the apparent absence of infectious PrPSc, suggesting that molecular species of PrP distinct from PrPSc may represent the primary neurotoxic culprits. Indeed, in some inherited cases of human prion disease, the predominant form of PrP detectable in the brain is not PrPSc but rather CtmPrP, a transmembrane form of the protein. The relationship between the neurodegeneration occurring in prion diseases involving PrPSc and that associated with CtmPrP remains unclear. However, the different membrane topology of the PrP mutants, as well as the presence of the GPI anchor, could influence both the function and the intracellular localization and trafficking of the protein, all being potentially very important in the pathophysiological mechanism that ultimately causes the disease. Here, we review the latest findings on the fundamental aspects of prions biology, from the PrPC biosynthesis, function, and structure up to its intracellular traffic and analyze the possible roles of the different topological isoforms of the protein, as well as the GPI anchor, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniela Sarnataro
- University of Naples "Federico II", Naples, Italy; Ceinge-Biotecnologie avanzate, s.c.a r.l., Naples, Italy.
| | - Anna Pepe
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Segura E, Bourdin B, Tétreault MP, Briot J, Allen BG, Mayer G, Parent L. Proteolytic cleavage of the hydrophobic domain in the Ca Vα2δ1 subunit improves assembly and activity of cardiac Ca V1.2 channels. J Biol Chem 2017; 292:11109-11124. [PMID: 28495885 DOI: 10.1074/jbc.m117.784355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes with the pore-forming CaVα1, CaVβ, and CaVα2δ1 subunits. The full complement of subunits is required to reconstitute the native-like properties of L-type Ca2+ currents, but the molecular determinants responsible for the formation of the heteromeric complex are still being studied. Enzymatic treatment with phosphatidylinositol-specific phospholipase C, a phospholipase C specific for the cleavage of glycosylphosphatidylinositol (GPI)-anchored proteins, disrupted plasma membrane localization of the cardiac CaVα2δ1 prompting us to investigate deletions of its hydrophobic transmembrane domain. Patch-clamp experiments indicated that the C-terminally cleaved CaVα2δ1 proteins up-regulate CaV1.2 channels. In contrast, deleting the residues before the single hydrophobic segment (CaVα2δ1 Δ1059-1063) impaired current up-regulation. CaVα2δ1 mutants G1060I and G1061I nearly eliminated the cell-surface fluorescence of CaVα2δ1, indicated by two-color flow cytometry assays and confocal imaging, and prevented CaVα2δ1-mediated increase in peak current density and modulation of the voltage-dependent gating of CaV1.2. These impacts were specific to substitutions with isoleucine residues because functional modulation was partially preserved in CaVα2δ1 G1060A and G1061A proteins. Moreover, C-terminal fragments exhibited significantly altered mobility in denatured immunoblots of CaVα2δ1 G1060I and CaVα2δ1 G1061I, suggesting that these mutant proteins were impaired in proteolytic processing. Finally, CaVα2δ1 Δ1059-1063, but not CaVα2δ1 G1060A, failed to co-immunoprecipitate with CaV1.2. Altogether, our data support a model in which small neutral hydrophobic residues facilitate the post-translational cleavage of the CaVα2δ1 subunit at the predicted membrane interface and further suggest that preventing GPI anchoring of CaVα2δ1 averts its cell-surface expression, its interaction with CaVα1, and modulation of CaV1.2 currents.
Collapse
Affiliation(s)
- Emilie Segura
- From the Départements de Pharmacologie et Physiologie and.,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Benoîte Bourdin
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marie-Philippe Tétreault
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Julie Briot
- From the Départements de Pharmacologie et Physiologie and.,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Bruce G Allen
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,Médecine, Faculté de Médecine
| | - Gaétan Mayer
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,the Faculté de Pharmacie, and
| | - Lucie Parent
- From the Départements de Pharmacologie et Physiologie and .,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
25
|
Gomes PS, Bhardwaj J, Rivera-Correa J, Freire-De-Lima CG, Morrot A. Immune Escape Strategies of Malaria Parasites. Front Microbiol 2016; 7:1617. [PMID: 27799922 PMCID: PMC5066453 DOI: 10.3389/fmicb.2016.01617] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.
Collapse
Affiliation(s)
- Pollyanna S Gomes
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Jyoti Bhardwaj
- Division of Parasitology, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, Uttar Pradesh, India; Academy of Scientific and Innovative ResearchAnusandhan Bhawan, New Delhi, India
| | - Juan Rivera-Correa
- Division of Parasitology, Department of Microbiology, New York University School of Medicine New York, NY, USA
| | - Celio G Freire-De-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Dogra V, Sharma R, Yelam S. Xyloglucan endo-transglycosylase/hydrolase (XET/H) gene is expressed during the seed germination in Podophyllum hexandrum: a high altitude Himalayan plant. PLANTA 2016; 244:505-515. [PMID: 27097640 DOI: 10.1007/s00425-016-2520-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Xyloglucan endo-transglycosylase/hydrolase ( Ph XET/H) regulates Podophyllum seed germination via GA mediated up-accumulation of Ph XET protein and subsequent endosperm weakening. Xyloglucan endo-transglycosylase/hydrolase (XET/H) belong to glycosyl hydrolase family 16, which play an important role in endosperm weakening and embryonic expansion during seed germination. Podophyllum hexandrum is a high altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. During seed germination in Podophyllum, accumulation of XET/H transcripts was recorded. This data confirmed its possible role in determining the fate of seed for germination. Full length cDNA of a membrane bound XET/H (here onwards PhXET) was cloned from the germinating seeds of Podophyllum. Analysis of nucleotide sequence revealed PhXET with an open reading frame of 720 bp encoding a protein of 239 amino acids with a molecular mass of 28 kDa and pI of 7.58. In silico structure prediction of PhXET showed homology with that of Populus tremula (1UN1). PhXET was predicted to have a potential GPI-anchor domain and was located in plasma membrane. It was found that the exogenously applied phytohormones (GA and ABA) regulate the expression of PhXET. The obtained data showed that the PhXET regulates seed germination in Podophyllum by supplementing its activity along with other endosperm weakening and embryo expansion genes.
Collapse
Affiliation(s)
- Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Laboratory of Photosynthesis and Stress Signaling, Shanghai Center for Plant Stress Biology, CAS, Shanghai, China
| | - Ruchika Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Sreenivasulu Yelam
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
27
|
Müller G. Personalized Diagnosis and Therapy. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016:3167-3284. [DOI: 10.1007/978-3-319-05392-9_152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine Metabolism in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:29-88. [PMID: 26811286 DOI: 10.1016/bs.ircmb.2015.10.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic cells. The existence of four only partially redundant biochemical pathways that produce PE, highlights the importance of this essential phospholipid. The CDP-ethanolamine and phosphatidylserine decarboxylase pathways occur in different subcellular compartments and are the main sources of PE in cells. Mammalian development fails upon ablation of either pathway. Once made, PE has diverse cellular functions that include serving as a precursor for phosphatidylcholine and a substrate for important posttranslational modifications, influencing membrane topology, and promoting cell and organelle membrane fusion, oxidative phosphorylation, mitochondrial biogenesis, and autophagy. The importance of PE metabolism in mammalian health has recently emerged following its association with Alzheimer's disease, Parkinson's disease, nonalcoholic liver disease, and the virulence of certain pathogenic organisms.
Collapse
Affiliation(s)
- Elizabeth Calzada
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ouma Onguka
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Lam C, Golas GA, Davids M, Huizing M, Kane MS, Krasnewich DM, Malicdan MCV, Adams DR, Markello TC, Zein WM, Gropman AL, Lodish MB, Stratakis CA, Maric I, Rosenzweig SD, Baker EH, Ferreira CR, Danylchuk NR, Kahler S, Garnica AD, Bradley Schaefer G, Boerkoel CF, Gahl WA, Wolfe LA. Expanding the clinical and molecular characteristics of PIGT-CDG, a disorder of glycosylphosphatidylinositol anchors. Mol Genet Metab 2015; 115:128-140. [PMID: 25943031 PMCID: PMC6341466 DOI: 10.1016/j.ymgme.2015.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/28/2022]
Abstract
PIGT-CDG, an autosomal recessive syndromic intellectual disability disorder of glycosylphosphatidylinositol (GPI) anchors, was recently described in two independent kindreds [Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 3 (OMIM, #615398)]. PIGT encodes phosphatidylinositol-glycan biosynthesis class T, a subunit of the heteropentameric transamidase complex that facilitates the transfer of GPI to proteins. GPI facilitates attachment (anchoring) of proteins to cell membranes. We describe, at ages 7 and 6 years, two children of non-consanguineous parents; they had hypotonia, severe global developmental delay, and intractable seizures along with endocrine, ophthalmologic, skeletal, hearing, and cardiac anomalies. Exome sequencing revealed that both siblings had compound heterozygous variants in PIGT (NM_015937.5), i.e., c.918dupC, a novel duplication leading to a frameshift, and c.1342C > T encoding a previously described missense variant. Flow cytometry studies showed decreased surface expression of GPI-anchored proteins on granulocytes, consistent with findings in previous cases. These siblings further delineate the clinical spectrum of PIGT-CDG, reemphasize the neuro-ophthalmologic presentation, clarify the endocrine features, and add hypermobility, low CSF albumin quotient, and hearing loss to the phenotypic spectrum. Our results emphasize that GPI anchor-related congenital disorders of glycosylation (CDGs) should be considered in subjects with early onset severe seizure disorders and dysmorphic facial features, even in the presence of a normal carbohydrate-deficient transferrin pattern and N-glycan profiling. Currently available screening for CDGs will not reliably detect this family of disorders, and our case reaffirms that the use of flow cytometry and genetic testing is essential for diagnosis in this group of disorders.
Collapse
Affiliation(s)
- Christina Lam
- Medical Genetics and Genomic Medicine Training Program, Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA.
| | - Gretchen A Golas
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| | - Mariska Davids
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Megan S Kane
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| | - Donna M Krasnewich
- Division of Genetics and Developmental Biology, NIGMS, NIH, Bethesda, MD, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - David R Adams
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, NEI, NIH, Bethesda, MD, USA
| | | | - Maya B Lodish
- Heritable Disorders Branch, NICHD, NIH, Bethesda, MD, USA
| | | | - Irina Maric
- Hematology Service, Clinical Center, NIH, Bethesda, MD, USA
| | | | - Eva H Baker
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | - Carlos R Ferreira
- Medical Genetics and Genomic Medicine Training Program, Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA
| | - Noelle R Danylchuk
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Stephen Kahler
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Adolfo D Garnica
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - G Bradley Schaefer
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| | - William A Gahl
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Lynne A Wolfe
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| |
Collapse
|
30
|
Xu H, Tao X, Wei Y, Chen J, Xing S, Cen W, Wen A, Zhu L, Tang G, Li M, Jiang A, Jiang Y, Li X. Cloning of porcine GPIHBP1 gene and its tissue expression pattern and genetic effect on adipose traits. Gene 2015; 557:146-53. [DOI: 10.1016/j.gene.2014.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
31
|
Chemical Synthesis and Biological Function of Lipidated Proteins. PROTEIN LIGATION AND TOTAL SYNTHESIS I 2014; 362:137-82. [DOI: 10.1007/128_2014_582] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Ulvskov P, Paiva DS, Domozych D, Harholt J. Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes. PLoS One 2013; 8:e76511. [PMID: 24146880 PMCID: PMC3797821 DOI: 10.1371/journal.pone.0076511] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.
Collapse
Affiliation(s)
- Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Dionisio Soares Paiva
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - David Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, United States of America
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
33
|
McConnell MS, Mensah EA, Nguyen HM. Stereoselective α-glycosylation of C(6)-hydroxyl myo-inositols via nickel catalysis-application to the synthesis of GPI anchor pseudo-oligosaccharides. Carbohydr Res 2013; 381:146-52. [PMID: 24121123 DOI: 10.1016/j.carres.2013.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/06/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Glycosylphosphatidyl inositol (GPI) anchors play a key role in many eukaryotic biological pathways. Stereoselective synthesis of GPI anchor analogues have proven to be critical for probing the biosynthesis, structure, and biological properties of these compounds. Challenges that have emerged from these efforts include the preparation of the selectively protected myo-inositol building blocks and the stereoselective construction of glucosamine α-linked myo-inositol containing pseudodisaccharide units. Herein, we describe the effectiveness of the cationic nickel(II) catalyst, Ni(4-F-PhCN)4(OTf)2, at promoting selective formation of 1,2-cis-2-amino glycosidic bonds between the C(2)-N-substituted benzylideneamino trihaloacetimidate donors and C(6)-hydroxyl myo-inositol acceptors. This catalytic coupling process allows rapid access to pseudosaccharides of GPI anchors in good yields and with excellent levels of α-selectivity (α:β=10:1-20:1). In stark contrast, activation of trichloroacetimidate donors containing the C(2)-N-substituted benzylidene group with TMSOTf and BF3(.)OEt2 provided the desired pseudodisaccharides as a 1:1 mixture of α- and β-isomers.
Collapse
Affiliation(s)
- Matthew S McConnell
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | | | | |
Collapse
|
34
|
Masuishi Y, Nomura A, Okayama A, Kimura Y, Arakawa N, Hirano H. Mass spectrometric identification of glycosylphosphatidylinositol-anchored peptides. J Proteome Res 2013; 12:4617-26. [PMID: 24001144 DOI: 10.1021/pr4004807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is a post-translational modification widely observed among eukaryotic membrane proteins. GPI anchors are attached to proteins via the carboxy-terminus in the outer leaflet of the cell membrane, where GPI-anchored proteins (GPI-APs) perform important functions as coreceptors and enzymes. Precursors of GPI-APs (Pre-GPI-APs) contain a C-terminal hydrophobic sequence that is involved in cleavage of the signal sequence from the protein and addition of the GPI anchor by the transamidase complex. In order to confirm that a given protein contains a GPI anchor, it is essential to identify the C-terminal peptide containing the GPI-anchor modification site (ω-site). Previously, efficient identification of GPI-anchored C-terminal peptides by mass spectrometry has been difficult, in part because of complex structure of the GPI-anchor moiety. We developed a method to experimentally identify GPI-APs and their ω-sites. In this method, a part of GPI-anchor moieties are removed from GPI-anchored peptides using phosphatidylinositol-specific phospholipase C (PI-PLC) and aqueous hydrogen fluoride (HF), and peptide sequence is then determined by mass spectrometry. Using this method, we successfully identified 10 GPI-APs and 12 ω-sites in the cultured ovarian adenocarcinoma cells, demonstrating that this method is useful for identifying efficiently GPI-APs.
Collapse
Affiliation(s)
- Yusuke Masuishi
- Graduate School of Medical Life Science and ‡Advanced Medical Research Center, Yokohama City University , Yokohama, Kanagawa 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Postexit surface engineering of retroviral/lentiviral vectors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:253521. [PMID: 23691494 PMCID: PMC3652111 DOI: 10.1155/2013/253521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/15/2013] [Indexed: 11/25/2022]
Abstract
Gene delivery vectors based on retroviral or lentiviral particles are considered powerful tools for biomedicine and biotechnology applications. Such vectors require modification at the genomic level in the form of rearrangements to allow introduction of desired genes and regulatory elements (genotypic modification) as well as engineering of the physical virus particle (phenotypic modification) in order to mediate efficient and safe delivery of the genetic information to the target cell nucleus. Phenotypic modifications are typically introduced at the genomic level through genetic manipulation of the virus producing cells. However, this paper focuses on methods which allow modification of viral particle surfaces after they have exited the cell, that is, directly on the viral particles in suspension. These methods fall into three categories: (i) direct covalent chemical modification, (ii) membrane-topic reagents, and (iii) adaptor systems. Current applications of such techniques will be introduced and their advantages and disadvantages will be discussed.
Collapse
|
36
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
37
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Vaccination with enzymatically cleaved GPI-anchored proteins from Schistosoma mansoni induces protection against challenge infection. Clin Dev Immunol 2012; 2012:962538. [PMID: 22927873 PMCID: PMC3426240 DOI: 10.1155/2012/962538] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/21/2012] [Indexed: 12/05/2022]
Abstract
The flatworm Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease that occurs throughout the developing world. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control schistosomiasis is through immunization with an antischistosomiasis vaccine combined with drug treatment. In the search for potential vaccine candidates, numerous tegument antigens have been assessed. As the major interface between parasite and mammalian host, the tegument plays crucial roles in the establishment and further course of schistosomiasis. Herein, we evaluated the potential of a GPI fraction, containing representative molecules located on the outer surface of adult worms, as vaccine candidate. Immunization of mice with GPI-anchored proteins induced a mixed Th1/Th2 type of immune response with production of IFN-γ and TNF-α, and low levels of IL-5 into the supernatant of splenocyte cultures. The protection engendered by this vaccination protocol was confirmed by 42% reduction in worm burden, 45% reduction in eggs per gram of hepatic tissue, 29% reduction in the number of granulomas per area, and 53% reduction in the granuloma fibrosis. Taken together, the data herein support the potential of surface-exposed GPI-anchored antigens from the S. mansoni tegument as vaccine candidate.
Collapse
|
39
|
Abstract
Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters) is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects) within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy - hallmarks of personalized medicine - plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs) that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the complete individual pathogenetic pathways underlying metabolic diseases. A critical step in further validation of EMVs as biomarkers will rely on the identification of unequivocal correlations between critical disease states and specific EMV signatures, which in future may be determined in rapid and convenient fashion using nanoparticle-driven biosensors.
Collapse
Affiliation(s)
- Günter Müller
- Department of Biology I, Genetics, Ludwig-Maximilians University Munich, Biocenter, Munich, Germany
| |
Collapse
|
40
|
Comparative studies of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1: evidence for a eutherian mammalian origin for the GPIHBP1 gene from an LY6-like gene. 3 Biotech 2012; 2:37-52. [PMID: 22582156 PMCID: PMC3339605 DOI: 10.1007/s13205-011-0026-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/21/2011] [Indexed: 11/30/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) functions as a platform and transport agent for lipoprotein lipase (LPL) which functions in the hydrolysis of chylomicrons, principally in heart, skeletal muscle and adipose tissue capillary endothelial cells. Previous reports of genetic deficiency for this protein have described severe chylomicronemia. Comparative GPIHBP1 amino acid sequences and structures and GPIHBP1 gene locations were examined using data from several mammalian genome projects. Mammalian GPIHBP1 genes usually contain four coding exons on the positive strand. Mammalian GPIHBP1 sequences shared 41–96% identities as compared with 9–32% sequence identities with other LY6-domain-containing human proteins (LY6-like). The human N-glycosylation site was predominantly conserved among other mammalian GPIHBP1 proteins except cow, dog and pig. Sequence alignments, key amino acid residues and conserved predicted secondary structures were also examined, including the N-terminal signal peptide, the acidic amino acid sequence region which binds LPL, the glycosylphosphatidylinositol linkage group, the Ly6 domain and the C-terminal α-helix. Comparative and phylogenetic studies of mammalian GPIHBP1 suggested that it originated in eutherian mammals from a gene duplication event of an ancestral LY6-like gene and subsequent integration of exon 2, which may have been derived from BCL11A (B-cell CLL/lymphoma 11A gene) encoding an extended acidic amino acid sequence.
Collapse
|
41
|
Müller A, Klöppel C, Smith-Valentine M, Van Houten J, Simon M. Selective and programmed cleavage of GPI-anchored proteins from the surface membrane by phospholipase C. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:117-24. [DOI: 10.1016/j.bbamem.2011.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 01/22/2023]
|
42
|
Felitti SA, Seijo JG, González AM, Podio M, Laspina NV, Siena L, Ortiz JPA, Pessino SC. Expression of lorelei-like genes in aposporous and sexual Paspalum notatum plants. PLANT MOLECULAR BIOLOGY 2011; 77:337-54. [PMID: 21826430 DOI: 10.1007/s11103-011-9814-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 07/23/2011] [Indexed: 05/19/2023]
Abstract
Gametophytic apomictic plants form non-reduced embryo sacs that generate clonal embryos by parthenogenesis, in the absence of both meiosis and egg-cell fertilization. Here we report the sequence and expression analysis of a lorelei-like Paspalum notatum gene, n20gap-1, which encodes a GPI-anchored protein previously associated with apomixis in this species. Phylogeny trees showed that n20gap-1 was evolutionary related to the Arabidopsis thaliana lorelei genes At4g26466 and At5g56170. The lorelei At4g26466 disruption was shown to be detrimental to sperm cell release in arabidopsis. RFLP (Restriction Fragment Length Polymorphism) analysis revealed the occurrence of several homologous sequences in the Paspalum notatum genome, exhibiting polymorphisms genetically linked to apomixis. Real-time PCR showed that lorelei-family genes present a minor activity peak at pre-meiosis and a major one at anthesis. The apomictic genotype analyzed showed a significantly increased activity at pre-meiosis, post-meiosis and anthesis with respect to a sexual genotype. In situ hybridization assays revealed expression in integuments, nucellus and the egg-cell apparatus. Several n20gap-1 alleles differing mainly at the 3' UTR sequence were identified. Allele-specific real-time PCR experiments showed that allele 28 was significantly induced in reproductive tissues of the apomictic genotype with respect to the sexual genotype at anthesis. Our results indicate that P. notatum lorelei-like genes are differentially expressed in representative sexual (Q4188) and apomictic (Q4117) genotypes, and might play a role in the final stages of the apomixis developmental cascade. However, the association of n20gap-1 expression with the trait should be confirmed in significant number of sexual and apomictic genotypes.
Collapse
Affiliation(s)
- Silvina Andrea Felitti
- Laboratorio Central de Investigaciones, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, Zavalla, Provincia de Santa Fe, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Müller G, Schneider M, Biemer-Daub G, Wied S. Upregulation of lipid synthesis in small rat adipocytes by microvesicle-associated CD73 from large adipocytes. Obesity (Silver Spring) 2011; 19:1531-44. [PMID: 21372807 DOI: 10.1038/oby.2011.29] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Filling-up lipid stores is critical for size increase of mammalian adipocytes. The glycosylphosphatidylinositol (GPI)-anchored protein, CD73, is released from adipocytes into microvesicles in response to the lipogenic stimuli, palmitate, the antidiabetic sulfonylurea drug glimepiride, phosphoinositolglycans (PIG), and H(2)O(2). Upon incubation of microvesicles with adipocytes, CD73 is translocated to cytoplasmic lipid droplets (LD) and esterification is upregulated. The role of CD73-harboring microvesicles in coordinating esterification between differently sized adipocytes was studied here. Populations consisting of either small or large or of both small and large isolated rat adipocytes as well as native adipose tissue pieces from young and old rats were incubated with or depleted of endogenous microvesicles and analyzed for translocation of CD73 and esterification in response to the lipogenic stimuli. Large adipocytes exhibited higher and lower efficacy in releasing CD73 into microvesicles and in translocating CD73 to LD, respectively, compared to small adipocytes. Populations consisting of both small and large adipocytes were more active in esterification in response to the lipogenic stimuli than either small or large adipocytes. With both adipocytes and adipose tissue pieces from young rats esterification stimulation by the lipogenic stimuli was abrogated by depletion of CD73-harboring microvesicles from the incubation medium and interstitial spaces, respectively. In conclusion, stimulus-induced lipid synthesis between differently sized adipocytes is controlled by the release of microvesicle-associated CD73 from large cells and its subsequent translocation to LD of small cells. This information transfer via microvesicles harboring GPI-anchored proteins may shift the burden of triacylglycerol storage from large to small adipocytes.
Collapse
Affiliation(s)
- Günter Müller
- Sanofi-Aventis Deutschland GmbH, Research & Development, Diabetes Division, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
44
|
Müller G, Wied S, Dearey EA, Biemer-Daub G. Glycosylphosphatidylinositol-anchored proteins coordinate lipolysis inhibition between large and small adipocytes. Metabolism 2011; 60:1021-37. [PMID: 21129759 DOI: 10.1016/j.metabol.2010.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/22/2010] [Accepted: 10/19/2010] [Indexed: 12/19/2022]
Abstract
In response to palmitate, the antidiabetic sulfonylurea drug glimepiride, phosphoinositoglycans, or H(2)O(2), the release of the glycosylphosphatidylinositol-anchored and cyclic adenosine monophosphate-degrading phosphodiesterase Gce1 from adipocytes into small vesicles (adiposomes) and its translocation from adiposomes to cytoplasmic lipid droplets (LD) of adipocytes have been reported. Here the role of Gce1-harboring adiposomes in coordinating lipolysis between differently sized adipocytes was studied. Separate or mixed populations of isolated epididymal rat adipocytes of small and large size and native adipose tissue pieces from young and old rats were incubated with exogenous adiposomes or depleted of endogenous adiposomes and then analyzed for translocation of Gce1 and lipolysis in response to above antilipolytic stimuli. Large compared with small adipocytes are more efficient in releasing Gce1 into adiposomes but less efficient in translocating Gce1 from adiposomes to LDs. Maximal lipolysis inhibition by above antilipolytic stimuli, but not by insulin, was observed with mixed populations of small and large adipocytes (1:1 to 1:2) rather than with separate populations. In mixed adipocyte populations and adipose tissue pieces from young, but not old, rats, lipolysis inhibition by above antilipolytic stimuli, but not by insulin, was dependent on the function of Gce1-harboring adiposomes. Inhibition of lipolysis in rat adipose tissue in response to palmitate, glimepiride, and H(2)O(2) is coordinated via the release of adiposome-associated and glycosylphosphatidylinositol-anchored Gce1 from large "donor" adipocytes and their subsequent translocation to the LDs of small "acceptor" adipocytes. This transfer of antilipolytic information may be of pathophysiologic relevance.
Collapse
Affiliation(s)
- Günter Müller
- Sanofi-Aventis Deutschland GmbH, Research & Development, Diabetes Division, 65926 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
45
|
Muller G. Take-over: multiple mechanisms of inter-adipocyte communication. J Mol Cell Biol 2011; 3:81-90. [DOI: 10.1093/jmcb/mjr003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Müller G. Let's shift lipid burden—From large to small adipocytes. Eur J Pharmacol 2011; 656:1-4. [DOI: 10.1016/j.ejphar.2011.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/20/2010] [Accepted: 01/14/2011] [Indexed: 01/18/2023]
|
47
|
Müller G, Schneider M, Biemer-Daub G, Wied S. Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal 2011; 23:1207-23. [PMID: 21435393 DOI: 10.1016/j.cellsig.2011.03.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/14/2011] [Indexed: 12/20/2022]
Abstract
Small microvesicles, such as microparticles and exosomes, have been demonstrated to transfer proteins and nucleic acids from a variety of donor to acceptor cells with corresponding (patho)physiological consequences. Recently the in vitro transfer of glycosylphosphatidylinositol (GPI)-anchored proteins from microvesicles released from large rat adipocytes to intracellular lipid droplets (LDs) of small adipocytes has been shown to be upregulated by physiological (palmitate, H(2)O(2)) and pharmacological (anti-diabetic sulfonylurea drug glimepiride) stimuli and to increase the esterification into as well as to reduce the release of fatty acids from triacylglycerol. Here microvesicles derived from (preferentially large) rat adipocytes or plasma and harboring the GPI-anchored proteins, Gce1 and CD73, were demonstrated to contain specific transcripts and microRNAs that are both transferred into and expressed in acceptor adipocytes and are involved in the upregulation of lipogenesis and cell size. The transferred transcripts were specific for fatty acid esterification (glycerol-3-phosphate acyltransferase-3, diacylglycerol acyltransferase-2), lipid droplet biogenesis (FSP27, caveolin-1) and adipokines (leptin, adiponectin). The transfer and lipogenic activity were more efficient for small rather than large acceptor adipocytes and significantly upregulated by palmitate, glimepiride and H(2)O(2). Together the data suggest that microvesicles released from large adipocytes stimulate lipid storage in small adipocytes by mediating horizontal transfer of lipogenic information which is encoded by relevant (micro)RNA and GPI-anchored protein species. Paracrine and endocrine regulation of lipid storage and, in parallel, cell size of white adipocytes by specific (micro)RNAs in GPI-anchored protein-harboring microvesicles may represent a novel target for interference with metabolic diseases, such as obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Günter Müller
- Sanofi-Aventis Deutschland GmbH, R & D Diabetes, Industrial Park Höchst, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
48
|
Müller G. Novel applications for glycosylphosphatidylinositol-anchored proteins in pharmaceutical and industrial biotechnology. Mol Membr Biol 2011; 28:187-205. [PMID: 21413835 DOI: 10.3109/09687688.2011.562557] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins have been regarded as typical cell surface proteins found in most eukaryotic cells from yeast to man. They are embedded in the outer plasma membrane leaflet via a carboxy-terminally linked complex glycolipid GPI structure. The amphiphilic nature of the GPI anchor, its compatibility with the function of the attached protein moiety and the capability of GPI-anchored proteins for spontaneous insertion into and transfer between artificial and cellular membranes initially suggested their potential for biotechnological applications. However, these expectations have been hardly fulfilled so far. Recent developments fuel novel hopes with regard to: (i) Automated online expression, extraction and purification of therapeutic proteins as GPI-anchored proteins based on their preferred accumulation in plasma membrane lipid rafts, (ii) multiplex custom-made protein chips based on GPI-anchored cell wall proteins in yeast, (iii) biomaterials and biosensors with films consisting of sets of distinct GPI-anchored binding-proteins or enzymes for sequential or combinatorial catalysis, and (iv) transport of therapeutic proteins across or into relevant tissue cells, e.g., enterocytes or adipocytes. Latter expectations are based on the demonstrated translocation of GPI-anchored proteins from plasma membrane lipid rafts to cytoplasmic lipid droplets and eventually further into microvesicles which upon release from donor cells transfer their GPI-anchored proteins to acceptor cells. The value of these technologies, which are all based on the interaction of GPI-anchored proteins with membranes and surfaces, for the engineering, production and targeted delivery of biomolecules for a huge variety of therapeutic and biotechnological purposes should become apparent in the near future.
Collapse
Affiliation(s)
- Günter Müller
- Department Biology I, Genetics, Biocenter, Ludwig-Maximilians-University Munich, 82152 Martinsried near Munich, Germany.
| |
Collapse
|
49
|
Müller G. Control of lipid storage and cell size between adipocytes by vesicle-associated glycosylphosphatidylinositol-anchored proteins. Arch Physiol Biochem 2011; 117:23-43. [PMID: 20883086 DOI: 10.3109/13813455.2010.513393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adipose tissue mass in mammals is expanding by increasing the average cell volume as well as the total number of the adipocytes. Up-regulation of lipid storage in fully differentiated adipocytes resulting in their enlargement is well documented and thought to be a critical mechanism for the expansion of adipose tissue depots during the growth of both lean and obese animals and human beings. A novel molecular mechanism for the regulation of lipid storage and cell size in rat adipocytes has recently been elucidated for the physiological stimuli, palmitate and hydrogen peroxide, the anti-diabetic sulfonylurea drug, glimepiride, and insulin-mimetic phosphoinositolglycans. It encompasses (i) the release of small vesicles, so-called adiposomes, harbouring the glycosylphosphatidylinositol-anchored (c)AMP-degrading phosphodiesterase Gce1 and 5'-nuceotidase CD73 from large donor adipocytes, (ii) the transfer of the adiposomes and their interaction with detergent-insoluble glycolipid-enriched microdomains of the plasma membrane of small acceptor adipocytes, (iii) the translocation of Gce1 and CD73 from the adiposomes to the intracellular lipid droplets of the acceptor adipocytes and (iv) the degradation of (c)AMP at the lipid droplet surface zone by Gce1 and CD73 in the acceptor adipocytes. In concert, this sequence of events leads to up-regulation of esterification of fatty acids into triacylglycerol and down-regulation of their release from triacylglycerol. This apparent mechanism for shifting the triacylglycerol burden from large to small adipocytes may provide novel strategies for the therapy of metabolic diseases, such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Günter Müller
- Ludwig-Maximilians-University Munich, Biocenter, Department Biology I, Genetics Martinsried, Germany.
| |
Collapse
|
50
|
Mensah EA, Yu F, Nguyen HM. Nickel-Catalyzed Stereoselective Glycosylation with C(2)-N-Substituted Benzylidene d-Glucosamine and Galactosamine Trichloroacetimidates for the Formation of 1,2-cis-2-Amino Glycosides. Applications to the Synthesis of Heparin Disaccharides, GPI Anchor Pseudodisaccharides, and α-GalNAc. J Am Chem Soc 2010; 132:14288-302. [DOI: 10.1021/ja106682m] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enoch A. Mensah
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Fei Yu
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Hien M. Nguyen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|