1
|
Fioriniello S, Salzano A, Bifulco G, Aiese Cigliano R, Della Ragione F, Campanile G. Green forage impacts on the DNA methylation in the ruminal wall of Italian mediterranean dairy buffaloes. Sci Rep 2025; 15:8074. [PMID: 40057542 PMCID: PMC11890600 DOI: 10.1038/s41598-025-91969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
Nutrition impacts the epigenetic signature, including DNA methylation. The aim of this study was to identify genomic regions differentially methylated in the rumen of Italian Mediterranean dairy buffaloes fed green forage [Total Mixed Ration (TMR) + ryegrass green feed (30% of diet)] compared to those receiving a standard TMR diet, through Reduced Representation Bisulfite Sequencing. We found 6571 differentially methylated genomic regions (DMRs), 51.73% hypomethylated and 48.27% hypermethylated. DMRs were uniformly dispersed in genes and intergenic regions and along chromosomes. Genes-associated DMRs were mainly hypomethylated, while intergenic DMRs were mostly hypermethylated. We highlighted 4648 genes associated with DMRs (differentially methylated genes, DMGs), mostly protein-coding genes. Gene Ontology study performed with hypermethylated or hypomethylated DMGs highlighted categories related to response to oxidative stress and inflammation, as well as rumen functionality. The integration of our results with differential expression data identified genes whose expression varies as a function of DNA methylation. This subset of genes included those involved in immune system functioning, inflammation, fatty acid metabolism, and stress response. Our findings highlighted the impact of green forage on rumen DNA methylation, which potentially influences molecular mechanisms relevant to rumen functionality and, then, animal welfare and production, through the modulation of gene expression.
Collapse
Affiliation(s)
- Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Giovanna Bifulco
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | | | - Floriana Della Ragione
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy.
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Isernia, Pozzilli, Italy.
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| |
Collapse
|
2
|
Yu YJ, Kołat D, Kałuzińska-Kołat Ż, Liang Z, Peng BQ, Zhu YF, Liu K, Mei JX, Yu G, Zhang WH, Chen XL, Yang K, Hu JK, Zhao LY. The AP-2 Family of Transcription Factors-Still Undervalued Regulators in Gastroenterological Disorders. Int J Mol Sci 2024; 25:9138. [PMID: 39273087 PMCID: PMC11394946 DOI: 10.3390/ijms25179138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Activating enhancer-binding protein 2 (AP-2) is a family of transcription factors (TFs) that play crucial roles in regulating embryonic and oncogenic development. In addition to splice isoforms, five major family members encoded by the TFAP2A/B/C/D/E genes have been identified in humans, i.e., AP-2α/β/γ/δ/ε. In general, the first three TFs have been studied more thoroughly than AP-2δ or AP-2ε. Currently, there is a relatively limited body of literature focusing on the AP-2 family in the context of gastroenterological research, and a comprehensive overview of the existing knowledge and recommendations for further research directions is lacking. Herein, we have collected available gastroenterological data on AP-2 TFs, discussed the latest medical applications of each family member, and proposed potential future directions. Research on AP-2 in gastrointestinal tumors has predominantly been focused on the two best-described family members, AP-2α and AP-2γ. Surprisingly, research in the past decade has highlighted the importance of AP-2ε in the drug resistance of gastric cancer (GC) and colorectal cancer (CRC). While numerous questions about gastroenterological disorders await elucidation, the available data undoubtedly open avenues for anti-cancer targeted therapy and overcoming chemotherapy resistance. In addition to gastrointestinal cancers, AP-2 family members (primarily AP-2β and marginally AP-2γ) have been associated with other health issues such as obesity, type 2 diabetes, liver dysfunction, and pseudo-obstruction. On the other hand, AP-2δ has been poorly investigated in gastroenterological disorders, necessitating further research to delineate its role. In conclusion, despite the limited attention given to AP-2 in gastroenterology research, pivotal functions of these transcription factors have started to emerge and warrant further exploration in the future.
Collapse
Affiliation(s)
- Yi-Jin Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Lodzkie, Poland; (D.K.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Lodzkie, Poland; (D.K.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Lodzkie, Poland
| | - Zhu Liang
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Center for Medicines Discovery, Oxford OX1 2JD, UK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), University of Oxford, Oxford OX1 2JD, UK
| | - Bo-Qiang Peng
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yun-Feng Zhu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Zhang Y, Mostafa AAA, Sriboonvorakul N, Hu J. Roles of activator protein-2 gamma in breast cancer: A narrative review (SANRA). Medicine (Baltimore) 2022; 101:e30587. [PMID: 36197225 PMCID: PMC9509159 DOI: 10.1097/md.0000000000030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Activator protein-2 gamma (AP-2γ) is a crucial transcription factor involved in breast cancer development. Abnormal expression and activity of AP-2γ have also been identified as important markers of malignancy. In the last decade, the importance of AP-2γ in breast cancer progression has been widely studied. In this review, we summarize the current knowledge on the regulatory roles of AP-2γ in breast cancer oncogenesis and progression and its potential as a diagnostic biomarker and drug target in breast cancer treatment.
Collapse
Affiliation(s)
- Yifei Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
| | - Asal AA Mostafa
- Food Technology Research Institute, Agriculture Research Center, Egypt
| | - Natthida Sriboonvorakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- Faculty of Health Sciences, University of Macau, Macau, China
- *Correspondence: Jiamiao Hu, Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China (e-mail: )
| |
Collapse
|
4
|
Wu M, Harafuji N, O'Connor AK, Caldovic L, Guay-Woodford LM. Transcription factor Ap2b regulates the mouse autosomal recessive polycystic kidney disease genes, Pkhd1 and Cys1. Front Mol Biosci 2022; 9:946344. [PMID: 36710876 PMCID: PMC9877354 DOI: 10.3389/fmolb.2022.946344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Transcription factor Ap2b (TFAP2B), an AP-2 family transcription factor, binds to the palindromic consensus DNA sequence, 5'-GCCN3-5GGC-3'. Mice lacking functional Tfap2b gene die in the perinatal or neonatal period with cystic dilatation of the kidney distal tubules and collecting ducts, a phenotype resembling autosomal recessive polycystic kidney disease (ARPKD). Human ARPKD is caused by mutations in PKHD1, DZIP1L, and CYS1, which are conserved in mammals. In this study, we examined the potential role of TFAP2B as a common regulator of Pkhd1 and Cys1. We determined the transcription start site (TSS) of Cys1 using 5' Rapid Amplification of cDNA Ends (5'RACE); the TSS of Pkhd1 has been previously established. Bioinformatic approaches identified cis-regulatory elements, including two TFAP2B consensus binding sites, in the upstream regulatory regions of both Pkhd1 and Cys1. Based on reporter gene assays performed in mouse renal collecting duct cells (mIMCD-3), TFAP2B activated the Pkhd1 and Cys1 promoters and electromobility shift assay (EMSA) confirmed TFAP2B binding to the in silico identified sites. These results suggest that Tfap2b participates in a renal epithelial cell gene regulatory network that includes Pkhd1 and Cys1. Disruption of this network impairs renal tubular differentiation, causing ductal dilatation that is the hallmark of recessive PKD.
Collapse
Affiliation(s)
- Maoqing Wu
- Center for Translational Research, Children's National Hospital, Washington, DC, United States
| | - Naoe Harafuji
- Center for Translational Research, Children's National Hospital, Washington, DC, United States
| | - Amber K O'Connor
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Hospital, Washington, DC, United States.,Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, United States
| |
Collapse
|
5
|
Jingyue S, Xiao W, Juanmin Z, Wei L, Daoming L, Hong X. TFAP2E methylation promotes 5‑fluorouracil resistance via exosomal miR‑106a‑5p and miR‑421 in gastric cancer MGC‑803 cells. Mol Med Rep 2019; 20:323-331. [PMID: 31115533 PMCID: PMC6579997 DOI: 10.3892/mmr.2019.10237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/18/2019] [Indexed: 12/24/2022] Open
Abstract
Hypermethylation of transcription factor activating enhancer-binding protein 2e (TFAP2E) has been reported to be associated with chemoresistance to 5-fluorouracil (5-FU) in gastric cancer (GC). In the present study, the molecular mechanism governing this chemoresistance was investigated. Drug-resistant human GC MGC-803/5-FU cells were established and TFAP2E expression and methylation levels were assessed. Autocrine exosomes from GC culture medium were isolated and characterized. MicroRNA (miRNA) microarray analysis was used to determine the miRNA expression profile of GC cell-derived exosomes. Exosomes collected from MGC-803/5-FU cells were co-cultured with control cells, and 5-Aza-2′-deoxycytidine (5Aza) was added into MGC-803/5-FU cells to investigate the relationship between TFAP2E, exosomes and chemosensitivity. In the present study, it was demonstrated that hypermethylation of TFAP2E resulted in its reduced expression and 5-FU chemoresistance in GC cells. miRNAs miR-106a-5p and miR-421 were highly expressed and regulated the chemoresistance induced by TFAP2E methylation. Target gene prediction using miRBase, TargetScan and PicTar revealed that E2F1, MTOR and STAT3 may be TFAP2E target genes in GC. Collectively, our data support an important role of exosomes and exosomal miRNAs in TFAP2E methylation-induced chemoresistance to 5-FU in GC. These results highlight their potential for miRNA-based therapeutics.
Collapse
Affiliation(s)
- Sun Jingyue
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wang Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Zha Juanmin
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Wei
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Daoming
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xu Hong
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
6
|
AP-2ε Expression in Developing Retina: Contributing to the Molecular Diversity of Amacrine Cells. Sci Rep 2018; 8:3386. [PMID: 29467543 PMCID: PMC5821864 DOI: 10.1038/s41598-018-21822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/12/2018] [Indexed: 02/04/2023] Open
Abstract
AP-2 transcription factors play important roles in the regulation of gene expression during development. Four of the five members of the AP-2 family (AP-2α, AP-2β, AP-2γ and AP-2δ) have previously been shown to be expressed in developing retina. Mouse knockouts have revealed roles for AP-2α, AP-2β and AP-2δ in retinal cell specification and function. Here, we show that the fifth member of the AP-2 family, AP-2ε, is also expressed in amacrine cells in developing mammalian and chicken retina. Our data indicate that there are considerably fewer AP-2ε-positive cells in the developing mouse retina compared to AP-2α, AP-2β and AP-2γ-positive cells, suggesting a specialized role for AP-2ε in a subset of amacrine cells. AP-2ε, which is restricted to the GABAergic amacrine lineage, is most commonly co-expressed with AP-2α and AP-2β, especially at early stages of retinal development. Co-expression of AP-2ε and AP-2γ increases with differentiation. Analysis of previously published Drop-seq data from single retinal cells supports co-expression of multiple AP-2s in the same cell. Since AP-2s bind to their target sequences as either homodimers or heterodimers, our work suggests spatially- and temporally-coordinated roles for combinations of AP-2 transcription factors in amacrine cells during retinal development.
Collapse
|
7
|
Inokuchi K, Imamura F, Takeuchi H, Kim R, Okuno H, Nishizumi H, Bito H, Kikusui T, Sakano H. Nrp2 is sufficient to instruct circuit formation of mitral-cells to mediate odour-induced attractive social responses. Nat Commun 2017; 8:15977. [PMID: 28731029 PMCID: PMC5525001 DOI: 10.1038/ncomms15977] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/16/2017] [Indexed: 01/22/2023] Open
Abstract
Odour information induces various innate responses that are critical to the survival of the individual and for the species. An axon guidance molecule, Neuropilin 2 (Nrp2), is known to mediate targeting of olfactory sensory neurons (primary neurons), to the posteroventral main olfactory bulb (PV MOB) in mice. Here we report that Nrp2-positive (Nrp2+) mitral cells (MCs, second-order neurons) play crucial roles in transmitting attractive social signals from the PV MOB to the anterior part of medial amygdala (MeA). Semaphorin 3F, a repulsive ligand to Nrp2, regulates both migration of Nrp2+ MCs to the PV MOB and their axonal projection to the anterior MeA. In the MC-specific Nrp2 knockout mice, circuit formation of Nrp2+ MCs and odour-induced attractive social responses are impaired. In utero, electroporation demonstrates that activation of the Nrp2 gene in MCs is sufficient to instruct their circuit formation from the PV MOB to the anterior MeA.
Collapse
Affiliation(s)
- Kasumi Inokuchi
- Department of Brain Function, School of Medical Science, University of Fukui, Fukui 910-1193, Japan.,Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Haruki Takeuchi
- Department of Brain Function, School of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Ryang Kim
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Okuno
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hirofumi Nishizumi
- Department of Brain Function, School of Medical Science, University of Fukui, Fukui 910-1193, Japan.,Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Science, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
8
|
Zhang Y, Huang LZ, Yang QL, Liu Y, Zhou X. Correlation analysis between ApoM gene-promoter polymorphisms and coronary heart disease. Cardiovasc J Afr 2017; 27:228-237. [PMID: 27841911 PMCID: PMC5340899 DOI: 10.5830/cvja-2016-001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 01/08/2016] [Indexed: 11/17/2022] Open
Abstract
Objectives: Apolipoprotein M (ApoM), a 25-kDa plasma protein belonging to the lipocalin protein family, is predominantly associated with high-density lipoprotein cholesterol (HDL-C). Studies have suggested ApoM to be important for the formation of pre-β-HDL and to increase cholesterol efflux from macrophage foam cells. The aim of this study was to explore the association of single-nucleotide polymorphisms(SNPs) in the ApoM promoter with coronary atherosclerotic disease (CAD), and the contribution of latent factors. Methods: ApoM was measured in samples from two separate case–control studies, of whom 88 patients developed CAD and 88 were controls. Whole-blood samples from subjects were genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP). Luciferase activities were measured for HepG2 cells with two SNPs, rs805296 (T-778C) and rs940494 (T-855C), and after interfering with or overexpressing the predicted transcription factors. The ability of the SNPs to combine with nucleoproteins was analysed by electophoretic mobility shift assay (EMSA). Results: Mean plasma ApoM concentrations in the CAD and non-CAD groups were 9.58 ± 4.30 and 12.22 ± 6.59 μg/ ml, respectively. Correlation studies of ApoM concentrations with several analytes showed a marked positive correlation with HDL-C, fasting plasma glucose and triglyceride levels. The CC genotype showed lower luciferase activities compared to the TC and TT genotypes. The ApoM-855 mutant-typecould bind to the AP-2α. Interference and overexpression of AP-2 increased and decreased luciferase activities of the wild and mutant types to different degrees. Conclusion:: ApoM may be a biomarker of CAD. ApoM- 855 T→C substitution provides binding sites for AP-2α and reduces ApoM transcription activity.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biochemistry and Molecular Biology, Wan Nan Medical College, Anhui 241000, China.
| | - Li-Zhu Huang
- Clinical Testing and Diagnosis, Experimental Centre of Bengbu Medical College, Anhui 233000, China
| | - Qing-Ling Yang
- Department of Biochemistry and Molecular Biology, Beng Bu Medical College, Anhui 233000, China
| | - Yan Liu
- Clinical Testing and Diagnosis, Experimental Centre of Bengbu Medical College, Anhui 233000, China
| | - Xin Zhou
- Centre for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, Peoples' Republic of China
| |
Collapse
|
9
|
Hoshi R, Watanabe Y, Ishizuka Y, Hirano T, Nagasaki-Maeoka E, Yoshizawa S, Uekusa S, Kawashima H, Ohashi K, Sugito K, Fukuda N, Nagase H, Soma M, Ozaki T, Koshinaga T, Fujiwara K. Depletion of TFAP2E attenuates adriamycin-mediated apoptosis in human neuroblastoma cells. Oncol Rep 2017; 37:2459-2464. [DOI: 10.3892/or.2017.5477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/10/2017] [Indexed: 11/06/2022] Open
|
10
|
Wu Y, Yu DD, Hu Y, Yan D, Chen X, Cao HX, Yu SR, Wang Z, Feng JF. Genome-wide profiling of long non-coding RNA expression patterns in the EGFR-TKI resistance of lung adenocarcinoma by microarray. Oncol Rep 2016; 35:3371-86. [PMID: 27108960 DOI: 10.3892/or.2016.4758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
Mutations in the epidermal growth factor receptor (EGFR) make lung adenocarcinoma cells sensitive to EGFR tyrosine kinase inhibitors (TKIs). Long-term cancer therapy may cause the occurrence of acquired resistance to EGFR TKIs. Long non-coding RNAs (lncRNAs) play important roles in tumor formation, tumor metastasis and the development of EGFR-TKI resistance in lung cancer. To gain insight into the molecular mechanisms of EGFR-TKI resistance, we generated an EGFR-TKI-resistant HCC827-8-1 cell line and analyzed expression patterns by lncRNA microarray and compared it with its parental HCC827 cell line. A total of 1,476 lncRNA transcripts and 1,026 mRNA transcripts were dysregulated in the HCC827‑8-1 cells. The expression levels of 7 chosen lncRNAs were validated by real-time quantitative PCR. As indicated by functional analysis, several groups of lncRNAs may be involved in the bio-pathways associated with EGFR-TKI resistance through their cis- and/or trans‑regulation of protein-coding genes. Thus, lncRNAs may be used as novel candidate biomarkers and potential targets in EGFR-TKI therapy in the future.
Collapse
Affiliation(s)
- Ying Wu
- The First Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Dan-Dan Yu
- The First Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Hu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| | - Dali Yan
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| | - Xiu Chen
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| | - Hai-Xia Cao
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Shao-Rong Yu
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhuo Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Ji-Feng Feng
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:380590. [PMID: 26273614 PMCID: PMC4530219 DOI: 10.1155/2015/380590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023]
Abstract
The transcription factor AP-2ε (activating enhancer-binding protein epsilon) is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4) strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1), the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2'-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.
Collapse
|
12
|
Niebler S, Schubert T, Hunziker EB, Bosserhoff AK. Activating enhancer binding protein 2 epsilon (AP-2ε)-deficient mice exhibit increased matrix metalloproteinase 13 expression and progressive osteoarthritis development. Arthritis Res Ther 2015; 17:119. [PMID: 25964075 PMCID: PMC4453098 DOI: 10.1186/s13075-015-0648-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/05/2015] [Indexed: 01/15/2023] Open
Abstract
Introduction The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e−/−) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e−/− mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. Methods Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e−/− mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. Results Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e−/− mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e−/− cartilage explants. OA progression was significantly enhanced in the Tfap2e−/− mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e−/− articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. Conclusions We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.
Collapse
Affiliation(s)
- Stephan Niebler
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse17, 91054, Erlangen, Germany. .,Institute of Pathology, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Thomas Schubert
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054, Erlangen, Germany.
| | - Ernst B Hunziker
- Department of Orthopedic Surgery, University Hospital of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
| | - Anja K Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse17, 91054, Erlangen, Germany.
| |
Collapse
|
13
|
Sun J, Du N, Li J, Zhou J, Tao G, Sun S, He J. Transcription Factor AP2ε: A Potential Predictor of Chemoresistance in Patients With Gastric Cancer. Technol Cancer Res Treat 2015; 15:285-95. [PMID: 25810491 DOI: 10.1177/1533034615577028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/09/2015] [Indexed: 01/14/2023] Open
Abstract
Chemotherapy is a mainstay of therapy for advanced gastric cancer (GC); however, owing to drug resistances, the effectiveness of chemotherapy is not satisfactory for some patients with GC. Therefore, identification of a marker that predicts treatment response is beneficial to patients. Hypermethylation of transcription factor activating enhancer-binding protein 2∊ (TFAP2E) has been implicated in chemotherapy resistance to fluorouracil-based chemotherapy in patients with colorectal cancer, but its role in GC is still unknown. In this study, we investigated TFAP2E as a predictor of treatment response in GC. We used methylation-sensitive high-resolution melting analysis to study the methylation of TFAP2E in 141 GC tissue specimens and 45 adjacent nontumor tissue specimens. In vitro experiments, we analyzed the expression and methylation of TFAP2E and to examine the sensitivity of GC cell lines to 5-fluorouracil (5-FU). The TFAP2E methylation occurred at a significantly higher incidence rate in tumor tissues compared to adjacent nontumor tissues (chi-square [χ2] = 38.919, P < .001). Hypermethylation of TFAP2E occurred more frequently in tumors with lower differentiation grades (P < .001) and was significantly associated with nonresponse to fluorouracil-based chemotherapy (P = .010). Hypermethylation was also associated with decreased expression of TFAP2E (P < .01) and nonresponse to 5-FU exposure in vitro (P < .001). Hypermethylation of TFAP2E was associated with lack of response to fluorouracil-based chemotherapy, indicating that it might be a potential predictor of treatment response in patients with GC.
Collapse
Affiliation(s)
- Jingyue Sun
- Department of Oncology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Nan Du
- Department of Oncology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Jin Li
- Department of Oncology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guoquan Tao
- Department of Gastrointestinal surgery, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Suan Sun
- Department of Pathology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Jingdong He
- Department of Oncology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| |
Collapse
|
14
|
Zhang ZM, Wang Y, Huang R, Liu YP, Li X, Hu FL, Zhu L, Wang F, Cui BB, Dong XS, Zhao YS. TFAP2E hypermethylation was associated with survival advantage in patients with colorectal cancer. J Cancer Res Clin Oncol 2014; 140:2119-27. [PMID: 24996990 DOI: 10.1007/s00432-014-1766-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/26/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE Hypermethylation of TFAP2E (AP-2E) is associated with the chemotherapy-resistant in patients with colorectal cancer (CRC), but its implications on prognosis directly remain unknown. This study was aimed to investigate the role of AP-2E methylation status and other clinicopathologic parameters as predictors of prognosis. METHODS We detected the methylation status of AP-2E in tumor and adjacent non-tumor tissues from 311 sporadic CRC patients by methylation-sensitive high-resolution melting analysis. Log-rank tests and multivariate Cox analyses were performed to evaluate the role of AP-2E methylation status and other clinicopathologic parameters as predictors of prognosis. RESULTS Hypermethylation of AP-2E was detected in 61 % (190/311) tumor tissues. It occurred more frequently in tumors in earlier stages (I/II; P = 0.02), lower levels of tumor invasion (T1-T3; P = 0.04), fewer lymph nodes involved (N0; P < 0.01), and higher histologic grades (G1/G2; P < 0.01). The overall 5-year survival rates in hypermethylation and hypomethylation group were 76.91 and 47.17 % (P < 0.0001), respectively. AP-2E hypermethylation was significantly associated with a favorable clinical outcome with a hazard ratio of 0.486 (95 % CI 0.342-0.692, P < 0.0001) after controlling for age, gender, tumor location, histologic type, TNM staging, and histologic grade. CONCLUSIONS AP-2E was frequently hypermethylated in tumors from patients with CRC. Aberrant hypermethylation of AP-2E occurred more frequently in tumors with earlier stages, lower levels of tumor invasion, fewer lymph nodes involved, and higher histologic grades. AP-2E hypermethylation might be an independent predictor of survival advantage in patients with CRC.
Collapse
Affiliation(s)
- Zuo-Ming Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Meng X, Meng C, Yang B, Zhao L, Sun X, Su Y, Liu H, Fan F, Liu X, Jia L. AP-2α downregulation by cigarette smoke condensate is counteracted by p53 in human lung cancer cells. Int J Mol Med 2014; 34:1094-100. [PMID: 25050743 DOI: 10.3892/ijmm.2014.1857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/10/2014] [Indexed: 11/06/2022] Open
Abstract
Cumulative findings have demonstrated that the dysregulation of tumor suppressor genes may be implicated in cigarette smoke-induced carcinogenesis. Activating enhancer-binding protein 2 (AP-2) is a eukaryotic transcriptional factor that plays a significant role in embryonic development and tumorigenesis. The vertebrate AP-2 family consists of AP-2α, AP-2β, AP-2γ, AP-2δ and AP-2ε. Previous studies have suggested that cigarette smoking disrupts AP-2 regulation. In the present study, we investigated the effects of cigarette smoke condensate (CSC) on AP-2α expression in human lung cancer cell lines (NCI-H1299, NCI-H446 and A549), as well as the potential mechanisms involved. Using RT-qPCR, we found that CSC decreased AP-2α expression by suppressing its transcription in human lung cancer cell lines, particularly in p53-deficient NCI-H1299 cells. Western blotting and luciferase assays were implemented and we found that the restoration of p53 expression rescued the NCI-H1299 cells from CSC-induced AP-2α loss, while the silencing of p53 resulted in increased AP-2α loss induced by CSC, suggesting an antagonizing role of p53 in the regulation of AP-2α by CSC. Our results indicate that AP-2α downregulation may be involved in smoke-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Xiangjun Meng
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bing Yang
- Department of Cell Biology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Li Zhao
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuefei Sun
- Department of Emergency, China-Japan Union Hospital, Changchun, Jilin 130021, P.R. China
| | - Yun Su
- Department of Orthopedics, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Hongyang Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Feiyue Fan
- Department of Radiation Hazard Evaluation, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xiaodong Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lili Jia
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
16
|
Hong CS, Devotta A, Lee YH, Park BY, Saint-Jeannet JP. Transcription factor AP2 epsilon (Tfap2e) regulates neural crest specification in Xenopus. Dev Neurobiol 2014; 74:894-906. [PMID: 24616412 DOI: 10.1002/dneu.22173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/24/2014] [Accepted: 02/13/2014] [Indexed: 02/01/2023]
Abstract
Transcription factors Pax3 and Zic1 are two important regulators of cell fate decision at the neural plate border, where they act synergistically to promote neural crest (NC) formation. To understand the role of these factors in NC development, we performed a microarray analysis to identify downstream targets of Pax3 and Zic1 in Xenopus embryos. Among the genes identified was a member of transcription factor activator protein 2 (Tfap2) family, Tfap2 epsilon (Tfap2e). Tfap2e is first expressed at early neurula stage in NC progenitors and Rohon-Beard sensory neurons, and persists in a subset of migrating cranial NC cells as they populate the pharyngeal arches. This is in contrast to other species in which Tfap2e is not detected in the early NC lineage. Tfap2e morpholino-mediated knockdown results in a loss of NC progenitors and an expansion of the neural plate. Tfap2e is also sufficient to activate NC-specific genes in animal cap explants, and gain-of-function experiments in the whole embryo indicate that Tfap2e can promote NC formation. We propose that Tfap2e is a novel player in the gene regulatory network controlling NC specification in Xenopus downstream of Pax3 and Zic1.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea; Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York
| | | | | | | | | |
Collapse
|
17
|
Niebler S, Bosserhoff AK. The transcription factor activating enhancer-binding protein epsilon (AP-2ε) regulates the core promoter of type II collagen (COL2A1). FEBS J 2013; 280:1397-408. [PMID: 23331625 DOI: 10.1111/febs.12130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 01/05/2023]
Abstract
The transcription factor activating enhancer-binding protein epsilon (AP-2ε) was recently shown to be expressed during late chondrocyte differentiation, especially in hypertrophic chondrocytes. In this study, we were able to reveal that the promoter of the type II collagen (COL2A1) gene, encoding the extracellular matrix protein type II collagen, is specifically regulated by AP-2ε. Expression of COL2A1 is downregulated at the transition of chondroblasts into hypertrophic chondrocytes and our data provide evidence that AP-2ε is involved in this process. In reporter gene assays, overexpression of AP-2ε in cartilaginous cell lines resulted in a significant reduction in COL2A1 core promoter activity of ~ 45%. Furthermore, we found that this process is dose-dependent and highly specific for the epsilon isoform. Computational analysis offered only a single putative AP-2-binding motif within the chosen promoter fragment but site-directed mutagenesis revealed this motif to be regulatory inactive. After expanding our screening to motifs containing minor differences from the classical AP-2 consensus sequence (5'-GCCN3 GGC-3'), we determined the sequence 5'-GCCCAGGC-3' ranging from position -128 to -135 bp as an important regulatory site and responsible for COL2A1 downregulation through AP-2ε. Interaction of AP-2ε with the COL2A1 promoter at this site was confirmed by chromatin immunoprecipitation and electromobility shift assay. Further, our experiments suggest that at least one additional factor is involved in this process. This is the first study to prove regulation of COL2A1 by AP-2ε highlighting the role of the transcription factor as a modulator of cartilage development.
Collapse
Affiliation(s)
- Stephan Niebler
- Institute of Pathology, University Regensburg, Regensburg, Germany
| | | |
Collapse
|
18
|
Ren K, Xiang S, He F, Zhang W, Ding X, Wu Y, Yang L, Zhou J, Gao X, Zhang J. CK2 phosphorylates AP-2α and increases its transcriptional activity. BMB Rep 2011; 44:490-5. [DOI: 10.5483/bmbrep.2011.44.7.490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Zhao F, Bosserhoff AK, Buettner R, Moser M. A heart-hand syndrome gene: Tfap2b plays a critical role in the development and remodeling of mouse ductus arteriosus and limb patterning. PLoS One 2011; 6:e22908. [PMID: 21829553 PMCID: PMC3146506 DOI: 10.1371/journal.pone.0022908] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/30/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Patent ductus arteriosus (PDA) is one of the most common forms of congenital heart disease. Mutations in transcription factor TFAP2B cause Char syndrome, a human disorder characterized by PDA, facial dysmorphysm and hand anomalies. Animal research data are needed to understand the mechanisms. The aim of our study was to elucidate the pathogenesis of Char syndrome at the molecular level. METHODOLOGY/PRINCIPAL FINDINGS Gene expression of Tfap2b during mouse development was studied, and newborns of Tfap2b-deficient mice were examined to identify phenotypes. Gel shift assays had been carried out to search for Tfap2 downstream genes. Promoters of candidate genes were cloned into a reporter construct and used to demonstrate their regulation by Tfap2b in cell transfection. In situ hybridizations showed that the murine transcription factor Tfap2b was expressed during the entire development of mouse ductus arteriosus. Histological examination of ductus arteriosus from Tfap2b knockout mice 6 hours after birth revealed that they were not closed. Consequently, the lungs of Tfap2b(-/-) mice demonstrated progressive congestion of the pulmonary capillaries, which was postulated to result secondarily from PDA. In addition, Tfap2b was expressed in the limb buds, particularly in the posterior limb field during development. Lack of Tfap2b resulted in bilateral postaxial accessory digits. Further study indicated that expressions of bone morphogenetic protein (Bmp) genes, which are reported to be involved in the limb patterning and ductal development, were altered in limb buds of Tfap2b-deficient embryos, due to direct control of Bmp2 and Bmp4 promoter activity by Tfap2b. CONCLUSIONS/SIGNIFICANCE Tfap2b plays important roles in the development of mouse ductus arteriosus and limb patterning. Loss of Tfap2b results in altered Bmp expression that may cause the heart-limb defects observed in Tfap2b mouse mutants and Char syndrome patients. The Tfap2b knockout mouse may add to the very limited available animal models of PDA.
Collapse
MESH Headings
- Abnormalities, Multiple
- Animals
- Animals, Newborn
- Bone Morphogenetic Protein 2/genetics
- Bone Morphogenetic Protein 4/genetics
- Ductus Arteriosus, Patent/etiology
- Ductus Arteriosus, Patent/metabolism
- Ductus Arteriosus, Patent/pathology
- Electrophoretic Mobility Shift Assay
- Female
- Heart Defects, Congenital
- Heart Septal Defects, Atrial
- Humans
- In Situ Hybridization
- Limb Deformities, Congenital/etiology
- Limb Deformities, Congenital/metabolism
- Limb Deformities, Congenital/pathology
- Lower Extremity Deformities, Congenital
- Luciferases/metabolism
- Male
- Mice
- Mice, Knockout
- Phenotype
- Promoter Regions, Genetic/genetics
- Transcription Factor AP-2/physiology
- Upper Extremity Deformities, Congenital
Collapse
Affiliation(s)
- Feng Zhao
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, United States of America.
| | | | | | | |
Collapse
|
20
|
Gao L, Kim Y, Kim B, Lofgren SM, Schultz-Norton JR, Nardulli AM, Heckert LL, Jorgensen JS. Two regions within the proximal steroidogenic factor 1 promoter drive somatic cell-specific activity in developing gonads of the female mouse. Biol Reprod 2011; 84:422-34. [PMID: 20962249 PMCID: PMC3043126 DOI: 10.1095/biolreprod.110.084590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/15/2010] [Accepted: 10/14/2010] [Indexed: 11/01/2022] Open
Abstract
Targets of steroidogenic factor 1 (SF1; also known as NR5A1 and AD4BP) have been identified within cells at every level of the hypothalamic-pituitary-gonadal and -adrenal axes, revealing SF1 to be a master regulator of major endocrine systems. Mouse embryos express SF1 in the genital ridge until Embryonic Day 13.5 (E13.5). Thereafter, expression persists in the male and is substantially lower in the female gonad until birth. We hypothesize that the sexually dimorphic expression of Sf1 during gonadogenesis is mediated by sex-specific regulation of its promoter. To investigate dimorphic regulation within the fetal gonad, we developed an experimental strategy using transient transfection of E13.5 gonad explant cultures and evaluated various Sf1 promoter constructs for sexually dimorphic DNA elements. The proximal Sf1 promoter correctly targeted reporter activity to SF1-expressing cells in both XY and XX gonads. Stepwise deletion of sequences from the Sf1 promoter revealed two regions that affected regulation within female gonads. Mutation of both sequences together did not cause further disruption of reporter activity, suggesting the two sites might work in concert to promote activity in female somatic cells. Results from gel mobility shift assays and fetal gonad-chromatin immunoprecipitation showed that TCFAP2 binds to one of the two female-specific sites within the proximal promoter of Sf1. Together, we show that transient transfection experiments performed within developing testes and ovaries are a powerful tool to uncover elements within the Sf1 promoter that contribute to sex-specific expression.
Collapse
Affiliation(s)
- Liying Gao
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Youngha Kim
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Bongki Kim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | | | | | - Ann M. Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Leslie L. Heckert
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Joan S. Jorgensen
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
21
|
Wenke AK, Niebler S, Grässel S, Bosserhoff AK. The transcription factor AP-2ɛ regulates CXCL1 during cartilage development and in osteoarthritis. Osteoarthritis Cartilage 2011; 19:206-12. [PMID: 21134476 DOI: 10.1016/j.joca.2010.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/13/2010] [Accepted: 11/26/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recently, the transcription factor AP-2ɛ was shown to be a regulator of hypertrophy in cartilage and to be differentially expressed in osteoarthritis (OA). However, the only known target gene of AP-2ɛ up to date is integrin alpha10. To better characterize the function of AP-2ɛ in cartilage we screened for additional target genes. DESIGN Promoter analysis, ChIP-assays and electrophoretic mobility shift assay were used to characterize the regulation of a new AP-2ɛ target gene in detail. RESULTS In this study, we determined the chemokine CXCL1, already known to be important in osteoarthritis (OA), as a new target gene of AP-2ɛ. We could confirm that CXCL1 is expressed in chondrocytes and significantly over-expressed in OA-chondrocytes. Transient transfection of chondrocytes with an AP-2ɛ expression construct led to a significant increase of the CXCL1 mRNA level in these cells. We identified three potential AP-2 binding sites within the CXCL1 promoter and performed luciferase assays, indicating that an AP-2 binding motif (AP-2.2) ranging from position -135 to -144 bp relative to the translation start is responsive to AP-2ɛ. This result was further addressed by site-directed mutagenesis demonstrating that activation of the CXCL1 promoter by AP-2ɛ is exclusively dependent on AP-2.2. Chromatin immunoprecipitation and electromobility shift assays confirmed the direct binding of AP-2ɛ to the CXCL1 promoter in OA-chondrocytes at this site. CONCLUSION These findings revealed CXCL1 as a novel target gene of AP-2ɛ in chondrocytes and support the important role of AP-2ɛ in cartilage.
Collapse
Affiliation(s)
- A-K Wenke
- Institute of Pathology, University Regensburg, Regensburg 93053, Germany
| | | | | | | |
Collapse
|
22
|
Van Otterloo E, Li W, Bonde G, Day KM, Hsu MY, Cornell RA. Differentiation of zebrafish melanophores depends on transcription factors AP2 alpha and AP2 epsilon. PLoS Genet 2010; 6:e1001122. [PMID: 20862309 PMCID: PMC2940735 DOI: 10.1371/journal.pgen.1001122] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 08/13/2010] [Indexed: 11/30/2022] Open
Abstract
A model of the gene-regulatory-network (GRN), governing growth, survival, and differentiation of melanocytes, has emerged from studies of mouse coat color mutants and melanoma cell lines. In this model, Transcription Factor Activator Protein 2 alpha (TFAP2A) contributes to melanocyte development by activating expression of the gene encoding the receptor tyrosine kinase Kit. Next, ligand-bound Kit stimulates a pathway activating transcription factor Microphthalmia (Mitf), which promotes differentiation and survival of melanocytes by activating expression of Tyrosinase family members, Bcl2, and other genes. The model predicts that in both Tfap2a and Kit null mutants there will be a phenotype of reduced melanocytes and that, because Tfap2a acts upstream of Kit, this phenotype will be more severe, or at least as severe as, in Tfap2a null mutants in comparison to Kit null mutants. Unexpectedly, this is not the case in zebrafish or mouse. Because many Tfap2 family members have identical DNA–binding specificity, we reasoned that another Tfap2 family member may work redundantly with Tfap2a in promoting Kit expression. We report that tfap2e is expressed in melanoblasts and melanophores in zebrafish embryos and that its orthologue, TFAP2E, is expressed in human melanocytes. We provide evidence that Tfap2e functions redundantly with Tfap2a to maintain kita expression in zebrafish embryonic melanophores. Further, we show that, in contrast to in kita mutants where embryonic melanophores appear to differentiate normally, in tfap2a/e doubly-deficient embryonic melanophores are small and under-melanized, although they retain expression of mitfa. Interestingly, forcing expression of mitfa in tfap2a/e doubly-deficient embryos partially restores melanophore differentiation. These findings reveal that Tfap2 activity, mediated redundantly by Tfap2a and Tfap2e, promotes melanophore differentiation in parallel with Mitf by an effector other than Kit. This work illustrates how analysis of single-gene mutants may fail to identify steps in a GRN that are affected by the redundant activity of related proteins. Neural crest-derived pigment cells, known as melanocytes, are important to an organism's survival because they protect skin cells from ultraviolet radiation, camouflage the organism from predators, and contribute to sexual selection. Networks of regulatory proteins control the steps of melanocyte development, including lineage specification, migration, survival, and differentiation. Gaps in our understanding of these networks hamper progress in effective prevention and treatment of diseases of melanocytes, including metastatic melanoma and vitiligo. Studies conducted in tissue-culture cells and mouse embryos implicate regulatory proteins including the transcription factor TFAP2A, the growth factor receptor KIT, and the transcription factor MITF as being important for multiple steps in melanocyte development. Abnormalities in TFAP2A, KIT, and MITF expression in melanoma highlight the importance of this pathway in human disease. Here we show that a gene closely related to TFAP2A, tfap2e, is expressed in zebrafish embryonic melanocytes and human melanocytes. We provide evidence that Tfap2e cooperates with Tfap2a to promote expression of zebrafish kita in embryonic melanocytes. Further we show that an effector of Tfap2a/e activity other than Kita is required for melanocyte differentiation and that this effector acts upstream or in parallel with Mitfa activity. These findings reveal unexpected complexity to the gene-regulatory network governing melanocyte differentiation.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
23
|
Escamilla-Hernandez R, Chakrabarti R, Romano RA, Smalley K, Zhu Q, Lai W, Halfon MS, Buck MJ, Sinha S. Genome-wide search identifies Ccnd2 as a direct transcriptional target of Elf5 in mouse mammary gland. BMC Mol Biol 2010; 11:68. [PMID: 20831799 PMCID: PMC2949602 DOI: 10.1186/1471-2199-11-68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022] Open
Abstract
Background The ETS transcription factor Elf5 (also known as ESE-2) is highly expressed in the mammary gland and plays an important role in its development and differentiation. Indeed studies in mice have illustrated an essential role for Elf5 in directing alveologenesis during pregnancy. Although the molecular mechanisms that underlie the developmental block in Elf5 null mammary glands are beginning to be unraveled, this investigation has been hampered by limited information about the identity of Elf5-target genes. To address this shortcoming, in this study we have performed ChIP-cloning experiments to identify the specific genomic segments that are occupied by Elf5 in pregnant mouse mammary glands. Results Sequencing and genomic localization of cis-regulatory regions bound by Elf5 in vivo has identified several potential target genes covering broad functional categories. A subset of these target genes demonstrates higher expression levels in Elf5-null mammary glands suggesting a repressive functional role for this transcription factor. Here we focus on one putative target of Elf5, the Ccnd2 gene that appeared in our screen. We identify a novel Elf5-binding segment upstream of the Ccnd2 gene and demonstrate that Elf5 can transcriptionally repress Ccnd2 by directly binding to the proximal promoter region. Finally, using Elf5-null mammary epithelial cells and mammary glands, we show that loss of Elf5 in vivo leads to up regulation of Ccnd2 and an altered expression pattern in luminal cells. Conclusions Identification of Elf5-targets is an essential first step in elucidating the transcriptional landscape that is shaped by this important regulator. Our studies offer new toolbox in examining the biological role of Elf5 in mammary gland development and differentiation.
Collapse
Affiliation(s)
- Rosalba Escamilla-Hernandez
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Transcription factor AP-2beta inhibits expression and secretion of leptin, an insulin-sensitizing hormone, in 3T3-L1 adipocytes. Int J Obes (Lond) 2010; 34:670-8. [PMID: 20065963 DOI: 10.1038/ijo.2009.295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND We have previously reported an association between the activator protein-2beta (AP-2beta) transcription factor gene and type 2 diabetes. This gene is preferentially expressed in adipose tissue, and subjects with a disease-susceptible allele of AP-2beta showed stronger AP-2beta expression in adipose tissue than those without the susceptible allele. Furthermore, overexpression of AP-2beta led to lipid accumulation and induced insulin resistance in 3T3-L1 adipocytes. RESULT We found that overexpression of AP-2beta in 3T3-L1 adipocytes decreased the promoter activity of leptin, and subsequently decreased both messenger RNA (mRNA) and protein expression and secretion. Furthermore, knockdown of endogenous AP-2beta by RNA-interference increased mRNA and protein expression of leptin. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed specific binding of AP-2beta to leptin promoter regions in vitro and in vivo. In addition, site-directed mutagenesis of the AP-2-binding site located between position +34 and +42 relative to the transcription start site abolished the inhibitory effect of AP-2beta. Our results clearly showed that AP-2beta directly inhibited insulin-sensitizing hormone leptin expression by binding to its promoter. CONCLUSION AP-2beta modulated the expression of leptin through direct interaction with its promoter region.
Collapse
|
25
|
Feng W, Simoes-de-Souza F, Finger TE, Restrepo D, Williams T. Disorganized olfactory bulb lamination in mice deficient for transcription factor AP-2epsilon. Mol Cell Neurosci 2009; 42:161-71. [PMID: 19580868 PMCID: PMC2745980 DOI: 10.1016/j.mcn.2009.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 01/15/2023] Open
Abstract
Within the olfactory bulb, neurons and their axonal connections are organized into distinct layers corresponding to different functionalities. Here we demonstrate that transcription factor AP-2epsilon is required for olfactory bulb development, specifically the establishment of appropriate neuronal lamination. During normal mouse embryogenesis, AP-2epsilon transcripts are one of the earliest markers of olfactory bulb formation, and expression eventually becomes refined to the projection neurons, the mitral and tufted cells. To assess the function of AP-2epsilon in olfaction, we generated a null allele (the "AK" allele) by inserting a Cre recombinase transgene into the endogenous AP-2epsilon genomic locus. AP-2epsilon-null mice exhibited defective olfactory bulb architecture. The mitral cell layer was disorganized, typified by misoriented and aberrantly positioned projection neurons, and the adjacent internal plexiform layer was absent. Despite the significant disruption of olfactory bulb organization, AP-2epsilon null mice were viable and could discriminate a variety of odors. AP-2epsilon-null mice thus provide compelling evidence for the robust nature of the mouse olfactory system, and serve as a model system to probe both the regulation of neuronal lamination and the functional circuitry of the olfactory bulb. We also show that Cre recombinase expression directed by the AP-2epsilon locus can specifically target floxed genes within the olfactory bulb, extending the utility of this AK allele.
Collapse
Affiliation(s)
- Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Fabio Simoes-de-Souza
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- The Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas E. Finger
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- The Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- The Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
26
|
An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One 2009; 4:e5623. [PMID: 19461998 PMCID: PMC2680039 DOI: 10.1371/journal.pone.0005623] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 04/22/2009] [Indexed: 11/19/2022] Open
Abstract
Background One major defining characteristic of the basal keratinocytes of the stratified epithelium is the expression of the keratin genes K5 and K14. The temporal and spatial expression of these two genes is usually tightly and coordinately regulated at the transcriptional level. This ensures the obligate pairing of K5 and K14 proteins to generate an intermediate filament (IF) network that is essential for the structure and function of the proliferative keratinocytes. Our previous studies have shown that the basal-keratinocyte restricted transcription factor p63 is a direct regulator of K14 gene. Methodology/Principal Findings Here we provide evidence that p63, specifically the ΔN isoform also regulates the expression of the K5 gene by binding to a conserved enhancer within the 5′ upstream region. By using specific antibodies against ΔNp63, we show a concordance in the expression between basal keratins and ΔNp63 proteins but not the TAp63 isoforms during early embryonic skin development. We demonstrate, that contrary to a previous report, transgenic mice expressing ΔNp63 in lung epithelium exhibit squamous metaplasia with de novo induction of K5 and K14 as well as transdifferentiation to the epidermal cell lineage. Interestingly, the in vivo epidermal inductive properties of ΔNp63 do not require the C-terminal SAM domain. Finally, we show that ΔNp63 alone can restore the expression of the basal keratins and reinitiate the failed epidermal differentiation program in the skin of p63 null animals. Significance ΔNp63 is a critical mediator of keratinocyte stratification program and directly regulates the basal keratin genes.
Collapse
|
27
|
Wenke AK, Grässel S, Moser M, Bosserhoff AK. The cartilage-specific transcription factor Sox9 regulates AP-2ε expression in chondrocytes. FEBS J 2009; 276:2494-504. [DOI: 10.1111/j.1742-4658.2009.06973.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Kondo M, Maegawa H, Obata T, Ugi S, Ikeda K, Morino K, Nakai Y, Nishio Y, Maeda S, Kashiwagi A. Transcription factor activating protein-2beta: a positive regulator of monocyte chemoattractant protein-1 gene expression. Endocrinology 2009; 150:1654-61. [PMID: 19022887 DOI: 10.1210/en.2008-1361] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We previously reported an association between the activating protein (AP)-2beta transcription factor gene and type 2 diabetes. This gene is preferentially expressed in adipose tissue, and subjects with a disease-susceptible allele of AP-2beta showed stronger AP-2beta expression in adipose tissue than those without the susceptible allele. Furthermore, overexpression of AP-2beta leads to lipid accumulation by enhancing glucose transport and inducing insulin resistance in 3T3-L1 adipocytes. In this study, we found that overexpression of AP-2beta in 3T3-L1 adipocytes accelerated the promoter activity of monocyte chemoattractant protein-1 (MCP-1) and subsequently increased both mRNA and protein expression and protein secretion. Furthermore, knockdown of endogenous AP-2beta by RNA interference reduced the mRNA and the protein expression of MCP-1. EMSAs and chromatin immunoprecipitation assays revealed specific binding of AP-2beta to MCP-1 promoter regions, in vitro and in vivo. Additionally, site-directed mutagenesis of the AP-2 binding site located at -137 to -129 relative to the transcription start site markedly diminished MCP-1 promoter activity, whereas other putative AP-2 binding sites did not. Our results clearly show that AP-2beta directly enhanced MCP-1 secretion by binding to its promoter. Thus, we propose that AP-2beta positively regulates MCP-1 expression; subsequently contributes to the infiltration of macrophages to adipose tissue; and leads to insulin resistance, type 2 diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Motoyuki Kondo
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li X, Glubrecht DD, Mita R, Godbout R. Expression of AP-2delta in the developing chick retina. Dev Dyn 2009; 237:3210-21. [PMID: 18924234 DOI: 10.1002/dvdy.21744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AP-2 is a family of transcription factors that play important roles during embryonic development. Two AP-2 genes, AP-2alpha and AP-2beta, have previously been characterized in chick retina. Here, we demonstrate that a third member of the chicken AP-2 family, AP-2delta, is primarily expressed in the retina and brain, with highest levels at embryonic days 7 to 11. By in situ hybridization and immunohistochemical analysis, we show that AP-2delta RNA and protein are found in a subset of ganglion cells in embryonic chick retina. Co-immunostaining with anti-Brn3a and anti-AP-2delta antibodies indicates that approximately one-third of Brn3a-positive ganglion cells express AP-2delta. AP-2delta RNA but not AP-2delta protein is also found in cells located in the outer half of the inner nuclear layer. The spatial and temporal distribution of AP-2delta protein in the retina suggests a transient role in a subset of late-born ganglion cells likely involving axonal trafficking or pathfinding.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
30
|
Mittler G, Butter F, Mann M. A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genes Dev 2009; 19:284-93. [PMID: 19015324 PMCID: PMC2652210 DOI: 10.1101/gr.081711.108] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 11/04/2008] [Indexed: 12/15/2022]
Abstract
Determining the underlying logic that governs the networks of gene expression in higher eukaryotes is an important task in the post-genome era. Sequence-specific transcription factors (TFs) that can read the genetic regulatory information and proteins that interpret the information provided by CpG methylation are crucial components of the system that controls the transcription of protein-coding genes by RNA polymerase II. We have previously described Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for the quantitative comparison of proteomes and the determination of protein-protein interactions. Here, we report a generic and scalable strategy to uncover such DNA protein interactions by SILAC that uses a fast and simple one-step affinity capture of TFs from crude nuclear extracts. Employing mutated or nonmethylated control oligonucleotides, specific TFs binding to their wild-type or methyl-CpG bait are distinguished from the vast excess of copurifying background proteins by their peptide isotope ratios that are determined by mass spectrometry. Our proof of principle screen identifies several proteins that have not been previously reported to be present on the fully methylated CpG island upstream of the human metastasis associated 1 family, member 2 gene promoter. The approach is robust, sensitive, and specific and offers the potential for high-throughput determination of TF binding profiles.
Collapse
Affiliation(s)
- Gerhard Mittler
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
- BIOSS—Center of Biological Signalling Studies, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Falk Butter
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
31
|
Gee JMW, Eloranta JJ, Ibbitt JC, Robertson JFR, Ellis IO, Williams T, Nicholson RI, Hurst HC. Overexpression ofTFAP2Cin invasive breast cancer correlates with a poorer response to anti-hormone therapy and reduced patient survival. J Pathol 2009; 217:32-41. [DOI: 10.1002/path.2430] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Orso F, Penna E, Cimino D, Astanina E, Maione F, Valdembri D, Giraudo E, Serini G, Sismondi P, De Bortoli M, Taverna D. AP-2alpha and AP-2gamma regulate tumor progression via specific genetic programs. FASEB J 2008; 22:2702-14. [PMID: 18443366 DOI: 10.1096/fj.08-106492] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The events occurring during tumor formation and progression display similarities to some of the steps in embryonic morphogenesis. The family of AP-2 proteins consists of five different transcription factors (alpha, beta, gamma, delta, and epsilon) that play relevant roles in embryonic development, as demonstrated by the phenotypes of the corresponding knockout mice. Here, we show that AP-2alpha and AP-2gamma proteins play an essential role in tumorigenesis. Down-modulation of AP-2 expression in tumor cells by RNA interference (RNAi) led to enhanced tumor growth and reduced chemotherapy-induced cell death, as well as migration and invasion. Most of these biological modulations were rescued by AP-2 overexpression. We observed that increased xenotransplant growth was mostly due to highly enhanced proliferation of the tumor cells together with reduced innate immune cell recruitment. Moreover, we showed that migration impairment was mediated, at least in part, by secreted factors. To identify the genetic programs involved in tumorigenesis, we performed whole genome microarray analysis of AP-2alpha knockdown cells and observed that AP-2alpha regulates specific genes involved in cell cycle, cell death, adhesion, and migration. In particular, we showed that ESDN, EREG, and CXCL2 play a major role in AP-2 controlled migration, as ablation of any of these genes severely altered migration.
Collapse
Affiliation(s)
- Francesca Orso
- Institute for Cancer Research and Treatment, University of Torino, Via Nizza, 52, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pontoriero GF, Deschamps P, Ashery-Padan R, Wong R, Yang Y, Zavadil J, Cvekl A, Sullivan S, Williams T, West-Mays JA. Cell autonomous roles for AP-2alpha in lens vesicle separation and maintenance of the lens epithelial cell phenotype. Dev Dyn 2008; 237:602-17. [PMID: 18224708 PMCID: PMC2517426 DOI: 10.1002/dvdy.21445] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this study, we have created a conditional deletion of AP-2alpha in the developing mouse lens (Le-AP-2alpha mutants) to determine the cell-autonomous requirement(s) for AP-2alpha in lens development. Embryonic and adult Le-AP-2alpha mutants exhibited defects confined to lens placode derivatives, including a persistent adhesion of the lens to the overlying corneal epithelium (or lens stalk). Expression of known regulators of lens vesicle separation, including Pax6, Pitx3, and Foxe3 was observed in the Le-AP-2alpha mutant lens demonstrating that these genes do not lie directly downstream of AP-2alpha. Unlike germ-line mutants, Le-AP-2alpha mutants did not exhibit defects in the optic cup, further defining the tissue specific role(s) for AP-2alpha in eye development. Finally, comparative microarray analysis of lenses from the Le-AP-2alpha mutants vs. wild-type littermates revealed differential expression of 415 mRNAs, including reduced expression of genes important for maintaining the lens epithelial cell phenotype, such as E-cadherin.
Collapse
Affiliation(s)
- Giuseppe F. Pontoriero
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Paula Deschamps
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ruth Ashery-Padan
- Human Genetics and Molecular Medicine Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Ryan Wong
- Departments of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Ying Yang
- Departments of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Jiri Zavadil
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York, New York
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Shelley Sullivan
- Departments of CFB and CDB, University of Colorado Health Sciences Center, Denver, Colorado
| | - Trevor Williams
- Departments of CFB and CDB, University of Colorado Health Sciences Center, Denver, Colorado
| | - Judith A. West-Mays
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Zhang Y, Li Y, Shibahara S, Takahashi K. Synergistic activation of the human adrenomedullin gene promoter by Sp1 and AP-2alpha. Peptides 2008; 29:465-72. [PMID: 17719138 DOI: 10.1016/j.peptides.2007.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
Adrenomedullin (AM) is a potent vasodilator peptide, which is ubiquitously expressed and has various biological actions, such as proliferative action and anti-oxidative stress action. AM expression is induced by various stresses, such as hypoxia and inflammatory cytokines, and during cell differentiation. The human AM gene promoter region (-70/-29) contains binding sites for stimulatory protein 1 (Sp1) and activator protein-2alpha (AP-2alpha), and has been shown to be important for the AM gene expression during cell differentiation to macrophages or adipocytes. We here show that Sp1 and AP-2alpha synergistically activate the AM gene promoter. Co-transfection of the reporter plasmid containing the AM promoter region (-103/-29) with Sp1 and AP-2alpha expression plasmids showed that Sp1 and AP-2alpha synergistically increased the promoter activity in HeLa cells. Sp1 or AP-2alpha alone caused only small increases in the promoter activity. EMSA showed that Sp1 bound to the promoter region (-70/-29), whereas AP-2alpha bound to a more upstream promoter region (-103/-71). Thus, the synergistic activation of the human AM gene promoter by Sp1 and AP-2alpha may be mediated by the binding of Sp1 to the promoter region (-70/-29) and the interaction with AP-2alpha, which binds to the promoter region (-103/-71).
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
35
|
Allouche A, Nolens G, Tancredi A, Delacroix L, Mardaga J, Fridman V, Winkler R, Boniver J, Delvenne P, Begon DY. The combined immunodetection of AP-2alpha and YY1 transcription factors is associated with ERBB2 gene overexpression in primary breast tumors. Breast Cancer Res 2008; 10:R9. [PMID: 18218085 PMCID: PMC2374961 DOI: 10.1186/bcr1851] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/17/2007] [Accepted: 01/24/2008] [Indexed: 01/28/2023] Open
Abstract
Introduction Overexpression of the ERBB2 oncogene is observed in about 20% of human breast tumors and is the consequence of increased transcription rates frequently associated with gene amplification. Several studies have shown a link between activator protein 2 (AP-2) transcription factors and ERBB2 gene expression in breast cancer cell lines. Moreover, the Yin Yang 1 (YY1) transcription factor has been shown to stimulate AP-2 transcriptional activity on the ERBB2 promoter in vitro. In this report, we examined the relationships between ERBB2, AP-2α, and YY1 both in breast cancer tissue specimens and in a mammary cancer cell line. Methods ERBB2, AP-2α, and YY1 protein levels were analyzed by immunohistochemistry in a panel of 55 primary breast tumors. ERBB2 gene amplification status was determined by fluorescent in situ hybridization. Correlations were evaluated by a χ2 test at a p value of less than 0.05. The functional role of AP-2α and YY1 on ERBB2 gene expression was analyzed by small interfering RNA (siRNA) transfection in the BT-474 mammary cancer cell line followed by real-time reverse transcription-polymerase chain reaction and Western blotting. Results We observed a statistically significant correlation between ERBB2 and AP-2α levels in the tumors (p < 0.01). Moreover, associations were found between ERBB2 protein level and the combined high expression of AP-2α and YY1 (p < 0.02) as well as between the expression of AP-2α and YY1 (p < 0.001). Furthermore, the levels of both AP-2α and YY1 proteins were inversely correlated to ERBB2 gene amplification status in the tumors (p < 0.01). Transfection of siRNAs targeting AP-2α and AP-2γ mRNAs in the BT-474 breast cancer cell line repressed the expression of the endogenous ERBB2 gene at both the mRNA and protein levels. Moreover, the additional transfection of an siRNA directed against the YY1 transcript further reduced the ERBB2 protein level, suggesting that AP-2 and YY1 transcription factors cooperate to stimulate the transcription of the ERBB2 gene. Conclusion This study highlights the role of both AP-2α and YY1 transcription factors in ERBB2 oncogene overexpression in breast tumors. Our results also suggest that high ERBB2 expression may result either from gene amplification or from increased transcription factor levels.
Collapse
Affiliation(s)
- Abdelkader Allouche
- Department of Pathology, GIGA-Research, CRCE, University of Liege and CHU of Liege, B23, Avenue de l'Hopital, 3, 4000 Liege, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hoffman TL, Javier AL, Campeau SA, Knight RD, Schilling TF. Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:679-91. [PMID: 17724731 DOI: 10.1002/jez.b.21189] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcription factor AP2 (Tfap2) genes play essential roles in development of the epidermis and migratory cells of the neural crest (NC) in vertebrate embryos. These transcriptional activators are among the earliest genes expressed in the ectoderm and specify fates within the epidermis/crest through both direct and indirect mechanisms. The Tfap2 family arose from a single ancestral gene in a chordate ancestor that underwent gene duplication to give up to five family members in living vertebrates. This coincided with the acquisition of important roles in NC development by Tfap2 genes suggesting that this gene family was important in ectodermal evolution and possibly in the origin of NC. Here, we show that a zebrafish tfap2c is expressed in the nonneural ectoderm during early development and functions redundantly with tfap2a in NC specification. In zebrafish embryos depleted of both tfap2a and tfap2c, NC cells are virtually eliminated. Cell transplantation experiments indicate that tfap2c functions cell-autonomously in NC specification. Cells of the enveloping layer, which forms a temporary skin layer surrounding the ectoderm, also fail to differentiate or to express appropriate keratins in tfap2c deficient embryos. The role of Tfap2 genes in epidermal and NC development is considered here in the broader context of ectodermal evolution. Distinct, tissue-specific functions for Tfap2 genes in different vertebrates may reflect subfunctionalisation of an ancestral gene that consequently led to the gain of novel roles for different subfamily members in patterning the epidermis and NC.
Collapse
Affiliation(s)
- Trevor L Hoffman
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697-2305, USA
| | | | | | | | | |
Collapse
|
37
|
Deng WG, Jayachandran G, Wu G, Xu K, Roth JA, Ji L. Tumor-specific activation of human telomerase reverses transcriptase promoter activity by activating enhancer-binding protein-2beta in human lung cancer cells. J Biol Chem 2007; 282:26460-70. [PMID: 17630431 DOI: 10.1074/jbc.m610579200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The up-regulated expression and telomerase activity of human telomerase reverse transcriptase (hTERT) are hallmarks of tumorigenesis. The hTERT promoter has been shown to promote hTERT gene expression selectively in tumor cells but not in normal cells. However, little is known about how tumor cells differentially activate hTERT transcription and induce telomerase activity. In this study, we identified activating enhancer-binding protein-2beta (AP-2beta) as a novel transcription factor that specifically binds to and activates the hTERT promoter in human lung cancer cells. AP-2beta was detected in hTERT promoter DNA-protein complexes formed in nuclear extracts prepared only from lung cancer cells but not from normal cells. We verified the tumor-specific binding activity of AP-2beta for the hTERT promoter in vitro and in vivo and detected high expression levels of AP-2beta in lung cancer cells. We found that ectopic expression of AP-2beta reactivated hTERT promoter-driven reporter green fluorescent protein (GFP) gene and endogenous hTERT gene expression in normal cells, enhanced GFP gene expression in lung cancer cells, and prolonged the life span of primary lung bronchial epithelial cells. Furthermore, we found that inhibition of endogenous AP-2beta expression by AP-2beta gene-specific small interfering RNAs effectively attenuated hTERT promoter-driven GFP expression, suppressed telomerase activity, accelerated telomere shortening, and inhibited tumor cell growth by induction of apoptosis in lung cancer cells. Our results demonstrate the tumor-specific activation of the hTERT promoter by AP-2beta and imply the potential of AP-2beta as a novel tumor marker or a cancer therapeutic target.
Collapse
MESH Headings
- Apoptosis/drug effects
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/pathology
- Cell-Free System/enzymology
- Cell-Free System/pathology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter
- Green Fluorescent Proteins
- Humans
- Lung/enzymology
- Lung/pathology
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Small Interfering/pharmacology
- Respiratory Mucosa/enzymology
- Respiratory Mucosa/pathology
- Telomerase/antagonists & inhibitors
- Telomerase/biosynthesis
- Telomerase/genetics
- Telomere/genetics
- Telomere/metabolism
- Telomere/pathology
- Transcription Factor AP-2/antagonists & inhibitors
- Transcription Factor AP-2/genetics
- Transcription Factor AP-2/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Wu-Guo Deng
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Zhang X, Leung YK, Ho SM. AP-2 regulates the transcription of estrogen receptor (ER)-beta by acting through a methylation hotspot of the 0N promoter in prostate cancer cells. Oncogene 2007; 26:7346-54. [PMID: 17525739 DOI: 10.1038/sj.onc.1210537] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We reported previously that the loss of expression of estrogen receptor (ER)-beta during the development of prostate cancer (PCa) is associated with methylation of a CpG island located in the 5'-flanking sequence of the 0N promoter. Three methylation hotspots, referred to as centers 1, 2 and 3, were identified in the CpG island. In this study, we demonstrated that a 581-bp region with these three centers within it is sufficient for the promoter activity in PCa cells. Deletion analyses indicated that center 1 (16 bp), with a putative activator protein-2 (AP-2) binding site, is essential for gene transactivation. Chromatin immunoprecipitation assays showed that AP-2alpha occupies a short sequence containing center 1. Forced expression of AP-2alpha or -2gamma, but not -2beta, increased activity of the ERbeta 0N promoter and the accumulation of mRNA. Conversely, siRNA-mediated AP-2alpha and -2gamma knockdown reduced levels of ERbeta transcript and promoter activity. Quantitative reverse transcription-PCR showed that AP-2alpha and -2gamma are the predominant transcripts expressed in PCa cells, and levels of ERbeta transcript correlate with levels of these AP-2 transcripts among different PCa cell lines. These results provide the first evidence that ERbeta is an AP-2-regulated gene. They also support the hypothesis that certain cis-acting elements are methylation hotspots susceptible to epigenetic modifications during cancer progression.
Collapse
Affiliation(s)
- X Zhang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | | | | |
Collapse
|
39
|
Liu H, Tan BCM, Tseng KH, Chuang CP, Yeh CW, Chen KD, Lee SC, Yung BYM. Nucleophosmin acts as a novel AP2alpha-binding transcriptional corepressor during cell differentiation. EMBO Rep 2007; 8:394-400. [PMID: 17318229 PMCID: PMC1852768 DOI: 10.1038/sj.embor.7400909] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 12/21/2006] [Accepted: 01/02/2007] [Indexed: 11/08/2022] Open
Abstract
Nucleophosmin (NPM) is an important nucleolar phosphoprotein with pleiotropic functions in various cellular processes. In this study, we have further examined the largely uncharacterized role of NPM in transcriptional regulation by uncovering novel NPM-binding transcriptional factors. Among potential interactors, we found that activating protein transcription factor 2 (AP2)alpha forms a complex with NPM during retinoic-acid-induced cell differentiation. We show that this complex is recruited to the promoters of certain retinoic-acid-responsive genes, including NPM itself. Such binding of AP2alpha, and consequent recruitment of NPM, is selective and dependent on a consensus AP2alpha-binding sequence. Remarkably, suppression of NPM by RNA interference alleviates the repression of gene expression mediated by retinoic acid and AP2alpha. Our findings further show that, on promoter binding, NPM probably exerts its repressive effect by inducing a change in local chromatin structure that also engages histone deacetylases. This study unveils a hitherto unrecognized transcriptional corepressor function of the NPM protein, and highlights a novel mechanism by which NPM regulates cell growth and differentiation.
Collapse
Affiliation(s)
- Hsuan Liu
- Cancer Biochemistry Laboratory, Department of Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan 333, Taiwan, Republic of China
| | - Bertrand Chin-Ming Tan
- Institute of Molecular Medicine, National Taiwan University, 7 Chung Shan South Road, Taipei 106, Taiwan, Republic of China
| | - Kai Hung Tseng
- Cancer Biochemistry Laboratory, Department of Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan 333, Taiwan, Republic of China
| | - Ching Ping Chuang
- Cancer Biochemistry Laboratory, Department of Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan 333, Taiwan, Republic of China
| | - Chun-Wei Yeh
- Cancer Biochemistry Laboratory, Department of Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan 333, Taiwan, Republic of China
| | - Kwang-Den Chen
- Department of Life Science, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan 333, Taiwan, Republic of China
| | - Sheng-Chung Lee
- Institute of Molecular Medicine, National Taiwan University, 7 Chung Shan South Road, Taipei 106, Taiwan, Republic of China
| | - Benjamin Yat-Ming Yung
- Cancer Biochemistry Laboratory, Department of Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan 333, Taiwan, Republic of China
- Tel: +886 3 2118800 (ext. 5115); Fax: +886 3 2118615; E-mail:
| |
Collapse
|
40
|
Schwartz B, Melnikova VO, Tellez C, Mourad-Zeidan A, Blehm K, Zhao YJ, McCarty M, Adam L, Bar-Eli M. Loss of AP-2alpha results in deregulation of E-cadherin and MMP-9 and an increase in tumorigenicity of colon cancer cells in vivo. Oncogene 2007; 26:4049-58. [PMID: 17224907 DOI: 10.1038/sj.onc.1210193] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Activator protein-2 (AP-2) is a transcription factor that regulates proliferation and differentiation in mammalian cells and has been implicated in the acquisition of the metastatic phenotype in several types of cancer. Herein, we examine the role of AP-2alpha in colon cancer progression. We provide evidence for the lack of AP-2alpha expression in the late stages of colon cancer cells. Re-expression of the AP-2alpha gene in the AP-2alpha-negative SW480 colon cancer cells suppressed their tumorigenicity following orthotopic injection into the cecal wall of nude mice. The inhibition of tumor growth could be attributed to the increased expression of E-cadherin and decreased expression and activity of matrix-metalloproteinase-9 (MMP-9) in the transfected cells, as well as a substantial loss of their in vitro invasive properties. Conversely, targeting constitutive expression of AP-2alpha in AP-2-positive KM12C colon cancer cells with small interfering RNA resulted in an increase in their invasive potential, downregulation of E-cadherin and increased expression of MMP-9. In SW480 cells, re-expression of AP-2alpha resulted in a fourfold increase in the activity of E-cadherin promoter, and a 5-14-fold decrease in the activity of MMP-9 promoter, indicating transcriptional regulation of these genes by AP-2alpha. Chromatin immunoprecipitation assay showed that re-expressed AP-2alpha directly binds to the promoter of E-cadherin, where it has been previously reported to act as a transcriptional activator. Furthermore, chromatin immunoprecipitation assay revealed AP-2alpha binding to the MMP-9 promoter, which ensued by decreased binding of transcription factor Sp-1 and changes in the recruitment of transcription factors to a distal AP-1 element, thus, contributing to the overall downregulation of MMP-9 promoter activity. Collectively, our data provide evidence that AP-2alpha acts as a tumor suppressor gene in colon cancer..
Collapse
Affiliation(s)
- B Schwartz
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Choi Y, Sinha S. Determination of the consensus DNA-binding sequence and a transcriptional activation domain for ESE-2. Biochem J 2006; 398:497-507. [PMID: 16704374 PMCID: PMC1559455 DOI: 10.1042/bj20060375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ESE (epithelium-specific Ets) subfamily of Ets transcription factors plays an important role in regulating gene expression in a variety of epithelial cell types. Although ESE proteins have been shown to bind to regulatory elements of some epithelial genes, the optimal DNA-binding sequence has not been experimentally ascertained for any member of the ESE subfamily of transcription factors. This has made the identification and validation of their targets difficult. We are studying ESE-2 (Elf5), which is highly expressed in epithelial cells of many tissues including skin keratinocytes. Here, we identify the preferred DNA-binding site of ESE-2 by performing CASTing (cyclic amplification and selection of targets) experiments. Our analysis shows that the optimal ESE-2 consensus motif consists of a GGA core and an AT-rich 5'- and 3'-flanking sequences. Mutational and competition experiments demonstrate that the flanking sequences that confer high DNA-binding affinity for ESE-2 show considerable differences from the known consensus DNA-binding sites of other Ets proteins, thus reinforcing the idea that the flanking sequences may impart recognition specificity for Ets proteins. In addition, we have identified a novel isoform of murine ESE-2, ESE-2L, that is generated by use of a hitherto unreported new exon and an alternate promoter. Interestingly, transient transfection assays with an optimal ESE-2 responsive reporter show that both ESE-2 and ESE-2L are weak transactivators. However, similar studies utilizing GAL4 chimaeras of ESE-2 demonstrate that while the DNA-binding ETS (E twenty-six) domain functions as a repressor, the PNT (pointed domain) of ESE-2 can act as a potent transcriptional activation domain. This novel transactivating property of PNT is also shared by ESE-3, another ESE family member. Identification of the ESE-2 consensus site and characterization of the transcriptional activation properties of ESE-2 shed new light on its potential as a regulator of target genes.
Collapse
Affiliation(s)
- Yeon Sook Choi
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, U.S.A
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Ikeda K, Maegawa H, Ugi S, Tao Y, Nishio Y, Tsukada S, Maeda S, Kashiwagi A. Transcription factor activating enhancer-binding protein-2beta. A negative regulator of adiponectin gene expression. J Biol Chem 2006; 281:31245-53. [PMID: 16954217 DOI: 10.1074/jbc.m605132200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported the association between the activating enhancer-binding protein-2beta (AP-2beta) transcription factor gene and type 2 diabetes. This gene is preferentially expressed in adipose tissue, and subjects with the disease-susceptible allele of AP-2beta showed stronger expression in adipose tissue than those without the susceptible allele. Furthermore, overexpression of AP-2beta leads to lipid accumulation by enhancing glucose transport and inducing insulin resistance in 3T3-L1 adipocytes. In this study we demonstrated that overexpression of AP-2beta in 3T3-L1 adipocytes decreased the expression and secretion of adiponectin and increased those of interleukin-6 (IL-6). Interestingly, the effects of AP-2beta on the expressions of adiponectin and IL-6 and the mechanisms by which AP-2beta modulated their expressions were different. We found that the promoter activity of adiponectin gene was inhibited by AP-2beta overexpression and enhanced by knockdown of endogenous AP-2beta, whereas IL-6 was unaffected. Electrophoretic mobility shift assays revealed the existence of putative responsive elements for AP-2beta and NF-YA in human and mouse adiponectin promoter regions, and mutation of this AP-2beta binding site abolished the inhibitory effect of AP-2beta. Furthermore, chromatin immunoprecipitation assays demonstrated that AP-2beta and NF-YA competitively bind to the same region of the adiponectin promoter. Our results clearly demonstrated that AP-2beta directly inhibits adiponectin gene expression by displacing NF-YA and binding to its promoter. We conclude that AP-2beta might modulate the expression of adiponectin by directly inhibiting its transcriptional activity.
Collapse
Affiliation(s)
- Kazuhiro Ikeda
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, 520-2192 Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Oztürk A, Donald LJ, Li L, Duckworth HW, Duckworth ML. Proteomic identification of AP2 gamma as a rat placental lactogen II trophoblast cell-specific enhancer binding protein. Endocrinology 2006; 147:4319-29. [PMID: 16794002 DOI: 10.1210/en.2006-0492] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The factors that regulate the developmental expression of the rodent prolactin gene family in placenta remain poorly defined. We previously identified an enhancer element in the 5' flanking region of one family member, rat placental lactogen II (rPLII), which could target reporter gene expression to the placenta in transgenic mice; this enhancer functioned in the Rcho rat trophoblast cell line but not in the rat pituitary GC cell line. In further experiments to identify the factors that bind this element, we have selectively enriched for DNA binding proteins in nuclear extract from Rcho cells using magnetic beads coupled to a 43-bp enhancer oligonucleotide. Tryptic peptides of bound proteins were analyzed by HPLC coupled off-line to matrix-assisted laser desorption ionization time of flight mass spectrometry. Several peptides of AP2 gamma, a key trophoblast cell-specific transcription factor, were identified. Gel mobility shift assays using AP2 gamma-specific antiserum and mutant enhancer oligonucleotides demonstrated binding specifically to the FP2 DNase I-protected region of the element, identifying an atypical binding site for this factor. In cotransfection assays in rat pituitary GC cells, AP2 gamma transactivated the enhancer via this region. Chromatin immunoprecipitation assays confirmed AP2 gamma occupancy of the enhancer region in situ in the nuclei of Rcho giant cells. These data support a role for AP2 gamma in the placental giant cell-specific expression of the rPLII gene and provide the first direct evidence for the involvement of a placental-specific transcription factor in the regulation of a member of this gene family.
Collapse
Affiliation(s)
- Arzu Oztürk
- Departments of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | | | |
Collapse
|
45
|
Li H, Goswami PC, Domann FE. AP-2gamma induces p21 expression, arrests cell cycle, and inhibits the tumor growth of human carcinoma cells. Neoplasia 2006; 8:568-77. [PMID: 16867219 PMCID: PMC1601932 DOI: 10.1593/neo.06367] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activating enhancer-binding protein 2gamma (AP-2gamma) is a member of the developmentally regulated AP-2 transcription factor family that regulates the expression of many downstream genes. Whereas the effects of AP-2alpha overexpression on cell growth are fairly well established, the cellular effects of AP-2gamma overexpression are less well studied. Our new findings show that AP-2gamma significantly upregulates p21 mRNA and proteins, inhibits cell growth, and decreases clonogenic survival. Cell cycle analysis revealed that forced AP-2gamma expression induced G1-phase arrest, decreased DNA synthesis, and decreased the fraction of cells in S phase. AP-2gamma expression also led to cyclin D1 repression, decreased Rb phosphorylation, and decreased E2F activity in breast carcinoma cells. AP-2gamma binding to the p21 promoter was observed in vivo, and the absence of growth inhibition in response to AP-2gamma expression in p21(-/-) cells demonstrated that p21 caused, at least in part, AP-2-induced cell cycle arrest. Finally, the tumor growth of human breast carcinoma cells in vivo was inhibited by the expression of AP-2gamma relative to empty vector-infected cells, suggesting that AP-2gamma acts as a tumor suppressor. In summary, expression of either AP-2gamma or AP-2alpha inhibited breast carcinoma cell growth; thus, these genes may be therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Hualei Li
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
46
|
Ortt K, Sinha S. Derivation of the consensus DNA-binding sequence for p63 reveals unique requirements that are distinct from p53. FEBS Lett 2006; 580:4544-50. [PMID: 16870177 DOI: 10.1016/j.febslet.2006.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 06/28/2006] [Accepted: 07/04/2006] [Indexed: 11/21/2022]
Abstract
p63 is a member of the p53 family of proteins and plays an important role in epithelial development and differentiation. Although some p63 binding sites in the regulatory elements of epithelial genes have been identified, the optimal DNA-binding sequence has not been ascertained for this transcription factor. Here, we identify the preferred DNA-binding site of p63 by performing in vitro DNA selection experiments. Our analysis shows that the optimal p63 DNA-binding consensus motif consists of a CA(T)TG core and an AT-rich 5' and 3' flanking sequence. Gel shift and competition experiments demonstrate that there are specific sequence requirements that confer high DNA-binding affinity for p63 and that significant deviation from the consensus sequences result in poor or no binding. This pattern of DNA-binding is similar for both recombinant p63 and the endogenous protein present in keratinocyte nuclear extracts. Furthermore, we show that the consensus sequence is distinctly different from that of p53, particularly in the flanking sequences. Identification of the p63 consensus DNA-binding sequence will facilitate the validation of in vivo p63-responsive elements that mediate transcriptional regulation of a wide variety of target genes.
Collapse
Affiliation(s)
- Kori Ortt
- Department of Biochemistry, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
47
|
Wenke AK, Rothhammer T, Moser M, Bosserhoff AK. Regulation of integrin α10 expression in chondrocytes by the transcription factors AP-2ε and Ets-1. Biochem Biophys Res Commun 2006; 345:495-501. [PMID: 16684505 DOI: 10.1016/j.bbrc.2006.04.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 04/21/2006] [Indexed: 11/22/2022]
Abstract
Expression of integrin alpha10 is initiated at the beginning of chondrogenesis and continues throughout cartilage development in adult cartilage. In our study, we aim to identify regulatory sequences that control the cell-type specific expression of the human integrin alpha10 gene. Therefore, promoter constructs harboring 1139bp 5' of the transcriptional start site of the human integrin alpha10 gene were analyzed. Our experiments localized a promoter region that directs high levels of expression specifically in chondrocytes. A sequence analysis detected three consensus AP-2 binding sites within this functional domain. Functionality of these sites was tested and confirmed by cotransfection of AP-2 in a luciferase reporter assay. Interestingly, EMSA identified AP-2epsilon as the major AP-2 protein binding to the AP-2 consensus sequences. Additionally, Ets-1 was shown to be a positive regulator of the integrin alpha10 expression whereas Sox9 was irrelevant. Taken together, these results suggest that AP-2epsilon and Ets-1 are involved in the regulation of integrin alpha10 transcription in chondrocytes.
Collapse
Affiliation(s)
- Ann-Kathrin Wenke
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
48
|
Winger Q, Huang J, Auman HJ, Lewandoski M, Williams T. Analysis of transcription factor AP-2 expression and function during mouse preimplantation development. Biol Reprod 2006; 75:324-33. [PMID: 16672719 DOI: 10.1095/biolreprod.106.052407] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The activating protein 2 (AP-2) transcription factor family is required for multiple aspects of mouse postimplantation development, but much less is known about the expression and possible function of these genes during the preimplantation period. In the present study, we have examined the expression of all five members of the mouse AP-2 gene family in the unfertilized oocyte and from zygote formation to the blastocyst stage of development. Four AP-2 genes are differentially expressed during the preimplantation period,Tcfap2a, Tcfap2b, Tcfap2c, and Tcfap2e. Furthermore, with the exception of Tcfap2a, these genes are also expressed in unfertilized oocytes, indicating that they may be important for oogenesis, maternal-effect functions, or both. Given these findings, we have initiated studies to assess how various combinations of maternal and zygotic AP-2 gene expression might function together to regulate pre- and peri-implantation development. The present study focuses on the interplay between the expression of zygotic Tcfap2aand maternal and zygoticTcfap2c. These studies indicate that zygotic, but not maternal, Tcfap2cexpression is required for normal embryogenesis. In addition, the combined loss of both Tcfap2a and Tcfap2caccelerates embryonic lethality compared to the loss of either gene alone, demonstrating that genetic redundancy exists between these two AP-2 family members during the peri-implantation period of embryogenesis.
Collapse
Affiliation(s)
- Quinton Winger
- Department of Craniofacial Biology and Cell, University of Colorado Health Science Center at Fitzsimons, Auorora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
49
|
Li H, Watts GS, Oshiro MM, Futscher BW, Domann FE. AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene 2006; 25:5405-15. [PMID: 16636674 DOI: 10.1038/sj.onc.1209534] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activating enhancer-binding protein 2alpha (AP-2alpha) and activating enhancer-binding protein 2gamma (AP-2gamma) are transcription factors that bind GC-rich consensus sequences and regulate the expression of many downstream genes. AP-2alpha and AP-2gamma interact with p53 both physically and functionally. Expression microarray results in human breast carcinoma cells with forced p53 expression revealed AP-2gamma as a putative transcriptional target of p53. To confirm and extend these findings we measured the effects of forced p53 expression in human breast carcinoma cells by real-time reverse transcription-PCR, Western blotting, electrophoretic gel mobility shift assays, promoter reporter, chromatin immunoprecipitation and chromatin accessibility assays. Wild-type p53 expression rapidly induced not only AP-2gamma but also AP-2alpha mRNA. The subsequent increase in these proteins led to increased AP-2 DNA-binding and transactivating activity. Candidate p53-binding sites were identified in the AP-2alpha and AP-2gamma promoters. p53 binding to these cis-elements in vivo was also observed, together with a relaxation of chromatin structure in these regions. Finally, expression of either AP-2alpha or gamma inhibited growth of human breast carcinoma cells in vitro. Taken together, our findings indicate that these AP-2 genes are targets for transcriptional activation by p53 and suggest that AP-2 proteins may mediate some of the downstream effects of p53 expression such as inhibition of proliferation.
Collapse
Affiliation(s)
- H Li
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
50
|
Tao Y, Maegawa H, Ugi S, Ikeda K, Nagai Y, Egawa K, Nakamura T, Tsukada S, Nishio Y, Maeda S, Kashiwagi A. The transcription factor AP-2beta causes cell enlargement and insulin resistance in 3T3-L1 adipocytes. Endocrinology 2006; 147:1685-96. [PMID: 16373417 DOI: 10.1210/en.2005-1304] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have reported the association of variations in the activating protein-2beta (AP-2beta) transcription factor gene with type 2 diabetes. This gene was preferentially expressed in 3T3-L1 adipocytes in a differentiation stage-dependent manner, and preliminary experiments showed that subjects with the disease-susceptible allele showed stronger expression in adipose tissue than those without the susceptible allele. Thus, we overexpressed the AP-2beta gene in 3T3-L1 adipocytes to clarify whether AP-2beta might play a crucial role in the pathogenesis of type 2 diabetes through dysregulation of adipocyte function. In cells overexpressing AP-2beta, cells increased in size by accumulation of triglycerides accompanied by enhanced glucose uptake. On the contrary, suppression of AP-2beta expression by small interfering RNA inhibited glucose uptake. Enhancement of glucose uptake by AP-2beta overexpression was attenuated by inhibitors of phospholipase C (PLC) and atypical protein kinase Czeta/lambda (PKCzeta/lambda), but not by a phosphatidylinositol 3-kinase (PI3-K) inhibitor. Consistently, we found activation of PLC and atypical PKC, but not PI3-K, by AP-2beta expression. Furthermore, overexpression of PLCgamma enhanced glucose uptake, and this activation was inhibited by an atypical PKC inhibitor, suggesting that the enhanced glucose uptake may be mediated through PLC and atypical PKCzeta/lambda, but not PI3-K. Moreover, we observed the increased tyrosine phosphorylation of Grb2-associated binder-1 (Gab1) and its association with PLCgamma, indicating that Gab1 may be involved in AP-2beta-induced PLCgamma activation. Finally, AP-2beta overexpression was found to relate to the impaired insulin signaling. We propose that AP-2beta is a candidate gene for producing adipocyte hypertrophy and may relate to the abnormal characteristics of adipocytes observed in obesity.
Collapse
Affiliation(s)
- Yukari Tao
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|