1
|
Biscetti L, Vaiasicca S, Giorgetti B, Sarchielli P, Orlando F, Di Rienzo A, Carrassi E, Di Rosa M, Marcozzi S, Casoli T, Pelliccioni G. Neuroinflammation increases in old and oldest-old rats except for dura mater meningeal tissue with significant gender differences: a translational perspective. Biogerontology 2025; 26:73. [PMID: 40085280 DOI: 10.1007/s10522-025-10212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Neuroinflammaging is the nervous system version of inflammaging, the low-grade inflammation that develops with advanced age, aside from active disease or infection. Despite neuroinflammaging has been widely investigated, some important issues still need to be resolved such as the analysis of the extremely old subjects and the evaluation of specific brain areas. On this background, we conducted a study to analyze expression of inflammatory and anti-inflammatory genes in Wistar rats of different ages, including the oldest-old, in different brain regions. We found that pro-inflammatory mediators were generally up-regulated with age in cortex, hippocampus, and striatum, especially in the oldest-old group. Specifically, TNF-α showed an increment in expression with age in striatum, IL-1β and IFN-γ in hippocampus, and MCP-1 in cortex, hippocampus and striatum. Conversely, CX3CL1 and NOS2 showed a significant reduction of expression in the cortex of the oldest-old group. A different situation was observed in dura mater where TNF-α, IL-6, IL-1β, CX3CL1, and MCP-1 expression decreased in the older groups in comparison with the younger groups. With age the anti-inflammatory cytokines IL-4 and IL-10 were down-regulated in cortex, and TGF-β1 in dura mater, while IL-4 was up-regulated in the oldest-old group in hippocampus. Finally, we observed that female brains underwent an age-related increase of pro-inflammatory cytokines expression compared to males, except for striatum, and a general down-regulation of anti-inflammatory cytokines within each age group. Protein validation of selected factors by ELISA tests supported the observed changes. These data may represent a basis for future research about the neurobiology of aging, in particular in the neurodegenerative disorder framework.
Collapse
Affiliation(s)
| | | | - Belinda Giorgetti
- Center for Neurobiology of Aging, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | | | - Fiorenza Orlando
- Experimental Animal Models for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Alessandro Di Rienzo
- Department of Neurosurgery, Azienda Ospedali Riuniti Ancona, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Erika Carrassi
- Department of Neurosurgery, ASST Niguarda, 20126, Milan, Italy
| | - Mirko Di Rosa
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, 60124, Ancona, Italy
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy.
| | | |
Collapse
|
2
|
Agnello L, Gambino CM, Ciaccio AM, Giglio RV, Scazzone C, Tamburello M, Candore G, Accardi G, Aiello A, Del Ben F, Ciaccio M. Establishing sex- and age-related reference intervals of serum glial fibrillary acid protein measured by the fully automated lumipulse system. Clin Chem Lab Med 2025. [DOI: 10.1515/cclm-2025-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Abstract
Objectives
To establish the reference intervals (RIs) of serum glial fibrillary acid protein (GFAP) measured by the fully automated Lumipulse system.
Methods
The study population consisted of 340 healthy individuals, including 251 blood donors and 89 outpatients, with a median age of 56 years. Serum GFAP levels were measured by the Lumipulse G GFAP assay on the fully automated platform Lumipulse G1200 (FUJIREBIO Inc., Tokyo, Japan). GFAP RIs (2.5th and 97.5th percentiles) were calculated for the overall population and stratified by age and sex groups. For the overall population, males, and females partitions, we employed the nonparametric methods, while for the age-and-sex groups we employed the “robust” method, as recommended by CLSI.
Results
The RI in the whole population was 10.4–92.0 pg/mL. When considering sex differences, females showed higher levels of serum GFAP than males across all age groups. A positive correlation was observed between age and GFAP (Spearman’s rho=0.55, p<0.001). Specifically, the biomarker was stable until 60 years, while individuals aged>60 years demonstrated significantly and considerably higher levels than younger age groups. Additionally, in the 50–60 age group, we observed gender-related differences, with females having increased levels than males.
Conclusions
GFAP levels are influenced by both age and sex. Accordingly, we established RIs of serum GFAP, taking into consideration age and sex-related differences.
Collapse
Affiliation(s)
- Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine , Institute of Clinical Biochemistry, University of Palermo , Palermo , Italy
| | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine , Institute of Clinical Biochemistry, University of Palermo , Palermo , Italy
- Department of Laboratory Medicine , University Hospital Paolo Giaccone , Palermo , Italy
| | - Anna Maria Ciaccio
- Internal Medicine and Medical Specialties “G. D’Alessandro”, Department of Health Promotion, Maternal and Infant Care , University of Palermo , Palermo , Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine , Institute of Clinical Biochemistry, University of Palermo , Palermo , Italy
- Department of Laboratory Medicine , University Hospital Paolo Giaccone , Palermo , Italy
| | - Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine , Institute of Clinical Biochemistry, University of Palermo , Palermo , Italy
| | - Martina Tamburello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine , Institute of Clinical Biochemistry, University of Palermo , Palermo , Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic , University of Palermo , Palermo , Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic , University of Palermo , Palermo , Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic , University of Palermo , Palermo , Italy
| | - Fabio Del Ben
- Immunopathology and Cancer Biomarkers , Centro di Riferimento Oncologico (CRO)-IRCCS , Aviano , Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine , Institute of Clinical Biochemistry, University of Palermo , Palermo , Italy
- Department of Laboratory Medicine , University Hospital Paolo Giaccone , Palermo , Italy
| |
Collapse
|
3
|
Lana D, Ugolini F, Iovino L, Attorre S, Giovannini MG. Astrocytes phenomics as new druggable targets in healthy aging and Alzheimer's disease progression. Front Cell Neurosci 2025; 18:1512985. [PMID: 39835288 PMCID: PMC11743640 DOI: 10.3389/fncel.2024.1512985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed. Accumulating evidence indicate that astrocytes are not homogeneous, but rather encompass heterogeneous subpopulations of cells that differ from each other in terms of transcriptomics, molecular signature, function and response in physiological and pathological conditions. In this review, we report and discuss the recent literature on the phenomic differences of astrocytes in health and their modifications in disease conditions, focusing mainly on the hippocampus, a region involved in learning and memory encoding, in the age-related memory impairments, and in Alzheimer's disease (AD) dementia. The morphological and functional heterogeneity of astrocytes in different brain regions may be related to their different housekeeping functions. Astrocytes that express diverse transcriptomics and phenomics are present in strictly correlated brain regions and they are likely responsible for interactions essential for the formation of the specialized neural circuits that drive complex behaviors. In the contiguous and interconnected hippocampal areas CA1 and CA3, astrocytes show different, finely regulated, and region-specific heterogeneity. Heterogeneous astrocytes have specific activities in the healthy brain, and respond differently to physiological or pathological stimuli, such as inflammaging present in normal brain aging or beta-amyloid-dependent neuroinflammation typical of AD. To become reactive, astrocytes undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. Alterations of astrocytes affect the neurovascular unit, the blood-brain barrier and reverberate to other brain cell populations, favoring or dysregulating their activities. It will be of great interest to understand whether the differential phenomics of astrocytes in health and disease can explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, in order to find new astrocyte-targeted therapies that might prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Leipp F, Vialaret J, Mohaupt P, Coppens S, Jaffuel A, Niehoff AC, Lehmann S, Hirtz C. Glial fibrillary acidic protein in Alzheimer's disease: a narrative review. Brain Commun 2024; 6:fcae396. [PMID: 39554381 PMCID: PMC11568389 DOI: 10.1093/braincomms/fcae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Astrocytes are fundamental in neural functioning and homeostasis in the central nervous system. These cells respond to injuries and pathological conditions through astrogliosis, a reactive process associated with neurodegenerative diseases such as Alzheimer's disease. This process is thought to begin in the early stages of these conditions. Glial fibrillary acidic protein (GFAP), a type III intermediate filament protein predominantly expressed in astrocytes, has emerged as a key biomarker for monitoring this response. During astrogliosis, GFAP is released into biofluids, making it a candidate for non-invasive diagnosis and tracking of neurodegenerative diseases. Growing evidence positions GFAP as a biomarker for Alzheimer's disease with specificity and disease-correlation characteristics comparable to established clinical markers, such as Aβ peptides and phosphorylated tau protein. To improve diagnostic accuracy, particularly in the presence of confounders and comorbidities, incorporating a panel of biomarkers may be advantageous. This review will explore the potential of GFAP within such a panel, examining its role in early diagnosis, disease progression monitoring and its integration into clinical practice for Alzheimer's disease management.
Collapse
Affiliation(s)
- Florine Leipp
- Shimadzu France SAS France, Noisiel, France
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Jérôme Vialaret
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Pablo Mohaupt
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Salomé Coppens
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | | | | | - Sylvain Lehmann
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| |
Collapse
|
5
|
Lepore G, Succu S, Cappai MG, Frau A, Senes A, Zedda M, Farina V, Gadau SD. Morphological and Metabolic Features of Brain Aging in Rodents, Ruminants, Carnivores, and Non-Human Primates. Animals (Basel) 2024; 14:2900. [PMID: 39409849 PMCID: PMC11482532 DOI: 10.3390/ani14192900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Brain aging in mammals is characterized by morphological and functional changes in neural cells. Macroscopically, this process, leading to progressive cerebral volume loss and functional decline, includes memory and motor neuron deficits, as well as behavioral disorders. Morphologically, brain aging is associated with aged neurons and astrocytes, appearing enlarged and flattened, and expressing enhanced pH-dependent β-galactosidase activity. Multiple mechanisms are considered hallmarks of cellular senescence in vitro, including cell cycle arrest, increased lysosomal activity, telomere shortening, oxidative stress, and DNA damage. The most common markers for senescence identification were identified in (i) proteins implicated in cell cycle arrest, such as p16, p21, and p53, (ii) increased lysosomal mass, and (iii) increased reactive oxygen species (ROS) and senescence-associated secretory phenotype (SASP) expression. Finally, dysfunctional autophagy, a process occurring during aging, contributes to altering brain homeostasis. The brains of mammals can be studied at cellular and subcellular levels to elucidate the mechanisms on the basis of age-related and degenerative disorders. The aim of this review is to summarize and update the most recent knowledge about brain aging through a comparative approach, where similarities and differences in some mammalian species are considered.
Collapse
Affiliation(s)
- Gianluca Lepore
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (S.S.); (M.G.C.); (A.F.); (A.S.); (M.Z.); (V.F.); (S.D.G.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Pocevičiūtė D, Wennström M, Ohlsson B. Okinawa-Based Nordic Diet Decreases Plasma Glial Fibrillary Acidic Protein Levels in Type 2 Diabetes Patients. Nutrients 2024; 16:2847. [PMID: 39275164 PMCID: PMC11396978 DOI: 10.3390/nu16172847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Elevated levels of glial fibrillary acidic protein (GFAP) in plasma reflect neuroinflammation and are linked to cognitive decline. Preclinical studies show that dietary change can attenuate astrocyte reactivity and neuroinflammation. In the current study, we investigate if the Okinawa-based Nordic (O-BN) diet alters plasma GFAP levels in patients with Type 2 Diabetes (T2D), a metabolic disorder associated with cognitive disturbances and an increased risk of dementia. Plasma GFAP levels were measured in T2D patients (n = 30) at baseline, after 3 months of the diet, and after a subsequent 4 months of unrestricted diets. The GFAP levels decreased significantly after 3 months of the diet (p = 0.048) but reverted to baseline levels after 4 months of unrestricted diets. At baseline, the GFAP levels correlated significantly with levels of the neurodegeneration marker neurofilament light polypeptide (r = 0.400*) and, after correcting for age, sex, and body mass index, with proinflammatory plasma cytokines (ranging from r = 0.440* to r = 0.530**) and the metabolic hormone islet amyloid polypeptide (r = 0.478*). We found no correlation with psychological well-being. These results suggest that the O-BN diet reduces neuroinflammation in T2D patients and may thus be an important preventive measure for managing T2D and reducing the risk of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| | - Bodil Ohlsson
- Department of Internal Medicine, Lund University, Skåne University Hospital, 214 28 Malmö, Sweden;
| |
Collapse
|
7
|
Cogut V, Goris M, Jansma A, van der Staaij M, Henning RH. Hippocampal neuroimmune response in mice undergoing serial daily torpor induced by calorie restriction. Front Neuroanat 2024; 18:1334206. [PMID: 38686173 PMCID: PMC11056553 DOI: 10.3389/fnana.2024.1334206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
Hibernating animals demonstrate a remarkable ability to withstand extreme physiological brain changes without triggering adverse neuroinflammatory responses. While hibernators may offer valuable insights into the neuroprotective mechanisms inherent to hibernation, studies using such species are constrained by the limited availability of molecular tools. Laboratory mice may serve as an alternative, entering states of hypometabolism and hypothermia similar to the torpor observed in hibernation when faced with energy shortage. Notably, prolonged calorie restriction (CR) induces serial daily torpor patterns in mice, comparable to species that utilize daily hibernation. Here, we examined the neuroinflammatory response in the hippocampus of male C57BL/6 mice undergoing serial daily torpor induced by a 30% CR for 4 weeks. During daily torpor episodes, CR mice exhibited transient increases in TNF-α mRNA expression, which normalized upon arousal. Concurrently, the CA1 region of the hippocampus showed persistent morphological changes in microglia, characterized by reduced cell branching, decreased cell complexity and altered shape. Importantly, these morphological changes were not accompanied by evident signs of astrogliosis or oxidative stress, typically associated with detrimental neuroinflammation. Collectively, the adaptive nature of the brain's inflammatory response to CR-induced torpor in mice parallels observations in hibernators, highlighting its value for studying the mechanisms of brain resilience during torpor. Such insights could pave the way for novel therapeutic interventions in stroke and neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Valeria Cogut
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | | | | | | | |
Collapse
|
8
|
Cogut V, McNeely TL, Bussian TJ, Graves SI, Baker DJ. Caloric Restriction Improves Spatial Learning Deficits in Tau Mice. J Alzheimers Dis 2024; 98:925-940. [PMID: 38517786 PMCID: PMC11068089 DOI: 10.3233/jad-231117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background Caloric restriction (CR) has been recognized for its benefits in delaying age-related diseases and extending lifespan. While its effects on amyloid pathology in Alzheimer's disease (AD) mouse models are well-documented, its effects on tauopathy, another hallmark of AD, are less explored. Objective To assess the impact of a short-term 30% CR regimen on age-dependent spatial learning deficits and pathological features in a tauopathy mouse model. Methods We subjected male PS19 tau P301S (hereafter PS19) and age-matched wildtype mice from two age cohorts (4.5 and 7.5 months old) to a 6-week 30% CR regimen. Spatial learning performance was assessed using the Barnes Maze test. Tau pathology, neuroinflammation, hippocampal cell proliferation, and neurogenesis were evaluated in the older cohort by immunohistochemical staining and RT-qPCR. Results CR mitigated age-dependent spatial learning deficits in PS19 mice but exhibited limited effects on tau pathology and the associated neuroinflammation. Additionally, we found a decrease in hippocampal cell proliferation, predominantly of Iba1+ cells. Conclusions Our findings reinforce the cognitive benefits conferred by CR despite its limited modulation of disease pathology. Given the pivotal role of microglia in tau-driven pathology, the observed reduction in Iba1+ cells under CR suggests potential therapeutic implications, particularly if CR would be introduced early in disease progression.
Collapse
Affiliation(s)
- Valeria Cogut
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Taylor L. McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Tyler J. Bussian
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Sara I. Graves
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Darren J. Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Matthews I, Birnbaum A, Gromova A, Huang AW, Liu K, Liu EA, Coutinho K, McGraw M, Patterson DC, Banks MT, Nobles AC, Nguyen N, Merrihew GE, Wang L, Baeuerle E, Fernandez E, Musi N, MacCoss MJ, Miranda HC, La Spada AR, Cortes CJ. Skeletal muscle TFEB signaling promotes central nervous system function and reduces neuroinflammation during aging and neurodegenerative disease. Cell Rep 2023; 42:113436. [PMID: 37952157 PMCID: PMC10841857 DOI: 10.1016/j.celrep.2023.113436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
Skeletal muscle has recently arisen as a regulator of central nervous system (CNS) function and aging, secreting bioactive molecules known as myokines with metabolism-modifying functions in targeted tissues, including the CNS. Here, we report the generation of a transgenic mouse with enhanced skeletal muscle lysosomal and mitochondrial function via targeted overexpression of transcription factor E-B (TFEB). We discovered that the resulting geroprotective effects in skeletal muscle reduce neuroinflammation and the accumulation of tau-associated pathological hallmarks in a mouse model of tauopathy. Muscle-specific TFEB overexpression significantly ameliorates proteotoxicity, reduces neuroinflammation, and promotes transcriptional remodeling of the aged CNS, preserving cognition and memory in aged mice. Our results implicate the maintenance of skeletal muscle function throughout aging in direct regulation of CNS health and disease and suggest that skeletal muscle originating factors may act as therapeutic targets against age-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ian Matthews
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Allison Birnbaum
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Anastasia Gromova
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Amy W Huang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kailin Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Eleanor A Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kristen Coutinho
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Megan McGraw
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dalton C Patterson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Macy T Banks
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amber C Nobles
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nhat Nguyen
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric Baeuerle
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care Network, San Antonio, TX 78229, USA
| | - Elizabeth Fernandez
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care Network, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; RNA Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology and Department of Biological Chemistry, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| | - Constanza J Cortes
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
10
|
Bark L, Larsson IM, Wallin E, Simrén J, Zetterberg H, Lipcsey M, Frithiof R, Rostami E, Hultström M. Central nervous system biomarkers GFAp and NfL associate with post-acute cognitive impairment and fatigue following critical COVID-19. Sci Rep 2023; 13:13144. [PMID: 37573366 PMCID: PMC10423244 DOI: 10.1038/s41598-023-39698-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 07/29/2023] [Indexed: 08/14/2023] Open
Abstract
A high proportion of patients with coronavirus disease 2019 (COVID-19) experience post-acute COVID-19, including neuropsychiatric symptoms. Objective signs of central nervous system (CNS) damage can be investigated using CNS biomarkers such as glial fibrillary acidic protein (GFAp), neurofilament light chain (NfL) and total tau (t-tau). We have examined whether CNS biomarkers can predict fatigue and cognitive impairment 3-6 months after discharge from the intensive care unit (ICU) in critically ill COVID-19 patients. Fifty-seven COVID-19 patients admitted to the ICU were included with analysis of CNS biomarkers in blood at the ICU and at follow up. Cognitive dysfunction and fatigue were assessed with the Montreal Cognitive Assessment (MoCA) and the Multidimensional Fatigue inventory (MFI-20). Elevated GFAp at follow-up 3-6 months after ICU discharge was associated to the development of mild cognitive dysfunction (p = 0.01), especially in women (p = 0.005). Patients who experienced different dimensions of fatigue at follow-up had significantly lower GFAp in both the ICU and at follow-up, specifically in general fatigue (p = 0.009), physical fatigue (p = 0.004), mental fatigue (p = 0.001), and reduced motivation (p = 0.001). Women showed a more pronounced decrease in GFAp compared to men, except for in mental fatigue where men showed a more pronounced GFAp decrease compared to women. NfL concentration at follow-up was lower in patients who experienced reduced motivation (p = 0.004). Our findings suggest that GFAp and NfL are associated with neuropsychiatric outcome after critical COVID-19.Trial registration The study was registered à priori (clinicaltrials.gov: NCT04316884 registered on 2020-03-13 and NCT04474249 registered on 2020-06-29).
Collapse
Affiliation(s)
- Lovisa Bark
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden.
| | - Ing-Marie Larsson
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
| | - Ewa Wallin
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Miklos Lipcsey
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael Hultström
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Lady Davis Institute of Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
11
|
Blood-to-brain communication in aging and rejuvenation. Nat Neurosci 2023; 26:379-393. [PMID: 36646876 DOI: 10.1038/s41593-022-01238-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023]
Abstract
Aging induces molecular, cellular and functional changes in the adult brain that drive cognitive decline and increase vulnerability to dementia-related neurodegenerative diseases. Leveraging systemic and lifestyle interventions, such as heterochronic parabiosis, administration of 'young blood', exercise and caloric restriction, has challenged prevalent views of brain aging as a rigid process and has demonstrated that aging-associated cognitive and cellular impairments can be restored to more youthful levels. Technological advances in proteomic and transcriptomic analyses have further facilitated investigations into the functional impact of intertissue communication on brain aging and have led to the identification of a growing number of pro-aging and pro-youthful factors in blood. In this review, we discuss blood-to-brain communication from a systems physiology perspective with an emphasis on blood-derived signals as potent drivers of both age-related brain dysfunction and brain rejuvenation.
Collapse
|
12
|
Longterm Increased S100B Enhances Hippocampal Progenitor Cell Proliferation in a Transgenic Mouse Model. Int J Mol Sci 2022; 23:ijms23179600. [PMID: 36076994 PMCID: PMC9455494 DOI: 10.3390/ijms23179600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
(1) The neurotrophic protein S100B is a marker of brain injury and has been associated with neuroregeneration. In S100Btg mice rendering 12 copies of the murine S100B gene we evaluated whether S100B may serve as a treatment option. (2) In juvenile, adult, and one-year-old S100Btg mice (female and male; n = 8 per group), progenitor cell proliferation was quantified in the subgranular zone (SGZ) and the granular cell layer (GCL) of the dentate gyrus with the proliferative marker Ki67 and BrdU (50 mg/kg). Concomitant signaling was quantified utilizing glial fibrillary acidic protein (GFAP), apolipoprotein E (ApoE), brain-derived neurotrophic factor (BDNF), and the receptor for advanced glycation end products (RAGE) immunohistochemistry. (3) Progenitor cell proliferation in the SGZ and migration to the GCL was enhanced. Hippocampal GFAP was reduced in one-year-old S100Btg mice. ApoE in the hippocampus and frontal cortex of male and BDNF in the frontal cortex of female S100Btg mice was reduced. RAGE was not affected. (4) Enhanced hippocampal neurogenesis in S100Btg mice was not accompanied by reactive astrogliosis. Sex- and brain region-specific variations of ApoE and BDNF require further elucidations. Our data reinforce the importance of this S100Btg model in evaluating the role of S100B in neuroregenerative medicine.
Collapse
|
13
|
Martín Giménez VM, de las Heras N, Lahera V, Tresguerres JAF, Reiter RJ, Manucha W. Melatonin as an Anti-Aging Therapy for Age-Related Cardiovascular and Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:888292. [PMID: 35721030 PMCID: PMC9204094 DOI: 10.3389/fnagi.2022.888292] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
The concept of “aging” is defined as the set of gradual and progressive changes in an organism that leads to an increased risk of weakness, disease, and death. This process may occur at the cellular and organ level, as well as in the entire organism of any living being. During aging, there is a decrease in biological functions and in the ability to adapt to metabolic stress. General effects of aging include mitochondrial, cellular, and organic dysfunction, immune impairment or inflammaging, oxidative stress, cognitive and cardiovascular alterations, among others. Therefore, one of the main harmful consequences of aging is the development and progression of multiple diseases related to these processes, especially at the cardiovascular and central nervous system levels. Both cardiovascular and neurodegenerative pathologies are highly disabling and, in many cases, lethal. In this context, melatonin, an endogenous compound naturally synthesized not only by the pineal gland but also by many cell types, may have a key role in the modulation of multiple mechanisms associated with aging. Additionally, this indoleamine is also a therapeutic agent, which may be administered exogenously with a high degree of safety. For this reason, melatonin could become an attractive and low-cost alternative for slowing the processes of aging and its associated diseases, including cardiovascular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Vicente Lahera
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio Long School of Medicine, San Antonio, TX, United States
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
- *Correspondence: Walter Manucha ;
| |
Collapse
|
14
|
O'Neil SM, Hans EE, Jiang S, Wangler LM, Godbout JP. Astrocyte immunosenescence and deficits in interleukin 10 signaling in the aged brain disrupt the regulation of microglia following innate immune activation. Glia 2022; 70:913-934. [DOI: 10.1002/glia.24147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Shane M. O'Neil
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
| | - Emma E. Hans
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
| | - Starr Jiang
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
| | - Lynde M. Wangler
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
| | - Jonathan P. Godbout
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
- Institute for Behavioral Medicine Research The Ohio State University Wexner Medical Center Columbus Ohio USA
- Chronic Brain Injury Program The Ohio State University Columbus Ohio USA
| |
Collapse
|
15
|
Fontana L, Ghezzi L, Cross AH, Piccio L. Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. J Exp Med 2021; 218:211666. [PMID: 33416892 PMCID: PMC7802371 DOI: 10.1084/jem.20190086] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Recent and accumulating work in experimental animal models and humans shows that diet has a much more pervasive and prominent role than previously thought in modulating neuroinflammatory and neurodegenerative mechanisms leading to some of the most common chronic central nervous system (CNS) diseases. Chronic or intermittent food restriction has profound effects in shaping brain and peripheral metabolism, immunity, and gut microbiome biology. Interactions among calorie intake, meal frequency, diet quality, and the gut microbiome modulate specific metabolic and molecular pathways that regulate cellular, tissue, and organ homeostasis as well as inflammation during normal brain aging and CNS neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, among others. This review discusses these findings and their potential application to the prevention and treatment of CNS neuroinflammatory diseases and the promotion of healthy brain aging.
Collapse
Affiliation(s)
- Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.,Department of Clinical and Experimental Sciences, Brescia University, Brescia, Italy
| | - Laura Ghezzi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO.,University of Milan, Milan, Italy
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Laura Piccio
- Department of Neurology, Washington University in St. Louis, St. Louis, MO.,Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Pannese E. Quantitative, structural and molecular changes in neuroglia of aging mammals: A review. Eur J Histochem 2021; 65. [PMID: 34346664 PMCID: PMC8239453 DOI: 10.4081/ejh.2021.3249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/27/2021] [Indexed: 01/06/2023] Open
Abstract
The neuroglia of the central and peripheral nervous systems undergo numerous changes during normal aging. Astrocytes become hypertrophic and accumulate intermediate filaments. Oligodendrocytes and Schwann cells undergo alterations that are often accompanied by degenerative changes to the myelin sheath. In microglia, proliferation in response to injury, motility of cell processes, ability to migrate to sites of neural injury, and phagocytic and autophagic capabilities are reduced. In sensory ganglia, the number and extent of gaps between perineuronal satellite cells – that leave the surfaces of sensory ganglion neurons directly exposed to basal lamina – increase significantly. The molecular profiles of neuroglia also change in old age, which, in view of the interactions between neurons and neuroglia, have negative consequences for important physiological processes in the nervous system. Since neuroglia actively participate in numerous nervous system processes, it is likely that not only neurons but also neuroglia will prove to be useful targets for interventions to prevent, reverse or slow the behavioral changes and cognitive decline that often accompany senescence.
Collapse
Affiliation(s)
- Ennio Pannese
- Emeritus, Full Professor of Normal Human Anatomy and Neurocytology at the University of Milan.
| |
Collapse
|
17
|
Edler MK, Mhatre-Winters I, Richardson JR. Microglia in Aging and Alzheimer's Disease: A Comparative Species Review. Cells 2021; 10:1138. [PMID: 34066847 PMCID: PMC8150617 DOI: 10.3390/cells10051138] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells of the central nervous system that help nourish and support neurons, clear debris, and respond to foreign stimuli. Greatly impacted by their environment, microglia go through rapid changes in cell shape, gene expression, and functional behavior during states of infection, trauma, and neurodegeneration. Aging also has a profound effect on microglia, leading to chronic inflammation and an increase in the brain's susceptibility to neurodegenerative processes that occur in Alzheimer's disease. Despite the scientific community's growing knowledge in the field of neuroinflammation, the overall success rate of drug treatment for age-related and neurodegenerative diseases remains incredibly low. Potential reasons for the lack of translation from animal models to the clinic include the use of a single species model, an assumption of similarity in humans, and ignoring contradictory data or information from other species. To aid in the selection of validated and predictive animal models and to bridge the translational gap, this review evaluates similarities and differences among species in microglial activation and density, morphology and phenotype, cytokine expression, phagocytosis, and production of oxidative species in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa K. Edler
- Department of Anthropology, School of Biomedical Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44240, USA;
| | - Isha Mhatre-Winters
- School of Biomedical Sciences, College of Arts and Sciences, Kent State University, Kent, OH 44240, USA;
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jason R. Richardson
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
18
|
Rodríguez-Rivera C, Pérez-Carrión MD, Olavarría LC, Alguacil LF, Mora MJP, González-Martín C. Clusterin levels in undernourished SH-SY5Y cells. Food Nutr Res 2021; 65:5709. [PMID: 33994910 PMCID: PMC8098648 DOI: 10.29219/fnr.v65.5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022] Open
Abstract
Food-related disorders are increasingly common in developed societies, and the psychological component of these disorders has been gaining increasing attention. Both overnourishment with high-fat diets and perinatal undernourishment in mice have been linked to a higher motivation toward food, resulting in an alteration in food intake. Clusterin (CLU), a multifaced protein, is overexpressed in the nucleus accumbens (NAc) of over-fed rats, as well as in those that suffered chronic undernutrition. Moreover, an increase of this protein was observed in the plasma of obese patients with food addiction, suggesting the implication of CLU in this eating disorder. To characterize CLU’s cellular mechanisms, in vitro experiments of undernutrition were performed using dopaminergic SH-SY5Y cells. To mimic in vivo dietary conditions, cells were treated with different fetal bovine serum (FBS) concentrations, resulting in control (C group) diet (10% FBS), undernourishment (U group) diet (0.5% FBS), and undernourishment diet followed by restoration of control diet (UC group) (0.5 + 10% FBS). Undernourishment compromised cell viability and proliferation, and concomitantly increased CLU secretion as well as the cytosolic pool of the protein, while decreasing the mitochondrial level. The restoration of normal conditions tended to recover cell physiology, and the normal levels and distribution of CLU. This research study is a step forward toward the characterization of clusterin as a potential marker for food addiction and nutritional status.
Collapse
Affiliation(s)
| | - María Dolores Pérez-Carrión
- Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain.,Facultad de Medicina, Universidad de Castilla-la Mancha, Albacete, Spain
| | | | - Luis F Alguacil
- Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain.,Facultad de Farmacia, Instituto de Estudio de las Adicciones, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
| | - María José Polanco Mora
- Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain.,Facultad de Farmacia, Instituto de Estudio de las Adicciones, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
| | - Carmen González-Martín
- Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain.,Facultad de Farmacia, Instituto de Estudio de las Adicciones, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
| |
Collapse
|
19
|
Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG. The Emerging Role of the Interplay Among Astrocytes, Microglia, and Neurons in the Hippocampus in Health and Disease. Front Aging Neurosci 2021; 13:651973. [PMID: 33889084 PMCID: PMC8055856 DOI: 10.3389/fnagi.2021.651973] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
For over a century, neurons have been considered the basic functional units of the brain while glia only elements of support. Activation of glia has been long regarded detrimental for survival of neurons but more it appears that this is not the case in all circumstances. In this review, we report and discuss the recent literature on the alterations of astrocytes and microglia during inflammaging, the low-grade, slow, chronic inflammatory response that characterizes normal brain aging, and in acute inflammation. Becoming reactive, astrocytes and microglia undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions, such as A1 and A2 astrocytes, and M1 and M2 microglia. This classification of microglia and astrocytes in two different, all-or-none states seems too simplistic, and does not correspond to the diverse variety of phenotypes so far found in the brain. Different interactions occur among the many cell populations of the central nervous system in health and disease conditions. Such interactions give rise to networks of morphological and functional reciprocal reliance and dependency. Alterations affecting one cell population reverberate to the others, favoring or dysregulating their activities. In the last part of this review, we present the modifications of the interplay between neurons and glia in rat models of brain aging and acute inflammation, focusing on the differences between CA1 and CA3 areas of the hippocampus, one of the brain regions most susceptible to different insults. With triple labeling fluorescent immunohistochemistry and confocal microscopy (TIC), it is possible to evaluate and compare quantitatively the morphological and functional alterations of the components of the neuron-astrocyte-microglia triad. In the contiguous and interconnected regions of rat hippocampus, CA1 and CA3 Stratum Radiatum, astrocytes and microglia show a different, finely regulated, and region-specific reactivity, demonstrating that glia responses vary in a significant manner from area to area. It will be of great interest to verify whether these differential reactivities of glia explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli.
Collapse
Affiliation(s)
- Daniele Lana
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Anatomopatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Maria Grazia Giovannini
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
20
|
Roles of astrocytes in response to aging, Alzheimer's disease and multiple sclerosis. Brain Res 2021; 1764:147464. [PMID: 33812850 DOI: 10.1016/j.brainres.2021.147464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes are traditionally recognized for their multiple roles in support of brain function. However, additional changes in these roles are evident in response to brain diseases. In this review, we highlight positive and negative effects of astrocytes in response to aging, Alzheimer's disease and Multiple Sclerosis. We summarize data suggesting that reactive astrocytes may perform critical functions that might be relevant to the etiology of these conditions. In particular, we relate astrocytes effects to actions on synaptic transmission, cognition, and myelination. We suggest that a better understanding of astrocyte functions and how these become altered in response to aging or disease will lead to the appreciation of these cells as useful therapeutic targets.
Collapse
|
21
|
Haghani A, Thorwald M, Morgan TE, Finch CE. The APOE gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. Alzheimers Dement 2021; 17:175-190. [PMID: 33215813 PMCID: PMC7914175 DOI: 10.1002/alz.12230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Little is known of gene-environment interactions for Alzheimer's disease (AD) risk factors. Apolipoprotein E (APOE) and neighbors on chromosome 19q13.3 have variants associated with risks of AD, but with unknown mechanism. This study describes novel links among the APOE network, air pollution, and age-related diseases. Mice exposed to air pollution nano-sized particulate matter (nPM) had coordinate responses of Apoe-Apoc1-Tomm40 in the cerebral cortex. In humans, the AD vulnerable hippocampus and amygdala had stronger age decline in APOE cluster expression than the AD-resistant cerebellum and hypothalamus. Using consensus weighted gene co-expression network, we showed that APOE has a conserved co-expressed network in rodent and primate brains. SOX1, which has AD-associated single nucleotide polymorphisms, was among the co-expressed genes in the human hippocampus. Humans and mice shared 87% of potential binding sites for transcription factors in APOE cluster promoter, suggesting similar inducibility and a novel link among environment, APOE cluster, and risk of AD.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Max Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Dornsife College, University of Southern California, Los Angeles, CA
| |
Collapse
|
22
|
Brenner M, Messing A. Regulation of GFAP Expression. ASN Neuro 2021; 13:1759091420981206. [PMID: 33601918 PMCID: PMC7897836 DOI: 10.1177/1759091420981206] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of the GFAP gene has attracted considerable attention because its onset is a marker for astrocyte development, its upregulation is a marker for reactive gliosis, and its predominance in astrocytes provides a tool for their genetic manipulation. The literature on GFAP regulation is voluminous, as almost any perturbation of development or homeostasis in the CNS will lead to changes in its expression. In this review, we limit our discussion to mechanisms proposed to regulate GFAP synthesis through a direct interaction with its gene or mRNA. Strengths and weaknesses of the supportive experimental findings are described, and suggestions made for additional studies. This review covers 15 transcription factors, DNA and histone methylation, and microRNAs. The complexity involved in regulating the expression of this intermediate filament protein suggests that GFAP function may vary among both astrocyte subtypes and other GFAP-expressing cells, as well as during development and in response to perturbations.
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
23
|
Muscat SM, Barrientos RM. Lifestyle modifications with anti-neuroinflammatory benefits in the aging population. Exp Gerontol 2020; 142:111144. [PMID: 33152515 DOI: 10.1016/j.exger.2020.111144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023]
Abstract
Aging-associated microglial priming results in the potential for an exaggerated neuroinflammatory response to a subsequent inflammatory challenge in regions of the brain known to support learning and memory. This excessive neuroinflammation in the aging brain is known to occur following a variety of peripheral insults, including infection and surgery, where it has been associated with precipitous declines in cognition and memory. As the average lifespan increases worldwide, identifying interventions to prevent and treat aging-associated excessive neuroinflammation and ensuing cognitive impairments is of critical importance. Lifestyle has emerged as a potential non-pharmacological target in this endeavor. Here, we review important and recent preclinical and clinical literature demonstrating the anti-inflammatory effects of lifestyle modifications such as exercise, diet, and environmental enrichment in the context of aging and memory. Importantly, we focus on research indicating that these lifestyle modifications do not need to be lifelong, suggesting that such interventions may be efficacious in the prevention and treatment of aging- and neuroinflammation-associated cognitive impairment, even when initiated in older age.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Schneider LS, Geffen Y, Rabinowitz J, Thomas RG, Schmidt R, Ropele S, Weinstock M. Low-dose ladostigil for mild cognitive impairment: A phase 2 placebo-controlled clinical trial. Neurology 2019; 93:e1474-e1484. [PMID: 31492718 DOI: 10.1212/wnl.0000000000008239] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/10/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Ladostigil reduces oxidative stress and microglial activation in aging rats. We assessed its safety and potential efficacy in a 3-year, randomized, double-blind, placebo-controlled phase 2 clinical trial in patients with mild cognitive impairment (MCI) and medial temporal lobe atrophy. METHODS Patients 55 to 85 years of age with MCI, Clinical Dementia Rating (CDR) score of 0.5, Mini-Mental State Examination (MMSE) score >24, Wechsler Memory Scale-Revised Verbal Paired Associates I score ≤18, and Medial Temporal Lobe Atrophy Scale score >1 were stratified by APOE ε4 genotype and randomly assigned (1:1) to ladostigil 10 mg/d or placebo. Primary outcomes were safety and onset of Alzheimer disease dementia. Secondary endpoints were Neuropsychological Test Battery (NTB) composite, Disability Assessment in Dementia (DAD), and Geriatric Depression Scale (GDS) scores. Exploratory outcomes were NTB component, CDR, and MMSE scores. Biomarkers included MRI-derived whole-brain, hippocampus, and entorhinal cortex volumes. RESULTS Two hundred ten patients from 15 sites in Austria, Germany, and Israel were randomly allocated to placebo (107 patients) or ladostigil (103 patients). After 36 months, 21 of 103 patients on placebo and 14 of 99 patients receiving ladostigil progressed to Alzheimer disease (log-rank test p = 0.162). There were no significant effects on the NTB composite, DAD, or GDS score. Whole-brain and hippocampus volumes decreased more in the placebo than in the ladostigil group (whole brain, p = 0.025, Cohen d = 0.43; hippocampus, p = 0.043, d = 0.43). Serious adverse events were reported by 28 of 107 patients treated with placebo and 26 of 103 with ladostigil. CONCLUSION Ladostigil was safe and well tolerated but did not delay progression to dementia. Its association with reduced brain and hippocampus volume loss suggests a potential effect on atrophy. CLINICALTRIALSGOV IDENTIFIER NCT01429623. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for patients with MCI and medial temporal lobe atrophy, ladostigil did not significantly decrease the risk of the development of Alzheimer disease.
Collapse
Affiliation(s)
- Lon S Schneider
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel.
| | - Yona Geffen
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Jonathan Rabinowitz
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Ronald G Thomas
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Reinhold Schmidt
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Stefan Ropele
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Marta Weinstock
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | | |
Collapse
|
25
|
Diene LD, Costa-Ferro ZSM, Barbosa S, Milanesi BB, Lazzari GZ, Neves LT, Paz LV, Neves PFR, Battisti V, Martins LA, Gehlen G, Mestriner RG, Da Costa JC, Xavier LL. Selective brain neuronal and glial losses without changes in GFAP immunoreactivity: Young versus mature adult Wistar rats. Mech Ageing Dev 2019; 182:111128. [PMID: 31404554 DOI: 10.1016/j.mad.2019.111128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Normal ageing results in brain selective neuronal and glial losses. In the present study we analyze neuronal and glial changes in Wistar rats at two different ages, 45 days (young) and 420 days (mature adult), using Nissl staining and glial fibrillary acidic protein (GFAP) immunohistochemistry associated to the Sholl analysis. Comparing mature adults with young rats we noted the former present a decrease in neuronal density in the cerebral cortex, corpus callosum, pyriform cortex, L.D.D.M., L.D.V.L., central medial thalamic nucleus and zona incerta. A decrease in glial density was found in the dorsomedial and ventromedial hypothalamic nuclei. Additionally, the neuron/glia ratio was reduced in the central medial thalamic nucleus and increased in the habenula. No changes were found in the neuronal and glial densities or neuron/glia ratio in the other studied regions. The number of astrocytic primary processes and the number of intersections counted in the Sholl analysis presented no significant difference in any of the studied regions. Overall, neither GFAP positive astrocytic density nor GFAP immunoreactivity showed alteration.
Collapse
Affiliation(s)
- Leonardo D Diene
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Silvia Barbosa
- Laboratório de Histofisiologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bueno Milanesi
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriele Zenato Lazzari
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiê Valéria Paz
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Battisti
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas A Martins
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jaderson C Da Costa
- Instituto do Cérebro do Rio Grande do Sul (InsCer/RS), Porto Alegre, RS, Brazil
| | - Léder L Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Matias I, Morgado J, Gomes FCA. Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front Aging Neurosci 2019; 11:59. [PMID: 30941031 PMCID: PMC6433753 DOI: 10.3389/fnagi.2019.00059] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, one of the largest glial cell population in the central nervous system (CNS), play a key function in several events of brain development and function, such as synapse formation and function, control of neurotransmitters release and uptake, production of trophic factors and control of neuronal survival. Initially described as a homogenous population, several evidences have pointed that astrocytes are highly heterogeneous, both morphologically and functionally, within the same region, and across different brain regions. Recent findings suggest that the heterogeneity in the expression profile of proteins involved in astrocyte function may predict the selective vulnerability of brain regions to specific diseases, as well as to the age-related cognitive decline. However, the molecular mechanisms underlying these changes, either in aging as well as in brain disease are scarce. Neuroinflammation, a hallmark of several neurodegenerative diseases and aging, is reported to have a dubious impact on glial activation, as these cells release pro- and anti-inflammatory cytokines and chemokines, anti-oxidants, free radicals, and neurotrophic factors. Despite the emerging evidences supporting that reactive astrocytes have a duality in their phenotype, neurotoxic or neuroprotective properties, depending on the age and stimuli, the underlying mechanisms of their activation, cellular interplays and the impact of regional astrocyte heterogeneity are still a matter of discussion. In this review article, we will summarize recent findings on astrocyte heterogeneity and phenotypes, as well as their likely impact for the brain function during aging and neural diseases. We will focus on the molecules and mechanisms triggered by astrocyte to control synapse formation in different brain regions. Finally, we will discuss new evidences on how the modulation of astrocyte phenotype and function could impact the synaptic deficits and glial dysfunction present in aging and pathological states.
Collapse
Affiliation(s)
- Isadora Matias
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Morgado
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Carvalho Alcantara Gomes
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Astrocyte activation and altered metabolism in normal aging, age-related CNS diseases, and HAND. J Neurovirol 2019; 25:722-733. [PMID: 30671779 DOI: 10.1007/s13365-019-00721-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 01/22/2023]
Abstract
Astrocytes regulate local cerebral blood flow, maintain ion and neurotransmitter homeostasis, provide metabolic support, regulate synaptic activity, and respond to brain injury, insults, and infection. Because of their abundance, extensive connectivity, and multiple roles in the brain, astrocytes are intimately involved in normal functioning of the CNS and their dysregulation can lead to neuronal dysfunction. In normal aging, decreased biological functioning and reduced cognitive abilities are commonly experienced in individuals free of overt neurological disease. Moreover, in several age-related CNS diseases, chronic inflammation and altered metabolism have been reported. Since people with HIV (PWH) are reported to experience rapid aging with chronic inflammation, altered brain metabolism is likely to be exacerbated. In fact, many studies report altered metabolism in astrocytes in diseases such as Alzheimer's, Parkinson's, and HIV. This review will address the roles of astrocyte activation and altered metabolism in normal aging, in age-related CNS disease, and in HIV-associated neurocognitive disorders.
Collapse
|
28
|
Dietary Restriction and Neuroinflammation: A Potential Mechanistic Link. Int J Mol Sci 2019; 20:ijms20030464. [PMID: 30678217 PMCID: PMC6386998 DOI: 10.3390/ijms20030464] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic neuroinflammation is a common feature of the aged brain, and its association with the major neurodegenerative changes involved in cognitive impairment and motor dysfunction is well established. One of the most potent antiaging interventions tested so far is dietary restriction (DR), which extends the lifespan in various organisms. Microglia and astrocytes are two major types of glial cells involved in the regulation of neuroinflammation. Accumulating evidence suggests that the age-related proinflammatory activation of astrocytes and microglia is attenuated under DR. However, the molecular mechanisms underlying DR-mediated regulation of neuroinflammation are not well understood. Here, we review the current understanding of the effects of DR on neuroinflammation and suggest an underlying mechanistic link between DR and neuroinflammation that may provide novel insights into the role of DR in aging and age-associated brain disorders.
Collapse
|
29
|
Edler MK, Sherwood CC, Meindl RS, Munger E, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Raghanti MA. Microglia changes associated to Alzheimer's disease pathology in aged chimpanzees. J Comp Neurol 2018; 526:2921-2936. [PMID: 30069930 PMCID: PMC6283685 DOI: 10.1002/cne.24484] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
In Alzheimer's disease (AD), the brain's primary immune cells, microglia, become activated and are found in close apposition to amyloid beta (Aβ) protein plaques and neurofibrillary tangles (NFT). The present study evaluated microglia density and morphology in a large group of aged chimpanzees (n = 20, ages 37-62 years) with varying degrees of AD-like pathology. Using immunohistochemical and stereological techniques, we quantified the density of activated microglia and morphological variants (ramified, intermediate, and amoeboid) in postmortem chimpanzee brain samples from prefrontal cortex, middle temporal gyrus, and hippocampus, areas that show a high degree of AD pathology in humans. Microglia measurements were compared to pathological markers of AD in these cases. Activated microglia were consistently present across brain areas. In the hippocampus, CA3 displayed a higher density than CA1. Aβ42 plaque volume was positively correlated with higher microglial activation and with an intermediate morphology in the hippocampus. Aβ42-positive vessel volume was associated with increased hippocampal microglial activation. Activated microglia density and morphology were not associated with age, sex, pretangle density, NFT density, or tau neuritic cluster density. Aged chimpanzees displayed comparable patterns of activated microglia phenotypes as well as an association of increased microglial activation and morphological changes with Aβ deposition similar to AD patients. In contrast to human AD brains, activated microglia density was not significantly correlated with tau lesions. This evidence suggests that the chimpanzee brain may be relatively preserved during normal aging processes but not entirely protected from neurodegeneration as previously assumed.
Collapse
Affiliation(s)
- Melissa K. Edler
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | | | - Emily Munger
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
| | | | - Joseph M. Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Elliott J. Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ 85013
| | - Patrick R. Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- New York Consortium for Evolutionary Primatology, New York, NY 10468
| | - Mary Ann Raghanti
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Department of Anthropology, Kent State University, Kent, OH 44242
| |
Collapse
|
30
|
O'Neil SM, Witcher KG, McKim DB, Godbout JP. Forced turnover of aged microglia induces an intermediate phenotype but does not rebalance CNS environmental cues driving priming to immune challenge. Acta Neuropathol Commun 2018; 6:129. [PMID: 30477578 PMCID: PMC6260864 DOI: 10.1186/s40478-018-0636-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 01/23/2023] Open
Abstract
Microglia are the resident innate immune cells of the central nervous system. Limited turnover throughout the lifespan leaves microglia susceptible to age-associated dysfunction. Indeed, we and others have reported microglia develop a pro-inflammatory or "primed" profile with age, characterized by increased expression of inflammatory mediators (e.g., MHC-II, CD68, IL-1β). Moreover, immune challenge with lipopolysaccharide (LPS) causes an exaggerated and prolonged neuroinflammatory response mediated by primed microglia in the aged brain. Recent studies show colony-stimulating factor 1 receptor (CSF1R) antagonism results in rapid depletion of microglia without significant complications. Therefore, we hypothesized that CSF1R antagonist-mediated depletion of microglia in the aged brain would result in repopulation with new and unprimed microglia. Here we provide novel evidence that microglia in the brain of adult (6-8 weeks old) and aged (16-18 months old) BALB/c mice were depleted following 3-week oral PLX5622 administration. When CSF1R antagonism was stopped, microglia repopulated equally in the adult and aged brain. Microglial depletion and repopulation reversed age-associated increases in microglial CD68+ lysosome enlargement and lipofuscin accumulation. Microglia-specific RNA sequencing revealed 511 differentially expressed genes with age. Of these, 117 genes were reversed by microglial repopulation (e.g., Apoe, Tgfb2, Socs3). Nevertheless, LPS challenge still induced an exaggerated microglial inflammatory response in the aged brain compared to adults. RNA sequencing of whole-brain tissue revealed an age-induced inflammatory signature, including reactive astrocytes, that was not restored by microglial depletion and repopulation. Furthermore, the microenvironment of the aged brain produced soluble factors that influenced developing microglia ex vivo and induced a profile primed to LPS challenge. Thus, the aged brain microenvironment promotes microglial priming despite repopulation of new microglia. Collectively, aged microglia proliferate and repopulate the brain, but these new cells still adopt a pro-inflammatory profile in the aged brain.
Collapse
Affiliation(s)
- Shane M O'Neil
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kristina G Witcher
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel B McKim
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 231 IBMR Building, 460 Medical Center Drive, Columbus, OH, 43210, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
McKeon A, Benarroch EE. Glial fibrillary acid protein: Functions and involvement in disease. Neurology 2018; 90:925-930. [PMID: 29653988 DOI: 10.1212/wnl.0000000000005534] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Andrew McKeon
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
32
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
33
|
Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochem Int 2017; 107:88-103. [PMID: 28057555 DOI: 10.1016/j.neuint.2016.12.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/26/2016] [Accepted: 12/30/2016] [Indexed: 12/31/2022]
Abstract
Alterations in neuronal connectivity, particularly in the "peri-infarct" tissue adjacent to the region of ischemic damage, are important contributors to the spontaneous recovery of function that commonly follows stroke. Peri-infarct astrocytes undergo reactive astrogliosis and play key roles in modulating the adaptive responses in neurons. This reactive astrogliosis shares many features with that induced by other forms of damage to the central nervous system but also differs in details that potentially influence neurological recovery. A subpopulation of astrocytes within a few hundred micrometers of the infarct proliferate and are centrally involved in the development of the glial scar that separates the damaged tissue in the infarct from surrounding normal brain. The intertwined processes of astrocytes adjacent to the infarct provide the core structural component of the mature scar. Interventions that cause early disruption of glial scar formation typically impede restoration of neurological function. Marked reactive astrogliosis also develops in cells more distant from the infarct but these cells largely remain in the spatial territories they occupied prior to stroke. These cells play important roles in controlling the extracellular environment and release proteins and other molecules that are able to promote neuronal plasticity and improve functional recovery. Treatments manipulating aspects of reactive astrogliosis can enhance neuronal plasticity following stroke. Optimising these treatments for use in human stroke would benefit from a more complete characterization of the specific responses of peri-infarct astrocytes to stroke as well as a better understanding of the influence of other factors including age, sex, comorbidities and reperfusion of the ischemic tissue.
Collapse
|
34
|
Lana D, Iovino L, Nosi D, Wenk GL, Giovannini MG. The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats. Exp Gerontol 2016; 83:71-88. [PMID: 27466072 DOI: 10.1016/j.exger.2016.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/23/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023]
Abstract
We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis. Total and activated microglia increased in the three CA3 subregions of aged rats. In aged rats CA3, astrocytes surrounded ectopic degenerating neurons forming "micro scars" around them. Astrocyte branches infiltrated the neuronal cell body, and, together with activated microglia formed "triads". In the triads, significantly more numerous in CA3 SL and SR of aged rats, astrocytes and microglia cooperated in fragmentation and phagocytosis of ectopic neurons. Inflammaging-induced modifications of astrocytes and microglia in CA3 of aged rats may help clearing neuronal debris derived from low-grade inflammation and apoptosis. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Targeting the triads may represent a therapeutic strategy which may control inflammatory processes and spread of further cellular damage to neighboring cells.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Ludovica Iovino
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, Viale Morgagni 63 and Section of Anatomy and Histology, Largo Brambilla 3, University of Florence, 50134 Firenze, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, Viale Morgagni 63 and Section of Anatomy and Histology, Largo Brambilla 3, University of Florence, 50134 Firenze, Italy.
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, OH, USA..
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
35
|
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88:314-336. [PMID: 26066302 PMCID: PMC4628850 DOI: 10.1016/j.freeradbiomed.2015.05.036] [Citation(s) in RCA: 615] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/20/2022]
Abstract
Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; School of Natural Science, University of California at Merced, Merced, CA 95344, USA.
| |
Collapse
|
36
|
S100B and Glial Fibrillary Acidic Protein as Indexes to Monitor Damage Severity in an In Vitro Model of Traumatic Brain Injury. Neurochem Res 2015; 40:991-9. [PMID: 25898931 DOI: 10.1007/s11064-015-1554-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/05/2015] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a leading and rising cause of death and disability worldwide. There is great interest in S100B and Glial Fibrillary Acid Protein (GFAP) as candidate biomarkers of TBI for diagnosis, triage, prognostication and drug development. However, conflicting results especially on S100B hamper their routine application in clinical practice. To try to address this question, we mimicked TBI damage utilizing a well-validated, simplified in vitro model of graded stretch injury induced in rat organotypic hippocampal slice cultures (OHSC). Different severities of trauma, from mild to severe, have been tested by using an equi-biaxial stretch of the OHSCs at a specified Lagrangian strain of 0 (controls), 5, 10, 20 and 50 %. OHSC were analysed at 3, 6, 18, 24, 48 and 96 h post-injury. Cell death, gene expressions and release into the culture medium of S100B and GFAP were determined at each time point. Gene expression and release of S100B slightly increased only in 20 and 50 % stretched OHSC. GFAP over-expression occurred in 10, 20 and 50 % and was inversely correlated with time post-injury. GFAP release significantly increased with time at any level of injury (p < 0.01 with respect to controls). Consequently, the total amount of GFAP released showed a strong linear relationship with the severity of injury (R(2) = 0.7662; p < 0.001). Under these experimental conditions, S100B seems to be useful in diagnosing only moderate to severe TBI-like injuries. Differently, GFAP demonstrates adequate biomarker requisites since its cellular release is affected by all grades of injury severity.
Collapse
|
37
|
Hale MW, Spencer SJ, Conti B, Jasoni CL, Kent S, Radler ME, Reyes TM, Sominsky L. Diet, behavior and immunity across the lifespan. Neurosci Biobehav Rev 2014; 58:46-62. [PMID: 25524877 DOI: 10.1016/j.neubiorev.2014.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/10/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that perinatal events can set an organism on a life-long trajectory for either health or disease, resilience or risk. One early life variable that has proven critical for optimal development is the nutritional environment in which the organism develops. Extensive research has documented the effects of both undernutrition and overnutrition, with strong links evident for an increased risk for obesity and metabolic disorders, as well as adverse mental health outcomes. Recent work has highlighted a critical role of the immune system, in linking diet with long term health and behavioral outcomes. The present review will summarize the recent literature regarding the interactions of diet, immunity, and behavior.
Collapse
Affiliation(s)
- Matthew W Hale
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Melbourne, VIC, Australia.
| | - Bruno Conti
- The Scripps Research Institute, La Jolla, CA, USA
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Stephen Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Morgan E Radler
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Teresa M Reyes
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luba Sominsky
- School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Neurological and cardiac responses after treatment with miglustat and a ketogenic diet in a patient with Sandhoff disease. Eur J Med Genet 2014; 58:180-3. [PMID: 25497207 DOI: 10.1016/j.ejmg.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 12/04/2014] [Indexed: 11/20/2022]
Abstract
Sandhoff disease is a progressive neurodegenerative disorder characterized by accumulation of GM2 gangliosides. We describe a 6-year-old male with coarse facial features, developmental delay, refractory seizures, hypertrophic cardiomyopathy, who was later found to have Sandhoff disease. Previous studies have revealed that caloric restriction in combination with miglustat increased survival and motor behavior in mouse model of Sandhoff disease. These findings suggest that combination therapy may result in improved outcomes for patients with Sandhoff. Initiation of treatment with miglustat and a ketogenic diet was followed by improvement of the patient's seizure control and cardiac function. Further clinical investigation is required to better determine the benefit of management in late-onset forms of Sandhoff disease.
Collapse
|
39
|
Radler ME, Wright BJ, Walker FR, Hale MW, Kent S. Calorie restriction increases lipopolysaccharide-induced neuropeptide Y immunolabeling and reduces microglial cell area in the arcuate hypothalamic nucleus. Neuroscience 2014; 285:236-47. [PMID: 25446356 DOI: 10.1016/j.neuroscience.2014.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022]
Abstract
Calorie restriction (CR) increases longevity and elicits many health promoting benefits including delaying immunosenescence and reducing the incidence of age-related diseases. Although the mechanisms underlying the health-enhancing effects of CR are not known, a likely contributing factor is alterations in immune system functioning. CR suppresses lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines, blocks LPS-induced fever, and shifts hypothalamic signaling pathways to an anti-inflammatory bias. Furthermore, we have recently shown that CR attenuates LPS-stimulated microglial activation in the hypothalamic arcuate nucleus (ARC), a brain region containing neurons that synthesize neuropeptide Y (NPY), an orexigenic neuropeptide that is upregulated by a CR diet and has anti-inflammatory properties. To determine if increased NPY expression in the ARC following CR was associated with changes in microglial activation, a set of brain sections from mice that were exposed to 50% CR or ad libitum feeding for 28 days before being injected with LPS were immunostained for NPY. The density of NPY-immunolabeling was assessed across the rostrocaudal extent of the ARC and hypothalamic paraventricular nucleus (PVN). An adjacent set of sections were immunostained for ionized calcium-binding adapter molecule-1 (Iba1) and immunostained microglia in the ARC were digitally reconstructed to investigate the effects of CR on microglial morphology. We demonstrated that exposure to CR increased NPY expression in the ARC, but not the PVN. Digital reconstruction of microglia revealed that LPS increased Iba1 intensity in ad libitum fed mice but had no effect on Iba1 intensity in CR mice. CR also decreased the size of ARC microglial cells following LPS. Correlational analyses revealed strong associations between NPY and body temperature, and body temperature and microglia area. Together these results suggest that CR-induced changes in NPY are not directly involved in the suppression of LPS-induced microglial activation, however, NPY may indirectly affect microglial morphology through changes in body temperature.
Collapse
Affiliation(s)
- M E Radler
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - B J Wright
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - M W Hale
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - S Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
40
|
Streit WJ, Xue QS, Tischer J, Bechmann I. Microglial pathology. Acta Neuropathol Commun 2014; 2:142. [PMID: 25257319 PMCID: PMC4180960 DOI: 10.1186/s40478-014-0142-6] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023] Open
Abstract
This paper summarizes pathological changes that affect microglial cells in the human brain during aging and in aging-related neurodegenerative diseases, primarily Alzheimer’s disease (AD). It also provides examples of microglial changes that have been observed in laboratory animals during aging and in some experimentally induced lesions and disease models. Dissimilarities and similarities between humans and rodents are discussed in an attempt to generate a current understanding of microglial pathology and its significance during aging and in the pathogenesis of Alzheimer dementia (AD). The identification of dystrophic (senescent) microglia has created an ostensible conflict with prior work claiming a role for activated microglia and neuroinflammation during normal aging and in AD, and this has raised a basic question: does the brain’s immune system become hyperactive (inflamed) or does it become weakened (senescent) in elderly and demented people, and what is the impact on neuronal function and cognition? Here we strive to reconcile these seemingly contradictory notions by arguing that both low-grade neuroinflammation and microglial senescence are the result of aging-associated free radical injury. Both processes are damaging for microglia as they synergistically exhaust this essential cell population to the point where the brain’s immune system is effete and unable to support neuronal function.
Collapse
|
41
|
Venturini L, Perna S, Sardi F, Faliva M, Cavagna P, Bernardinelli L, Ricevuti G, Rondanelli M. Alzheimer's Disease: From Genes to Nutrition. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is widely identified as the most common cause of sporadic dementia. Its aetiology is still debated, as despite several hypotheses, different factors seem to play a role in its establishment and development. Recent studies have proposed a possible preventing role of nutrition. The weight loss typical of earlier phase of disease and the finding of malnutrition as a common trait between patients leads to hypothesize that a supplementation of specific nutrients seems to be useful and effective in terms of improvement of cognitive functions. Malnourished patients show also altered parameters when investigating inflammation markers: for example, hyperhomocysteinemia is a typical finding in elderly affected by dementia, and it can be prevented and corrected by using a proper nutrients supplementation. Pro-inflammatory state can be reduced with supplementation of polyunsaturated fatty acids, vitamins of the group B and phosphatidylserine, that can act reducing IL-1β (pro-inflammatory cytokine) and improving IL-10 (anti-inflammatory cytokine) synthesis. While investigating the role of nutrition, it seems to be deeply linked with genetic; a genetic onset AD-related could be latent and can be influenced by nutritional attitude. AD can be considered a sort of latent clinical condition that would disclose or not, depending also on micro-environment and nutritional parameters. The genetic expression can be influenced by assumptions or not of specific nutrients, with the promotion of different pro- or anti-inflammatory settings. The specific role of each micronutrient (in particular vitamins) and trace elements still needs to be punctuated, as they are involved in a pool of different reactions. Also genes acts not independently but in an interconnected pattern, in which the role of a single gene needs to be cleared, depending on others. This complex system of predisposing conditions and a possible role of nutrition as modulator of the inflammatory state is the object of this review.
Collapse
Affiliation(s)
- L. Venturini
- Department of Internal Medicine, Therapeutics, Cellular Phatophysiology and Clinical Immunology Laboratory, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - S. Perna
- Department of Public Health, Neuroscience, Experimental and Forensic Medicine, Section of Human Nutrition and Dietetics, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - F. Sardi
- Department of Internal Medicine, Therapeutics, Cellular Phatophysiology and Clinical Immunology Laboratory, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - M.A. Faliva
- Department of Public Health, Neuroscience, Experimental and Forensic Medicine, Section of Human Nutrition and Dietetics, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - P. Cavagna
- DSSAP Department of Applied and Phychic Behavioural Sciences, University of Pavia, Italy
| | - L. Bernardinelli
- DSSAP Department of Applied and Phychic Behavioural Sciences, University of Pavia, Italy
- Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - G. Ricevuti
- Department of Internal Medicine, Therapeutics, Cellular Phatophysiology and Clinical Immunology Laboratory, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - M. Rondanelli
- Department of Public Health, Neuroscience, Experimental and Forensic Medicine, Section of Human Nutrition and Dietetics, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| |
Collapse
|
42
|
Yassa HD. Age-related changes in the optic nerve of Sprague-Dawley rats: an ultrastructural and immunohistochemical study. Acta Histochem 2014; 116:1085-95. [PMID: 24958340 DOI: 10.1016/j.acthis.2014.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/04/2014] [Accepted: 05/13/2014] [Indexed: 01/11/2023]
Abstract
The optic nerve is a unique part of the central nervous system. It lacks neuronal cell bodies and consists of axons of the retinal ganglion cells together with the supporting neuroglial cells. In the present study, aging of the optic nerve was studied in female Sprague-Dawley rats aged 3, 12, 24 and 30 months old, ultrastructurally, immunohistochemically and morphometrically trying to answer the question why aging is a common risk factor for many ocular diseases especially glaucoma. Additionally, studying the optic nerve aging offered a good opportunity to gain further insight into the effects of aging on white matter. Both nerve fibers and neuroglial cells demonstrated several age related changes which were more profound in 30 months old rats. Optic nerve axons displayed watery degeneration and dark degeneration. Myelin disturbances including widening, whorls, splitting and vacuolations of the myelin lamellae were also observed. Neuroglial cells appeared to be more frequent than in younger rats especially microglia cells and developed dense cytoplasmic inclusions. GFAP-positive astrocytes delineated age-related progressive increase in number, size as well as length and thickness of their processes. CD68 immunohistochemical staining revealed age-related changes in the morphology, location and number of CD68 positive microglia cells.
Collapse
Affiliation(s)
- Hanan Dawood Yassa
- Department of Anatomy and Embryology, Faculty of Medicine, Beni Suef University, Salah Salem St., 62511 Beni Suef, Egypt.
| |
Collapse
|
43
|
Radler ME, Hale MW, Kent S. Calorie restriction attenuates lipopolysaccharide (LPS)-induced microglial activation in discrete regions of the hypothalamus and the subfornical organ. Brain Behav Immun 2014; 38:13-24. [PMID: 24291211 DOI: 10.1016/j.bbi.2013.11.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022] Open
Abstract
Calorie restriction (CR) has been shown to increase longevity and elicit many health promoting benefits including delaying immunosenescence and attenuating neurodegeneration in animal models of Alzheimer's disease and Parkinson's disease. CR also suppresses microglial activation following cortical injury and aging. We previously demonstrated that CR attenuates lipopolysaccharide (LPS)-induced fever and shifts hypothalamic signaling pathways to an anti-inflammatory bias; however, the effects of CR on LPS-induced microglial activation remain largely unexplored. The current study investigated regional changes in LPS-induced microglial activation in mice exposed to 50% CR for 28days. Immunohistochemistry was conducted to examine changes in ionized calcium-binding adapter molecule-1 (Iba1), a protein constitutively expressed by microglia, in a total of 27 brain regions involved in immunity, stress, and/or thermoregulation. Exposure to CR attenuated LPS-induced fever, and LPS-induced microglial activation in a subset of regions: the arcuate nucleus (ARC) and ventromedial nucleus of the hypothalamus (VMH) and the subfornical organ (SFO). Microglial activation in the ARC and VMH was positively correlated with body temperature. These data suggest that CR exerts effects on regionally specific populations of microglia; particularly, in appetite-sensing regions of the hypothalamus, and/or regions lacking a complete blood brain barrier, possibly through altered pro- and anti-inflammatory signaling in these regions.
Collapse
Affiliation(s)
- Morgan E Radler
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Matthew W Hale
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Stephen Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
44
|
Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, Pistell P, Newman S, Carter R, Laque A, Münzberg H, Rosen CJ, Ingram DK, Salbaum JM, Dixit VD. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 2013; 18:519-32. [PMID: 24093676 PMCID: PMC4017327 DOI: 10.1016/j.cmet.2013.09.010] [Citation(s) in RCA: 482] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/07/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Despite a wealth of clinical data showing an association between inflammation and degenerative disorders in the elderly, the immune sensors that causally link systemic inflammation to aging remain unclear. Here we detail a mechanism by which the Nlrp3 inflammasome controls systemic low-grade age-related "sterile" inflammation in both periphery and brain independently of the noncanonical caspase-11 inflammasome. Ablation of Nlrp3 inflammasome protected mice from age-related increases in the innate immune activation, alterations in CNS transcriptome, and astrogliosis. Consistent with the hypothesis that systemic low-grade inflammation promotes age-related degenerative changes, the deficient Nlrp3 inflammasome-mediated caspase-1 activity improved glycemic control and attenuated bone loss and thymic demise. Notably, IL-1 mediated only Nlrp3 inflammasome-dependent improvement in cognitive function and motor performance in aged mice. These studies reveal Nlrp3 inflammasome as an upstream target that controls age-related inflammation and offer an innovative therapeutic strategy to lower Nlrp3 activity to delay multiple age-related chronic diseases.
Collapse
Affiliation(s)
- Yun-Hee Youm
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Ryan W. Grant
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, MI48824, USA
| | - Diana C. Albarado
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Kim Yen Nguyen
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Anthony Ravussin
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Paul Pistell
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Susan Newman
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Renee Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, LSU, Baton Rouge, LA70803, USA
| | - Amanda Laque
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Donald K. Ingram
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Vishwa Deep Dixit
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
- Section of Comparative Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520, USA
| |
Collapse
|
45
|
Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 2013; 39:19-34. [PMID: 23039106 DOI: 10.1111/j.1365-2990.2012.01306.x] [Citation(s) in RCA: 584] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/25/2012] [Indexed: 01/08/2023]
Abstract
Innate immunity within the central nervous system (CNS) is primarily provided by resident microglia. Microglia are pivotal in immune surveillance and also facilitate the co-ordinated responses between the immune system and the brain. For example, microglia interpret and propagate inflammatory signals that are initiated in the periphery. This transient microglial activation helps mount the appropriate physiological and behavioural response following peripheral infection. With normal ageing, however, microglia develop a more inflammatory phenotype. For instance, in several models of ageing there are increased pro-inflammatory cytokines in the brain and increased expression of inflammatory receptors on microglia. This increased inflammatory status of microglia with ageing is referred to as primed, reactive or sensitized. A modest increase in the inflammatory profile of the CNS and altered microglial function in ageing has behavioural and cognitive consequences. Nonetheless, there are major differences in microglial biology between young and old age when the immune system is challenged and microglia are activated. In this context, microglial activation is amplified and prolonged in the aged brain compared with adults. The cause of this amplified microglial activation may be related to impairments in several key regulatory systems with age that make it more difficult to resolve microglial activation. The consequences of impaired regulation and microglial hyper-activation following immune challenge are exaggerated neuroinflammation, sickness behaviour, depressive-like behaviour and cognitive deficits. Therefore the purpose of this review is to discuss the current understanding of age-associated microglial priming, consequences of priming and reactivity, and the impairments in regulatory systems that may underlie these age-related deficits.
Collapse
Affiliation(s)
- D M Norden
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
46
|
Bali N, Arimoto JM, Morgan TE, Finch CE. Progesterone antagonism of neurite outgrowth depends on microglial activation via Pgrmc1/S2R. Endocrinology 2013; 154:2468-80. [PMID: 23653459 PMCID: PMC3689281 DOI: 10.1210/en.2012-2109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal plasticity is regulated by the ovarian steroids estradiol (E2) and progesterone (P4) in many normal brain functions, as well as in acute response to injury and chronic neurodegenerative disease. In a female rat model of axotomy, the E2-dependent compensatory neuronal sprouting is antagonized by P4. To resolve complex glial-neuronal cell interactions, we used the "wounding-in-a-dish" model of neurons cocultured with astrocytes or mixed glia (microglia to astrocytes, 1:3). Although both astrocytes and mixed glia supported E2-enhanced neurite outgrowth, P4 antagonized E2-induced neurite outgrowth only with mixed glia, but not astrocytes alone. We now show that P4-E2 antagonism of neurite outgrowth is mediated by microglial expression of progesterone receptor (Pgr) membrane component 1 (Pgrmc1)/S2R, a putative nonclassical Pgr mediator with multiple functions. The P4-E2 antagonism of neurite outgrowth was restored by add-back of microglia to astrocyte-neuron cocultures. Because microglia do not express the classical Pgr, we examined the role of Pgrmc1, which is expressed in microglia in vitro and in vivo. Knockdown by siRNA-Pgrmc1 in microglia before add-back to astrocyte-neuron cocultures suppressed the P4-E2 antagonism of neurite outgrowth. Conditioned media from microglia restored the P4-E2 activity, but only if microglia were activated by lipopolysaccharide or by wounding. Moreover, the microglial activation was blocked by Pgmrc1-siRNA knockdown. These findings explain why nonwounded cultures without microglial activation lack P4 antagonism of E2-induced neurite outgrowth. We suggest that microglial activation may influence brain responses to exogenous P4, which is a prospective therapy in traumatic brain injury.
Collapse
Affiliation(s)
- N Bali
- Molecular Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
47
|
Arimoto JM, Wong A, Rozovsky I, Lin SW, Morgan TE, Finch CE. Age increase of estrogen receptor-α (ERα) in cortical astrocytes impairs neurotrophic support in male and female rats. Endocrinology 2013; 154:2101-13. [PMID: 23515288 PMCID: PMC3740484 DOI: 10.1210/en.2012-2046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rodent models show decreased neuronal responses to estradiol (E2) during aging (E2-desensitization) in association with reduced neuronal estrogen receptor (ER)-α, but little is known about age changes of E2-dependent astrocytic neurotrophic support. Because elevated expression of astrocyte glial fibrillary acidic protein (GFAP) is associated with impaired neurotrophic activity and because the GFAP promoter responds to ERα, we investigated the role of astrocytic ERα and ERβ in impaired astrocyte neurotrophic activity during aging. In vivo and in vitro, ERα was increased greater than 50% with age in astrocytes from the cerebral cortex of male rats (24 vs 3 months), whereas ERβ did not change. In astrocytes from 3-month-old males, experimentally increasing the ERα to ERβ ratio induced the aging phenotype of elevated GFAP and impaired E2-dependent neurite outgrowth. In 24-month-old male astrocytes, lowering ERα reversed the age elevation of GFAP and partially restored E2-dependent neurite outgrowth. Mixed glia (astrocytes to microglia, 3:1) of both sexes also showed these age changes. In a model of perimenopause, mixed glia from 9- to 15-month rats showed E2 desensitization: 9-month regular cyclers retained young-like ERα to ERβ ratios and neurotrophic activity, whereas 9-month noncyclers had elevated ERα and GFAP but low E2-dependent neurotrophic activity. In vivo, ERα levels in cortical astrocytes were also elevated. The persisting effects of ovarian acyclicity in vitro are hypothesized to arise from steroidal perturbations during ovarian senescence. These findings suggest that increased astrocyte ERα expression during aging contributes to the E2 desensitization of the neuronal responses in both sexes.
Collapse
Affiliation(s)
- Jason M Arimoto
- Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA
| | | | | | | | | | | |
Collapse
|
48
|
Smith CJ, Lawrence CB, Rodriguez-Grande B, Kovacs KJ, Pradillo JM, Denes A. The immune system in stroke: clinical challenges and their translation to experimental research. J Neuroimmune Pharmacol 2013; 8:867-87. [PMID: 23673977 DOI: 10.1007/s11481-013-9469-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/28/2013] [Indexed: 12/27/2022]
Abstract
Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches.
Collapse
Affiliation(s)
- Craig J Smith
- Stroke and Vascular Research Centre, Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, Salford M6 8HD, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Walker DG, Lue LF. Understanding the neurobiology of CD200 and the CD200 receptor: a therapeutic target for controlling inflammation in human brains? FUTURE NEUROLOGY 2013; 8. [PMID: 24198718 DOI: 10.2217/fnl.13.14] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD200 and its receptor, CD200 receptor (CD200R), have uniaue roles in controlling damaging inflammatory processes. At present, the only identified function for CD200 is as a ligand for CD200R. These proteins interact resulting in the activation of anti-inflammatory signaling by CD200R-expressing cells. When this interaction becomes deficient with aging or disease, chronic inflammation occurs, Experimental animal studies have demonstrated the consequences of disrupting CD200-CD200R interactions in the brain, but there have been few studies in human brains. Deficiency in neuronal CD200 may explain the chronic inflammation in human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and multiple sclerosis; however, deficits in the microglial expression of CD200R may also be of functional significance. The purpose of this review is to assess the data regarding the role of CD200-CD200R interactions in relation to the brain in order to determine if this could be a therapeutic target for human brain diseases with inflammatory components, and what additional studies are needed.
Collapse
Affiliation(s)
- Douglas G Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA
| | | |
Collapse
|
50
|
Karperien A, Ahammer H, Jelinek HF. Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci 2013; 7:3. [PMID: 23386810 PMCID: PMC3558688 DOI: 10.3389/fncel.2013.00003] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/08/2013] [Indexed: 01/17/2023] Open
Abstract
It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between “ramified resting” and “activated amoeboid” has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within the currently accepted morphological categories. Moreover, microglia adopt meaningful intermediate forms between categories, with considerable crossover in function and varying morphologies as they cycle, migrate, wave, phagocytose, and extend and retract fine and gross processes. From a quantitative perspective, it is problematic to measure such variability using traditional methods, but one way of quantitating such detail is through fractal analysis. The techniques of fractal analysis have been used for quantitating microglial morphology, to categorize gross differences but also to differentiate subtle differences (e.g., amongst ramified cells). Multifractal analysis in particular is one technique of fractal analysis that may be useful for identifying intermediate forms. Here we review current trends and methods of fractal analysis, focusing on box counting analysis, including lacunarity and multifractal analysis, as applied to microglial morphology.
Collapse
Affiliation(s)
- Audrey Karperien
- Centre for Research in Complex Systems, School of Community Health, Charles Sturt University Albury, NSW, Australia
| | | | | |
Collapse
|