1
|
Mey JT, Solomon TPJ, Kirwan JP, Haus JM. Skeletal muscle Nur77 and NOR1 insulin responsiveness is blunted in obesity and type 2 diabetes but improved after exercise training. Physiol Rep 2019; 7:e14042. [PMID: 30912283 PMCID: PMC6434071 DOI: 10.14814/phy2.14042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and type 2 diabetes (T2DM) are characterized by a blunted metabolic response to insulin, and strongly manifests in skeletal muscle insulin resistance. The orphan nuclear receptors, Nur77 and NOR1, regulate insulin-stimulated nutrient metabolism where Nur77 and NOR1 gene expression is increased with acute aerobic exercise and acute insulin stimulation. Whether Nur77 or NOR1 are associated with the insulin-sensitizing effects of chronic aerobic exercise training has yet to be elucidated. Fourteen lean healthy controls (LHC), 12 obese (OB), and 10 T2DM individuals (T2DM) underwent hyperinsulinemic-euglycemic clamps with skeletal muscle biopsies. Muscle was analyzed for Nur77 and NOR1 gene and protein expression at basal and insulin-stimulated conditions. Furthermore, a subcohort of 18 participants (OB, n = 12; T2DM, n = 6) underwent a 12-week aerobic exercise intervention (85% HRmax , 60 min/day, 5 days/week). In response to insulin infusion, LHC increased protein expression of Nur77 (8.7 ± 3.2-fold) and NOR1 (3.6 ± 1.1-fold), whereas OB and T2DM remained unaffected. Clamp-derived glucose disposal rates correlated with Nur77 (r2 = 0.14) and NOR1 (r2 = 0.12) protein expression responses to insulin, whereas age (Nur77: r2 = 0.22; NOR1: r2 = 0.25) and BMI (Nur77: r2 = 0.22; NOR1: r2 = 0.42) showed inverse correlations, corroborating preclinical data. In the intervention cohort, exercise improved Nur77 protein expression in response to insulin (PRE: -1.2 ± 0.3%, POST: 6.2 ± 1.5%). Also, insulin treatment of primary human skeletal muscle cells increased Nur77 and NOR1 protein. These findings highlight the multifactorial nature of insulin resistance in human obesity and T2DM. Understanding the regulation of Nur77 and NOR1 in skeletal muscle and other insulin-sensitive tissues will create opportunities to advance therapies for T2DM.
Collapse
MESH Headings
- Adult
- Aged
- Case-Control Studies
- Cells, Cultured
- Chicago
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/therapy
- Exercise Therapy
- Female
- Humans
- Insulin Resistance
- Longitudinal Studies
- Male
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Middle Aged
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Myoblasts, Skeletal/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Obesity/blood
- Obesity/diagnosis
- Obesity/physiopathology
- Obesity/therapy
- Ohio
- Signal Transduction
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Jacob T. Mey
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinois
| | - Thomas P. J. Solomon
- School of Sport, Exercise, and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - John P. Kirwan
- Metabolic Translational Research CenterEndocrinology & Metabolism InstituteCleveland ClinicClevelandOhio
- Integrative Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLouisiana
| | - Jacob M. Haus
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinois
- School of KinesiologyUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
2
|
The nuclear receptor NOR-1 regulates the small muscle protein, X-linked (SMPX) and myotube differentiation. Sci Rep 2016; 6:25944. [PMID: 27181368 PMCID: PMC4867575 DOI: 10.1038/srep25944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
Recent works have highlighted the role of NOR-1 in both smooth and skeletal muscle, and have proposed this nuclear receptor as a nexus that coordinates muscle performance and metabolic capacity. However, no muscle specific genes regulated by NOR-1 have been identified so far. To identify NOR-1 target genes, we over-expressed NOR-1 in human vascular smooth muscle cells (VSMC). These cells subjected to sustained over-expression of supraphysiological levels of NOR-1 experienced marked phenotypic changes and up-regulated the skeletal muscle protein X-linked (SMPX), a protein typically expressed in striated muscle and associated to cell shape. By transcriptional studies and DNA-protein binding assays, we identified a non-consensus NBRE site in human SMPX promoter, critical for NOR-1 responsiveness. The expression of SMPX was higher in human skeletal muscle myoblasts (HSMM) than in human VSMC, and further increased in HSMM differentiated to myotubes. NOR-1 silencing prevented SMPX expression in HSMM, as well as their differentiation to myotubes, but the up-regulation of SMPX was dispensable for HSMM differentiation. Our results indicate that NOR-1 regulate SMPX in human muscle cells and acts as a muscle regulatory factor, but further studies are required to unravel its role in muscle differentiation and hypertrophy.
Collapse
|
3
|
Min AK, Bae KH, Jung YA, Choi YK, Kim MJ, Kim JH, Jeon JH, Kim JG, Lee IK, Park KG. Orphan nuclear receptor Nur77 mediates fasting-induced hepatic fibroblast growth factor 21 expression. Endocrinology 2014; 155:2924-31. [PMID: 24885573 DOI: 10.1210/en.2013-1758] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fasting-induced hepatic hormone, fibroblast growth factor 21 (FGF21), is a potential candidate for the treatment of metabolic syndromes. Although peroxisome proliferator-activated receptor (PPAR)α is known to play a major role in the induction of hepatic FGF21 expression, other fasting-induced transcription factors that induce FGF21 expression have not yet been fully studied. In the present study, we investigated whether the fasting-induced activation of the orphan nuclear receptor Nur77 increases hepatic FGF21 expression. We found that fasting induced hepatic Nur77 and FGF21 expression. Glucagon and forskolin increased Nur77 and FGF21 expression in vivo and in vitro, respectively, and adenovirus-mediated overexpression of Nur77 (Ad-Nur77) increased FGF21 expression in vitro and in vivo. Moreover, knockdown of endogenous Nur77 expression by siRNA-Nur77 abolished the effect of forskolin on FGF21 expression. The results of ChIP assays, EMSA, and mutagenesis analysis showed that Nur77 bound to the putative NBRE of the FGF21 promoter in cultured hepatocytes and fasting induced Nur77 binding to the FGF21 promoter in vivo. Knockdown of PPARα partially inhibited forskolin-induced FGF21 expression, suggesting PPARα involvement in glucagon-stimulated FGF21 expression. In addition, double knockdown of PPARα and Nur77 further diminished FGF21 expression in cultured hepatocytes. In conclusion, this study shows that Nur77 mediates fasting-induced hepatic FGF21 expression, and suggests an alternative mechanism via which hepatic FGF21 transcription is mediated under fasting conditions.
Collapse
Affiliation(s)
- Ae-Kyung Min
- Division of Endocrinology and Metabolism (A.-K.M., K.-H.B., Y.-K.C., M.-J.K., J.-H.K., J.-H.J., J.-G.K., I.-K.L., K.-G.P.) Department of Internal Medicine, Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 700-721, South Korea; Division of Endocrinology and Metabolism (Y.-A.J.), Department of Internal Medicine, Keimyung University School of Medicine, Daegu 700-712, South Korea; Brain Korea 21 Plus Project for Bio-Medical Convergence Program for Creative Talent (I.-K.L.), Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Fibroblast growth factor 21 (FGF21) is an attractive target for treating metabolic disease due to its wide-ranging beneficial effects on glucose and lipid metabolism. Circulating FGF21 levels are increased in insulin-resistant states; however, endogenous FGF21 fails to improve glucose and lipid metabolism in obesity, suggesting that metabolic syndrome is an FGF21-resistant state. Therefore, transcription factors for FGF21 are potential drug targets that could increase FGF21 expression in obesity and reduce FGF21 resistance. Despite many studies on the metabolic effects of FGF21, the transcriptional regulation of FGF21 gene expression remains controversial and is not fully understood. As the FGF21 transcription factor pathway is one of the most promising targets for the treatment of metabolic syndrome, further investigation of FGF21 transcriptional regulation is required.
Collapse
Affiliation(s)
- Kwi-Hyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jung-Guk Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Keun-Gyu Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
5
|
Pearen MA, Muscat GEO. Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol 2010; 24:1891-903. [PMID: 20392876 DOI: 10.1210/me.2010-0015] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous members of the nuclear hormone receptor (NR) superfamily have been demonstrated to regulate metabolic function in a cell- and tissue-specific manner. This review brings together recent studies that have associated members of the NR superfamily, the orphan NR4A subgroup, with the regulation of metabolic function and disease. The orphan NR4A subgroup includes Nur77 (NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3). Expression of these receptors is induced in multiple tissues by a diverse range of stimuli, including stimuli associated with metabolic function, such as: β-adrenoceptor agonists, cold, fatty acids, glucose, insulin, cholesterol, and thiazolidinediones. In vitro and in vivo gain- and loss-of-function studies in major metabolic tissues (including skeletal muscle, adipose, and liver cells and tissues) have associated the NR4A subgroup with specific aspects of lipid, carbohydrate, and energy homeostasis. Most excitingly, although these orphan receptors do not have known endogenous ligands, several small molecule agonists have recently been identified. The preliminary studies reviewed in this manuscript suggest that therapeutic exploitation of the NR4A subgroup may show utility against dyslipidemia, obesity, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| | | |
Collapse
|
6
|
van der Vaart M, Schaaf MJ. Naturally occurring C-terminal splice variants of nuclear receptors. NUCLEAR RECEPTOR SIGNALING 2009; 7:e007. [PMID: 19636396 PMCID: PMC2716050 DOI: 10.1621/nrs.07007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/27/2009] [Indexed: 12/17/2022]
Abstract
Alternative mRNA splicing in the region encoding the C-terminus of nuclear receptors results in receptor variants lacking the entire ligand-binding domain (LBD), or a part of it, and instead contain a sequence of splice variant-specific C-terminal amino acids. A total of thirteen such splice variants have been shown to occur in vertebrates, and at least nine occur in humans. None of these receptor variants appear to be able to bind endogenous ligands and to induce transcription on promoters containing the response element for the respective canonical receptor variant. Interestingly, ten of these C-terminal splice variants have been shown to display dominant-negative activity on the transactivational properties of their canonical equivalent. Research on most of these splice variants has been limited, and the dominant-negative effect of these receptor variants has only been demonstrated in reporter assays in vitro, using transiently transfected receptors and reporter constructs. Therefore, the in vivo function and relevance of most C-terminal splice variants remains unclear. By reviewing the literature on the human glucocorticoid receptor beta-isoform (hGRbeta), we show that the dominant-negative effect of hGRbeta is well established using more physiologically relevant readouts. The hGR beta-isoform may alter gene transcription independent from the canonical receptor and increased hGRbeta levels correlate with glucocorticoid resistance and the occurrence of several immune-related diseases. Thus, available data suggests that C-terminal splice variants of nuclear receptors act as dominant-negative inhibitors of receptor-mediated signaling in vivo, and that aberrant expression of these isoforms may be involved in the pathogenesis of a variety of diseases.
Collapse
Affiliation(s)
| | - Marcel J.M. Schaaf
- Molecular Cell Biology, Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Lynch GS, Ryall JG. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 2008; 88:729-67. [PMID: 18391178 DOI: 10.1152/physrev.00028.2007] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The importance of beta-adrenergic signaling in the heart has been well documented, but it is only more recently that we have begun to understand the importance of this signaling pathway in skeletal muscle. There is considerable evidence regarding the stimulation of the beta-adrenergic system with beta-adrenoceptor agonists (beta-agonists). Although traditionally used for treating bronchospasm, it became apparent that some beta-agonists could increase skeletal muscle mass and decrease body fat. These so-called "repartitioning effects" proved desirable for the livestock industry trying to improve feed efficiency and meat quality. Studying beta-agonist effects on skeletal muscle has identified potential therapeutic applications for muscle wasting conditions such as sarcopenia, cancer cachexia, denervation, and neuromuscular diseases, aiming to attenuate (or potentially reverse) the muscle wasting and associated muscle weakness, and to enhance muscle growth and repair after injury. Some undesirable cardiovascular side effects of beta-agonists have so far limited their therapeutic potential. This review describes the physiological significance of beta-adrenergic signaling in skeletal muscle and examines the effects of beta-agonists on skeletal muscle structure and function. In addition, we examine the proposed beneficial effects of beta-agonist administration on skeletal muscle along with some of the less desirable cardiovascular effects. Understanding beta-adrenergic signaling in skeletal muscle is important for identifying new therapeutic targets and identifying novel approaches to attenuate the muscle wasting concomitant with many diseases.
Collapse
Affiliation(s)
- Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
8
|
Hansen TVO, Borup R, Marstrand T, Rehfeld JF, Nielsen FC. Cholecystokinin-2 receptor mediated gene expression in neuronal PC12 cells. J Neurochem 2007; 104:1450-65. [DOI: 10.1111/j.1471-4159.2007.05076.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2006; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pearen MA, Ryall JG, Maxwell MA, Ohkura N, Lynch GS, Muscat GEO. The orphan nuclear receptor, NOR-1, is a target of beta-adrenergic signaling in skeletal muscle. Endocrinology 2006; 147:5217-27. [PMID: 16901967 DOI: 10.1210/en.2006-0447] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)- and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Homeostasis
- Ion Channels/physiology
- Isoproterenol/pharmacology
- Lipid Metabolism
- Mice
- Mitochondrial Proteins/physiology
- Muscle Development
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myostatin
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Small Interfering/pharmacology
- Receptors, Adrenergic, beta/physiology
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/physiology
- Signal Transduction/physiology
- Transcription Factors/physiology
- Transforming Growth Factor beta/genetics
- Uncoupling Protein 2
- Uncoupling Protein 3
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, Division of Molecular Genetics and Development, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Nomiyama T, Nakamachi T, Gizard F, Heywood EB, Jones KL, Ohkura N, Kawamori R, Conneely OM, Bruemmer D. The NR4A orphan nuclear receptor NOR1 is induced by platelet-derived growth factor and mediates vascular smooth muscle cell proliferation. J Biol Chem 2006; 281:33467-76. [PMID: 16945922 PMCID: PMC1829169 DOI: 10.1074/jbc.m603436200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Members of the nuclear hormone receptor superfamily function as key transcriptional regulators of inflammation and proliferation in cardiovascular diseases. In addition to the ligand-dependent peroxisome proliferator-activated receptors and liver X receptors, this family of transcription factors includes a large number of orphan receptors, and their role in vascular diseases remains to be investigated. The neuron-derived orphan receptor-1 (NOR1) belongs to the ligand-independent NR4A subfamily, which has been implicated in cell proliferation, differentiation, and apoptosis. In this study, we demonstrate NOR1 expression in vascular smooth muscle cells (SMC) of human atherosclerotic lesions. In response to mitogenic stimulation with platelet-derived growth factor (PDGF), SMC rapidly express NOR1 through an ERK-MAPK-dependent signaling pathway. 5'-deletion analysis, site-directed mutagenesis, and transactivation experiments demonstrate that PDGF-induced NOR1 expression is mediated through a cAMP-response element-binding protein (CREB)-dependent transactivation of the NOR1 promoter. Consequently, short interfering RNA-mediated depletion of CREB abolished PDGF-induced NOR1 expression in SMC. Furthermore, PDGF induced Ser-133 phosphorylation of CREB and subsequent binding to the CRE sites of the endogenous NOR1 promoter. Functional analysis demonstrated that PDGF induces NOR1 transactivation of its consensus NGFI-B-response elements (NBRE) in SMC. We finally demonstrate that SMC isolated from NOR1-deficient mice exhibit decreased cell proliferation and characterize cyclin D1 and D2 as NOR1 target genes in SMC. These experiments indicate that PDGF-induced NOR1 transcription in SMC is mediated through CREB-dependent transactivation of the NOR1 promoter and further demonstrate that NOR1 functions as a key transcriptional regulator of SMC proliferation.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation
- Humans
- MAP Kinase Signaling System
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Phosphoserine/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/genetics
- Rats
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Response Elements
- Transcription, Genetic/genetics
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Takashi Nomiyama
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Takafumi Nakamachi
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Florence Gizard
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Elizabeth B. Heywood
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Karrie L. Jones
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Naganari Ohkura
- National Cancer Center Research Institute, Tumor Endocrinology Project, Tokyo 104-0045, Japan
| | - Ryuzo Kawamori
- Department of Medicine, Metabolism, and Endocrinology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Orla M. Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Dennis Bruemmer
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
- To whom correspondence should be addressed: Wethington Health Sciences Bldg., Rm. 575, 900 South Limestone St., Lexington, KY 40536-0200. Tel.: 859-323-4933(ext.81418);Fax:859-257-3646;E-mail:
| |
Collapse
|
12
|
Hisaoka M, Okamoto S, Yokoyama K, Hashimoto H. Coexpression of NOR1 and SIX3 proteins in extraskeletal myxoid chondrosarcomas without detectable NR4A3 fusion genes. CANCER GENETICS AND CYTOGENETICS 2004; 152:101-7. [PMID: 15262426 DOI: 10.1016/j.cancergencyto.2003.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 11/18/2003] [Accepted: 11/24/2003] [Indexed: 11/21/2022]
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is a rare mesenchymal tumor cytogenetically characterized by reciprocal translocations, such as t(9;22)(q22;q12) and t(9;17)(q22;q11), which result in EWSR1/NR4A3 and TAF15/NR4A3 fusion genes (alias EWS/NOR1, TAF2N/NOR1), respectively. NOR1 is an orphan nuclear receptor and acts as a transcription factor that can bind to its putative coactivator, SIX3. Although the NOR1 fusion protein has been implicated in oncogenesis of EMC, a small fraction of EMC lacks detectable rearrangements of the NR4A3 gene or 9q22. We report a case of EMC with no detectable NR4A3 gene alterations, as assessed with various molecular techniques including reverse transcription-polymerase chain reaction (RT-PCR), Southern blotting, interphase fluorescence in situ hybridization, and PCR single-strand conformation polymorphism-but with coexpression of native NOR1 and SIX3. In our survey of another 18 EMCs, we identified one more case expressing both NOR1 and SIX3 but lacking NR4A3 fusion. Fourteen tumors with detectable NR4A3 fusion genes (EWSR1-NR4A3; TAF15-NR4A3) expressed neither native NOR1 nor SIX3. SIX3 expression is normally confined specifically to the developing eye and fetal forebrain, although the expression of NR4A3 is largely ubiquitous. Our data suggest that aberrant coexpression of NOR1 and SIX3 is a potential alternative mechanism underlying the development of EMC.
Collapse
MESH Headings
- Aged
- Blotting, Southern
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Chondrosarcoma/genetics
- Chondrosarcoma/metabolism
- Chondrosarcoma/pathology
- Chromosomes, Human, Pair 9/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Eye Proteins
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Interphase
- Male
- Membrane Transport Proteins
- Nasopharyngeal Neoplasms/genetics
- Nasopharyngeal Neoplasms/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Polymorphism, Single-Stranded Conformational
- Proteins/genetics
- Proteins/metabolism
- Receptors, Steroid
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Homeobox Protein SIX3
Collapse
Affiliation(s)
- Masanori Hisaoka
- Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | |
Collapse
|
13
|
Rius J, Martínez-González J, Crespo J, Badimon L. Involvement of neuron-derived orphan receptor-1 (NOR-1) in LDL-induced mitogenic stimulus in vascular smooth muscle cells: role of CREB. Arterioscler Thromb Vasc Biol 2004; 24:697-702. [PMID: 14962944 DOI: 10.1161/01.atv.0000121570.00515.dc] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Low density lipoproteins (LDLs) modulate the expression of key genes involved in atherogenesis. Recently, we have shown that the transcription factor neuron-derived orphan receptor-1 (NOR-1) is involved in vascular smooth muscle cell (VSMC) proliferation. Our aim was to analyze whether NOR-1 is involved in LDL-induced mitogenic effects in VSMC. METHODS AND RESULTS LDL induced NOR-1 expression in a time- and dose-dependent manner. Antisense oligonucleotides against NOR-1 inhibit DNA synthesis induced by LDL in VSMCs as efficiently as antisense against the protooncogene c-fos. The upregulation of NOR-1 mRNA levels by LDL involves pertusis-sensitive G protein-coupled receptors, Ca2+ mobilization, protein kinases A (PKA) and C (PKC) activation, and mitogen-activated protein kinase pathways (MAPK) (p44/p42 and p38). LDL promotes cAMP response element binding protein (CREB) activation (phosphorylation in Ser133). In transfection assays a dominant-negative of CREB inhibits NOR-1 promoter activity, while mutation of specific (cAMP response element) CRE sites in the NOR-1 promoter abolishes LDL-induced NOR-1 promoter activity. CONCLUSIONS In VSMCs, LDL-induced mitogenesis involves NOR-1 upregulation through a CREB-dependent mechanism. CREB could play a role in the modulation by LDL of key genes (containing CRE sites) involved in atherogenesis.
Collapse
MESH Headings
- Adult
- Animals
- Binding Sites
- Calcium Signaling
- Cells, Cultured/drug effects
- Cyclic AMP Response Element-Binding Protein/chemistry
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/physiology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- DNA Replication/drug effects
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Enzyme Activation
- Humans
- Lipoproteins, LDL/pharmacology
- MAP Kinase Signaling System
- Mitosis/drug effects
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Protein Kinase C/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Receptors, G-Protein-Coupled/physiology
- Receptors, Steroid
- Receptors, Thyroid Hormone
- Regulatory Sequences, Nucleic Acid
- Thionucleotides/pharmacology
- Transfection
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Jordi Rius
- Centro de Investigación Cardiovascular, CSIC/ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Fass DM, Butler JEF, Goodman RH. Deacetylase activity is required for cAMP activation of a subset of CREB target genes. J Biol Chem 2003; 278:43014-9. [PMID: 12939274 DOI: 10.1074/jbc.m305905200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many hormones activate transcription by raising the level of cAMP within cells. In one well studied pathway, cAMP induces protein kinase A to phosphorylate the transcription factor CREB, which binds to a consensus sequence, the cAMP-regulated enhancer, found in many target genes. A generally accepted model suggests that phosphorylated CREB recruits the histone acetyltransferase CBP to activate transcription. In contrast, histone deacetylases have been linked to the cessation of CREB-dependent transcription. Here we tested this model in the regulation of endogenous CREB target genes. We used a constitutively active CREB mutant and microarray analysis to identify target genes in PC12 cells. We then tested the role of histone deacetylase activity in cAMP activation of four of these genes (c-FOS, ICER, NOR-1, and NUR77) by treating cells with the histone deacetylase inhibitor trichostatin A. Consistent with the generally accepted model, trichostatin A enhanced activation of c-FOS and NUR77 by cAMP. Surprisingly, trichostatin A blocked activation of ICER and NOR-1. The block of ICER and NOR-1 activation persisted in the presence of cycloheximide, indicating that the trichostatin A effect did not depend on new protein synthesis. This unexpected role of histone deacetylases in transcriptional activation of certain endogenous CREB target genes was not apparent in transfected reporter genes. Chromatin immunoprecipitation analysis indicated that the differential roles of histone deacetylases in activating or repressing CREB target genes was manifested at the level of preinitiation complex recruitment. These data indicate that histone deacetylases differentially regulate CREB target genes by contributing to either activation or cessation of transcription.
Collapse
Affiliation(s)
- Daniel M Fass
- Vollum Institute L474, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
15
|
Wansa KDSA, Harris JM, Yan G, Ordentlich P, Muscat GEO. The AF-1 domain of the orphan nuclear receptor NOR-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. J Biol Chem 2003; 278:24776-90. [PMID: 12709428 DOI: 10.1074/jbc.m300088200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NOR-1/NR4A3 is an "orphan member" of the nuclear hormone receptor superfamily. NOR-1 and its close relatives Nurr1 and Nur77 are members of the NR4A subgroup of nuclear receptors. Members of the NR4A subgroup are induced through multiple signal transduction pathways. They have been implicated in cell proliferation, differentiation, T-cell apoptosis, chondrosarcomas, neurological disorders, inflammation, and atherogenesis. However, the mechanism of transcriptional activation, coactivator recruitment, and agonist-mediated activation remain obscure. Hence, we examined the molecular basis of NOR-1-mediated activation. We observed that NOR-1 trans-activates gene expression in a cell- and target-specific manner; moreover, it operates in an activation function (AF)-1-dependent manner. The N-terminal AF-1 domain delimited to between amino acids 1 and 112, preferentially recruits the steroid receptor coactivator (SRC). Furthermore, SRC-2 modulates the activity of the AF-1 domain but not the C-terminal ligand binding domain (LBD). Homology modeling indicated that the NOR-1 LBD was substantially different from that of hRORbeta, a closely related AF-2-dependent receptor. In particular, the hydrophobic cleft characteristic of nuclear receptors was replaced with a very hydrophilic surface with a distinct topology. This observation may account for the inability of this nuclear receptor LBD to efficiently mediate cofactor recruitment and transcriptional activation. In contrast, the N-terminal AF-1 is necessary for cofactor recruitment and can independently conscript coactivators. Finally, we demonstrate that the purine anti-metabolite 6-mercaptopurine, a widely used antineoplastic and anti-inflammatory drug, activates NOR-1 in an AF-1-dependent manner. Additional 6-mercaptopurine analogs all efficiently activated NOR-1, suggesting that the signaling pathways that modulate proliferation via inhibition of de novo purine and/or nucleic acid biosynthesis are involved in the regulation NR4A activity. We hypothesize that the NR4A subgroup mediates the genotoxic stress response and suggest that this subgroup may function as sensors that respond to genotoxicity.
Collapse
|
16
|
Pirih FQ, Nervina JM, Pham L, Aghaloo T, Tetradis S. Parathyroid hormone induces the nuclear orphan receptor NOR-1 in osteoblasts. Biochem Biophys Res Commun 2003; 306:144-50. [PMID: 12788080 DOI: 10.1016/s0006-291x(03)00931-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Parathyroid hormone (PTH) significantly affects osteoblast function by altering gene expression. We have identified neuron-derived orphan receptor-1 (NOR-1) as a PTH-induced primary gene in osteoblastic cells. NOR-1, Nurr1, and Nur77 comprise the NGFI-B nuclear orphan receptor family and Nurr1 and Nur77 are PTH-induced primary osteoblastic genes. Ten nM PTH maximally induced NOR-1 mRNA at 2h in primary mouse osteoblasts and at 1h in mouse calvariae. Cycloheximide pretreatment did not inhibit PTH-induced NOR-1 mRNA. PTH activates cAMP-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling. Forskolin (PKA activator) and PMA (PKC activator) mimicked PTH-induced NOR-1 mRNA. Ionomycin (calcium ionophore) and PTH(3-34), which do not activate PKA, failed to induce NOR-1 mRNA. PKA inhibition with H89 blocked PTH- and FSK-induced NOR-1 mRNA. PMA pretreatment to deplete PKC inhibited PMA-induced, but not PTH-induced, NOR-1 mRNA. We conclude that NOR-1 is a PTH-regulated primary osteoblastic gene that is induced mainly through cAMP-PKA signaling.
Collapse
Affiliation(s)
- Flavia Q Pirih
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | | | | | | | | |
Collapse
|
17
|
Martínez-González J, Rius J, Castelló A, Cases-Langhoff C, Badimon L. Neuron-Derived Orphan Receptor-1 (NOR-1) Modulates Vascular Smooth Muscle Cell Proliferation. Circ Res 2003. [DOI: 10.1161/01.res.0000050921.53008.47] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- José Martínez-González
- From the Instituto de Investigación Cardiovascular de Barcelona, CSIC-ICCC-Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Rius
- From the Instituto de Investigación Cardiovascular de Barcelona, CSIC-ICCC-Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Castelló
- From the Instituto de Investigación Cardiovascular de Barcelona, CSIC-ICCC-Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Claudia Cases-Langhoff
- From the Instituto de Investigación Cardiovascular de Barcelona, CSIC-ICCC-Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lina Badimon
- From the Instituto de Investigación Cardiovascular de Barcelona, CSIC-ICCC-Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
18
|
Satoh JI, Kuroda Y. The constitutive and inducible expression of Nurr1, a key regulator of dopaminergic neuronal differentiation, in human neural and non-neural cell lines. Neuropathology 2002; 22:219-32. [PMID: 12564761 DOI: 10.1046/j.1440-1789.2002.00460.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nur-related factor 1 (Nurr1), nerve growth factor-induced gene B (NGFI-B) and neuron-derived orphan receptor-1 (NOR-1) constitute the orphan nuclear receptor subfamily of transcription factors. Previous studies showed that midbrain dopaminergic neuronal precursor cells failed to differentiate in Nurr1-deficient mice. To investigate a role of Nurr1 in human neuronal function, Nurr1 mRNA expression was studied in human neural cell lines by RT-PCR and northern blot analysis. Nurr1, NGFI-B and NOR-1 mRNA were coexpressed in all human neural and nonneural cell lines under the serum-containing culture condition, except for SK-N-SH neuroblastoma, in which Nurr1 mRNA was undetectable. The levels of Nurr1, NGFI-B and NOR-1 mRNA were elevated markedly in NTera2 teratocarcinoma-derived neurons (NTera2-N), a model of differentiated human neurons, following a 1.5 or 3 h-exposure to 1 mM dibutyryl cyclic AMP or 100 nm phorbol 12-myristate 13-acetate. NGFI-B mRNA levels were also elevated in NTera2-N cells by exposure to 100 ng/mL brain-derived neurotrophic factor (BDNF). To identify Nurr1-target genes, the mRNA expression of 27 genes potentially involved in dopaminergic neuronal differentiation and survival, including BDNF, glia-derived neurotrophic factor, their receptors, tyrosine hydroxylase and alpha-synuclein, were studied in HEK293 cells following overexpression of Nurr1. None of these genes examined, however, showed significant changes. These results indicate that Nurr1, NGFI-B and NOR-1 mRNA are expressed constitutively in various human neural and non-neural cell lines under the serum-containing culture condition, and their levels are up-regulated in human neurons by activation of protein kinase A or protein kinase C pathway, although putative coactivators expressed in dopaminergic neuronal precursor cells might be required for efficient transcriptional activation of Nurr1-target genes.
Collapse
MESH Headings
- Blotting, Northern
- Brain-Derived Neurotrophic Factor/pharmacology
- Bucladesine/pharmacology
- Cell Culture Techniques
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/drug effects
- Enzyme Activators/pharmacology
- Gene Expression Regulation
- Humans
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/drug effects
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Receptors, Thyroid Hormone
- Reverse Transcriptase Polymerase Chain Reaction
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/biosynthesis
- Transcription Factors/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Immunology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan.
| | | |
Collapse
|
19
|
Panagopoulos I, Mertens F, Isaksson M, Domanski HA, Brosjö O, Heim S, Bjerkehagen B, Sciot R, Dal Cin P, Fletcher JA, Fletcher CDM, Mandahl N. Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2002; 35:340-52. [PMID: 12378528 DOI: 10.1002/gcc.10127] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is a soft-tissue neoplasm cytogenetically characterized by the translocations t(9;22)(q22;q11-12) or t(9;17)(q22;q11), generating EWS/CHN or RBP56/CHN fusion genes, respectively. In the present study, 18 EMCs were studied both cytogenetically and at the molecular level. Chromosomal aberrations were detected in 16 samples: 13 with involvement of 9q22 and 22q11-12, and three with rearrangements of 9q22 and 17q11. Fifteen cases had an EWS/CHN fusion transcript and three had an RBP56/CHN transcript. The most frequent EWS/CHN transcript (type 1; 10 tumors), involved fusion of EWS exon 12 with CHN exon 3, and the second most common (type 5; two cases) was fusion of EWS exon 13 with CHN exon 3. In all tumors with RBP56/CHN fusion, exon 6 of RBP56 was fused to exon 3 of CHN. By genomic XL PCR and sequence analyses, the breakpoints from 14 cases were mapped in the EWS, RBP56, and CHN genes. In CHN, 12 breakpoints were found in intron 2 and only two in intron 1. In EWS, the breaks occurred in introns 7 (one break), 12 (eight breaks), and 13 (one break), and in RBP56 in intron 6. Repetitive elements such as Alu and LINE sequences seem to have limited, if any, importance in the genesis of EWS/CHN and RBP56/CHN chimeras. Furthermore, there were no chi, chi-like, topoisomerase II, or translin consensus sequences in the introns harboring the translocation breakpoints, nor could the number of topo I sites in EWS, RBP56, and CHN introns explain the uneven distribution of the breakpoints among EWS or CHN introns. Additional genetic events, such as nucleotide insertions, homologies at the junction, deletions, duplications, and inversions, were found to accompany the translocations, indicating that the chromosomal translocations do not require sequence-specific recombinases or extensive homology between the recombined sequences.
Collapse
|
20
|
Inuzuka H, Tokumitsu H, Ohkura N, Kobayashi R. Transcriptional regulation of nuclear orphan receptor, NOR-1, by Ca(2+)/calmodulin-dependent protein kinase cascade. FEBS Lett 2002; 522:88-92. [PMID: 12095624 DOI: 10.1016/s0014-5793(02)02890-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We found that transcription of NOR-1 (neuron-derived orphan receptor-1) is induced by the Ca(2+)/calmodulin-dependent protein kinase IV (CaM-KIV) cascade by differential hybridization screening of a cDNA array using probes prepared from SH-SY5Y cells infected with recombinant adenoviruses expressing Ca(2+)/CaM-independent mutants of CaM-KIV and CaM-K kinase (CaM-KK). Induction of NOR-1 mRNA expression by the CaM-KIV cascade was confirmed by RT-PCR. Promoter analyses indicate that CaM-KIV cascade response element is located between -162 bp and -42 bp in the 1.7 kb NOR-1 promoter containing triple cAMP response elements. Disruption of each element significantly reduced the promoter activity, indicating the direct transcriptional regulation of NOR-1 by CaM-KIV cascade.
Collapse
Affiliation(s)
- Hiroyuki Inuzuka
- Department of Chemistry, Kagawa Medical University, 1750-1 Miki-cho, Kita-gun, Japan.
| | | | | | | |
Collapse
|
21
|
Ohkubo T, Sugawara Y, Sasaki K, Maruyama K, Ohkura N, Makuuchi M. Early induction of nerve growth factor-induced genes after liver resection-reperfusion injury. J Hepatol 2002; 36:210-7. [PMID: 11830332 DOI: 10.1016/s0168-8278(01)00258-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Nur-related factor 1 (Nurr1) has been implicated in liver generation after hepatectomy. We hypothesized that the genes in the nerve growth factor-induced gene B (NGFI-B) family was induced in liver ischemia-reperfusion injury. METHODS Expression of the NGFI-B family genes was examined by the reverse transcription-polymerase chain reaction in rat and human livers. In situ hybridization was performed to check the localization of the NGFI-B gene in rat liver. Expression of phospho-Ser-133-specific cyclic adenosine-3' :5'-monophosphate response element binding (pCREB) protein was examined by Western blot analysis and gel shift assay, since the promoter region of the NGFI-B family genes contains CRE. RESULTS The expression of the NGFI-B family genes were recognized within 30 min after ischemia-reperfusion in rat liver, which was augmented by cycloheximide injection. In human specimens, the NGFI-B family genes expression was stronger than that before ischemic insult. pCREB protein was detected in the rat liver sampled 15 min after reperfusion. Gel shift assay suggested that CREB bound to neuron-derived orphan receptor gene in rat liver cells. CONCLUSIONS We recognized the early induction of the NGFI-B family genes after ischemia-reperfusion injury in rat and human livers. A pathway via CREB may be responsible for the induction.
Collapse
Affiliation(s)
- Takao Ohkubo
- Hepatobiliary Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Maltais A, Labelle Y. Structure and expression of the mouse gene encoding the orphan nuclear receptor TEC. DNA Cell Biol 2000; 19:121-30. [PMID: 10701778 DOI: 10.1089/104454900314636] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translocated in extraskeletal chondrosarcoma (TEC) is an orphan nuclear receptor involved in the control of cell proliferation and apoptosis and is expressed mainly in the mammalian central nervous system. To help understand the regulation of its expression, we have characterized the mouse genomic locus encoding TEC and analyzed its expression pattern in various tissues. The gene spans approximately 40 kb and contains 8 exons, of which the first two are noncoding. The promoter region does not contain any identifiable TATA box or CCAAT box elements; however, several binding sites for the transcription factors cyclic AMP-responsive element binding (CREB) protein and Spl are present. Two types of transcripts generated by alternative splicing were characterized by RT-PCR: one encodes the full-length receptor of 627 amino acids; the other encodes a truncated receptor of 429 amino acids lacking the entire carboxyl-terminal domain. Northern blots and RT-PCR analyses showed that mRNAs encoding both isoforms are expressed in all mouse tissues examined, with the highest levels being found in the brain. This expression pattern suggests that TEC may perform some basic housekeeping cellular function in addition to its role in cell proliferation.
Collapse
Affiliation(s)
- A Maltais
- Unit'e de recherche en g'en'etique humaine et mol'eculaire, Pavillon Saint-François d'Assise, CHUQ, Qc, Qu'ebec, Canada
| | | |
Collapse
|
23
|
Ohkura N, Hosono T, Maruyama K, Tsukada T, Yamaguchi K. An isoform of Nurr1 functions as a negative inhibitor of the NGFI-B family signaling. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1444:69-79. [PMID: 9931442 DOI: 10.1016/s0167-4781(98)00247-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NGFI-B, Nurr1 and NOR-1 constitute a distinct subfamily within the nuclear receptor superfamily. To clarify the transcriptional regulation by the NGFI-B family, we searched for other components that can bind to the NBRE response element, a known target sequence for these transcription factors. By low stringency hybridization using the DNA binding domain of NOR-1 as a probe, a C-terminal truncated Nurr1 isoform, named Nurr2, was isolated from a mouse MC3T3-E1 cell cDNA library. Nurr2 had a novel cryptic exon located upstream in the Nurr1 promoter region, and was generated by alternative splicing at exons 1, 2 and 6. The C-terminal region was encoded by frame-shifted exon 6, and so Nurr2 lacked the C-terminal sequences corresponding to the putative ligand binding domain or dimerization domain. Quantitative reverse transcriptase-PCR experiments confirmed the presence of the Nurr2 isoform in mouse, rat and human. It was, like Nurr1, highly expressed in the pituitary and the cerebral cortex. Nurr2 and Nurr1 were also concomitantly induced by forskolin in NIH3T3 cells. Functional analysis using a reporter gene, containing NBRE response elements, indicated that while the isoform was inactive by itself, it could inhibit transactivation by the members of the NGFI-B family. These results indicate that the C-terminal truncated isoform, Nurr2, may act as a negative regulator of the NGFI-B family signaling.
Collapse
MESH Headings
- 3T3 Cells
- Alternative Splicing
- Animals
- Base Sequence
- Colforsin/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/antagonists & inhibitors
- Gene Expression/drug effects
- Humans
- Mice
- Molecular Sequence Data
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Protein Isoforms/physiology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- N Ohkura
- Growth Factor Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | |
Collapse
|
24
|
OHKURA N, MARUYAMA K, TSUKADA T, HOSONO T, YAMAGUCHI K. The NGFI-B Family: Orphan Nuclear Receptors of the Steroid/Thyroid Receptor Superfamily. J Reprod Dev 1998. [DOI: 10.1262/jrd.44.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Naganari OHKURA
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| | - Kouji MARUYAMA
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| | - Toshihiko TSUKADA
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| | - Tetsuji HOSONO
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| | - Ken YAMAGUCHI
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|