1
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Omoor INA, Yankey R, Shehata AI, Fang CH, Hui L, Dongmei L, Ling J, Dosoky WM, Karanja JK, Dawood MAO, Othman SI, Allam AA, Rudayni HA, Taha AE, Swelum AA, Tellez-Isaias G, Zhanxi L. Dietary supplement of fermented grass forage regulates growth performance, antioxidant capacity, and immune response of broiler chickens. Poult Sci 2024; 103:103323. [PMID: 38103530 PMCID: PMC10764258 DOI: 10.1016/j.psj.2023.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023] Open
Abstract
The current study aimed to determine the effects of different levels of fermented Juncao grass (FG) on growth parameters, blood constituents, immunity, and antioxidative properties of broilers. A total of 240 (21-d-old) broiler chicks were randomly distributed to four dietary treatments of sixty birds, with six replicate pens and ten birds in each. Fermented grass was added to the basal diet at four levels with 0, 5, 10, and 15% FG. The results revealed that broilers fed 5% FG had significantly higher (P < 0.05) final body weight (FBW), average daily gain (WG) and average daily feed intake (ADFI). The best conversion ratio (FCR) was recorded for broilers supplemented with 5% FG compared to the group supplemented with 15% FG (P < 0.05). Increasing FG % decreased (P < 0.05) anti-inflammatory cytokines IL-4, IL-6, and IL-10. However, FG increased (P < 0.05) proinflammatory cytokines IFN-γ, IL-1, IL-2, IL-12, and TNF-α (P < 0.05). Moreover, IgA, IgG, and IgM levels increased (P < 0.05) with increasing FG %. In addition, increasing FG % in broiler rations significantly increased (P < 0.05) serum antioxidant levels of T-AOC, GSH-PX, SOD, CAT, NO and GSH, but decreased (P < 0.05) MDA levels compared to the control group. Conclusively, fermented Juncao grass would be considered a novel herbal feed additive for improving broiler performance, immunity, antioxidant, and health status. Nevertheless, further research at the molecular level is needed to quantify the effects of these herbal components on cellular and humoral immune functions in broiler chickens.
Collapse
Affiliation(s)
- Ibrahim N A Omoor
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Richard Yankey
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Akram I Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Chew H Fang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Hui
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Dongmei
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jin Ling
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Waleed M Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Joseph K Karanja
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; The Center for Applied Research on the Environment and Sustainability, the American University in Cairo, Cairo 11835, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Behira, Rasheed, 22758 Edfina, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lin Zhanxi
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
Wang W, Zhang L. Genome-Wide Association Study on Two Immune-Related Traits in Jinghai Yellow Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- W Wang
- Jiangsu Agri-animal Husbandry Vocational College, China; Yangzhou University, China
| | - L Zhang
- Jiangsu Agri-animal Husbandry Vocational College, China
| |
Collapse
|
4
|
Weng Z, Xu Y, Zhong M, Li W, Chen J, Zhong F, Du B, Zhang B, Huang X. Runs of homozygosity analysis reveals population characteristics of yellow-feathered chickens using re-sequencing data. Br Poult Sci 2021; 63:307-315. [PMID: 34747677 DOI: 10.1080/00071668.2021.2003752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. To evaluate the inbreeding of yellow-feathered chickens (YFCs) and identify genes related to their unique characteristics, whole-genome re-sequencing data were applied to detect runs of homozygosity (ROH) in the genomes of ten YFC breeds. The number, length, distribution of ROH, and inbreeding coefficient in different YFC populations were calculated. Genomic regions with high frequency in ROH were annotated.2. In total, 25,547 ROH with an average length of 335 kb were detected, with most being <1 Mb. The domination of short ROH reflected the long breeding history of this chicken. The number, length, frequency, and distribution of ROH varied among chicken populations, and high genetic diversity was maintained.3. Numerous genes related to YFC characteristics were identified in the high-frequency ROH regions. Among these, IFNA, IFNB, IL11RA, IL22RA1, IFNLR1, and TRIF genes were involved in disease resistance. The AMY, G6PC, SDHB, GCNT4, and ACO genes were associated with energy material metabolism; and FABPL, AQP7, ACAA2, and RYR2 were related to meat quality and flavour. The KITLG, CREB3, RYR2, and LGR4 genes, related to pigmentation, were detected.4. This ROH-based inbreeding evaluation laid the foundation for breeding and conservation of YFC populations, and the candidate genes identified can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Zhuoxian Weng
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Yongjie Xu
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Ming Zhong
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Weina Li
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Jiebo Chen
- Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Fusheng Zhong
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Bingwang Du
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| | - Bin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xunhe Huang
- Jiaying University/Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou 514015, China.,Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, 514015, China
| |
Collapse
|
5
|
Genomic variations and signatures of selection in Wuhua yellow chicken. PLoS One 2020; 15:e0241137. [PMID: 33095808 PMCID: PMC7584229 DOI: 10.1371/journal.pone.0241137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Wuhua yellow chicken (WHYC) is an important traditional yellow-feathered chicken from China, which is characterized by its white tail feathers, white flight feathers, and strong disease resistance. However, the genomic basis of these unique traits associated with WHYC is poorly understood. In this study, whole-genome resequencing was performed with an average coverage of 20.77-fold to investigate heritable variation and identify selection signals in WHYC. Reads were mapped onto the chicken reference genome (Galgal5) with a coverage of 85.95%. After quality control, 11,953,471 single nucleotide polymorphisms and 1,069,574 insertion/deletions were obtained. In addition, 41,408 structural variants and 33,278 copy number variants were found. Comparative genomic analysis of WHYC and other yellow-feathered chicken breeds showed that selected regions were enriched in genes involved in transport and catabolism, immune system, infectious diseases, signal transduction, and signaling molecules and interactions. Several genes associated with disease resistance were also identified, including IFNA, IFNB, CD86, IL18, IL11RA, VEGFC, and ATG10. Furthermore, our results suggest that PMEL and TYRP1 may contribute to the white feather coloring in WHYC. These findings can improve our understanding of the genetic characteristics of WHYC and may contribute to future breed improvement.
Collapse
|
6
|
Kazemi H, Najafi M, Ghasemian E, Rahimi-Mianji G, Pirsaraei ZA. Polymorphism detection of promoter region of IFN-
$$\gamma $$
γ
and IL-2 genes and their association with productive traits in Mazandaran native breeder fowls. J Genet 2018. [DOI: 10.1007/s12041-018-0981-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Peng W, Sun Y, Li GF, He LG, Li RZ, Liang YS, Ding X, Yu X, Zhang Y, Lin HR, Lu DQ. Two Distinct Interferon-γ in the Orange-Spotted Grouper ( Epinephelus coioides): Molecular Cloning, Functional Characterization, and Regulation in Toll-Like Receptor Pathway by Induction of miR-146a. Front Endocrinol (Lausanne) 2018; 9:41. [PMID: 29535680 PMCID: PMC5834515 DOI: 10.3389/fendo.2018.00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interferon gamma (IFNγ) is a Th1 cytokine that is critical for innate and adaptive immunity. Toll-like receptors (TLRs) signaling pathways are critical in early host defense against invading pathogens. miR-146a has been reported to participate in the regulation of host immunity. The known mechanisms of integrations between the IFNγ and TLR signaling pathways are incompletely understood, especially in teleosts. In this study, orange-spotted grouper (Epinephelus coioides) IFNγ1 and IFNγ2, their biological activities, especially their involvements in TLR pathway, were explored. We identified and cloned two IFNγ genes of E. coioides, namely EcIFNγ1 and EcIFNγ2. The produced recombinant E. coioides IFNγ1 (rEcIFNγ1) and IFNγ2 (rEcIFNγ2) proteins showed functions, which are similar to those of other bony fishes, such as enhancing nitric oxide responses and respiratory burst response. rEcIFNγ2 could regulate TLR pathway by enhancing the promoter activity of miR-146a upstream sequence and thus increasing the expression level of miR-146a, which possibly targets TNF receptor-associated factor 6 (TRAF6), a key adapter molecule in TLR signaling pathway. Taken together, these findings unravel a novel regulatory mechanism of anti-inflammatory response by IFNγ2, which could mediate TLR pathway through IFNγ2-miR-146a-TRAF6 negative regulation loop. It is suggested that IFNγ2 may provide a promising therapeutic, which may help to fine tune the immune response.
Collapse
Affiliation(s)
- Wan Peng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Gao-Fei Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Liang-Ge He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Zhu Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Si Liang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xu Ding
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xue Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hao-Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Qi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Dan-Qi Lu,
| |
Collapse
|
8
|
Velázquez J, Acosta J, Herrera N, Morales A, González O, Herrera F, Estrada MP, Carpio Y. Novel IFNγ homologue identified in Nile tilapia (Oreochromis niloticus) links with immune response in gills under different stimuli. FISH & SHELLFISH IMMUNOLOGY 2017; 71:275-285. [PMID: 29017941 DOI: 10.1016/j.fsi.2017.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFN-γ) has important roles in both innate and adaptive immune responses. This cytokine plays a very important role in defining Th1 immune response in all vertebrates. In the present study, we identified and isolated for the first time the gene coding for Nile tilapia (Oreochromis niloticus) IFNγ from spleen lymphocytes. The isolated tilapia IFNγ has between 24 and 62% of amino acid identity as compared to reported sequences for other teleost fishes. It has close phylogenetic relationships with IFNγ molecules belonging to the group of Perciforms and presents the typical structural characteristics of gamma interferon molecules. The tissue expression analysis showed that IFNγ is expressed constitutively in head kidney, skin, intestine, muscle and brain. Its expression was not detected in gills by conventional RT-PCR. However, under conditions of stimulation with Poly I:C and LPS, IFNγ expression was up-regulated in gills after 24 h post-stimulation. IFNγ expression was also induced in gills 24 h after Edwardsiella tarda infection suggesting its important role in immunity against intracellular bacteria. The recombinant protein produced in Escherichia coli induced Mx gene transcription in head kidney primary culture cells. These results are the first steps to characterize the role of tilapia IFNγ in the defense against pathogens in tilapia. Furthermore, the isolation of this molecule provides a new tool to characterize the cellular immune response to various stimuli in this organism.
Collapse
Affiliation(s)
- Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Jannel Acosta
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Naylin Herrera
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Antonio Morales
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Osmany González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Fidel Herrera
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba.
| |
Collapse
|
9
|
Xiang Y, Liu W, Jia P, Li Y, Jin Y, Chen L, Zhang J, Jia K, Yi M. Molecular characterization and expression analysis of interferon-gamma in black seabream Acanthopagrus schlegelii. FISH & SHELLFISH IMMUNOLOGY 2017; 70:140-148. [PMID: 28870857 DOI: 10.1016/j.fsi.2017.08.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFN-γ) is a major component in immunological signaling and plays a key role in resisting viral infection. In this study, we identified and characterized an IFN-γ gene (AsIFN-γ) in the marine fish black seabream (Acanthopagrus schlegelii). We cloned AsIFN-γ genomic sequence, which comprises four exons, three introns and an upstream promoter including several conserved regulatory elements. The complete cDNA of AsIFN-γ was 816 bp in length and encoded a putative 194 amino acids (aa) protein with a 22 aa signal peptide, six α-helices and one nuclear localization signal (NLS). Multiple alignment showed that AsIFN-γ protein shared 31-60% identity with IFN-γ of other fish but low identity with fish IFN-γrel and IFN-γ of other vertebrates. AsIFN-γ was constitutively expressed in all examined tissues with the highest expression level in immune organs, such as spleen, gill and kidney. In black seabream infected by red spotted nervous necrosis virus (RGNNV), the expression of AsIFN-γ was significantly up-regulated in most tissues, and RGNNV infection in vitro also induced significant up-regulation of AsIFN-γ, indicating that AsIFN-γ was involved in immune response to RGNNV infection. Overexpression of AsIFN-γ in cultured Acanthopagrus schlegelii brain (AsB) cells rapidly and transiently stimulated the expression of JAK-STAT signaling pathway related genes including STAT1, STAT2 and IRF9, as well as the downstream antiviral genes MX1 and ISG15. Furthermore, overexpression of AsIFN-γ was able to significantly inhibit RGNNV replication and virus production in AsB cells. In summary, we identified a conserved IFN-γ gene of black seabream, and demonstrated the rapid and strong antiviral activities of AsIFN-γ against RGNNV in black seabream.
Collapse
Affiliation(s)
- Yangxi Xiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yunlong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yilin Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
10
|
Ren Y, Li X, Liu Y, Yang L, Cai Y, Quan S, Pan L, Chen S. A novel quantitative real-time PCR method for identification and quantification of mammalian and poultry species in foods. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Santhakumar D, Rubbenstroth D, Martinez-Sobrido L, Munir M. Avian Interferons and Their Antiviral Effectors. Front Immunol 2017; 8:49. [PMID: 28197148 PMCID: PMC5281639 DOI: 10.3389/fimmu.2017.00049] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.
Collapse
Affiliation(s)
| | - Dennis Rubbenstroth
- Institute for Virology, Faculty of Medicine, University Medical Center, University of Freiburg , Freiburg , Germany
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | | |
Collapse
|
12
|
Two distinct interferon-γ genes in Tetraodon nigroviridis : Functional analysis during Vibrio parahaemolyticus infection. Mol Immunol 2016; 70:34-46. [DOI: 10.1016/j.molimm.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023]
|
13
|
Ji B, Sun TT, Ma ZL, Lu QF, Hu WL, Jian ZH, Jiang Y, Chen PF. Possible Association of IFN-γ Gene -316A/G SNP with Humoral Immune Response to Killed H5N1 HPAI Vaccine in a Red Junglefowl Population. J Interferon Cytokine Res 2015; 35:844-9. [PMID: 26154533 DOI: 10.1089/jir.2015.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To understand the role of interferon (IFN)-γ gene (IFNG) single-nucleotide polymorphisms (SNPs) in the resistance to H5N1 highly pathogenic avian influenza (HPAI), we determined the SNPs, the log2-transformed specific antibody titers, and ex vivo recall antigen-specific IFN-γ production by peripheral blood mononuclear cells (PBMCs) in 62 red junglefowls (Gallus gallus) immunized twice with inactivated H5N1 HPAI vaccine. Consequently, 52 SNPs were detected in the amplified 1137-bp length covering the promoter region and all exons, with +2133A/T SNP in the coding DNA sequence that caused a missense mutation and was identified in G. gallus for the first time. For -316A/G SNP genotypes, the chi-squared test showed that the bird sample was in the Hardy-Weinberg equilibrium (P=0.369>0.05), and the least squares analysis revealed an increasing tendency in the antibody titers with G to A substitution so that a significant difference occurred between the AA genotype (8.031±0.247) and the GG genotype (6.571±0.528) (P=0.015<0.05, 95% confidence interval [CI]: 0.0004-0.0866), as basically consistent with the antigen-induced IFN-γ protein expression, which indicated possible association of the -316A/G SNP with a secondary humoral immune response to the HPAI vaccine in the bird population. These findings may help to improve genetic resistance using cross-breeding and enhance HPAI vaccine-induced immunity in chicken production.
Collapse
Affiliation(s)
- Bin Ji
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Ting-Ting Sun
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Zhi-Liang Ma
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Qiong-Fen Lu
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Wen-Li Hu
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Zong-Hui Jian
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Yu Jiang
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Pei-Fu Chen
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| |
Collapse
|
14
|
Swain B, Basu M, Lenka SS, Das S, Jayasankar P, Samanta M. Characterization and Inductive Expression Analysis of Interferon Gamma-Related Gene in the Indian Major Carp, Rohu (Labeo rohita). DNA Cell Biol 2015; 34:367-78. [PMID: 25756860 DOI: 10.1089/dna.2014.2656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Interferon gamma (IFN-γ) is one of the key cytokines that plays a major role against viral and intracellular bacterial infection. In addition to the IFN-γ gene, teleost fish possess a second copy known as IFN-γ-related (IFN-γrel) gene. This report describes structural and functional properties of IFN-γrel gene in the Indian major carp, rohu (Labeo rohita), a commercially important freshwater fish species in the Indian subcontinent. The rohu IFN-γrel gene consisted of four exons with three intervening introns and phylogenetically closely related to grass carp. The full-length IFN-γrel cDNA comprised 927 bp nucleotides with a single open reading frame of 504 bp, encoding 167 amino acids (aa) polypeptide with a signal peptide of 24 aa. The mature rohu IFN-γrel protein was 143 aa with a predicted molecular weight of 16.85 kDa. Basal expression analysis of IFN-γrel showed its wide range of expression in all examined tissues: The highest was in the skin and the lowest was in the liver. In response to LPS, poly I:C, iE-DAP, muramyl dipeptide stimulations, and bacterial infections, IFN-γrel gene expression was significantly (p<0.05) induced in treated fish tissues as compared with their control. The IFN-γrel was expressed as recombinant protein (rIFN-γrel) and confirmed through western blot. Stimulation of peripheral blood leukocytes with rIFN-γrel protein resulted in the activation of IFN-γ receptor and marked induction of inducible nitric oxide synthase gene expression. These results together may suggest the important role of IFN-γrel as an antimicrobial cytokine in fish.
Collapse
Affiliation(s)
- Banikalyan Swain
- 1 Fish Health Management Division, Central Institute of Freshwater Aquaculture (CIFA) , Bhubaneswar, Odisha, India
| | | | | | | | | | | |
Collapse
|
15
|
Goossens KE, Ward AC, Lowenthal JW, Bean AGD. Chicken interferons, their receptors and interferon-stimulated genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:370-376. [PMID: 23751330 DOI: 10.1016/j.dci.2013.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
The prevalence of pathogenic viruses is a serious issue as they pose a constant threat to both the poultry industry and to human health. To prevent these viral infections an understanding of the host-virus response is critical, especially for the development of novel therapeutics. One approach in the control of viral infections would be to boost the immune response through administration of cytokines, such as interferons. However, the innate immune response in chickens is poorly characterised, particularly concerning the interferon pathway. This review will provide an overview of our current understanding of the interferon system of chickens, including their cognate receptors and known interferon-stimulated gene products.
Collapse
Affiliation(s)
- Kate E Goossens
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratories, Geelong, VIC, Australia
| | | | | | | |
Collapse
|
16
|
Lühken G, Gauly M, Kaufmann F, Erhardt G. Association study in naturally infected helminth layers shows evidence for influence of interferon-gamma gene variants on Ascaridia galli worm burden. Vet Res 2011; 42:84. [PMID: 21749701 PMCID: PMC3150263 DOI: 10.1186/1297-9716-42-84] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/12/2011] [Indexed: 11/13/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the genes for interleukin-4, -13 and interferon-gamma, and 21 additional SNPs which previously had been significantly associated with immune traits in the chicken, were genotyped in white and brown layer hens and analyzed for their association with helminth burden following natural infections. A nucleotide substitution located upstream of the promoter of the interferon-gamma gene was significantly associated with the log transformed number of Ascaridia galli in the brown layer line (genotype CC: 6.4 ± 1.0 worms; genotype CT: 11.7 ± 2.2 worms). Therefore, IFNG seems to be a promising candidate gene for further studies on helminth resistance in the chicken.
Collapse
Affiliation(s)
- Gesine Lühken
- Department of Animal Breeding and Genetics, Justus-Liebig University of Giessen, Ludwigstrasse 21B, 35390 Giessen, Germany.
| | | | | | | |
Collapse
|
17
|
Øvergård AC, Nepstad I, Nerland AH, Patel S. Characterisation and expression analysis of the Atlantic halibut (Hippoglossus hippoglossus L.) cytokines: IL-1β, IL-6, IL-11, IL-12β and IFNγ. Mol Biol Rep 2011; 39:2201-13. [PMID: 21643951 PMCID: PMC3271213 DOI: 10.1007/s11033-011-0969-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/26/2011] [Indexed: 11/25/2022]
Abstract
Genes encoding the five Atlantic halibut (Hippoglossus hippoglossus L.) cytokines; interleukin (IL)-1β, IL-6, IL-11b, IL-12βc, and interferon (IFN) γ, were cloned and characterised at a molecular level. The genomic organisation of the halibut cytokine genes was similar to that seen in mammals and/or other fish species. Several mRNA instability motifs were found within the 3′-untranslated region (UTR) of all cytokine cDNA sequences. The putative cytokine protein sequences showed a low sequence identity with the corresponding homologues in mammals, avian and other fish species. Nevertheless, important structural features were presumably conserved such as the presence, or absence in the case of IL-1β, of a signal peptide, secondary structure and family signature motifs. The relative expression pattern of the cytokine genes was analyzed in several halibut organs, revealing a constitutive expression in both lymphoid and non-lymphoid organs. Interestingly, the gills showed a relatively high expression of IL-1β, IL-12βc and IFNγ. The real time RT-PCR data also showed that the mRNA level of IL-1β, IL-6, IL-12βc and IFNγ was high in the thymus, while IL-11b was relatively highly expressed in the posterior kidney and posterior gut. Moreover, the halibut brain showed a relatively high level of IL-6 transcripts. Anterior kidney leucocytes in vitro stimulated with imiquimod showed a significant increase in mRNA level of the five halibut cytokine genes. The sequence and characterisation data presented here will be useful for further investigation of both innate and adaptive immune responses in halibut, and be helpful in the design of vaccines for the control of various infectious diseases.
Collapse
|
18
|
Chen WQ, Xu QQ, Chang MX, Zou J, Secombes CJ, Peng KM, Nie P. Molecular characterization and expression analysis of the IFN-gamma related gene (IFN-gammarel) in grass carp Ctenopharyngodon idella. Vet Immunol Immunopathol 2009; 134:199-207. [PMID: 19800136 DOI: 10.1016/j.vetimm.2009.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/28/2009] [Accepted: 09/16/2009] [Indexed: 01/08/2023]
Abstract
Interferon gamma (IFN-gamma), the only member of the type II class of interferons, has been identified in teleost fish. In addition to the IFN-gamma gene, fish possess an IFN-gamma related gene (IFN-gammarel) neighbouring the authentic IFN-gamma gene in the genome. In the present study, the cDNA sequence encoding 167 amino acids of IFN-gammarel and its genomic organization were identified in grass carp Ctenopharyngodon idella. The predicted protein sequence of grass carp IFN-gammarel (gcIFN-gammarel) showed 63% and 50% identities to zebrafish and common carp IFN-gammarel (previously termed as IFN-gamma1), respectively. The IFN-gammarel gene consists of 4 exons, with 3 intervening introns, spanning approximately 2kb of genomic sequence. The gcIFN-gammarel gene did not contain any polymorphic DNA repeats in the introns. Realtime PCR analysis showed that grass carp reovirus induced a high and long lasting (from days 1 to 7) expression of gcIFN-gammarel in spleen. The expression of gcIFN-gammarel in blood, head kidney, trunk kidney and spleen was also increased by bacterial peptidoglycan (PGN), lipopolysaccharide (LPS) and the interferon inducer polyI:C. The highest induction of gcIFN-gammarel expression by PGN was observed in spleen, then in blood and head kidney. Further analysis of the expression patterns of gcIFN-gammarel and PGN receptors, nucleotide oligomerization domains (NOD) 1 and 2, may suggest that IFN-gammarel was possibly activated in a NOD2-dependent mechanism.
Collapse
Affiliation(s)
- W Q Chen
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Yoo J, Jang SI, Kim S, Cho JH, Lee HJ, Rhee MH, Lillehoj HS, Min W. Molecular characterization of duck interleukin-17. Vet Immunol Immunopathol 2009; 132:318-22. [PMID: 19573930 DOI: 10.1016/j.vetimm.2009.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 11/30/2022]
Abstract
Interleukin-17 (IL17), belonging to the Th17 family, is a proinflammatory cytokine produced by activated T cells. A 1034bp cDNA encoding duck IL17 (duIL17) was cloned from Con A-activated splenic lymphocytes of ducks. The encoded protein, which is predicted to consist of 169 amino acids, has a molecular weight of 18.8kDa and includes a 29 residue NH(2)-terminal signal peptide, a single potential N-linked glycosylation site, and six cysteine residues that are conserved in mammalian IL17. The duIL17 shared 84% amino acid sequence identity with the previously described chicken IL17 (chIL17), 36-47% to mammalian homologues, and open reading frame 13 of Herpesvirus saimiri (HVS13). The genomic structure of duIL17 was quite similar to its chicken and mammalian counterparts. The duIL17 mRNA expression was detected only in Con A-activated splenic lymphocytes by RT-PCR, although its expression was undetectable in a variety of normal tissues. Two mAbs against chIL17 showed cross-reactivity with duIL17 as detected by indirect ELISA and Western blot analysis. These findings indicate that the structure of IL17 is highly conserved among poultry, and two mAbs detecting common epitopes of IL17 are available for molecular and immunological studies of IL17 in birds.
Collapse
Affiliation(s)
- Jeongmi Yoo
- College of Veterinary Medicine & Research Institute of Life Science, Gyeongsang National University, 900 Gajwa-dong, Jinju, Gyeongnam 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Furnes C, Seppola M, Robertsen B. Molecular characterisation and expression analysis of interferon gamma in Atlantic cod (Gadus morhua). FISH & SHELLFISH IMMUNOLOGY 2009; 26:285-292. [PMID: 19100838 DOI: 10.1016/j.fsi.2008.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/02/2008] [Accepted: 12/02/2008] [Indexed: 05/27/2023]
Abstract
Interferon gamma (IFN-gamma) has important roles in both innate and adaptive immune responses. In this study, the cDNA and genomic sequences of Atlantic cod IFN-gamma were cloned and found to encode a putative protein containing 194 amino acids with a 24 amino acid signal peptide sequence. The gene is composed of four exons and three introns similar to IFN-gamma genes of other vertebrates. The cod IFN-gamma showed only 14-29% amino acid identity with other fish IFN-gamma and 9-17% identity with IFN-gamma from higher vertebrates. However, cod IFN-gamma possesses the typical IFN-gamma motifs in the C-terminal end of the protein and displays an alpha-helix structure similar to mammalian IFN-gamma. The promoter region contains a putative ISRE element indicating up-regulation by type I IFNs and dsRNA. Real time RT-PCR analysis confirmed that IFN-gamma gene expression was up-regulated in organs of cod injected with the dsRNA polyinosinic:polycytidylic acid (poly I:C), which is a strong inducer of type I IFNs. Injection of cod with formalin-killed Vibrio anguillarum also increased IFN-gamma expression in head kidney, but to a much lesser extent than poly I:C. The gene expression results thus indicate a role for IFN-gamma in innate immune response against both virus and bacteria in Atlantic cod.
Collapse
Affiliation(s)
- Clemens Furnes
- Department of Marine Biotechnology, Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
21
|
Protective Effects of Dietary Safflower (Carthamus tinctorius) on Experimental Coccidiosis. J Poult Sci 2009. [DOI: 10.2141/jpsa.46.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Qi ZT, Nie P. Comparative study and expression analysis of the interferon gamma gene locus cytokines in Xenopus tropicalis. Immunogenetics 2008; 60:699-710. [PMID: 18726591 DOI: 10.1007/s00251-008-0326-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Accepted: 07/25/2008] [Indexed: 01/09/2023]
Abstract
Using bioinformatics approach, the genome locus containing interleukin (IL)-22, IL-26, and interferon gamma (IFN-gamma) genes has been identified in the amphibian, Xenopus tropicalis. Like that in other vertebrates such as fish, birds, and mammals, the Xenopus IL-22, IL-26, and IFN-gamma are clustered in the same chromosome and the adjacent genes are conserved. The genomic structures of the Xenopus IL-22, IL-26, and IFN-gamma gene were identical to that of their mammalian counterparts. The Xenopus IL-22 and IL-26 genes contained five exons and four introns while the Xenopus IFN-gamma gene consisted of four exons and three introns. The Xenopus IL-22, IL-26, and IFN-gamma share 14.1-41.6%, 14.6-31.2%, and 23.7-36.5% identity to their counterparts in other species, respectively. Reverse-transcription polymerase chain reaction (PCR) and real-time quantitative PCR analyses revealed that the expression of IL-22, IL-26, and IFN-gamma genes was significantly upregulated after simulation with bacterial polyliposaccharide and/or synthetic double-stranded poly(I:C), suggesting these cytokines like those in other vertebrates play an important role in regulating immune response in Xenopus.
Collapse
Affiliation(s)
- Z T Qi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | | |
Collapse
|
23
|
Ahmed KA, Saxena VK, Ara A, Singh KB, Sundaresan NR, Saxena M, Rasool TJ. Immune response to Newcastle disease virus in chicken lines divergently selected for cutaneous hypersensitivity. Int J Immunogenet 2007; 34:445-55. [DOI: 10.1111/j.1744-313x.2007.00722.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Igawa D, Sakai M, Savan R. An unexpected discovery of two interferon gamma-like genes along with interleukin (IL)-22 and -26 from teleost: IL-22 and -26 genes have been described for the first time outside mammals. Mol Immunol 2006; 43:999-1009. [PMID: 16005068 DOI: 10.1016/j.molimm.2005.05.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Indexed: 10/25/2022]
Abstract
By comparative genomics based on chromosome synteny between human and fish, IL-22, IL-26 and two IFN-gamma-like genes have been isolated in fish. Interleukin-22 and -26 have been identified for the first time outside of mammals and their organization and synteny demonstrates that this cluster of cytokines is well conserved during evolution. The cloned zebrafish IL-22 and -26 homologs are 161 and 169-aa long, respectively. Both the genes harbor a well-conserved IL-10-family signature in their respective C-terminus. The coding regions of these genes are spread in five exons and at the same position as in human homologs. Furthermore, surprisingly two IFN-gamma-like genes are present in tandem, 7.0 kb apart from each other, along this locus. IFN-gamma1 and 2 genes are composed of 170- and 185-aa and share a low amino acid identity of 17.0%. The genomic structures of the isolated fish IFN-gamma genes were similar to its mammalian homologs, sharing a four exon and three phase 0 introns. The presence two IFN-gamma genes in both zebra and pufferfishes demonstrate that the duplication of IFN-gamma might have occurred prior to the teleostean split. The structural homology is further validated by phylogenetic analysis showing that the isolated cytokine genes are homologous to mammalian counterparts. Expression analysis of IL-22, IL-26 and two IFN-gamma genes suggests an active role of these genes in immune responses in fish.
Collapse
Affiliation(s)
- Daisuke Igawa
- Laboratory of Marine Biotechnology, Faculty of Agriculture, University of Miyazaki, Gakuen kibanadai nishi 1-1, Miyazaki 889-2192, Japan
| | | | | |
Collapse
|
25
|
Zou J, Carrington A, Collet B, Dijkstra JM, Yoshiura Y, Bols N, Secombes C. Identification and Bioactivities of IFN-γ in Rainbow Trout Oncorhynchus mykiss: The First Th1-Type Cytokine Characterized Functionally in Fish. THE JOURNAL OF IMMUNOLOGY 2005; 175:2484-94. [PMID: 16081820 DOI: 10.4049/jimmunol.175.4.2484] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-gamma is one of the key cytokines in defining Th1 immune responses. In this study, an IFN-gamma homologue has been identified in rainbow trout Oncorhynchus mykiss, and its biological activities have been characterized. The trout IFN-gamma cDNA is 1034 bp in length and translates into a 180-aa protein. The first intron of the trout IFN-gamma gene contains highly polymorphic GACA minisatellites and 44-bp DNA repeats, giving rise to at least six alleles. IFN-gamma is structurally conserved among vertebrates, and a signature motif has been identified. A nuclear localization sequence known to be crucial for IFN-gamma biological activities is also present in the C-terminal region of the trout IFN-gamma. The IFN-gamma expression was induced in head kidney leukocytes by stimulation with PHA or poly(I:C) and in kidney and spleen of fish injected with poly(I:C). rIFN-gamma produced in Escherichia coli significantly stimulated gene expression of IFN-gamma-inducible protein 10 (gammaIP-10), MHC class II beta-chain, and STAT1, and enhanced respiratory burst activity in macrophages. Deletion of 29-aa residues from the C terminus containing the nuclear localization sequence motif resulted in loss of activity with respect to induction of gammaIP-10 in RTS-11 cells. Moreover, IFN-gamma-induced gammaIP-10 expression was completely abolished by the protein kinase C inhibitor staurosporine, and partially reduced by U0126, a specific inhibitor for ERKs. Taken together, the present study has demonstrated for the first time a functional IFN-gamma homologue in a fish species, strongly suggesting a conserved Th1 immune response is most likely present in lower vertebrates.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Recombinant interferon-alpha (IFN-alpha) was approved by regulatory agencies in many countries in 1986. As the first biotherapeutic approved, IFN-alpha paved the way for the development of many other cytokines and growth factors. Nevertheless, understanding the functions of the multitude of human IFNs and IFN-like cytokines has just touched the surface. This review summarizes the history of the purification of human IFNs and the key aspects of our current state of knowledge of human IFN genes, proteins, and receptors. All the known IFNs and IFN-like cytokines are described [IFN-alpha, IFN-beta, IFN-epsilon, IFN-kappa, IFN-omega, IFN-delta, IFN-tau, IFN-gamma, limitin, interleukin-28A (IL-28A), IL-28B, and IL-29] as well as their receptors and signal transduction pathways. The biological activities and clinical applications of the proteins are discussed. An extensive section on the evolution of these molecules provides some new insights into the development of these proteins as major elements of innate immunity. The overall structure of the IFNs is put into perspective in relation to their receptors and functions.
Collapse
Affiliation(s)
- Sidney Pestka
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854-5635, USA.
| | | | | |
Collapse
|
27
|
Kogut MH, Rothwell L, Kaiser P. IFN-γ Priming of Chicken Heterophils Upregulates the Expression of Proinflammatory and Th1 Cytokine mRNA Following Receptor-Mediated Phagocytosis ofSalmonella entericaserovarenteritidis. J Interferon Cytokine Res 2005; 25:73-81. [PMID: 15695928 DOI: 10.1089/jir.2005.25.73] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Responsiveness to invasive pathogens, clearance via the inflammatory response, and activation of appropriate acquired responses are all coordinated by innate host defenses. Polymorphonuclear leukocytes (PMNs) are cellular components of innate response, with the primary PMN in poultry being the heterophil. Priming is the potentiation of the phagocyte activation process. Interferon-gamma (IFN-gamma) is a pleiotropic cytokine involved in basically all phases of immune and inflammatory responses that has been shown to prime heterophil functional activities. In the present experiments, using real-time quantitative RT-PCR, we evaluated the role of recombinant chicken IFN-gamma (rChIFN-gamma) as a priming mediator to control heterophil responses at the level of gene transcription and expression of the mRNA for proinflammatory (interleukin-1beta [IL-1beta], IL-6, IL-8) and Th1 (IL-18 and IFN-gamma) cytokine genes following stimulation with phagocytosis agonists, opsonized and nonopsonized Salmonella enteritidis. rChIFN-gamma primed the heterophils for an increase in transcription of proinflammatory cytokines induced by phagocytic agonists but also upregulated expression of Th1 cytokine (IL-18 and IFN-gamma) mRNA and stimulated an increased production of IFN-gamma. Although rChIFN-gamma priming modulated the expression of cytokine mRNA in heterophils stimulated by different phagocytic agonists, rChIFN-gamma by itself did not directly induce gene expression of either proinflammatory or Th1 cytokines. The enhanced expression of cytokine mRNA does not appear to be differentially expressed depending on the receptor activated during phagocytosis. The results from the present experiments suggest that rChIFN-gamma may play a significant role in avian innate immunity against Salmonella infection and may offer an adjunct use in the prevention and treatment of salmonellae infections in newly hatched chickens.
Collapse
|
28
|
Avery S, Rothwell L, Degen WDJ, Schijns VEJC, Young J, Kaufman J, Kaiser P. Characterization of the first nonmammalian T2 cytokine gene cluster: the cluster contains functional single-copy genes for IL-3, IL-4, IL-13, and GM-CSF, a gene for IL-5 that appears to be a pseudogene, and a gene encoding another cytokinelike transcript, KK34. J Interferon Cytokine Res 2005; 24:600-10. [PMID: 15626157 DOI: 10.1089/jir.2004.24.600] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A genomics approach based on the conservation of synteny was used to develop a bacterial artificial chromosome (BAC) contig across the chicken T2 cytokine gene cluster. Sequencing of representative BACs showed that the chicken genome encodes genes for the homologs of mammalian interleukin-3 (IL-3), IL-4, IL-5, IL-13, and granulocyte-macrophage colony-stimulating factor (GM-CSF). These sequences represent the first T2 cytokines found outside of mammals, and their location demonstrates that the T2 cluster is ancient (at least 300 million years old). Four of these genes (IL-3, IL-4, IL-13, and GM-CSF) are expressed at the mRNA level and can be expressed as recombinant protein. In contrast to the other four genes, the chicken IL-5 (ChIL-5) gene we sequenced lacks a recognizable promoter and regulatory sequences in the predicted 3'-untranslated region (3'-UTR). Further, there is no evidence for its expression at the mRNA level. We, therefore, hypothesize that it is a pseudogene. Genomic analysis revealed that a recently characterized cytokinelike transcript, KK34, not identified in our initial analysis of the BAC sequence, is also encoded in this cluster. This gene may represent a duplication of an ancestral IL-5 gene and may encode the functional homolog of IL-5 in the chicken.
Collapse
Affiliation(s)
- Stuart Avery
- Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Rothwell L, Young JR, Zoorob R, Whittaker CA, Hesketh P, Archer A, Smith AL, Kaiser P. Cloning and characterization of chicken IL-10 and its role in the immune response to Eimeria maxima. THE JOURNAL OF IMMUNOLOGY 2004; 173:2675-82. [PMID: 15294985 DOI: 10.4049/jimmunol.173.4.2675] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We isolated the full-length chicken IL-10 (chIL-10) cDNA from an expressed sequence tag library derived from RNA from cecal tonsils of Eimeria tenella-infected chickens. It encodes a 178-aa polypeptide, with a predicted 162-aa mature peptide. Chicken IL-10 has 45 and 42% aa identity with human and murine IL-10, respectively. The structures of the chIL-10 gene and its promoter were determined by direct sequencing of a bacterial artificial chromosome containing chIL-10. The chIL-10 gene structure is similar to (five exons, four introns), but more compact than, that of its mammalian orthologues. The promoter is more similar to that of Fugu IL-10 than human IL-10. Chicken IL-10 mRNA expression was identified mainly in the bursa of Fabricius and cecal tonsils, with low levels of expression also seen in thymus, liver, and lung. Expression was also detected in PHA-activated thymocytes and LPS-stimulated monocyte-derived macrophages, with high expression in an LPS-stimulated macrophage cell line. Recombinant chIL-10 was produced and bioactivity demonstrated through IL-10-induced inhibition of IFN-gamma synthesis by mitogen-activated lymphocytes. We measured the expression of mRNA for chIL-10 and other signature cytokines in gut and spleen of resistant (line C.B12) and susceptible (line 15I) chickens during the course of an E. maxima infection. Susceptible chickens showed higher levels of chIL-10 mRNA expression in the spleen, both constitutively and after infection, and in the small intestine after infection than did resistant chickens. These data indicate a potential role for chIL-10 in changing the Th bias during infection with an intracellular protozoan, thereby contributing to susceptibility of line 15I chickens.
Collapse
Affiliation(s)
- Lisa Rothwell
- Institute for Animal Health, Compton, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bream JH, Hodge DL, Gonsky R, Spolski R, Leonard WJ, Krebs S, Targan S, Morinobu A, O'Shea JJ, Young HA. A distal region in the interferon-gamma gene is a site of epigenetic remodeling and transcriptional regulation by interleukin-2. J Biol Chem 2004; 279:41249-57. [PMID: 15271977 DOI: 10.1074/jbc.m401168200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon-gamma (IFN-gamma) is a multifunctional cytokine that defines the development of Th1 cells and is critical for host defense against intracellular pathogens. IL-2 is another key immunoregulatory cytokine that is involved in T helper differentiation and is known to induce IFN-gamma expression in natural killer (NK) and T cells. Despite concerted efforts to identify the one or more transcriptional control mechanisms by which IL-2 induces IFN-gamma mRNA expression, no such genomic regulatory regions have been described. We have identified a DNase I hypersensitivity site approximately 3.5-4.0 kb upstream of the transcriptional start site. Using chromatin immunoprecipitation assays we found constitutive histone H3 acetylation in this distal region in primary human NK cells, which is enhanced by IL-2 treatment. This distal region is also preferentially acetylated on histones H3 and H4 in primary Th1 cells as compared with Th2 cells. Within this distal region we found a Stat5-like motif, and in vitro DNA binding assays as well as in vivo chromosomal immunoprecipitation assays showed IL-2-induced binding of both Stat5a and Stat5b to this distal element in the IFNG gene. We examined the function of this Stat5-binding motif by transfecting human peripheral blood mononuclear cells with -3.6 kb of IFNG-luciferase constructs and found that phorbol 12-myristate 13-acetate/ionomycin-induced transcription was augmented by IL-2 treatment. The effect of IL-2 was lost when the Stat5 motif was disrupted. These data led us to conclude that this distal region serves as both a target of chromatin remodeling in the IFNG locus as well as an IL-2-induced transcriptional enhancer that binds Stat5 proteins.
Collapse
Affiliation(s)
- Jay H Bream
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland 20892-1820, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kaiser P, Rothwell L, Goodchild M, Bumstead N. The chicken proinflammatory cytokines interleukin-1beta and interleukin-6: differences in gene structure and genetic location compared with their mammalian orthologues. Anim Genet 2004; 35:169-75. [PMID: 15147386 DOI: 10.1111/j.1365-2052.2004.01121.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genes encoding the chicken proinflammatory cytokines interleukin (IL)-1B and IL-6 were cloned, sequenced and mapped. The exon:intron structure of the coding region of chicken IL1B corresponds almost exactly to those of mammalian IL1B. As yet, we have no evidence for a 5'-UTR non-coding exon equivalent to that found in mammalian IL1B. The exon:intron structure of chicken IL6 differs from those of mammalian IL6, having one exon fewer (the first two exons in mammalian IL6 genes appear to be fused in the chicken gene). We were unable to clone or sequence the promoter of chicken IL1B. The chicken IL6 promoter shares a number of potential regulatory sequences similar to those found in the human IL6 promoter. These putative elements include (5'-3') a glucocorticoid response element (GRE), an AP-1 binding site, an NF-IL-6 binding site (albeit in the reverse orientation), an NF-kappaB binding site, a second AP-1 binding site and a TATAAA box. A further GRE, a cAMP response element and regions with homology to c-fos serum responsive elements or retinoblastoma control elements were absent. Promoter sequence polymorphisms were not identified in eight different inbred chicken lines. A restriction single-stranded conformational polymorphism was identified which enabled chicken IL1B to be genetically mapped to one end of chromosome 2. Chicken IL6 was mapped by fluorescent in situ hybridization also to chromosome 2, at an FLpter of 0.26.
Collapse
Affiliation(s)
- P Kaiser
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | | | |
Collapse
|
32
|
Robertsen B, Bergan V, Røkenes T, Larsen R, Albuquerque A. Atlantic Salmon Interferon Genes: Cloning, Sequence Analysis, Expression, and Biological Activity. J Interferon Cytokine Res 2003; 23:601-12. [PMID: 14585200 DOI: 10.1089/107999003322485107] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this work, we report cDNA cloning of two type I interferons (IFNs) from the head kidney of Atlantic salmon, called SasaIFN-alpha1 (829 bp) and SasaIFN-alpha2 (1290 bp). Both translate into 175 amino acid precursor molecules showing 95% amino acid sequence identity. The precursors have a putative 23 amino acid signal peptide, which suggests that the mature Atlantic salmon IFNs contain 152 amino acids (18.2 kDa). Salmon IFN appears to have five alpha-helices, similar to mammalian and avian type I IFNs, and showed 45% sequence identity with zebrafish IFN, up to 29% identity with mammalian IFN-alpha sequences, and 17%-18% sequence identity with mammalian IFN-beta and chicken type I IFNs. Human embryonic kidney 293 cells transfected with the SasaIFN-alpha1 cDNA gene produced high titers of acid-stable antiviral activity, which protected salmonid cells against infectious pancreatic necrosis virus (IPNV) and also induced Mx protein in the cells. Poly(I)-poly(C) induced two IFN transcripts in head kidney of Atlantic salmon. Genomic IFN sequences contained four introns and five exons, which is different from the intronless type I IFN genes of birds and mammals.
Collapse
Affiliation(s)
- Børre Robertsen
- Department of Marine Biotechnology, Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | |
Collapse
|
33
|
Kogut MH, Rothwell L, Kaiser P. Differential regulation of cytokine gene expression by avian heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enteritidis. J Interferon Cytokine Res 2003; 23:319-27. [PMID: 12859858 DOI: 10.1089/107999003766628160] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Internalization of pathogens by phagocytic cells triggers the innate immune response, which in turn regulates the acquired response. Phagocytes express a variety of receptors that are involved in recognition of pathogens, including (1) pattern recognition receptors (PRR), which recognize conserved motifs, (2) complement receptors (CR), which recognize complement-opsonized pathogens, and (3) Fc receptors (FcR), which recognize antibody-opsonized pathogens. Recognition of microbes is accompanied by the induction of multiple cell processes, including the production of proinflammatory and anti-inflammatory cytokines and chemokines. The objective of the present experiments was to use probes to known avian proinflammatory and anti-inflammatory cytokines and TaqMan technology to ascertain levels of cytokine gene expression in avian heterophils following receptor-mediated phagocytosis of either nonopsonized Salmonella enteritidis (SE), serum-opsonized SE, or IgG-opsonized SE. Expression of interleukin-6 (IL-6) and IL-8, considered in mammals as a proinflammatory chemokine, were upregulated following exposure to the nonopsonized or the opsonized SE. However, mRNA expression for IL-18 and interferon-gamma (IFN-gamma) was downregulated, and the expression of mRNA for the anti-inflammatory cytokine transforming growth factor-beta4 (TGF-beta 4) was upregulated. Interestingly, IL-1beta mRNA expression was significantly upregulated in heterophils that phagocytized either the nonopsonized SE via PRRs or IgG-opsonized SE via FcRs, whereas serum-opsonized SE phagocytized by CRs induced a downregulation of IL-1beta mRNA. These results suggest that signaling interactions initiated by receptor recognition of the microbe surface differentially regulate the induction of inflammatory cytokines in avian heterophils.
Collapse
|
34
|
Wigley P, Kaiser P. Avian cytokines in health and disease. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2003. [DOI: 10.1590/s1516-635x2003000100001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Kaiser P, Underwood G, Davison F. Differential cytokine responses following Marek's disease virus infection of chickens differing in resistance to Marek's disease. J Virol 2003; 77:762-8. [PMID: 12477883 PMCID: PMC140586 DOI: 10.1128/jvi.77.1.762-768.2003] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 09/23/2002] [Indexed: 12/23/2022] Open
Abstract
The production of cytokine mRNAs, in addition to viral DNA, was quantified by real-time quantitative reverse transcription-PCR (RT-PCR) (cytokines) or PCR (virus) in splenocytes during the course of Marek's disease virus (MDV) infection in four inbred chicken lines: two resistant (lines 6(1) and N) and two susceptible (lines 7(2) and P). Virus loads were only different after 10 days postinfection (dpi), increasing in susceptible lines and decreasing in resistant lines. Gamma interferon (IFN-gamma) mRNA was expressed by splenocytes from all infected birds between 3 and 10 dpi, associated with increasing MDV loads. For other cytokines, differences between lines were only seen for interleukin-6 (IL-6) and IL-18, with splenocytes from susceptible birds expressing high levels of both transcripts during the cytolytic phase of infection, whereas splenocytes from resistant birds expressed neither transcript. These results indicate that these two cytokines could play a crucial role in driving immune responses, which in resistant lines maintain MDV latency but in susceptible lines result in lymphomas.
Collapse
Affiliation(s)
- Pete Kaiser
- Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom.
| | | | | |
Collapse
|
36
|
Zhou H, Lillehoj HS, Lamont SJ. Associations of interferon-gamma genotype and protein level with antibody response kinetics in chickens. Avian Dis 2002; 46:869-76. [PMID: 12495047 DOI: 10.1637/0005-2086(2002)046[0869:aoigap]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although previous studies have demonstrated an association between interferon-gamma (IFN-gamma) promoter genotype and antibody response kinetics in chickens, the protein levels that may mediate such a gene-trait association have not been determined. The objective of this study, therefore, was to determine the correlation of circulating IFN-gamma levels with both the IFN-gammaIFN-gamma promoter polymorphisms and antibody response in order to evaluate the potential role of IFN-gamma protein in mediating genetic control of antibody response in chickens. Antibody response after Salmonella enteritidis (SE) vaccination at day 10, antibody response to sheep red blood cells (SRBCs) and killed Brucella abortus after immunizations at 19 wk and 22 wk, and serum IFN-gamma protein level were measured in an F2 population derived from inbred lines. A single nucleotide polymorphism in the IFN-gamma promoter region was associated with IFN-gamma protein expression as measured by an enzyme-linked immunosorbent assay after both primary and secondary immunizations. Higher IFN-gamma protein level was correlated with higher antibody level to SE and with increased maximum level and decreased time to reach the maximum secondary antibody response to SRBCs. These results suggest that one of the mechanisms by which promoter polymorphism of IFN-gamma affects antibody production in chickens may involve the circulating level of IFN-gamma protein.
Collapse
Affiliation(s)
- H Zhou
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA
| | | | | |
Collapse
|
37
|
Schmidt P, Kühn C, Maillard JC, Pitra C, Tiemann U, Weikard R, Schwerin M. A comprehensive survey for polymorphisms in the bovine IFN-gamma gene reveals a highly polymorphic intronic DNA sequence allowing improved genotyping of Bovinae. J Interferon Cytokine Res 2002; 22:923-34. [PMID: 12396714 DOI: 10.1089/10799900260286632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study aimed to identify interferon-gamma (IFN-gamma) gene variants in cattle for diagnostic purposes. Therefore, the entire bovine IFN-gamma gene (BoIFNG) and 2605 bp of its promoter DNA were sequenced. The BoIFNG DNA sequence conforms to the published part of Bo-IFN-gamma cDNA. Primer extension experiments show the presence of a 5' extension of exon 1 by 42 nucleotides (nt). One SINE element (Bov-A2) is located in the 5'-region, and two SINE elements (Bov-tA, Bov-B) are contained in the 3'-region of BoIFNG. The variants were detected by comparative sequence analysis of PCR amplicons from different bovine species. Four polymorphic mononucleotide repeats are situated in the promoter and in intron 1. Four distinct series of single nucleotide polymorphisms (SNP) were found in functionally important regions of BoIFNG. The region between the two intron 1 microsatellites contains the highest density of SNPs in Bos taurus breeds. One G-T transversion in the coding region of exon 1 causes a Gly(14) to Val(14) exchange in the BoIFNG signal peptide of different bovine species. A G-A transition in exon 2 encodes a Ser(19) to Asn(19) change in the mature protein of the Tibetan yak. Genotyping of randomly sampled Holstein Friesian cows at selected SNPs and of both intron 1 microsatellites revealed two dominant BoIFNG microhaplotypes. The detected SNPs improve the recently reported genotyping system of cattle.
Collapse
Affiliation(s)
- Peter Schmidt
- Research Unit of Molecular Biology of the Research Institute for the Biology of Farm Animals, 18196 Dummerstorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kaiser P, Rothwell L, Vasícek D, Hala K. A role for IL-15 in driving the onset of spontaneous autoimmune thyroiditis? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4216-20. [PMID: 11937583 DOI: 10.4049/jimmunol.168.8.4216] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The obese strain (OS) of chickens, which suffers from spontaneous autoimmune thyroiditis, is an excellent animal model for Hashimoto's thyroiditis and provides a unique opportunity to investigate the mechanisms underlying and driving the onset of the disease. Following recent advances in cloning chicken cytokines, we can now begin to investigate the role of cytokines in driving the lymphoid infiltration of the thyroid seen in these birds from day 7 posthatch. Using real-time quantitative RT-PCR, we characterized the expression of IFN-gamma, IL-1beta, IL-2, IL-6, IL-8, IL-15, and IL-18 in thyroids from OS birds and control CB line birds, both in the embryo just before hatch (embryonic day 20) and at 3 and 5 days posthatch. All of these cytokines were up-regulated compared with levels in thyroids from CB birds, at least at some time points, with some evidence for coordination of regulation, e.g., for the proinflammatory cytokines IL-1beta and IL-8. Only IL-15 was up-regulated at all time points. IL-15 was also shown to be up-regulated in spleens of OS birds at embryonic day 20 and 5 days posthatch, suggesting that IL-15 is constitutively up-regulated in this line of birds. This could explain the general immune system hyperreactivity exhibited by OS chickens and may be a factor driving the lymphoid infiltration of the thyroid.
Collapse
Affiliation(s)
- Pete Kaiser
- Institute for Animal Health, Compton, Berkshire, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Secombes CJ, Bird S, Hong S, Laing KJ, Zou J. Phylogeny of vertebrate cytokines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:89-94. [PMID: 11419010 DOI: 10.1007/978-1-4615-1291-2_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- C J Secombes
- Department of Zoology, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|
40
|
Zhou H, Buitenhuis AJ, Weigend S, Lamont SJ. Candidate gene promoter polymorphisms and antibody response kinetics in chickens: interferon-gamma, interleukin-2, and immunoglobulin light chain. Poult Sci 2001; 80:1679-89. [PMID: 11771881 DOI: 10.1093/ps/80.12.1679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An F2 population was produced from mating G0 highly inbred (>99%) males of two MHC-congenic Fayoumi lines with G-B1 Leghorn hens. The F2 population was essentially a full-sibship with the F1 sire line reflecting MHC effect. Adult F2 hens (n = 158) were injected twice with SRBC and whole fixed Brucella abortus (BA). Agglutinating antibody titer at 7 d after primary immunization and mean titer of the final three samples (Days 18, 32, and 63 after the second immunization) were used as parameters for primary and equilibrium phases, respectively. Secondary phase parameters of minimum (Ymin), maximum titers (Ymax) and time needed to achieve minimum (Tmin) and maximum (Tmax) titers were estimated from seven postsecondary titers with a nonlinear regression model. Three candidate genes, interferon-gamma (IFN-gamma), interleukin-2 (IL-2), and immunoglobulin G light chain (IgL) were studied. Primers for the promoter regions were designed from EMBL chicken genomic sequences. Polymorphisms between parental lines were detected by direct sequencing. Polymerase chain reaction-restriction fragment length polymorphism methods were then developed to directly detect the polymorphism. There were significant main effects (P < 0.05, general linear model analysis) of IFN-gamma polymorphism on Ymax of BA antibody and interaction of IFN-gamma by IgL on primary antibody response to SRBC and BA, and on Tmin and Ymin of antibody response to SRBC in F2 offspring of M5.1 grandsires. There were significant main effects of IFN-gamma polymorphism on Tmax of BA and interaction of IFN-gamma by IL-2 on Ymin to SRBC in F2 offspring of M15.2 grandsires. The results suggest that IFN-gamma genes play an important role in chicken primary and secondary antibody response to SRBC and BA antigens, and there exists interaction among genes for antibody production.
Collapse
Affiliation(s)
- H Zhou
- Department of Animal Science, Iowa State University, Ames 50011-3150, USA
| | | | | | | |
Collapse
|
41
|
Lowenthal JW, Staeheli P, Schultz U, Sekellick MJ, Marcus PI. Nomenclature of avian interferon proteins. J Interferon Cytokine Res 2001; 21:547-9. [PMID: 11506750 DOI: 10.1089/10799900152434439] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J W Lowenthal
- CSIRO Livestock Industries, Geelong, Victoria 3220, Australia
| | | | | | | | | |
Collapse
|
42
|
Kaiser P, Rothwell L, Galyov EE, Barrow PA, Burnside J, Wigley P. Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3217-3226. [PMID: 11101679 DOI: 10.1099/00221287-146-12-3217] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica is a facultative intracellular pathogen that is capable of causing disease in a range of hosts. Although human salmonellosis is frequently associated with consumption of contaminated poultry and eggs, and the serotypes Salmonella gallinarum and Salmonella pullorum are important world-wide pathogens of poultry, little is understood of the mechanisms of pathogenesis of Salmonella in the chicken. Type III secretion systems play a key role in host cell invasiveness and trigger the production of pro-inflammatory cytokines during invasion of mammalian hosts. This results in a polymorphonuclear cell influx that contributes to the resulting enteritis. In this study, a chicken primary cell culture model was used to investigate the cytokine responses to entry by the broad host range serotypes S. enteritidis and S. typhimurium, and the host specific serotype S. gallinarum, which rarely causes disease outside its main host, the chicken. The cytokines interleukin (IL)-1ss, IL-2, IL-6 and interferon (IFN)-gamma were measured by quantitative RT-PCR, and production of IL-6 and IFN-gamma was also determined through bioassays. All serotypes were invasive and had little effect on the production of IFN-gamma compared with non-infected cells; S. enteritidis invasion caused a slight down-regulation of IL-2 production. For IL-1ss production, infection with S. typhimurium had little effect, whilst infection with S. gallinarum or S. enteritidis caused a reduction in IL-1ss mRNA levels. Invasion of S. typhimurium and S. enteritidis caused an eight- to tenfold increase in production of the pro-inflammatory cytokine IL-6, whilst invasion by S. gallinarum caused no increase. These findings correlate with the pathogenesis of Salmonella in poultry. S. typhimurium and S. enteritidis invasion produces a strong inflammatory response, that may limit the spread of Salmonella largely to the gut, whilst S. gallinarum does not induce an inflammatory response and may not be limited by the immune system, leading to the severe systemic disease fowl typhoid.
Collapse
Affiliation(s)
- Pete Kaiser
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK1
| | - Lisa Rothwell
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK1
| | | | - Paul A Barrow
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK1
| | - Joan Burnside
- Department of Animal and Food Sciences, University of Delaware, 531 South College Avenue, Newark, DE 19717-1303, USA2
| | - Paul Wigley
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK1
| |
Collapse
|
43
|
Hughes AL, Roberts RM. Independent origin of IFN-alpha and IFN-beta in birds and mammals. J Interferon Cytokine Res 2000; 20:737-9. [PMID: 10954917 DOI: 10.1089/10799900050116444] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic analysis of type I interferon (IFN) from birds and mammals strongly supported the hypothesis that the gene duplication giving rise to the alpha and beta families of mammalian IFN occurred after the divergence of birds from mammals, whereas the bird IFN that have been designated alpha and beta duplicated independently in the avian lineage. Therefore, IFN designated alpha and beta in birds are not orthologous to those similarly designated in mammals.
Collapse
Affiliation(s)
- A L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA.
| | | |
Collapse
|
44
|
Yun CH, Lillehoj HS, Choi KD. Eimeria tenella infection induces local gamma interferon production and intestinal lymphocyte subpopulation changes. Infect Immun 2000; 68:1282-8. [PMID: 10678939 PMCID: PMC97280 DOI: 10.1128/iai.68.3.1282-1288.2000] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of intestinal lymphocytes and gamma interferon (IFN-gamma) production in protective immunity to Eimeria tenella infection was evaluated in two inbred strains of chickens (SC and TK) that display different patterns of susceptibility to coccidiosis. Oral inoculation of either strain with E. tenella led to parasite invasion of the intestinal cecum and cecal tonsils. Greater fecal oocyst shedding was seen in TK chickens. Flow cytometric analyses of cecal tonsil lymphocytes demonstrated greater numbers of CD4(+) and T-cell receptor gammadelta-positive (TCR1(+)) cells in SC chickens and elevated numbers of CD8(+) and TCR2(+) cells in TK chickens following primary infection. IFN-gamma mRNA expression was significantly increased in cecal tonsil and intraepithelial lymphocytes at days 6 and 8, respectively, after primary infection in SC compared to TK chickens. While no differences were noted between cecal tonsil lymphocytes of the two strains following secondary infection, TK chickens showed elevated IFN-gamma transcript levels in intestinal intraepithelial lymphocytes at this time. Selective depletion of CD4(+), but not CD8(+), cecal tonsil lymphocytes in SC chickens resulted in a reduced IFN-gamma mRNA expression, indicating that CD4(+) cells are the primary source of this cytokine. Collectively, these results indicate that local lymphocyte responses and production of IFN-gamma are influenced by host genetic factors.
Collapse
Affiliation(s)
- C H Yun
- Immunology and Disease Resistance Laboratory, Livestock and Poultry Sciences Institute, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA
| | | | | |
Collapse
|
45
|
Lawson S, Rothwell L, Kaiser P. Turkey and chicken interleukin-2 cross-react in in vitro proliferation assays despite limited amino acid sequence identity. J Interferon Cytokine Res 2000; 20:161-70. [PMID: 10714551 DOI: 10.1089/107999000312568] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We cloned the cDNA of turkey interleukin-2 (IL-2), initially using oligonucleotide primers based on the sequence of the chicken IL-2 gene. Compared with the only other cytokines available for comparison, the interferons (IFN), the coding regions of the turkey and chicken IL-2 genes are much less conserved (86.24% nucleotide identical and 69.93% amino acid identical). The lack of nucleotide conservation was spread across the entire length of the coding region. In comparison, the promoters of the two avian IL-2 genes shared a high degree of identity (95.71% identical over 380 nucleotides). Phylogenetic analysis shows that turkey and chicken IL-2 have diverged to a greater extent than IL-2 from closely related mammalian species. Surprisingly, considering the low level of amino acid identity, including residues known to be important in binding the IL-2 receptor in mammalian species, both turkey and chicken IL-2 cross-react in functional assays.
Collapse
Affiliation(s)
- S Lawson
- Institute for Animal Health, Compton, Berkshire, UK.
| | | | | |
Collapse
|
46
|
Schultz U, Chisari FV. Recombinant duck interferon gamma inhibits duck hepatitis B virus replication in primary hepatocytes. J Virol 1999; 73:3162-8. [PMID: 10074168 PMCID: PMC104078 DOI: 10.1128/jvi.73.4.3162-3168.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interferon gamma (IFN-gamma), which has been cloned in several mammalian species and recently in birds, plays a critical role in modulating immune system function. IFN-gamma and tumor necrosis factor alpha (TNF-alpha) have been shown to be crucial in the pathogenesis of viral hepatitis and in the transient disappearance of hepatitis B virus (HBV) from the liver after adoptive transfer of HBV-specific cytotoxic T lymphocytes into HBV-transgenic mice. Similar studies in the natural animal hosts of related hepadnaviruses have been limited because the corresponding probes and recombinant cytokines were not available. For this reason, we initiated studies to clone and characterize cytokines from the duck, the natural host of the duck hepatitis B virus (DHBV). We describe here the cDNA cloning and initial characterization of the IFN-gamma homologue of ducks (DuIFN-gamma). The DuIFN-gamma cDNA codes for a predicted mature protein of 145 amino acids with a molecular mass of 16.6 kDa. The precursor protein has 67% identity with the previously cloned chicken IFN-gamma and 21 to 34% identity with mammalian IFN-gamma. Recombinant DuIFN-gamma induces the transcription of several IFN-inducible genes including IFN regulatory factor 1 and guanylate-binding protein, and it exhibits antiviral activity that protects duck cells from vesicular stomatitis virus-mediated lysis. Importantly, treatment of primary duck hepatocytes with recombinant DuIFN-gamma inhibits DHBV replication in a dose-dependent fashion. Time course analysis revealed that IFN-gamma treatment does not affect initial covalently closed circular DNA (cccDNA) conversion but inhibits the synthesis of progeny cccDNA by amplification.
Collapse
Affiliation(s)
- U Schultz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
47
|
Kaiser P, Sonnemans D, Smith LM. Avian IFN-gamma genes: sequence analysis suggests probable cross-species reactivity among galliforms. J Interferon Cytokine Res 1998; 18:711-9. [PMID: 9781810 DOI: 10.1089/jir.1998.18.711] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about the evolution of cytokines in non-mammalian systems. To address this problem, we attempted to clone the gene for interferon-gamma (IFN-gamma) from a variety of avian species using oligonucleotide primers based on the sequence of the chicken IFN-gamma gene. The coding sequence and partial intron sequences were determined for four species, namely guinea fowl, ring-necked pheasant, Japanese quail, and turkey. To obtain sequence information on the gene extremities, a modified 5' and 3' RACE protocol was used. The sequence information showed that the coding regions of the IFN-gamma gene are highly conserved among the species studied (93.5%-96.7% and 87.8%-97.6% at the nucleotide and peptide levels, respectively) and are more conserved at the amino-terminal region (exons 1 and 2) than the carboxyl-terminal (exons 3 and 4). This high degree of overall identity at the predicted primary amino acid sequence level of the protein, including the deduced IFN-gamma receptor binding motifs, suggests that IFN-gamma may be cross-reactive among these species. Phylogenetic analysis shows that the similarity of the avian IFN-gamma sequences parallels the presumed evolutionary relationships between the species.
Collapse
Affiliation(s)
- P Kaiser
- Institute for Animal Health, Compton, Berkshire, UK.
| | | | | |
Collapse
|