1
|
Yao M, Zhang L, Teng X, Lei Y, Xing X, Ren T, Pan Y, Zhang L, Li Z, Lin J, Zheng Y, Xing L, Zhou J, Wu C. Transcriptomic profiling of Dip2a in the neural differentiation of mouse embryonic stem cells. Comput Struct Biotechnol J 2024; 23:700-710. [PMID: 38292475 PMCID: PMC10825174 DOI: 10.1016/j.csbj.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction The disconnected-interacting protein 2 homolog A (DIP2A), a member of disconnected-interacting 2 protein family, has been shown to be involved in human nervous system-related mental illness. This protein is highly expressed in the nervous system of mouse. Mutation of mouse DIP2A causes defects in spine morphology and synaptic transmission, autism-like behaviors, and defective social novelty [5], [27], indicating that DIP2A is critical to the maintenance of neural development. However, the role of DIP2A in neural differentiation has yet to be investigated. Objective To determine the role of DIP2A in neural differentiation, a neural differentiation model was established using mouse embryonic stem cells (mESCs) and studied by using gene-knockout technology and RNA-sequencing-based transcriptome analysis. Results We found that DIP2A is not required for mESCs pluripotency maintenance, but loss of DIP2A causes the neural differentiation abnormalities in both N2B27 and KSR medium. Functional knockout of Dip2a gene also decreased proliferation of mESCs by perturbation of the cell cycle and profoundly inhibited the expression of a large number of neural development-associated genes which mainly enriched in spinal cord development and postsynapse assembly. Conclusions The results of this report demonstrate that DIP2A plays an essential role in regulating differentiation of mESCs towards the neural fate.
Collapse
Affiliation(s)
- Mingze Yao
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan 030006, China
| | - Xiaojuan Teng
- Dermatology Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yu Lei
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaoyu Xing
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Tinglin Ren
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yuanqing Pan
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Liwen Zhang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510000, China
| | - Jingxia Lin
- Dermatology Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yaowu Zheng
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou 510000, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Yahia A, Li D, Lejerkrans S, Rajagopalan S, Kalnak N, Tammimies K. Whole exome sequencing and polygenic assessment of a Swedish cohort with severe developmental language disorder. Hum Genet 2024; 143:169-183. [PMID: 38300321 PMCID: PMC10881898 DOI: 10.1007/s00439-023-02636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Developmental language disorder (DLD) overlaps clinically, genetically, and pathologically with other neurodevelopmental disorders (NDD), corroborating the concept of the NDD continuum. There is a lack of studies to understand the whole genetic spectrum in individuals with DLD. Previously, we recruited 61 probands with severe DLD from 59 families and examined 59 of them and their families using microarray genotyping with a 6.8% diagnostic yield. Herein, we investigated 53 of those probands using whole exome sequencing (WES). Additionally, we used polygenic risk scores (PRS) to understand the within family enrichment of neurodevelopmental difficulties and examine the associations between the results of language-related tests in the probands and language-related PRS. We identified clinically significant variants in four probands, resulting in a 7.5% (4/53) molecular diagnostic yield. Those variants were in PAK2, MED13, PLCB4, and TNRC6B. We also prioritized additional variants for future studies for their role in DLD, including high-impact variants in PARD3 and DIP2C. PRS did not explain the aggregation of neurodevelopmental difficulties in these families. We did not detect significant associations between the language-related tests and language-related PRS. Our results support using WES as the first-tier genetic test for DLD as it can identify monogenic DLD forms. Large-scale sequencing studies for DLD are needed to identify new genes and investigate the polygenic contribution to the condition.
Collapse
Affiliation(s)
- Ashraf Yahia
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Sanna Lejerkrans
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Shyam Rajagopalan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Nelli Kalnak
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Department of Speech-Language Pathology, Helsingborg Hospital, Helsingborg, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
3
|
Zhang B, Zhang X, Omorou M, Zhao K, Ruan Y, Luan H. Disco interacting protein 2 homolog A (DIP2A): A key component in the regulation of brain disorders. Biomed Pharmacother 2023; 168:115771. [PMID: 37897975 DOI: 10.1016/j.biopha.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Disco Interacting Protein 2 Homolog A (DIP2A) is expressed throughout the body and abundantly expressed in the brain tissue. It is activated by Follistatin-like 1 (FSTL1). Activated DIP2A interacts with several pathways, such as AMPK/mTOR and AKT pathways, to contribute to many biological processes, such as oxidative stress, transcriptional regulation, and apoptosis. Dysregulated DIP2A activation has been implicated in numerous processes in the brain. If the upstream pathways of DIP2A remain globally unexplored, many proteins, including cortactin, AMPK, and AKT, have been identified as its downstream targets in the literature. Recent studies have linked DIP2A to a variety of mechanisms in many types of brain disorders, suggesting that regulation of DIP2A could provide novel diagnostic and therapeutic approaches for brain disorders. In this review, we comprehensively summarized and discussed the current research on DIP2A in various brain disorders, such as stroke, autism spectrum disorders (ASD), Alzheimer's disease (AD), dyslexia, and glioma.
Collapse
Affiliation(s)
- Baoyuan Zhang
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Xuesong Zhang
- First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Moussa Omorou
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Kai Zhao
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Yang Ruan
- The Central Hospital of Jiamusi City, Jiamusi, Heilongjiang, China.
| | - Haiyan Luan
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China.
| |
Collapse
|
4
|
Yao M, Pan Y, Ren T, Yang C, Lei Y, Xing X, Zhang L, Cui X, Zheng Y, Xing L, Wu C. Loss of Dip2b leads to abnormal neural differentiation from mESCs. Stem Cell Res Ther 2023; 14:248. [PMID: 37705068 PMCID: PMC10500737 DOI: 10.1186/s13287-023-03482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Disco-interacting protein 2 homolog B is a member of the Dip2 family encoded by the Dip2b gene. Dip2b is widely expressed in neuro-related tissues and is essential in axonal outgrowth during embryogenesis. METHODS Dip2b knockout mouse embryonic stem cell line was established by CRISPR/Cas9 gene-editing technology. The commercial kits were utilized to detect cell cycle and growth rate. Flow cytometry, qRT-PCR, immunofluorescence, and RNA-seq were employed for phenotype and molecular mechanism assessment. RESULTS Our results suggested that Dip2b is dispensable for the pluripotency maintenance of mESCs. Dip2b knockout could not alter the cell cycle and proliferation of mECSs, or the ability to differentiate into three germ layers in vitro. Furthermore, genes associated with axon guidance, channel activity, and synaptic membrane were significantly downregulated during neural differentiation upon Dip2b knockout. CONCLUSIONS Our results suggest that Dip2b plays an important role in neural differentiation, which will provide a valuable model for studying the exact mechanisms of Dip2b during neural differentiation.
Collapse
Affiliation(s)
- Mingze Yao
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Yuanqing Pan
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Tinglin Ren
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Caiting Yang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Yu Lei
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Xiaoyu Xing
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Xiaogang Cui
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Yaowu Zheng
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
5
|
Song C, Shang F, Tu W, Liu X. Integrated pancancer analysis reveals the oncogene characteristics and prognostic value of DIP2B in breast cancer. BMC Cancer 2023; 23:296. [PMID: 37004015 PMCID: PMC10064539 DOI: 10.1186/s12885-023-10751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Disco-interaction protein 2 homologue B (DIP2B) plays an important role in DNA methylation. There have been many reports on DIP2B in various diseases, but neither the diagnostic value nor the prognostic value of DIP2B across cancer types has been deeply explored. METHODS The expression levels of DIP2B in 33 cancer types were analysed based on data sets from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database. The relationships of DIP2B expression with immune cell infiltration and immune-related gene expression were studied via the CIBERSORT, ESTIMATE and TISIDB tools. Gene set variation analysis (GSVA) was performed to identify pathways related to DIP2B. DIP2B knockdown by siRNA was performed in breast cancer cell lines to investigate the effect on proliferation, apoptosis and migration. The relationships of DIP2B expression with clinicopathological features and prognosis were analysed based on immunohistochemistry. RESULTS DIP2B was highly expressed in 26 of 33 cancer types and was significantly associated with poor overall survival (OS) in breast invasive carcinoma (BRCA), mesothelioma and chromophobe renal cell carcinoma (each P < 0.05). DIP2B showed a negative correlation with the immune score, the infiltration levels of key immune killer cells (CD8 + T cells, activated NK cells and plasma cells), and the expression of major histocompatibility complex-related genes and chemokine-related genes in BRCA. Subtype analysis showed that DIP2B expression was associated with poor OS in Her-2 + BRCA patients (P < 0.05). DIP2B showed a negative correlation with immune killer cell infiltration and immune regulatory genes in BRCA subtypes. In BRCA, the GSVA results revealed that genes correlating positively with DIP2B were enriched in cancer-related pathways (PI3K-AKT) and cell-cycle-related pathways (MITOTIC_SPINDLE, G2M_CHECKPOINT and E2F_TARGETS), while genes correlating negatively with DIP2B were enriched in DNA_REPAIR. Knockdown of the DIP2B gene induced a reduction in proliferation and migration and an increase in apoptosis in breast cancer cell lines. DIP2B expression was associated with lymph node metastasis and poor histological grade in BRCA according to immunohistochemistry (each P < 0.05). DIP2B expression predicted reduced disease-free survival and OS in BRCA patients (each P < 0.05), especially those with the Her-2 + subtype (P = 0.023 and P = 0.069). CONCLUSIONS DIP2B may be a prognostic biomarker for BRCA, especially for the Her-2 + subtype. DIP2B is associated with a "cold" tumour immune microenvironment in BRCA and might serve as a future target for immunotherapy.
Collapse
Affiliation(s)
- Chengyang Song
- Department of Thoracic and Cardiovascular Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Fangjian Shang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Tu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaodan Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Li Y, Sun C, Guo Y, Qiu S, Li Y, Liu Y, Zhong W, Wang H, Cheng Y, Liu Y. DIP2C polymorphisms are implicated in susceptibility and clinical phenotypes of autism spectrum disorder. Psychiatry Res 2022; 316:114792. [PMID: 35987071 DOI: 10.1016/j.psychres.2022.114792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Disco-interacting protein 2 C (DIP2C) has recently been reported as a new susceptibility gene for autism spectrum disorder (ASD) in a genome-wide association study. METHODS We evaluated associations between single nucleotide polymorphisms (SNPs) of DIP2C and ASD susceptibility in a case-control study (715 ASD cases and 728 controls) from Chinese Han. RESULTS We identified a significant association between SNPs (rs3740304, rs2288681, rs7088729, rs4242757, rs10795060, and rs10904083) and ASD susceptibility. Of note, rs3740304, rs2288681, and rs7088729 are positively associated with ASD under inheritance models; moreover, haplotypes with any two marker SNPs (rs3740304 [G], rs2288681 [C], rs7088729 [T], rs4242757 [C], rs10795060 [G], and rs10904083 [A]) are also significantly associated with ASD. Additionally, rs10795060 and rs10904083 are associated with "visual reaction" phenotypes of ASD. CONCLUSIONS DIP2C polymorphisms sort out the susceptibility and clinical phenotypes of autism spectrum disorder.
Collapse
Affiliation(s)
- Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; Department of Epidemiology, School of Public Health, Beihua University, Jilin 132013, China; Institute of Health Sciences, China Medical University, Shengyang 110000, China
| | - Chuanyong Sun
- Northeast Asian Studies Center, Jilin University, Changchun 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Shuang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Yunkai Liu
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun 130021, China
| | - Weijing Zhong
- Chunguang Rehabilitation Hospital, Changchun, Jilin 130021, China
| | - Hedi Wang
- Department of Epidemiology, School of Public Health, Beihua University, Jilin 132013, China
| | - Yi Cheng
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Adlat S, Hayel F, Chen Y, Sah RK, Mar Oo Z, Al-Azab M, Zun Zaw Myint M, Bahadar N, Binta Bah F, Mi N, Safi M, Feng X, Zhu P, Zheng Y. Heterozygous loss of Dip2B enhances tumor growth and metastasis by altering immune microenvironment. Int Immunopharmacol 2022; 105:108559. [DOI: 10.1016/j.intimp.2022.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022]
|
8
|
Yang L, Zhao S, Ma N, Liu L, Li D, Li X, Wang Z, Song X, Wang Y, Wang D. Novel DIP2C gene splicing variant in an individual with focal infantile epilepsy. Am J Med Genet A 2021; 188:210-215. [PMID: 34617658 DOI: 10.1002/ajmg.a.62524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 11/06/2022]
Abstract
Disco-interacting protein 2 C (DIP2C) encodes a disco-interacting protein and is highly expressed in the nervous system. Most variants of DIP2C are microdeletions on chromosome 10p15.3. This study reports a 17-month-old infant with focal infantile epilepsy who has a single-nucleotide variation in DIP2C that results in alternative splicing. The de novo variation (NM_014974.3: c.1057+2T>G) in DIP2C was uncovered through whole-exome sequencing. Minigene assays were performed and verified the alternative splicing caused by the variation. Finally, an 80-bp nucleotide deletion in the 3' end of Exon 8 was detected. Our study identified a de novo splicing variant that affects the coding length of DIP2C. This finding provides a new candidate gene for focal infantile epilepsy. Importantly, our finding is the first to associate a single nucleotide variant in DIP2C with focal infantile epilepsy.
Collapse
Affiliation(s)
- Le Yang
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| | - Siyu Zhao
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| | - Nan Ma
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| | - Liang Liu
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| | - Dongjing Li
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| | - Xia Li
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| | - Zhijing Wang
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| | - Xixiao Song
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| | - Yan Wang
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| | - Dong Wang
- Department of Pediatric neurology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
9
|
Pan X, Liu F, Song Y, Wang H, Wang L, Qiu H, Price M, Li J. Motor Stereotypic Behavior Was Associated With Immune Response in Macaques: Insight From Transcriptome and Gut Microbiota Analysis. Front Microbiol 2021; 12:644540. [PMID: 34394017 PMCID: PMC8360393 DOI: 10.3389/fmicb.2021.644540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/07/2021] [Indexed: 01/03/2023] Open
Abstract
Motor stereotypic behaviors (MSBs) are common in captive rhesus macaques (Macaca mulatta) and human with psychiatric diseases. However, large gaps remain in our understanding of the molecular mechanisms that mediate this behavior and whether there are similarities between human and non-human primates that exhibit this behavior, especially at gene expression and gut microbiota levels. The present study combined behavior, blood transcriptome, and gut microbiota data of two groups of captive macaques to explore this issue (i.e., MSB macaques with high MSB exhibition and those with low: control macaques). Observation data showed that MSB macaques spent the most time on MSB (33.95%), while the CONTROL macaques allocated more time to active (30.99%) and general behavior (30.0%), and only 0.97% of their time for MSB. Blood transcriptome analysis revealed 382 differentially expressed genes between the two groups, with 339 upregulated genes significantly enriched in inflammation/immune response-related pathway. We also identified upregulated pro-inflammatory genes TNFRSF1A, IL1R1, and IL6R. Protein–protein interaction network analysis screened nine hub genes that were all related to innate immune response, and our transcriptomic results were highly similar to findings in human psychiatric disorders. We found that there were significant differences in the beta-diversity of gut microbiota between MSB and CONTROL macaques. Of which Phascolarctobacterium, the producer of short chain fatty acids (SCFAs), was less abundant in MSB macaques. Meanwhile, PICRUSTs predicted that SCFAs intermediates biosynthesis and metabolic pathways were significantly downregulated in MSB macaques. Together, our study revealed that the behavioral, gene expression levels, and gut microbiota composition in MSB macaques was different to controls, and MSB was closely linked with inflammation and immune response. This work provides valuable information for future in-depth investigation of MSB and human psychiatric diseases.
Collapse
Affiliation(s)
- Xuan Pan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Fangyuan Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Song
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongrun Wang
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin, China
| | - Lingyun Wang
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin, China
| | - Hong Qiu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Sah RK, Bahadar N, Bah FB, Adlat S, Oo ZM, Zhang L, Ali F, Zobaer MS, Feng X, Zheng Y. Analysis of Dip2B Expression in Adult Mouse Tissues Using the LacZ Reporter Gene. Curr Issues Mol Biol 2021; 43:529-542. [PMID: 34208944 PMCID: PMC8929063 DOI: 10.3390/cimb43020040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022] Open
Abstract
Disconnected (disco)-interacting protein 2 homolog B (Dip2B) is a member of the Dip2 superfamily and plays an essential role in axonal outgrowth during embryogenesis. In adults, Dip2B is highly expressed in different brain regions, as shown by in situ analysis, and may have a role in axon guidance. However, the expression and biological role of Dip2B in other somatic tissues remain unknown. To better visualize Dip2B expression and to provide insight into the roles of Dip2B during postnatal development, we used a Dip2btm1a(wtsi)komp knock-in mouse model, in which a LacZ-Neo fusion protein is expressed under Dip2b promoter and allowed Dip2B expression to be analyzed by X-gal staining. qPCR analyses showed that Dip2b mRNA was expressed in a variety of somatic tissues, including lung and kidney, in addition to brain. LacZ staining indicated that Dip2B is broadly expressed in neuronal, reproductive, and vascular tissues as well as in the kidneys, heart, liver, and lungs. Moreover, neurons and epithelial cells showed rich staining. The broad and intense patterns of Dip2B expression in adult mice provide evidence of the distribution of Dip2B in multiple locations and, thereby, its implication in numerous physiological roles.
Collapse
Affiliation(s)
- Rajiv Kumar Sah
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (N.B.); (F.B.B.); (S.A.); (Z.M.O.); (L.Z.)
| | - Noor Bahadar
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (N.B.); (F.B.B.); (S.A.); (Z.M.O.); (L.Z.)
- WISH Biotechnologies, Beihu Scinece Park B, Changchun 130000, China
| | - Fatoumata Binta Bah
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (N.B.); (F.B.B.); (S.A.); (Z.M.O.); (L.Z.)
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (N.B.); (F.B.B.); (S.A.); (Z.M.O.); (L.Z.)
| | - Zin Mar Oo
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (N.B.); (F.B.B.); (S.A.); (Z.M.O.); (L.Z.)
| | - Luqing Zhang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (N.B.); (F.B.B.); (S.A.); (Z.M.O.); (L.Z.)
| | - Fawad Ali
- Department of Chemistry, Bacha Khan University, Charsadda 6431, KP, Pakistan;
| | - M S Zobaer
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Xuechao Feng
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (N.B.); (F.B.B.); (S.A.); (Z.M.O.); (L.Z.)
- Correspondence: (X.F.); (Y.Z.)
| | - Yaowu Zheng
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (N.B.); (F.B.B.); (S.A.); (Z.M.O.); (L.Z.)
- Correspondence: (X.F.); (Y.Z.)
| |
Collapse
|
11
|
Kinatukara P, Subramaniyan PS, Patil GS, Shambhavi S, Singh S, Mhetre A, Madduri MK, Soundararajan A, Patel KD, Shekar PC, Kamat SS, Kumar S, Sankaranarayanan R. Peri-natal growth retardation rate and fat mass accumulation in mice lacking Dip2A is dependent on the dietary composition. Transgenic Res 2020; 29:553-562. [PMID: 33184751 DOI: 10.1007/s11248-020-00219-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/24/2020] [Indexed: 01/22/2023]
Abstract
Disco-interacting protein 2 is a highly conserved three-domain protein with two tandem Adenylate-forming domains. It is proposed to influence the processes involved in neuronal development by influencing lipid metabolism and remains to be characterized. In this study, we show that Disco-interacting protein 2a null mice do not exhibit overt phenotype defects. However, the body composition differences were observed in these mice under different dietary regimens. The neutral lipid composition of two different diets was characterized, and it was observed that the new-born mice grow relatively slower than the wild-type mice with delayed appearance of features such as dentition when fed with high-triacylglycerol NIN-formulation diet. The high-diacylglycerol Safe-formulation diet was found to accumulate more fat mass in mice than those fed with high-triacylglycerol NIN-formulation diet beyond 10 months. These findings point to a proposed relationship between dietary components (particularly the lipid composition) and body composition along with the growth of neonates in mice lacking the gene Disco-interacting protein 2a.
Collapse
Affiliation(s)
- Priyadarshan Kinatukara
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Purnima Sailasree Subramaniyan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gajanan S Patil
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Shambhavi
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubham Singh
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Amol Mhetre
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Murali Krishna Madduri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Avinash Soundararajan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Ketan D Patel
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
| | - P Chandra Shekar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Satish Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India.
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123029, India.
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Sah RK, Ma J, Bah FB, Xing Z, Adlat S, Oo ZM, Wang Y, Bahadar N, Bohio AA, Nagi FH, Feng X, Zhang L, Zheng Y. Targeted Disruption of Mouse Dip2B Leads to Abnormal Lung Development and Prenatal Lethality. Int J Mol Sci 2020; 21:E8223. [PMID: 33153107 PMCID: PMC7663123 DOI: 10.3390/ijms21218223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Molecular and anatomical functions of mammalian Dip2 family members (Dip2A, Dip2B and Dip2C) during organogenesis are largely unknown. Here, we explored the indispensable role of Dip2B in mouse lung development. Using a LacZ reporter, we explored Dip2B expression during embryogenesis. This study shows that Dip2B expression is widely distributed in various neuronal, myocardial, endothelial, and epithelial cell types during embryogenesis. Target disruption of Dip2b leads to intrauterine growth restriction, defective lung formation and perinatal mortality. Dip2B is crucial for late lung maturation rather than early-branching morphogenesis. The morphological analysis shows that Dip2b loss leads to disrupted air sac formation, interstitium septation and increased cellularity. In BrdU incorporation assay, it is shown that Dip2b loss results in increased cell proliferation at the saccular stage of lung development. RNA-seq analysis reveals that 1431 genes are affected in Dip2b deficient lungs at E18.5 gestation age. Gene ontology analysis indicates cell cycle-related genes are upregulated and immune system related genes are downregulated. KEGG analysis identifies oxidative phosphorylation as the most overrepresented pathways along with the G2/M phase transition pathway. Loss of Dip2b de-represses the expression of alveolar type I and type II molecular markers. Altogether, the study demonstrates an important role of Dip2B in lung maturation and survival.
Collapse
Affiliation(s)
- Rajiv Kumar Sah
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Jun Ma
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
| | - Fatoumata Binta Bah
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Zhenkai Xing
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Zin Ma Oo
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Yajun Wang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Noor Bahadar
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Farooq Hayel Nagi
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Xuechao Feng
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Luqing Zhang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Yaowu Zheng
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| |
Collapse
|
13
|
Oo ZM, Adlat S, Sah RK, Myint MZZ, Hayel F, Chen Y, Htoo H, Bah FB, Bahadar N, Chan MK, Zhang L, Feng X, Zheng Y. Brain transcriptome study through CRISPR/Cas9 mediated mouse Dip2c gene knock-out. Gene 2020; 758:144975. [PMID: 32707302 DOI: 10.1016/j.gene.2020.144975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 07/17/2020] [Indexed: 01/11/2023]
Abstract
Dip2C is highly expressed in brain and many other tissues but its biological functions are still not clear. Genes regulated by Dip2C in brain have never been studied. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, adaptive immune systems of bacteria and archaea, have been recently developed and broadly used in genome editing. Here, we describe targeted gene deletions of Dip2c gene in mice via CRISPR/Cas9 system and study of brain transcriptome under Dip2C regulation. The CRISPR/Cas9 system effectively generated targeted deletions of Dip2c by pronuclei injection of plasmids that express Cas9 protein and two sgRNAs. We achieved targeted large fragment deletion with efficiencies at 14.3% (1/7), 66.7% (2/3) and 20% (1/5) respectively in 3 independent experiments, averaging 26.7%. The large deletion DNA segments are 160.4 kb (Dip2CΔ160kb), spanning from end of exon 4 to mid of exon 38. A mouse with two base pair deletion was generated from a single sgRNA targeting in exon 4 (Dip2cΔ2bp) by non-homologous end joining (NHEJ). Loss of gene expression for Dip2c mRNA was confirmed by quantitative real-time PCR (qPCR). Dip2C-regulated genes and pathways in brain were investigated through RNAseq of Dip2cΔ2bp. In total, 838 genes were found differentially regulated, with 252 up and 586 down. Gene ontology (GO) analysis indicated that DEGs in brain are enriched in neurological functions including 'memory', 'neuropeptide signaling pathway', and 'response to amphetamine' while KEGG analysis shows that 'neuroactive ligand-receptor interaction pathway' is the most significantly enriched. DEGs Grid2ip, Grin2a, Grin2c, Grm4, Gabbr2, Gabra5, Gabre, Gabrq, Gabra6 and Gabrr2 are among the highly regulated genes by Dip2C. Results confirm Dip2C may play important roles in brain development and function.
Collapse
Affiliation(s)
- Zin Mar Oo
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Salah Adlat
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - May Zun Zaw Myint
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Farooq Hayel
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yang Chen
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hsu Htoo
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Fatoumata Binta Bah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Noor Bahadar
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Mi Kaythi Chan
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai, Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, China
| | - Luqing Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| | - Xuechao Feng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China; Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China; Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China.
| |
Collapse
|
14
|
Adlat S, Sah RK, Hayel F, Chen Y, Bah FB, Al-Azab M, Bahadar N, Myint M, Oo ZM, Nasser MI, Zhang L, Feng X, Zheng Y. Global transcriptome study of Dip2B-deficient mouse embryonic lung fibroblast reveals its important roles in cell proliferation and development. Comput Struct Biotechnol J 2020; 18:2381-2390. [PMID: 33005301 PMCID: PMC7502710 DOI: 10.1016/j.csbj.2020.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 12/20/2022] Open
Abstract
Disco-interacting protein 2 homolog B (Dip2B) is a member of Dip2 family encoded by Dip2b gene. Dip2B has been reported to regulate murine epithelial KIT+ progenitor cell expansion and differentiation epigenetically via exosomal miRNA targeting during salivary gland organogenesis. However, its molecular functions, cellular activities and biological process remain unstudied. Here, we investigated the transcriptome of Dip2B-deficient mouse embryonic lung fibroblasts (MELFs) isolated from E14.5 embryos by RNA-Seq. Expression profiling identified 1369 and 1104 differentially expressed genes (DEGs) from Dip2b−/− and Dip2b+/− MELFs in comparisons to wild-type (Dip2b+/+). Functional clustering of DEGs revealed that many gene ontology terms belong to membrane activities such as ‘integral component of plasma membrane’, and ‘ion channel activity’, suggesting possible roles of Dip2B in membrane integrity and membrane function. KEGG pathway analysis revealed that multiple metabolic pathways are affected in Dip2b−/− and Dip2b+/− when compared to Dip2b+/+ MELFs. These include ‘protein digestion and absorption’, ‘pancreatic secretion’ and ‘steroid hormone synthesis pathway’. These results suggest that Dip2B may play important roles in metabolism. Molecular function analysis shows transcription factors including Hox-genes, bHLH-genes, and Forkhead-genes are significantly down-regulated in Dip2b−/− MELFs. These genes are critical in embryo development and cell differentiation. In addition, Dip2B-deficient MELFs demonstrated a reduction in cell proliferation and migration, and an increase in apoptosis. All results indicate that Dip2B plays multiple roles in cell proliferation, migration and apoptosis during embryogenesis and may participate in control of metabolism. This study provides valuable information for further understanding of the function and regulatory mechanisms of Dip2B.
Collapse
Affiliation(s)
- Salah Adlat
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Farooq Hayel
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yang Chen
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Fatoumata Binta Bah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Noor Bahadar
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - May Myint
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zin Mar Oo
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - M I Nasser
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Luqing Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Xuechao Feng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China.,Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China.,Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
15
|
Xing ZK, Zhang LQ, Zhang Y, Sun X, Sun XL, Yu HL, Zheng YW, He ZX, Zhu XJ. DIP2B Interacts With α-Tubulin to Regulate Axon Outgrowth. Front Cell Neurosci 2020; 14:29. [PMID: 32153366 PMCID: PMC7045754 DOI: 10.3389/fncel.2020.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/31/2020] [Indexed: 01/14/2023] Open
Abstract
Axonal development is essential to the establishment of neuronal morphology and circuitry, although the mechanisms underlying axonal outgrowth during the early developmental stages remain unclear. Here, we showed that the conserved disco-interacting protein B (DIP2B) which consists of a DMAP1 domain and a crotonobetaine/carnitine CoA ligase (Caic) domain, is highly expressed in the excitatory neurons of the hippocampus. DIP2B knockout led to excessive axonal outgrowth but not polarity at an early developmental stage. Furthermore, the loss of DIP2B inhibited synaptic transmission for both spontaneous and rapid release in cultured hippocampal neurons. Interestingly, DIP2B function during axonal outgrowth requires tubulin acetylation. These findings reveal a new conserved regulator of neuronal morphology and provide a novel intervention mechanism for neurocognitive disorders.
Collapse
Affiliation(s)
- Zhen-Kai Xing
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lu-Qing Zhang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xue Sun
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiao-Lin Sun
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yao-Wu Zheng
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
16
|
Ma J, Zhang LQ, He ZX, He XX, Wang YJ, Jian YL, Wang X, Zhang BB, Su C, Lu J, Huang BQ, Zhang Y, Wang GY, Guo WX, Qiu DL, Mei L, Xiong WC, Zheng YW, Zhu XJ. Autism candidate gene DIP2A regulates spine morphogenesis via acetylation of cortactin. PLoS Biol 2019; 17:e3000461. [PMID: 31600191 PMCID: PMC6786517 DOI: 10.1371/journal.pbio.3000461] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023] Open
Abstract
Dendritic spine development is crucial for the establishment of excitatory synaptic connectivity and functional neural circuits. Alterations in spine morphology and density have been associated with multiple neurological disorders. Autism candidate gene disconnected-interacting protein homolog 2 A (DIP2A) is known to be involved in acetylated coenzyme A (Ac-CoA) synthesis and is primarily expressed in the brain regions with abundant pyramidal neurons. However, the role of DIP2A in the brain remains largely unknown. In this study, we found that deletion of Dip2a in mice induced defects in spine morphogenesis along with thin postsynaptic density (PSD), and reduced synaptic transmission of pyramidal neurons. We further identified that DIP2A interacted with cortactin, an activity-dependent spine remodeling protein. The binding activity of DIP2A-PXXP motifs (P, proline; X, any residue) with the cortactin-Src homology 3 (SH3) domain was critical for maintaining the level of acetylated cortactin. Furthermore, Dip2a knockout (KO) mice exhibited autism-like behaviors, including excessive repetitive behaviors and defects in social novelty. Importantly, acetylation mimetic cortactin restored the impaired synaptic transmission and ameliorated repetitive behaviors in these mice. Altogether, our findings establish an initial link between DIP2A gene variations in autism spectrum disorder (ASD) and highlight the contribution of synaptic protein acetylation to synaptic processing. The autism candidate gene DIP2A is known to be involved in the synthesis of acetylated coenzyme A, but its precise role in the brain remains largely unknown. This study shows that loss of DIP2A in mice results in an imbalance in the acetylation of the synaptic protein cortactin, causing defects in spine morphogenesis and synaptic transmission that may establish a link to autism spectrum disorders.
Collapse
Affiliation(s)
- Jun Ma
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lu-Qing Zhang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ya-Jun Wang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - You-Li Jian
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Bin-Bin Zhang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Ce Su
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Lu
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Bai-Qu Huang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Gui-Yun Wang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Lin Mei
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wen-Cheng Xiong
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yao-Wu Zheng
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail: (XZ); (YZ)
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail: (XZ); (YZ)
| |
Collapse
|
17
|
Sah RK, Yang A, Bah FB, Adlat S, Bohio AA, Oo ZM, Wang C, Myint MZZ, Bahadar N, Zhang L, Feng X, Zheng Y. Transcriptome profiling of mouse brain and lung under Dip2a regulation using RNA-sequencing. PLoS One 2019; 14:e0213702. [PMID: 31291246 PMCID: PMC6619597 DOI: 10.1371/journal.pone.0213702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Disconnected interacting protein 2 homolog A (DIP2A) is highly expressed in nervous system and respiratory system of developing embryos. However, genes regulated by Dip2a in developing brain and lung have not been systematically studied. Transcriptome of brain and lung in embryonic 19.5 day (E19.5) were compared between wild type and Dip2a-/- mice. An average of 50 million reads per sample was mapped to the reference sequence. A total of 214 DEGs were detected in brain (82 up and 132 down) and 1900 DEGs in lung (1259 up and 641 down). GO enrichment analysis indicated that DEGs in both Brain and Lung were mainly enriched in biological processes ‘DNA-templated transcription and Transcription from RNA polymerase II promoter’, ‘multicellular organism development’, ‘cell differentiation’ and ‘apoptotic process’. In addition, COG classification showed that both were mostly involved in ‘Replication, Recombination, and Repair’, ‘Signal transduction and mechanism’, ‘Translation, Ribosomal structure and Biogenesis’ and ‘Transcription’. KEGG enrichment analysis showed that brain was mainly enriched in ‘Thyroid cancer’ pathway whereas lung in ‘Complement and Coagulation Cascades’ pathway. Transcription factor (TF) annotation analysis identified Zinc finger domain containing (ZF) proteins were mostly regulated in lung and brain. Interestingly, study identified genes Skor2, Gpr3711, Runx1, Erbb3, Frmd7, Fut10, Sox11, Hapln1, Tfap2c and Plxnb3 from brain that play important roles in neuronal cell maturation, differentiation, and survival; genes Hoxa5, Eya1, Errfi1, Sox11, Shh, Igf1, Ccbe1, Crh, Fgf9, Lama5, Pdgfra, Ptn, Rbp4 and Wnt7a from lung are important in lung development. Expression levels of the candidate genes were validated by qRT-PCR. Genome wide transcriptional analysis using wild type and Dip2a knockout mice in brain and lung at embryonic day 19.5 (E19.5) provided a genetic basis of molecular function of these genes.
Collapse
Affiliation(s)
- Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Analn Yang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fatoumata Binta Bah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Salah Adlat
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Zin Mar Oo
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Chenhao Wang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - May Zun Zaw Myint
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Noor Bahadar
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Luqing Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| | - Xuechao Feng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| |
Collapse
|
18
|
Ma J, Chen L, He XX, Wang YJ, Yu HL, He ZX, Zhang LQ, Zheng YW, Zhu XJ. Functional prediction and characterization of Dip2 gene in mice. Cell Biol Int 2019; 43:421-428. [PMID: 30672040 DOI: 10.1002/cbin.11106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/19/2019] [Indexed: 02/05/2023]
Abstract
Disconnected interacting protein 2 (DIP2) is a highly conserved protein family among invertebrates and vertebrates, but its function remains unclear. In this paper, we summarized the conservation of gene sequences and protein domains of DIP2 family members and predicted that they may have a similar functional role in acetyl-coenzyme A (acetyl-CoA) synthesis. We then used the most characterized member, disconnected interacting protein 2 homolog A (DIP2A), for further study. DIP2A is a cytoplasmic protein that is preferentially localized to mitochondria, and its acetyl-CoA synthetase activity has been demonstrated in vitro. Furthermore, the level of acetyl-CoA in HEK293 cells overexpressing DIP2A was increased, which is consistent with its metabolically related function. Together, these data enrich the evolutionary and functional characterization of dip2 genes and provide significant insights into the identification and application of other homologs of DIP2.
Collapse
Affiliation(s)
- Jun Ma
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Li Chen
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ya-Jun Wang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Lu-Qing Zhang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Yao-Wu Zheng
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| |
Collapse
|
19
|
Noblett N, Wu Z, Ding ZH, Park S, Roenspies T, Flibotte S, Chisholm AD, Jin Y, Colavita A. DIP-2 suppresses ectopic neurite sprouting and axonal regeneration in mature neurons. J Cell Biol 2019; 218:125-133. [PMID: 30396999 PMCID: PMC6314549 DOI: 10.1083/jcb.201804207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/09/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023] Open
Abstract
Neuronal morphology and circuitry established during early development must often be maintained over the entirety of animal lifespans. Compared with neuronal development, the mechanisms that maintain mature neuronal structures and architecture are little understood. The conserved disco-interacting protein 2 (DIP2) consists of a DMAP1-binding domain and two adenylate-forming domains (AFDs). We show that the Caenorhabditis elegans DIP-2 maintains morphology of mature neurons. dip-2 loss-of-function mutants display a progressive increase in ectopic neurite sprouting and branching during late larval and adult life. In adults, dip-2 also inhibits initial stages of axon regeneration cell autonomously and acts in parallel to DLK-1 MAP kinase and EFA-6 pathways. The function of DIP-2 in maintenance of neuron morphology and in axon regrowth requires its AFD domains and is independent of its DMAP1-binding domain. Our findings reveal a new conserved regulator of neuronal morphology maintenance and axon regrowth after injury.
Collapse
Affiliation(s)
- Nathaniel Noblett
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Zilu Wu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Zhao Hua Ding
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Seungmee Park
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Tony Roenspies
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Antonio Colavita
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
20
|
Nie E, Miao F, Jin X, Wu W, Zhou X, Zeng A, Yu T, Zhi T, Shi Z, Wang Y, Zhang J, Liu N, You Y. Fstl1/DIP2A/MGMT signaling pathway plays important roles in temozolomide resistance in glioblastoma. Oncogene 2018; 38:2706-2721. [PMID: 30542120 PMCID: PMC6484760 DOI: 10.1038/s41388-018-0596-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Temozolomide was recognized as the first-line therapy for glioblastoma to prolong the survival of patients noticeably, while recent clinical studies found that some patients were not sensitive to temozolomide treatment. The possible mechanisms seemed to be methylguanine-DNA-methyltransferase (MGMT), mismatch repair, PARP, etc. And the abnormal expression of MGMT might be the most direct factor. In this study, we provide evidence that Fstl1 plays a vital role in temozolomide resistance by sequentially regulating DIP2A protein distribution, H3K9 acetylation (H3K9Ac), and MGMT transcription. As a multifunctional protein widely distributed in cells, DIP2A cooperates with the HDAC2-DMAP1 complex to enhance H3K9Ac deacetylation, prevent MGMT transcription, and increase temozolomide sensitivity. Fstl1, a glycoprotein highly expressed in glioblastoma, competitively binds DIP2A to block DIP2A nuclear translocation, so as to hinder DIP2A from binding the HDAC2-DMAP1 complex. The overexpression of Fstl1 promoted the expression of MGMT in association with increased promoter H3K9Ac. Upregulation of Fstl1 enhanced temozolomide resistance, whereas Fstl1 silencing obviously sensitized GBM cells to temozolomide both in vivo and in vitro. Moreover, DIP2A depletion abolished the effects of Fstl1 on MGMT expression and temozolomide resistance. These findings highlight an important role of Fstl1 in the regulation of temozolomide resistance by modulation of DIP2A/MGMT signaling.
Collapse
Affiliation(s)
- Er Nie
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Faan Miao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin Jin
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weining Wu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xu Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ailiang Zeng
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianfu Yu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongle Zhi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhumei Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,State Key lab of Reproductive Medicine, Department of Pathology, Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junxia Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Chinese Glioma Cooperative Group (CGCG), Nanjing, 210029, China.
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Chinese Glioma Cooperative Group (CGCG), Nanjing, 210029, China.
| |
Collapse
|
21
|
Larsson C, Ali MA, Pandzic T, Lindroth AM, He L, Sjöblom T. Loss of DIP2C in RKO cells stimulates changes in DNA methylation and epithelial-mesenchymal transition. BMC Cancer 2017; 17:487. [PMID: 28716088 PMCID: PMC5513093 DOI: 10.1186/s12885-017-3472-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/02/2017] [Indexed: 12/18/2022] Open
Abstract
Background The disco-interacting protein 2 homolog C (DIP2C) gene is an uncharacterized gene found mutated in a subset of breast and lung cancers. To understand the role of DIP2C in tumour development we studied the gene in human cancer cells. Methods We engineered human DIP2C knockout cells by genome editing in cancer cells. The growth properties of the engineered cells were characterised and transcriptome and methylation analyses were carried out to identify pathways deregulated by inactivation of DIP2C. Effects on cell death pathways and epithelial-mesenchymal transition traits were studied based on the results from expression profiling. Results Knockout of DIP2C in RKO cells resulted in cell enlargement and growth retardation. Expression profiling revealed 780 genes for which the expression level was affected by the loss of DIP2C, including the tumour-suppressor encoding CDKN2A gene, the epithelial-mesenchymal transition (EMT) regulator-encoding ZEB1, and CD44 and CD24 that encode breast cancer stem cell markers. Analysis of DNA methylation showed more than 30,000 sites affected by differential methylation, the majority of which were hypomethylated following loss of DIP2C. Changes in DNA methylation at promoter regions were strongly correlated to changes in gene expression, and genes involved with EMT and cell death were enriched among the differentially regulated genes. The DIP2C knockout cells had higher wound closing capacity and showed an increase in the proportion of cells positive for cellular senescence markers. Conclusions Loss of DIP2C triggers substantial DNA methylation and gene expression changes, cellular senescence and epithelial-mesenchymal transition in cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3472-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Muhammad Akhtar Ali
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.,Current address: Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Husargatan 3, SE-751 23, Uppsala, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Anders M Lindroth
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, 10408, Goyang-si, Republic of Korea
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 300052, Tianjin, China
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
22
|
Nitta Y, Yamazaki D, Sugie A, Hiroi M, Tabata T. DISCO Interacting Protein 2 regulates axonal bifurcation and guidance of Drosophila mushroom body neurons. Dev Biol 2016; 421:233-244. [PMID: 27908785 DOI: 10.1016/j.ydbio.2016.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
Axonal branching is one of the key processes within the enormous complexity of the nervous system to enable a single neuron to send information to multiple targets. However, the molecular mechanisms that control branch formation are poorly understood. In particular, previous studies have rarely addressed the mechanisms underlying axonal bifurcation, in which axons form new branches via splitting of the growth cone. We demonstrate that DISCO Interacting Protein 2 (DIP2) is required for precise axonal bifurcation in Drosophila mushroom body (MB) neurons by suppressing ectopic bifurcation and regulating the guidance of sister axons. We also found that DIP2 localize to the plasma membrane. Domain function analysis revealed that the AMP-synthetase domains of DIP2 are essential for its function, which may involve exerting a catalytic activity that modifies fatty acids. Genetic analysis and subsequent biochemical analysis suggested that DIP2 is involved in the fatty acid metabolization of acyl-CoA. Taken together, our results reveal a function of DIP2 in the developing nervous system and provide a potential functional relationship between fatty acid metabolism and axon morphogenesis.
Collapse
Affiliation(s)
- Yohei Nitta
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Daisuke Yamazaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Atsushi Sugie
- Department of Neuroscience Disease, Center for Transdisciplinary Research, Niigata University, 757, Ichibancho, Asahimachidori, Chuo-ku, Niigata-shi, Niigata 951-8585, Japan
| | - Makoto Hiroi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
23
|
Narra HP, Shubitz LF, Mandel MA, Trinh HT, Griffin K, Buntzman AS, Frelinger JA, Galgiani JN, Orbach MJ. A Coccidioides posadasii CPS1 Deletion Mutant Is Avirulent and Protects Mice from Lethal Infection. Infect Immun 2016; 84:3007-16. [PMID: 27481239 PMCID: PMC5038059 DOI: 10.1128/iai.00633-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
The CPS1 gene was identified as a virulence factor in the maize pathogen Cochliobolus heterostrophus Hypothesizing that the homologous gene in Coccidioides posadasii could be important for virulence, we created a Δcps1 deletion mutant which was unable to cause disease in three strains of mice (C57BL/6, BALB/c, or the severely immunodeficient NOD-scid,γc(null) [NSG]). Only a single colony was recovered from 1 of 60 C57BL/6 mice following intranasal infections of up to 4,400 spores. Following administration of very high doses (10,000 to 2.5 × 10(7) spores) to NSG and BALB/c mice, spherules were observed in lung sections at time points from day 3 to day 10 postinfection, but nearly all appeared degraded with infrequent endosporulation. Although the role of CPS1 in virulence is not understood, phenotypic alterations and transcription differences of at least 33 genes in the Δcps1 strain versus C. posadasii is consistent with both metabolic and regulatory functions for the gene. The in vitro phenotype of the Δcps1 strain showed slower growth of mycelia with delayed and lower spore production than C. posadasii, and in vitro spherules were smaller. Vaccination of C57BL/6 or BALB/c mice with live Δcps1 spores either intranasally, intraperitoneally, or subcutaneously resulted in over 95% survival with mean residual lung fungal burdens of <1,000 CFU from an otherwise lethal C. posadasii intranasal infection. Considering its apparently complete attenuation of virulence and the high degree of resistance to C. posadasii infection when used as a vaccine, the Δcps1 strain is a promising vaccine candidate for preventing coccidioidomycosis in humans or other animals.
Collapse
Affiliation(s)
- Hema P Narra
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Lisa F Shubitz
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA
| | - M Alejandra Mandel
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, USA The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA
| | - Hien T Trinh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA
| | - Kurt Griffin
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA
| | - Adam S Buntzman
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA
| | - Jeffrey A Frelinger
- The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA
| | - John N Galgiani
- The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA Department of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Marc J Orbach
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, USA The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
24
|
Expression Patterns and Potential Biological Roles of Dip2a. PLoS One 2015; 10:e0143284. [PMID: 26605542 PMCID: PMC4659570 DOI: 10.1371/journal.pone.0143284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
Disconnected (disco)-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.
Collapse
|
25
|
DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 2014; 39:458-84. [PMID: 23336971 DOI: 10.1111/nan.12020] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
Abstract
Vitamin D and its metabolites have pleomorphic roles in both nervous system health and disease. Animal models have been paramount in contributing to our knowledge and understanding of the consequences of vitamin D deficiency on brain development and its implications for adult psychiatric and neurological diseases. The conflation of in vitro, ex vivo, and animal model data provide compelling evidence that vitamin D has a crucial role in proliferation, differentiation, neurotrophism, neuroprotection, neurotransmission, and neuroplasticity. Vitamin D exerts its biological function not only by influencing cellular processes directly, but also by influencing gene expression through vitamin D response elements. This review highlights the epidemiological, neuropathological, experimental and molecular genetic evidence implicating vitamin D as a candidate in influencing susceptibility to a number of psychiatric and neurological diseases. The strength of evidence varies for schizophrenia, autism, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and is especially strong for multiple sclerosis.
Collapse
Affiliation(s)
- G C DeLuca
- Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
26
|
Ruiz Esparza-Garrido R, Velázquez-Wong AC, Araujo-Solís MA, Huicochea-Montiel JC, Velázquez-Flores MÁ, Salamanca-Gómez F, Arenas-Aranda DJ. Duplication of the Miller-Dieker Critical Region in a Patient with a Subtelomeric Unbalanced Translocation t(10;17)(p15.3;p13.3). Mol Syndromol 2012; 3:82-8. [PMID: 23326253 DOI: 10.1159/000339639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2012] [Indexed: 01/01/2023] Open
Abstract
Submicroscopic duplications in the Miller-Dieker critical region have been recently described as new genomic disorders. To date, only a few cases have been reported with overlapping 17p13.3 duplications in this region. Also, small deletions that affect chromosome region 10p14→pter are rarely described in the literature. In this study, we describe, to our knowledge for the first time, a 5-year-old female patient with intellectual disability who has an unbalanced 10;17 translocation inherited from the father. The girl was diagnosed by subtelomeric FISH and array-CGH, showing a 4.43-Mb heterozygous deletion on chromosome 10p that involved 14 genes and a 3.22-Mb single-copy gain on chromosome 17p, which includes the critical region of the Miller-Dieker syndrome and 61 genes. The patient's karyotype was established as 46,XX.arr 10p15.3p15.1(138,206-4,574,436)x1,17p13.3(87,009-3,312,600)x3. Because our patient exhibits a combination of 2 imbalances, she has phenotypic features of both chromosome abnormalities, which have been reported separately. Interestingly, the majority of patients who carry the deletion 10p have visual and auditory deficiencies that are attributed to loss of the GATA3 gene. However, our patient also presents severe hearing and visual problems even though GATA3 is present, suggesting the involvement of different genes that affect the development of the visual and auditory systems.
Collapse
Affiliation(s)
- R Ruiz Esparza-Garrido
- Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital de Pediatría, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
27
|
Benítez-Burraco A. Neurobiología y neurogenética de la dislexia. Neurologia 2010; 25:563-81. [DOI: 10.1016/j.nrl.2009.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 12/22/2009] [Indexed: 01/12/2023] Open
|
28
|
Tanaka M, Murakami K, Ozaki S, Imura Y, Tong XP, Watanabe T, Sawaki T, Kawanami T, Kawabata D, Fujii T, Usui T, Masaki Y, Fukushima T, Jin ZX, Umehara H, Mimori T. DIP2 disco-interacting protein 2 homolog A (Drosophila) is a candidate receptor for follistatin-related protein/follistatin-like 1--analysis of their binding with TGF-β superfamily proteins. FEBS J 2010; 277:4278-89. [PMID: 20860622 DOI: 10.1111/j.1742-4658.2010.07816.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Follistatin-related protein (FRP)/follistatin-like 1 (FSTL1) is a member of the follistatin protein family, all of which share a characteristic structure unit found in follistatin, called the FS domain. Developmental studies have suggested that FRP regulates organ tissue formation in embryos. Immunological studies showed that FRP modifies joint inflammation in arthritic disease, and modulates allograft tolerance. However, the principle physiological function of FRP is currently unknown. To address this issue, we cloned four FRP-associated proteins using a two-hybrid cloning method: disco-interacting protein 2 homolog A from Drosophila (DIP2A), CD14, glypican 1 and titin. Only DIP2A was expected to be a membrane receptor protein with intracellular regions. Over-expression of FLAG epitope-tagged DIP2A augmented the suppressive effect of FRP on FBJ murine osteosarcoma viral oncogene homolog (FOS) expression, and the Fab fragment of IgG to FLAG blocked this effect. Knockdown of Dip2a leaded to Fos gene up-regulation, and this was not affected by exogenous FRP. These in vitro experiments confirmed that DIP2A could be a cell-surface receptor protein and mediate a FOS down-regulation signal of FRP. Moreover, molecular interaction analyses using Biacore demonstrated that FRP bound to DIP2A and CD14, and also with proteins of the TGF-β superfamily, i.e. activin, TGF-β, bone morphogenetic protein 2/4 (BMP-2/4), their receptors and follistatin. FRP binding to DIP2A was blocked by CD14, follistatin, activin and BMP-2. FRP blocked the ligand-receptor binding of activin and BMP-2, but integrated itself with that of BMP-4. This multi-specific binding may reflect the broad physiological activity of FRP.
Collapse
Affiliation(s)
- Masao Tanaka
- Division of Hematology and Immunology, Department of Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Developmental dyslexia is a highly heritable disorder with a prevalence of at least 5% in school-aged children. Linkage studies have identified numerous loci throughout the genome that are likely to harbour candidate dyslexia susceptibility genes. Association studies and the refinement of chromosomal translocation break points in individuals with dyslexia have resulted in the discovery of candidate genes at some of these loci. A key function of many of these genes is their involvement in neuronal migration. This complements anatomical abnormalities discovered in dyslexic brains, such as ectopias, that may be the result of irregular neuronal migration.
Collapse
|
30
|
Ouchi N, Asaumi Y, Ohashi K, Higuchi A, Sono-Romanelli S, Oshima Y, Walsh K. DIP2A functions as a FSTL1 receptor. J Biol Chem 2010; 285:7127-34. [PMID: 20054002 DOI: 10.1074/jbc.m109.069468] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FSTL1 is an extracellular glycoprotein whose functional significance in physiological and pathological processes is incompletely understood. Recently, we have shown that FSTL1 acts as a muscle-derived secreted factor that is up-regulated by Akt activation and ischemic stress and that FSTL1 exerts favorable actions on the heart and vasculature. Here, we sought to identify the receptor that mediates the cellular actions of FSTL1. We identified DIP2A as a novel FSTL1-binding partner from the membrane fraction of endothelial cells. Co-immunoprecipitation assays revealed a direct physical interaction between FSTL1 and DIP2A. DIP2A was present on the cell surface of endothelial cells, and knockdown of DIP2A by small interfering RNA reduced the binding of FSTL1 to cells. In cultured endothelial cells, knockdown of DIP2A by small interfering RNA diminished FSTL1-stimulated survival, migration, and differentiation into network structures and inhibited FSTL1-induced Akt phosphorylation. In cultured cardiac myocytes, ablation of DIP2A reduced the protective actions of FSTL1 on hypoxia/reoxygenation-induced apoptosis and suppressed FSTL1-induced Akt phosphorylation. These data indicate that DIP2A functions as a novel receptor that mediates the cardiovascular protective effects of FSTL1.
Collapse
Affiliation(s)
- Noriyuki Ouchi
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Benítez-Burraco A. Neurobiology and neurogenetics of dyslexia. NEUROLOGÍA (ENGLISH EDITION) 2010. [DOI: 10.1016/s2173-5808(20)70105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
32
|
Winnepenninckx B, Debacker K, Ramsay J, Smeets D, Smits A, FitzPatrick DR, Kooy RF. CGG-repeat expansion in the DIP2B gene is associated with the fragile site FRA12A on chromosome 12q13.1. Am J Hum Genet 2007; 80:221-31. [PMID: 17236128 PMCID: PMC1785358 DOI: 10.1086/510800] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/10/2006] [Indexed: 12/31/2022] Open
Abstract
A high level of cytogenetic expression of the rare folate-sensitive fragile site FRA12A is significantly associated with mental retardation. Here, we identify an elongated polymorphic CGG repeat as the molecular basis of FRA12A. This repeat is in the 5' untranslated region of the gene DIP2B, which encodes a protein with a DMAP1-binding domain, which suggests a role in DNA methylation machinery. DIP2B mRNA levels were halved in two subjects with FRA12A with mental retardation in whom the repeat expansion was methylated. In two individuals without mental retardation but with an expanded and methylated repeat, DIP2B expression was reduced to approximately two-thirds of the values observed in controls. Interestingly, a carrier of an unmethylated CGG-repeat expansion showed increased levels of DIP2B mRNA, which suggests that the repeat elongation increases gene expression, as previously described for the fragile X-associated tremor/ataxia syndrome. These data suggest that deficiency of DIP2B, a brain-expressed gene, may mediate the neurocognitive problems associated with FRA12A.
Collapse
|
33
|
Baraniuk JN, Casado B, Maibach H, Clauw DJ, Pannell LK, Hess S S. A Chronic Fatigue Syndrome - related proteome in human cerebrospinal fluid. BMC Neurol 2005; 5:22. [PMID: 16321154 PMCID: PMC1326206 DOI: 10.1186/1471-2377-5-22] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 12/01/2005] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chronic Fatigue Syndrome (CFS), Persian Gulf War Illness (PGI), and fibromyalgia are overlapping symptom complexes without objective markers or known pathophysiology. Neurological dysfunction is common. We assessed cerebrospinal fluid to find proteins that were differentially expressed in this CFS-spectrum of illnesses compared to control subjects. METHODS Cerebrospinal fluid specimens from 10 CFS, 10 PGI, and 10 control subjects (50 mul/subject) were pooled into one sample per group (cohort 1). Cohort 2 of 12 control and 9 CFS subjects had their fluids (200 mul/subject) assessed individually. After trypsin digestion, peptides were analyzed by capillary chromatography, quadrupole-time-of-flight mass spectrometry, peptide sequencing, bioinformatic protein identification, and statistical analysis. RESULTS Pooled CFS and PGI samples shared 20 proteins that were not detectable in the pooled control sample (cohort 1 CFS-related proteome). Multilogistic regression analysis (GLM) of cohort 2 detected 10 proteins that were shared by CFS individuals and the cohort 1 CFS-related proteome, but were not detected in control samples. Detection of >or=1 of a select set of 5 CFS-related proteins predicted CFS status with 80% concordance (logistic model). The proteins were alpha-1-macroglobulin, amyloid precursor-like protein 1, keratin 16, orosomucoid 2 and pigment epithelium-derived factor. Overall, 62 of 115 proteins were newly described. CONCLUSION This pilot study detected an identical set of central nervous system, innate immune and amyloidogenic proteins in cerebrospinal fluids from two independent cohorts of subjects with overlapping CFS, PGI and fibromyalgia. Although syndrome names and definitions were different, the proteome and presumed pathological mechanism(s) may be shared.
Collapse
Affiliation(s)
- James N Baraniuk
- Georgetown University Proteomics Laboratory, Division of Rheumatology, Immunology & Allergy, Room B-105, Lower Level Kober-Cogan Building, Georgetown University, 3800 Reservoir Road, N.W., Washington DC 20007-2197, USA
| | - Begona Casado
- Georgetown University Proteomics Laboratory, Division of Rheumatology, Immunology & Allergy, Room B-105, Lower Level Kober-Cogan Building, Georgetown University, 3800 Reservoir Road, N.W., Washington DC 20007-2197, USA
- Dipartimento di Biochimica A. Castellani, Universita di Pavia, Italy
| | - Hilda Maibach
- Georgetown University Proteomics Laboratory, Division of Rheumatology, Immunology & Allergy, Room B-105, Lower Level Kober-Cogan Building, Georgetown University, 3800 Reservoir Road, N.W., Washington DC 20007-2197, USA
| | - Daniel J Clauw
- Center for the Advancement of Clinical Research, The University of Michigan, Ann Arbor, MI, USA
| | - Lewis K Pannell
- Proteomics and Mass Spectrometry Facility, Cancer Research Institute, University of South Alabama, Mobile, AL, USA
- Proteomics and Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0508, USA
| | - Sonja Hess S
- Proteomics and Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0508, USA
| |
Collapse
|
34
|
Gomez SM, Eiglmeier K, Segurens B, Dehoux P, Couloux A, Scarpelli C, Wincker P, Weissenbach J, Brey PT, Roth CW. Pilot Anopheles gambiae full-length cDNA study: sequencing and initial characterization of 35,575 clones. Genome Biol 2005; 6:R39. [PMID: 15833126 PMCID: PMC1088967 DOI: 10.1186/gb-2005-6-4-r39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/07/2005] [Accepted: 02/17/2005] [Indexed: 11/10/2022] Open
Abstract
We describe the preliminary analysis of over 35,000 clones from a full-length enriched cDNA library from the malaria mosquito vector Anopheles gambiae. The clones define nearly 3,700 genes, of which around 2,600 significantly improve current gene definitions. An additional 17% of the genes were not previously annotated, suggesting that an equal percentage may be missing from the current Anopheles genome annotation.
Collapse
Affiliation(s)
- Shawn M Gomez
- Unité de Biochimie et Biologie Moléculaire des Insectes and CNRS FRE 2849, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Karin Eiglmeier
- Unité de Biochimie et Biologie Moléculaire des Insectes and CNRS FRE 2849, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Beatrice Segurens
- Genoscope/Centre National de Séquençage and CNRS UMR 8030, 91057 Evry Cedex, France
| | - Pierre Dehoux
- Plate-forme Intégration et Analyse Génomiques, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Arnaud Couloux
- Genoscope/Centre National de Séquençage and CNRS UMR 8030, 91057 Evry Cedex, France
| | - Claude Scarpelli
- Genoscope/Centre National de Séquençage and CNRS UMR 8030, 91057 Evry Cedex, France
| | - Patrick Wincker
- Genoscope/Centre National de Séquençage and CNRS UMR 8030, 91057 Evry Cedex, France
| | - Jean Weissenbach
- Genoscope/Centre National de Séquençage and CNRS UMR 8030, 91057 Evry Cedex, France
| | - Paul T Brey
- Unité de Biochimie et Biologie Moléculaire des Insectes and CNRS FRE 2849, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Charles W Roth
- Unité de Biochimie et Biologie Moléculaire des Insectes and CNRS FRE 2849, Institut Pasteur, 75724 Paris Cedex 15, France
| |
Collapse
|