1
|
Sun Z, Chen X, Liu J, Du Y, Duan C, Xiao S, Zhou Y, Fang L. PRRSV-induced inflammation in pulmonary intravascular macrophages (PIMs) and pulmonary alveolar macrophages (PAMs) contributes to endothelial barrier function injury. Vet Microbiol 2023; 281:109730. [PMID: 37068404 DOI: 10.1016/j.vetmic.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a severe infectious disease currently devasting the global pig industry. PRRS is characterized by intense inflammation and severe damage to the alveolar-capillary barrier. Therefore, it is crucial to uncover the underlying mechanism by which the PRRS virus (PRRSV) induces inflammatory responses and barrier function damage. In addition to porcine alveolar macrophages (PAMs), the primary target cells of PRRSV infection in vivo, pulmonary intravascular macrophages (PIMs) are also susceptible to PRRSV infection. However, the poor isolation efficiency limits the study of PRRSV infection in PIMs. In this study, we optimized the isolation method to obtain PIMs with higher purity and yield and demonstrated that PRRSV's infection kinetics in PIMs were similar to those in PAMs. Notably, PIMs exhibited a more acute inflammation process during PRRSV infection than PAMs, as evidenced by the earlier upregulation and higher levels of pro-inflammatory cytokines, including TNF-α and IL-1β. More acute endothelial barrier disfunction upon PRRSV infection was also observed in PIMs compared to in PAMs. Mechanistically, PRRSV-induced TNF-α and IL-1β could cause endothelial barrier disfunction by dysregulating tight junction proteins, including claudin 1 (CLDN1), claudin 8 (CLDN8) and occludin (OCLN). Our findings revealed the crucial and novel roles of PIMs in facilitating the progression of inflammatory responses and endothelial barrier injury and provided new insights into the mechanisms of PRRSV's induction of interstitial pneumonia.
Collapse
|
2
|
Akter F, Roychoudhury P, Dutta TK, Subudhi PK, Kumar S, Gali JM, Behera P, Singh YD. Isolation and molecular characterization of GP5 glycoprotein gene of Betaarterivirus suid 2 from Mizoram, India. Virusdisease 2021; 32:748-756. [PMID: 34458505 PMCID: PMC8378527 DOI: 10.1007/s13337-021-00735-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a serious swine disease causing great economic impact worldwide. The emergence of highly pathogenic strains in Asian countries is associated with large scale mortality in all age groups of pigs besides the classical presentation of severe respiratory distress, pneumonia, and a series of reproductive disorders in sows, like late-term abortion, premature farrowing, and an increased number of stillborn piglets. The present study was designed with the aim of isolation and characterization of the Betaarterivirus suid 2 from outbreaks in Mizoram in primary porcine alveolar macrophage and subsequently characterized the GP5 gene sequence of the isolate in terms of phylogenetic analysis and deduce amino acid sequence comparison. Virus propagation was performed in the porcine alveolar macrophage (PAM) primary cell culture and confirmed by immunoperoxidase test, FAT, and nested RT-PCR. The full-length GP5 gene (603nt) was amplified from the isolate and subsequently cloned and sequenced (MN928985). Phylogenetic analysis and sequence comparison of the present isolate was found to have similarity 98.7-98.8% with Myanmar HP-PRRS strains, 98-98.5% with Vietnam strains, 98.2-98.3% with China strains, indicating a close lineage with highly pathogenic PRRS strains. In deduced amino acid sequence analysis, one mutation was found in the primary neutralizing epitope (PNE) at position 39L → I39 and one more mutation was also found in the decoy epitope (DCE) at position 30 N → D30. The amino acid at this position is an N-linked glycosylation site, and mutation of the N-linked glycosylation is an immune escaped strategy adopted by this virus causing a persistent infection in the natural host.
Collapse
Affiliation(s)
- Fatema Akter
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Parimal Roychoudhury
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Tapan Kumar Dutta
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Prasant Kumar Subudhi
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Sanjeev Kumar
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Jagan Mohanarao Gali
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Parthasarathi Behera
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Yengkhom Damodar Singh
- Department of Veterinary Pathology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| |
Collapse
|
3
|
Van Goor A, Pasternak A, Walker K, Hong L, Malgarin C, MacPhee DJ, Harding JCS, Lunney JK. Differential responses in placenta and fetal thymus at 12 days post infection elucidate mechanisms of viral level and fetal compromise following PRRSV2 infection. BMC Genomics 2020; 21:763. [PMID: 33148169 PMCID: PMC7640517 DOI: 10.1186/s12864-020-07154-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A pregnant gilt infected with porcine reproductive and respiratory syndrome virus (PRRSV) can transmit the virus to her fetuses across the maternal-fetal-interface resulting in varying disease outcomes. However, the mechanisms leading to variation in fetal outcome in response to PRRSV infection are not fully understood. Our objective was to assess targeted immune-related gene expression patterns and pathways in the placenta and fetal thymus to elucidate the molecular mechanisms involved in the resistance/tolerance and susceptibility of fetuses to PRRSV2 infection. Fetuses were grouped by preservation status and PRRS viral load (VL): mock infected control (CTRL), no virus detected (UNINF), virus detected in the placenta only with viable (PLCO-VIA) or meconium-stained fetus (PLCO-MEC), low VL with viable (LVL-VIA) or meconium-stained fetus (LVL-MEC), and high VL with viable (HVL-VIA) or meconium-stained fetus (HVL-MEC). RESULTS The host immune response was initiated only in fetuses with detectable levels of PRRSV. No differentially expressed genes (DEG) in either the placenta or thymus were identified in UNINF, PLCO-VIA, and PLCO-MEC when compared to CTRL fetuses. Upon fetal infection, a set of core responsive IFN-inducible genes (CXCL10, IFIH1, IFIT1, IFIT3, ISG15, and MX1) were strongly upregulated in both tissues. Gene expression in the thymus is a better differentiator of fetal VL; the strong downregulation of several innate and adaptive immune pathways (e.g., B Cell Development) are indicative of HVL. Gene expression in the placenta may be a better differentiator of fetal demise than the thymus, based-on principle component analysis clustering, gene expression patterns, and dysregulation of the Apoptosis and Ubiquitination pathways. CONCLUSION Our data supports the concept that fetal outcome in response to PRRSV2 infection is determined by fetal, and more significantly placental response, which is initiated only after fetal infection. This conceptual model represents a significant step forward in understanding the mechanisms underpinning fetal susceptibility to the virus.
Collapse
Affiliation(s)
- Angelica Van Goor
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - Alex Pasternak
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kristen Walker
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Carolina Malgarin
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA.
| |
Collapse
|
4
|
Zhao J, Zhu L, Xu L, Huang J, Sun X, Xu Z. Porcine interferon lambda 3 (IFN-λ3) shows potent anti-PRRSV activity in primary porcine alveolar macrophages (PAMs). BMC Vet Res 2020; 16:408. [PMID: 33115475 PMCID: PMC7594293 DOI: 10.1186/s12917-020-02627-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious viral disease of swine. At present, there are vaccines for the control of PRRSV infection, but the effect is not satisfactory. The recombination of attenuated vaccines causes significant difficulties with the prevention and control of PRRSV. Type III interferons (IFNs), also called IFN-λs, were newly identified and showed potent antiviral activity within the mucosal surface and immune organs. Results Therefore, primary porcine alveolar macrophages (PAMs) were used for this investigation. To this end, we found that the replication of PRRSV in PAMs was significantly reduced after pre-treatment with IFN-λ3, and such inhibition was dose- and time-dependent. The plaque formation of PRRSV abrogated entirely, and virus yields were reduced by four orders of magnitude when the primary PAMs were treated with IFN-λ3 at 1000 ng/ml. In addition, IFN-λ3 in our study was able to induce the expression of interferon-stimulated genes 15 (ISG15), 2′-5′-oligoadenylate synthase 1 (OAS1), IFN-inducible transmembrane 3 (IFITM3), and myxoma resistance protein 1(Mx1) in primary PAMs. Conclusions IFN-λ3 had antiviral activity against PRRSV and can stimulate the expression of pivotal interferon-stimulated genes (ISGs), i.e., ISG15, Mx1, OAS1, and IFITM3. So, IFN-λ3 may serve as a useful antiviral agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02627-6.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, Sichuan Province, China.
| |
Collapse
|
5
|
Desmonts de Lamache D, Moges R, Siddiq A, Allain T, Feener TD, Muench GP, McKenna N, Yates RM, Buret AG. Immuno-modulating properties of Tulathromycin in porcine monocyte-derived macrophages infected with porcine reproductive and respiratory syndrome virus. PLoS One 2019; 14:e0221560. [PMID: 31442273 PMCID: PMC6707645 DOI: 10.1371/journal.pone.0221560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 01/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus that grows in macrophages and causes acute pneumonia in pigs. PRRSV causes devastating losses to the porcine industry. However, due to its high antigenic variability and poorly understood immunopathogenesis, there is currently no effective vaccine or treatment to control PRRSV infection. The common occurrence of PRRSV infection with bacterial infections as well as its inflammatory-driven pathobiology raises the question of the value of antibiotics with immunomodulating properties for the treatment of the disease it causes. The macrolide antibiotic Tulathromycin (TUL) has been found to exhibit potent anti-inflammatory and immunomodulating properties in cattle and pigs. The aim of this study was to characterize the anti-viral and immunomodulating properties of TUL in PRRSV-infected porcine macrophages. Our findings indicate that blood monocyte-derived macrophages are readily infected by PRRSV and can be used as an effective cellular model to study PRRSV pathogenesis. TUL did not change intracellular or extracellular viral titers, not did it alter viral receptors (CD163 and CD169) expression on porcine macrophages. In contrast, TUL exhibited potent immunomodulating properties, which therefore occurred in the absence of any direct antiviral effects against PRRSV. TUL had an additive effect with PRRSV on the induction of macrophage apoptosis, and inhibited virus-induced necrosis. TUL significantly attenuated PRRSV-induced macrophage pro-inflammatory signaling (CXCL-8 and mitochondrial ROS production) and prevented PRRSV inhibition of non-opsonized and opsonized phagocytic function. Together, these data demonstrate that TUL inhibits PRRSV-induced inflammatory responses in porcine macrophages and protects against the phagocytic impairment caused by the virus. Research in live pigs is warranted to assess the potential clinical benefits of this antibiotic in the context of virally induced inflammation and tissue injury.
Collapse
Affiliation(s)
| | - R. Moges
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - A. Siddiq
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - T. Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - T. D. Feener
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - G. P. Muench
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - N. McKenna
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - R. M. Yates
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - A. G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- * E-mail:
| |
Collapse
|
6
|
Chen Z, Liu S, Zhang S, Zhang Y, Yu J, Sun W, Chen L, Du Y, Wang J, Li Y, Wu J. Porcine Reproductive and Respiratory Syndrome Virus strains with Higher Virulence Cause Marked Protein Profile Changes in MARC-145 Cells. Sci Rep 2018; 8:15000. [PMID: 30302013 PMCID: PMC6177479 DOI: 10.1038/s41598-018-32984-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/17/2018] [Indexed: 01/10/2023] Open
Abstract
Porcine reproductive and respiratory syndrome is an infectious disease that causes serious economic losses to the swine industry worldwide. To better understand the pathogenesis of the porcine reproductive and respiratory syndrome virus (PRRSV), three PRRSV strains with different molecular markers and virulence were used to infect MARC-145 cells. A total of 1804 proteins were identified, and 233 altered proteins and 72 signaling pathways involved in the proteomic profiling of virus-infected MARC-145 cells increased with the virulence of the PRRSV strain. The three types of viral strains shared a common pathway—the electron transport reaction in mitochondria—in the infected-MARC-145 cells. Moreover, the antisense pathway was the most variable of all significant signaling pathways for the highly virulent SX-1 strain, indicating that this unique pathway may be connected to the high virulence of the SX-1 strain. Our study is the first attempt to provide a proteome profile of MARC-145 cells infected with PRRSV strains with different virulence, and these findings will facilitate a deep understanding of the interactions between this virus and its host.
Collapse
Affiliation(s)
- Zhi Chen
- Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shaoning Liu
- Shandong Institute of Veterinary Drug Quality Inspection, Jinan, 250022, China
| | - Shujin Zhang
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Yuyu Zhang
- Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jiang Yu
- Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wenbo Sun
- Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lei Chen
- Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yijun Du
- Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinbao Wang
- Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Jiaqiang Wu
- Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
7
|
Blomström AL, Ye X, Fossum C, Wallgren P, Berg M. Characterisation of the Virome of Tonsils from Conventional Pigs and from Specific Pathogen-Free Pigs. Viruses 2018; 10:v10070382. [PMID: 30036964 PMCID: PMC6071052 DOI: 10.3390/v10070382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022] Open
Abstract
Porcine respiratory disease is a multifactorial disease that can be influenced by a number of different microorganisms, as well as by non-infectious factors such as the management and environment of the animals. It is generally believed that the interaction between different infectious agents plays an important role in regard to respiratory diseases. Therefore, we used high-throughput sequencing combined with viral metagenomics to characterise the viral community of tonsil samples from pigs coming from a conventional herd with lesions in the respiratory tract at slaughter. In parallel, samples from specific pathogen-free pigs were also analysed. This study showed a variable co-infection rate in the different pigs. The differences were not seen at the group level but in individual pigs. Some viruses such as adenoviruses and certain picornaviruses could be found in most pigs, while others such as different parvoviruses and anelloviruses were only identified in a few pigs. In addition, the complete coding region of porcine parvovirus 7 was obtained, as were the complete genomes of two teschoviruses. The results from this study will aid in elucidating which viruses are circulating in both healthy pigs and in pigs associated with respiratory illness. This knowledge is needed for future investigations into the role of viral-viral interactions in relation to disease development.
Collapse
Affiliation(s)
- Anne-Lie Blomström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
| | - Xingyu Ye
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
- Guangyuan Center for Animal Disease Control and Prevention, Guangyuan 628017, China.
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
| | - Per Wallgren
- National veterinary institute (SVA), 751 89 Uppsala Sweden.
| | - Mikael Berg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
| |
Collapse
|
8
|
Lu Z, Chang L, Du Q, Huang Y, Zhang X, Wu X, Zhang J, Li R, Zhang Z, Zhang W, Zhao X, Tong D. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway. Front Pharmacol 2018; 9:475. [PMID: 29867481 PMCID: PMC5962800 DOI: 10.3389/fphar.2018.00475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 01/08/2023] Open
Abstract
Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruizhen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zelin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Transcriptome Analysis Reveals Dynamic Gene Expression Profiles in Porcine Alveolar Macrophages in Response to the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1538127. [PMID: 29854728 PMCID: PMC5949201 DOI: 10.1155/2018/1538127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important swine pathogens and causes reproductive failure in sows and respiratory disease in growing pigs. PRRSV mainly infects porcine alveolar macrophages (PAMs), leading to the subversion of innate and adaptive immunity of pigs. The transcriptome analysis of gene expression profiles in PRRSV-infected PAMs is essential for understanding the pathogenesis of PRRSV. Here we performed next-generation RNA sequencing and a comprehensive bioinformatics analysis to characterize the dynamic transcriptome landscapes in PAMs following PRRSV infection. Totally 38222 annotated mRNAs, 12987 annotated long noncoding RNAs (lncRNAs), and 17624 novel lncRNAs in PRRSV-infected PAMs were identified through a transcripts computational identification pipeline. The differentially expressed mRNAs and lncRNAs during PRRSV infection were characterized. Several differentially expressed transcripts were validated using qRT-PCR. Analyses on dynamic overrepresented GO terms and KEGG pathways in PRRSV-infected PAMs at different time points were performed. Meanwhile the genes involved in IFN-related signaling pathways, proinflammatory cytokines and chemokines, phagocytosis, and antigen presentation and processing were significantly downregulated, indicating the aberrant function of PAMs during PRRSV infection. Moreover, the differentially and highly expressed lncRNA XR_297549.1 was predicted to both cis-regulate and trans-regulate its neighboring gene, prostaglandin-endoperoxide synthase 2 (PTGS2), indicating its role in inflammatory response. Our findings reveal the transcriptome profiles and differentially expressed mRNAs and lncRNAs in PRRSV-infected PAMs in vitro, providing valuable information for further exploration of PRRSV pathogenesis.
Collapse
|
10
|
Wang L, Jiao H, Zhao J, Wang X, Sun S, Lin H. Allicin Alleviates Reticuloendotheliosis Virus-Induced Immunosuppression via ERK/Mitogen-Activated Protein Kinase Pathway in Specific Pathogen-Free Chickens. Front Immunol 2017; 8:1856. [PMID: 29312337 PMCID: PMC5744041 DOI: 10.3389/fimmu.2017.01856] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/07/2017] [Indexed: 01/20/2023] Open
Abstract
Reticuloendotheliosis virus (REV), a gammaretrovirus in the Retroviridae family, causes an immunosuppressive, oncogenic, and runting-stunting syndrome in multiple avian hosts. Allicin, the main effective component of garlic, has a broad spectrum of pharmacological properties. The hypothesis that allicin could relieve REV-induced immune dysfunction was investigated in vivo and in vitro in the present study. The results showed that dietary allicin supplementation ameliorated REV-induced dysplasia and immune dysfunction in REV-infected chickens. Compared with the control groups, REV infection promoted the expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, interferon (IFN)-γ, and tumor necrosis factor-α (TNF-α), whereas, allicin reversed these changes induced by REV infection. The decreased levels of IFN-α, IFN-β, and IL-2 were observed in REV-infected chickens, which were significantly improved by allicin. Allicin suppressed the REV-induced high expression of toll-like receptors (TLRs) as well as melanoma differentiation-associated gene 5 (MDA5) and the activation of mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B p65. REV stimulated the phosphorylation of JNK, ERK, and p38, the downstream key signaling molecules of MAPK pathway, while allicin retarded the augmented phosphorylation level induced by REV infection. The decreased phosphorylation level of ERK was associated with REV replication, suggesting that ERK signaling is involved in REV replication, and allicin can alleviate the REV-induced immune dysfunction by inhibiting the activation of ERK. In addition, REV infection induced oxidative damage in thymus and spleen, whereas allicin treatment significantly decreased the oxidative stress induced by REV infection, suggesting that the antioxidant effect of allicin should be at least partially responsible for the harmful effect of REV infection. In conclusion, the findings suggest that allicin alleviates the inflammation and oxidative damage caused by REV infection and exerts the potential anti-REV effect by blocking the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Liyuan Wang
- Poultry Oncogenic Virus Research Laboratory, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China.,Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China
| | - Hongchao Jiao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China
| | - Jingpeng Zhao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China
| | - Xiaojuan Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China
| | - Shuhong Sun
- Poultry Oncogenic Virus Research Laboratory, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China
| | - Hai Lin
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China
| |
Collapse
|
11
|
Ren Y, Khan FA, Pandupuspitasari NS, Li S, Hao X, Chen X, Xiong J, Yang L, Fan M, Zhang S. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Modulates Interferon-β Expression Mainly Through Attenuating Interferon-Regulatory Factor 3 Phosphorylation. DNA Cell Biol 2016; 35:489-97. [PMID: 27314873 DOI: 10.1089/dna.2016.3283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) that emerged from classic PRRSV causes more severe damage to the swine industry. The earlier reports indicating inhibition of interferon-β (IFN-β) expression by PRRSV through total blockage of IFN-regulatory factor 3 (IRF3) nuclear translocation made us investigate the mechanism of IFN-β expression in HP-PRRSV infection. For this purpose, the IRF3 nuclear translocation in the control group [Poly (I:C)] and test group [Poly (I:C)+HP-PRRSV] was detected by immunofluorescence, and the results showed that IRF3 nuclear translocation in cells with PRRSV was weaker than cells without PRRSV, which was different from the previous study. In addition, the IFN-β mRNA and protein expression was observed to be inhibited by HP-PRRSV along with decreased IRF3 mRNA and total protein, and IRF3 nuclear translocation of test group was suppressed in MARC-145 and porcine alveolar macrophage cells in comparison with the control group. The quantity of phosphorylated IRF3 protein was also reduced after HP-PRRSV infection. However, CREB-binding protein (CBP) expression did not change between the control and test group. These results indicate that the inhibition of IFN-β expression is mainly due to the quantitative change in the amount of phosphorylated IRF3 in the cytoplasm, but not dependent on the complete blockage of IRF3 nuclear translocation or the restraining of CBP expression in the nucleus by HP-PRRSV.
Collapse
Affiliation(s)
- Yuwei Ren
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Faheem Ahmed Khan
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Nuruliarizki Shinta Pandupuspitasari
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Shuaifeng Li
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Xingjie Hao
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Xing Chen
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Jiajun Xiong
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Liguo Yang
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Mingxia Fan
- 2 Key Laboratory of Animal Center, Renmin Hospital of Wuhan University , Wuhan, China
| | - Shujun Zhang
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| |
Collapse
|
12
|
Zhang L, Zhou L, Ge X, Guo X, Han J, Yang H. The Chinese highly pathogenic porcine reproductive and respiratory syndrome virus infection suppresses Th17 cells response in vivo. Vet Microbiol 2016; 189:75-85. [PMID: 27259830 DOI: 10.1016/j.vetmic.2016.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 01/21/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to immunomodulate innate and adaptive immunity of pigs. The Chinese highly pathogenic PRRSV (HP-PRRSV) infection causes severe bacterial secondary infection in pigs. However, the mechanism in relation to the bacterial secondary infection induced by HP-PRRSV remains unknown. In the present study, Th17 cells response in peripheral blood, lungs, spleens and lymph nodes of piglets were analyzed, and bacterial loads in lungs of piglets were examined upon HP-PRRSV infection. Meanwhile the changes of CD4(+) and CD8(+) T cells in peripheral blood of the inoculated piglets were analyzed. The results showed that HP-PRRSV-inoculated piglets exhibited a suppressed Th17 cells response in peripheral blood and a reduced number of Th17 cells in lungs, and higher bacterial loads in lungs, compared with low pathogenic PRRSV. Moreover, HP-PRRSV obviously resulted in severe depletion of porcine T cells in peripheral blood at the early stage of infection. These findings indicate that HP-PRRSV infection suppresses the response of Th17 cells that play an important role in combating bacterial infections, suggesting a possible correlation between the suppression of Th17 cells response in vivo and bacterial secondary infection induced by HP-PRRSV. Our present study adds a novel insight into better understanding of the pathogenesis of the Chinese HP-PRRSV.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
13
|
Wang C, Shi X, Zhang X, Wang A, Wang L, Chen J, Deng R, Zhang G. The Endoribonuclease Activity Essential for the Nonstructural Protein 11 of Porcine Reproductive and Respiratory Syndrome Virus to Inhibit NLRP3 Inflammasome-Mediated IL-1β Induction. DNA Cell Biol 2015; 34:728-35. [DOI: 10.1089/dna.2015.2929] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Chao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xibao Shi
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Aiping Wang
- Department of Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jing Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
14
|
Effect of amino acids residues 323-433 and 628-747 in Nsp2 of representative porcine reproductive and respiratory syndrome virus strains on inflammatory response in vitro. Virus Res 2015; 208:13-21. [PMID: 26043979 DOI: 10.1016/j.virusres.2015.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that is responsible for large economic losses in the swine industry worldwide. In PRRSV strains, many genetic variations occur in the central hypervariable region (HV2) of the Nsp2 gene, which encodes non-structural protein 2. For example, PRRSV strains VR2332, Em2007, MN184C, and TJM-F92 contained variations in the Nsp2 sequences and exhibited differing levels of virulence in adult pigs. However, the role of HV2 with respect to PRRSV immunity is unclear. In this study, four recombinant PRRSV strains (rBB/+30aa, rBB/Δ68aa, rBB/Δ111aa, and rBB/Δ120aa) were rescued using a highly pathogenic type 2 PRRSV cDNA clone (pBB). All rescued strains displayed similar growth characteristics to the parental rBB virus in pulmonary alveolar macrophages (PAMs). Expression levels of inflammatory cytokines IL-β, IL-6, and TNF-α were significantly lower, at the mRNA and protein level, for groups infected with rBB/Δ111aa and rBB/Δ120aa than those in the rBB group. Levels of these inflammatory cytokines in the rBB/+30aa and rBB/Δ68aa groups were not significantly different with those in the rBB group. Phosphorylation levels of IκB were decreased to a greater extent in the rBB/Δ111aa and rBB/Δ120aa groups compared with those in the rBB/+30aa, rBB/Δ68aa, and rBB groups. Our results indicate that amino acids 323-433 and 628-747 of Nsp2 failed to exert significant effects on PRRSV replication in PAMs, but modulated the expression of inflammatory cytokines in vitro.
Collapse
|
15
|
Pinelli-Saavedra A, Peralta-Quintana JR, Sosa-Castañeda J, Moya-Camarena SY, Burgara-Estrella A, Hernández J. Dietary conjugated linoleic acid and its effect on immune response in pigs infected with the porcine reproductive and respiratory syndrome virus. Res Vet Sci 2014; 98:30-8. [PMID: 25544696 DOI: 10.1016/j.rvsc.2014.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the effects of dietary conjugated linoleic acid (CLA) on immune response in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 18 pigs 4 weeks of age were allocated to 3 treatments, 6 per treatment: 0% CLA, 1% CLA, and 2% CLA. Serum IL-1β, IL-6 and TNF-α; lymphocyte proliferation; and IL-2, IFN-γ, IL-10, IL-4 and IL-12 in PBMCs were evaluated. NF-κB, COX2, iNOS and PPAR-γ mRNA were also evaluated. No differences were observed among treatment groups in most of the in vivo cytokine profiles; only TNF-α production was increased in infected pigs in the CLA-supplemented groups. The cytokine profile in vitro was not affected by CLA supplementation. CLA decreased the proliferation of PBMCs stimulated with PRRSVs. Inflammation mediators and PPAR-γ were not affected by CLA in infected pigs. CLA did not improve the immune response of PRRSV infected pigs.
Collapse
Affiliation(s)
- A Pinelli-Saavedra
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Apdo. Postal 1735, Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico.
| | - J R Peralta-Quintana
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Apdo. Postal 1735, Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico
| | - J Sosa-Castañeda
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Apdo. Postal 1735, Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico
| | - S Y Moya-Camarena
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Apdo. Postal 1735, Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico
| | - A Burgara-Estrella
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Apdo. Postal 1735, Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico
| | - J Hernández
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Apdo. Postal 1735, Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico
| |
Collapse
|
16
|
Fan P, Wei Y, Guo L, Wu H, Huang L, Liu J, Liu C. Synergistic effects of sequential infection with highly pathogenic porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Virol J 2013; 10:265. [PMID: 23971711 PMCID: PMC3847690 DOI: 10.1186/1743-422x-10-265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/25/2013] [Indexed: 11/12/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of porcine reproductive and respiratory syndrome (PRRS) and porcine circovirus type 2 (PCV2) is associated with postweaning multisystemic wasting syndrome (PMWS) in pigs. Coinfection with highly pathogenic PRRSV (HP-PRRSV) and PCV2 in the field has recently become extensive in some Asian countries. A synergistic pathogenicity between PRRSV and PCV2 infections has previously been reported. However, the consequences of the sequential infection of pigs with these two viruses are unknown. Methods Thirty 35-day-old piglets were randomly divided into six groups (n = 5 each): HP-PRRSV/PCV2 (group 1, inoculated with HP-PRRSV, then inoculated with PCV2 one week later), PCV2/HP-PRRSV (group 2, inoculated with PCV2, then inoculated with HP-PRRSV one week later), HP-PRRSV+PCV2 (group 3, inoculated with HP-PRRSV and PCV2 concurrently), HP-PRRSV (group 4, inoculated with HP-PRRSV), PCV2 (group 5, inoculated with PCV2), and the control (group 6, uninfected). This experiment lasted 28 days. Clinical symptoms and rectal temperatures were recorded each day after inoculation, body weight was recorded weekly, and serum samples were obtained for viral nucleic acid quantification and antibody titration. Variations in CD3+, CD4+ CD8–, CD3+, CD4–, and CD8+ cells, natural killer (NK) cells, and mononuclear cells were determined by flow cytometry. The serum concentrations of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleukin 10 (IL-10), and macrophage granulocyte-colony stimulating factor (GM-CSF) were determined. Pathological changes in different tissues from the experimentally infected pigs were recorded. Results The piglets in group 1 had the highest viral loads, the lowest antibody titers, the most-severe clinical signs, and the highest mortality (3/5, 60%; the mortality in the other groups was 0%), and interstitial pneumonia was more severe in this group compare to the other HP-PRRSV infected groups. The serum levels of IFN-γ, TNF-α, IL-10, and GM-CSF varied (increased or decreased) most widely in group 1, as did each immunocyte subgroup. Conclusions HP-PRRSV infection followed by PCV2 infection enhanced the replication of both viruses in the experimental piglets and led to more-severe clinical signs and lesions, indicating greater synergistic effects during the sequential infection of piglets with HP-PRRSV and then PCV2.
Collapse
Affiliation(s)
- Peihu Fan
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Jiang Z, Zhou X, Michal JJ, Wu XL, Zhang L, Zhang M, Ding B, Liu B, Manoranjan VS, Neill JD, Harhay GP, Kehrli ME, Miller LC. Reactomes of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus. PLoS One 2013; 8:e59229. [PMID: 23527143 PMCID: PMC3602036 DOI: 10.1371/journal.pone.0059229] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/13/2013] [Indexed: 01/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has devastated pig industries worldwide for many years. It is caused by a small RNA virus (PRRSV), which targets almost exclusively pig monocytes or macrophages. In the present study, five SAGE (serial analysis of gene expression) libraries derived from 0 hour mock-infected and 6, 12, 16 and 24 hours PRRSV-infected porcine alveolar macrophages (PAMs) produced a total 643,255 sequenced tags with 91,807 unique tags. Differentially expressed (DE) tags were then detected using the Bayesian framework followed by gene/mRNA assignment, arbitrary selection and manual annotation, which determined 699 DE genes for reactome analysis. The DAVID, KEGG and REACTOME databases assigned 573 of the DE genes into six biological systems, 60 functional categories and 504 pathways. The six systems are: cellular processes, genetic information processing, environmental information processing, metabolism, organismal systems and human diseases as defined by KEGG with modification. Self-organizing map (SOM) analysis further grouped these 699 DE genes into ten clusters, reflecting their expression trends along these five time points. Based on the number one functional category in each system, cell growth and death, transcription processes, signal transductions, energy metabolism, immune system and infectious diseases formed the major reactomes of PAMs responding to PRRSV infection. Our investigation also focused on dominant pathways that had at least 20 DE genes identified, multi-pathway genes that were involved in 10 or more pathways and exclusively-expressed genes that were included in one system. Overall, our present study reported a large set of DE genes, compiled a comprehensive coverage of pathways, and revealed system-based reactomes of PAMs infected with PRRSV. We believe that our reactome data provides new insight into molecular mechanisms involved in host genetic complexity of antiviral activities against PRRSV and lays a strong foundation for vaccine development to control PRRS incidence in pigs.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail: (ZJ) (ZJ); (LCM) (LM)
| | - Xiang Zhou
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Xiao-Lin Wu
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lifan Zhang
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ming Zhang
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Bo Ding
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Bang Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Hubei, China
| | - Valipuram S. Manoranjan
- Department of Mathematics, Washington State University, Pullman, Washington, United States of America
| | - John D. Neill
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Gregory P. Harhay
- Animal Health Research Unit, United States Meat Animal Research Center, United States Department of Agriculture, Agricultural Research Service, Clay Center, Nebraska, United States of America
| | - Marcus E. Kehrli
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Laura C. Miller
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
- * E-mail: (ZJ) (ZJ); (LCM) (LM)
| |
Collapse
|
18
|
Cytokine production in immortalized porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2012; 150:213-20. [DOI: 10.1016/j.vetimm.2012.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/01/2012] [Accepted: 09/11/2012] [Indexed: 11/20/2022]
|
19
|
Tsai YC, Chang HW, Jeng CR, Lin TL, Lin CM, Wan CH, Pang VF. The effect of infection order of porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus on dually infected swine alveolar macrophages. BMC Vet Res 2012; 8:174. [PMID: 23009687 PMCID: PMC3528418 DOI: 10.1186/1746-6148-8-174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/17/2012] [Indexed: 01/13/2023] Open
Abstract
Background Concurrent infection with porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) is known as one of the major causes for porcine respiratory disease complex (PRDC). Dual infection with PCV2 and PRRSV is consistently to have more severe clinical presentations and pulmonary lesions than infection with PCV2 alone or PRRSV alone. However, it is not known if dual infections with PCV2 and PRRSV in different infection order may lead to different clinical symptoms in the host. To mimic the possible field conditions, swine alveolar macrophages (AMs) were inoculated with PCV2 and PRRSV in vitro simultaneously or with one virus 18 h earlier than the other. The cell viability, cytopathic effects, antigen-containing rates, phagocytotic and microbial killing capabilities, cytokine profiles (IL-8, TNF-α, and IFN-α) and FasL transcripts were determined, analyzed, and compared to prove the hypothesis. Results A marked reduction in PRRSV antigen-containing rate, cytopathic effect, and TNF-α expression level was revealed in AMs inoculated with PCV2 and PRRSV simultaneously and in AMs inoculated with PCV2 first then PRRSV 18 h later, but not in AMs inoculated with PRRSV first then PCV2 18 h later. Transient decrease in phagocytosis but constant reduction in microbicidal capability in AMs in the group inoculated with PCV2 alone and constant decrease in phagocytosis and microbicidal capability in AMs in all PRRSV-inoculated groups were noted. The levels of IL-8, TNF-α, IFN-α, and FasL transcripts in AMs in all groups with dual inoculation of PCV2 and PRRSV were significantly increased regardless of the infection orders as compared with infection by PCV2 alone or PRRSV alone. Conclusions Swine AMs infected with PCV2 first then PRRSV later or infected with PCV2 and PRRSV simultaneously displayed marked reduction in PRRSV antigen-containing rate, cytopathic effect, and TNF-α expression level. The different inoculation orders of PCV2 and PRRSV in AMs leading to different results in viral antigen positivity, cytopathology, and cytokine profile may explain, at least partially, the underlying mechanism of the enhanced pulmonary lesions in PRDC exerted by dual infection with PCV2 and PRRSV and the variable clinical manifestations of PRDC-affected pigs in the field.
Collapse
Affiliation(s)
- Yi-Chieh Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Rodríguez-Gómez IM, Gómez-Laguna J, Barranco I, Pallarés FJ, Ramis G, Salguero FJ, Carrasco L. Downregulation of antigen-presenting cells in tonsil and lymph nodes of porcine reproductive and respiratory syndrome virus-infected pigs. Transbound Emerg Dis 2012; 60:425-37. [PMID: 22816521 DOI: 10.1111/j.1865-1682.2012.01363.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can persist in different organs of infected pigs, which suggests a failure in the immune response. Antigen-presenting cells (APCs) play a pivotal role in the induction of effective T- and B-cell responses. In this study, we investigated the changes in the different APC subpopulations and T- and B-cell counts in the tonsil, retropharyngeal and mediastinal lymph nodes of pigs experimentally infected with a European PRRSV field isolate. Our results demonstrated that the expression of S100, SWC3, HLA-DR molecule and CD3 was diminished in the studied organs throughout the study, observing a significant negative correlation between viral antigen and HLA-DR expression in both retropharyngeal and mediastinal lymph nodes. In contrast, λ-light chains showed an increase during the study. Taking all into account, after PRRSV infection, no enhancement in the number of APCs and T cells was observed, suggesting an impairment of the immune function which may allow the persistence of PRRSV into the organism.
Collapse
Affiliation(s)
- I M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, Córdoba University, Córdoba, Spain.
| | | | | | | | | | | | | |
Collapse
|
21
|
De Baere MI, Van Gorp H, Delputte PL, Nauwynck HJ. Interaction of the European genotype porcine reproductive and respiratory syndrome virus (PRRSV) with sialoadhesin (CD169/Siglec-1) inhibits alveolar macrophage phagocytosis. Vet Res 2012; 43:47. [PMID: 22630829 PMCID: PMC3403922 DOI: 10.1186/1297-9716-43-47] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus that shows a restricted in vivo tropism for subsets of porcine macrophages, with alveolar macrophages being major target cells. The virus is associated with respiratory problems in pigs of all ages and is commonly isolated on farms with porcine respiratory disease complex (PRDC). Due to virus-induced macrophage death early in infection, PRRSV hampers the innate defence against pathogens in the lungs. In addition, the virus might also directly affect the antimicrobial functions of macrophages. This study examined whether interaction of European genotype PRRSV with primary alveolar macrophages (PAM) affects their phagocytic capacity. Inoculation of macrophages with both subtype I PRRSV (LV) and subtype III PRRSV (Lena) showed that the virus inhibits PAM phagocytosis. Similar results were obtained using inactivated PRRSV (LV), showing that initial interaction of the virion with the cell is sufficient to reduce phagocytosis, and that no productive infection is required. When macrophages were incubated with sialoadhesin- (Sn) or CD163-specific antibodies, two entry mediators of the virus, only Sn-specific antibodies downregulated the phagocytic capacity of PAM, indicating that interaction with Sn, but not CD163, mediates the inhibitory effect of PRRSV on phagocytosis. In conclusion, this study shows that European genotype PRRSV inhibits PAM phagocytosis in vitro, through the interaction with its internalization receptor Sn. If similar events occur in vivo, this interaction may be important in the development of PRDC, as often seen in the field.
Collapse
Affiliation(s)
- Miet I De Baere
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | | | | | | |
Collapse
|
22
|
Charerntantanakul W, Kasinrerk W. Plasmids expressing interleukin-10 short hairpin RNA mediate IL-10 knockdown and enhance tumor necrosis factor alpha and interferon gamma expressions in response to porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2012; 146:159-68. [DOI: 10.1016/j.vetimm.2012.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/25/2012] [Accepted: 02/29/2012] [Indexed: 12/18/2022]
|
23
|
Abstract
Respiratory disease in pigs is common in modern pork production worldwide and is often referred to as porcine respiratory disease complex (PRDC). PRDC is polymicrobial in nature, and results from infection with various combinations of primary and secondary respiratory pathogens. As a true multifactorial disease, environmental conditions, population size, management strategies and pig-specific factors such as age and genetics also play critical roles in the outcome of PRDC. While non-infectious factors are important in the initiation and outcome of cases of PRDC, the focus of this review is on infectious factors only. There are a variety of viral and bacterial pathogens commonly associated with PRDC including porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (MHYO) and Pasteurella multocida (PMULT). The pathogenesis of viral respiratory disease is typically associated with destruction of the mucocilliary apparatus and with interference and decrease of the function of pulmonary alveolar and intravascular macrophages. Bacterial pathogens often contribute to PRDC by activation of inflammation via enhanced cytokine responses. With recent advancements in pathogen detection methods, the importance of polymicrobial disease has become more evident, and identification of interactions of pathogens and their mechanisms of disease potentiation has become a topic of great interest. For example, combined infection of pigs with typically low pathogenic organisms like PCV2 and MHYO results in severe respiratory disease. Although the body of knowledge has advanced substantially in the last 15 years, much more needs to be learned about the pathogenesis and best practices for control of swine respiratory disease outbreaks caused by concurrent infection of two or more pathogens. This review discusses the latest findings on polymicrobial respiratory disease in pigs.
Collapse
|
24
|
Sinha A, Lin K, Hemann M, Shen H, Beach NM, Ledesma C, Meng XJ, Wang C, Halbur PG, Opriessnig T. ORF1 but not ORF2 dependent differences are important for in vitro replication of PCV2 in porcine alveolar macrophages singularly or coinfected with PRRSV. Vet Microbiol 2012; 158:95-103. [PMID: 22406345 DOI: 10.1016/j.vetmic.2012.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 02/08/2023]
Abstract
The objective of this study was to investigate cytokine expression and in vitro replication of porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) in pulmonary alveolar macrophages (PAMs) emphasizing PCV2 open-reading frame (ORF) origin (PCV2a or PCV2b) and PRRSV strain. Chimeric PCV2 viruses composed of different combinations of ORF1 and ORF2 of PCV2a or PCV2b (chimera PCV2a-2b and chimera PCV2b-2a) were constructed and five different PRRSV isolates were utilized: Type 1 (SD 01-08) or type 2 (NC16845b, VR-2332, MN-184, JA-142). PAMs were infected singularly or with combinations of PCV2b, PCV2a, chimera PCV2a-2b, and chimera PCV2b-2a, and one of the five PRRSV isolates. Real-time PCR was used to test PAMs (PCV2 mRNA) and supernatants (PRRSV RNA, PCV2 DNA, PCV2 mRNA) harvested at 24, 48, 72 and 96h post inoculation (hpi). Levels of IFN-γ, TNF-α and IL-10 were determined by quantitative ELISAs. PCV2 replication in PAMs was limited to groups inoculated with PCV2 strains containing ORF1 of PCV2a (PCV2a, chimera PCV2a-2b). Furthermore, in supernatants, PCV2 mRNA was only detected in groups coinfected with PRRSV regardless of strain at 48hpi supporting an enhancing effect of PRRSV on PCV2 infection. Changes in cytokine levels were minimal and associated with PRRSV strain for TNF-α. In summary, in vitro differences in PCV2 replication in PAMs inoculated with different PCV2-PRRSV combinations were independent of PCV2 ORF2 origin with minimal effects of concurrent PRRSV infection perhaps indicating that PCV2-specific changes in ORF1 may be more important than those in ORF2.
Collapse
Affiliation(s)
- Avanti Sinha
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Binjawadagi B, Dwivedi V, Manickam C, Torrelles JB, Renukaradhya GJ. Intranasal Delivery of an Adjuvanted Modified Live Porcine Reproductive and Respiratory Syndrome Virus Vaccine Reduces ROS Production. Viral Immunol 2011; 24:475-82. [DOI: 10.1089/vim.2011.0040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - Jordi B. Torrelles
- Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| |
Collapse
|
26
|
Opriessnig T, Halbur PG. Concurrent infections are important for expression of porcine circovirus associated disease. Virus Res 2011; 164:20-32. [PMID: 21959087 PMCID: PMC7114432 DOI: 10.1016/j.virusres.2011.09.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/15/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the essential component of porcine circovirus disease (PCVD) as the disease syndrome is referred to in Europe and porcine circovirus associated disease (PCVAD) as it is referred to in North America. Singular PCV2 infection rarely results in clinical disease; however, PCVAD is often accelerated in onset, enhanced in severity and prolonged in duration by concurrent viral or bacterial infections. Due to its effect on the immune system, PCV2 has also been shown to enhance protozoal, metazoal, and fungal infections. Several retrospective or cross-sectional studies have investigated the presence and prevalence of various infectious agents associated with PCVAD under field conditions. Experimental models confirm that PCV2 replication and associated lesions can be enhanced by concurrent infection with other viruses or bacteria. The exact mechanisms by which concurrent pathogens upregulate PCV2 are unknown. Co-infections may promote PCV2 infection by increasing immune host cell replication and accumulation in tissues thereby enhancing targets for PCV2 replication. It has also been proposed that co-infections interfere with PCV2 clearance by alteration of cytokine production and profiles. The outcome of differences in timing of co-infections in PCV2-infected pigs is also likely very important and is an area where more research is needed. Given the current knowledge base, it is important that veterinarians do a thorough diagnostic investigation on herds where PCVAD is a recurrent problem in order to implement the most appropriate and cost effective intervention strategies.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | | |
Collapse
|
27
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. Evaluation of the immunogenicity of a transgenic tobacco plant expressing the recombinant fusion protein of GP5 of porcine reproductive and respiratory syndrome virus and B subunit of Escherichia coli heat-labile enterotoxin in pigs. Vet Immunol Immunopathol 2011; 140:215-25. [PMID: 21277027 DOI: 10.1016/j.vetimm.2011.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/12/2010] [Accepted: 01/01/2011] [Indexed: 11/22/2022]
Abstract
Escherichia coli heat-labile enterotoxin B subunit (LTB) can be used as an adjuvant for co-administered antigens. Our previous study showed that the expression of neutralizing epitope GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) in transgenic tobacco plant (GP5-T) could induce PRRSV-specific immune responses in pigs. A transgenic tobacco plant co-expressing LTB and PRRSV GP5 as a fusion protein (LTB-GP5-T) was further constructed and its immunogenicity was evaluated. Pigs were given orally three consecutive doses of equal concentration of recombinant GP5 protein expressed in leaves of LTB-GP5-T or GP5-T at a 2-week interval and challenged with PRRSV at 7 weeks post-initial immunization. Pigs receiving LTB-GP5-T or GP5-T developed PRRSV-specific antibody- and cell-mediated immunity and showed significantly lower viremia and tissue viral load and milder lung lesions than wild type tobacco plant (W-T). The LTB-GP5-T-treated group had relatively higher immune responses than the GP5-T-treated group, although the differences were not statistically significant.
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Charerntantanakul W, Kasinrerk W. Interleukin-10 antisense oligodeoxynucleotide suppresses IL-10 expression and effects on proinflammatory cytokine responses to porcine reproductive and respiratory syndrome virus. Viral Immunol 2011; 23:425-35. [PMID: 20712487 DOI: 10.1089/vim.2009.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Upregulation of interleukin-10 (IL-10) expression has been suggested to be the mechanism by which the porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the innate and adaptive immune response in infected pigs. In this study we evaluated the potential of phosphorothioate-modified IL-10 antisense oligodeoxynucleotide specific to the translation initiation region of porcine IL-10 mRNA (IL-10AS) in enhancing proinflammatory cytokine responses to PRRSV. Naïve peripheral blood mononuclear cells from eight PRRSV-seronegative pigs were transfected with IL-10AS in vitro prior to PRRSV inoculation and phorbol 12-myristate 13-acetate plus ionomycin or concanavalin A stimulation. The effects of IL-10AS on mRNA expression of IL-10, interferon-gamma (IFN-gamma), IFN-alpha, tumor necrosis factor-alpha (TNF-alpha), IL-2, and IL-4 were tested by real-time PCR. The percentages of IFN-gamma-producing T-cell subsets were determined by flow cytometry. Compared to the controls, the levels of IL-10 and IL-2 mRNA were significantly reduced, while those of IFN-gamma mRNA were increased, and TNF-alpha, IFN-alpha, and IL-4 mRNA were unchanged. An increase in the percentage of the IFN-gamma+ population was also observed in lymphocytes and CD8beta+ T cells. Our results suggest that IL-10AS has the potential to enhance proinflammatory cytokine responses to PRRSV infection.
Collapse
|
29
|
Gimeno M, Darwich L, Diaz I, de la Torre E, Pujols J, Martín M, Inumaru S, Cano E, Domingo M, Montoya M, Mateu E. Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates. Vet Res 2011; 42:9. [PMID: 21314968 PMCID: PMC3037899 DOI: 10.1186/1297-9716-42-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 11/09/2010] [Indexed: 12/13/2022] Open
Abstract
The present study examined the immunological response of antigen presenting cells (APC) to genotype-I isolates of porcine reproductive and respiratory syndrome virus (PRRSV) infection by analysing the cytokine profile induced and evaluating the changes taking place upon infection on immunologically relevant cell markers (MHCI, MHCII, CD80/86, CD14, CD16, CD163, CD172a, SWC9). Several types of APC were infected with 39 PRRSV isolates. The results show that different isolates were able to induce different patterns of IL-10 and TNF-α. The four possible phenotypes based on the ability to induce IL-10 and/or TNF-α were observed, although different cell types seemed to have different capabilities. In addition, isolates inducing different cytokine-release profiles on APC could induce different expression of cell markers.
Collapse
Affiliation(s)
- Mariona Gimeno
- Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
In-depth global analysis of transcript abundance levels in porcine alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. Adv Virol 2011; 2010:864181. [PMID: 22331987 PMCID: PMC3275998 DOI: 10.1155/2010/864181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/12/2010] [Indexed: 01/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide and causes considerable economic loss. Identifying specific cell signaling or activation pathways that associate with variation in PRRSV replication and macrophage function may lead to identification of novel gene targets for the control of PRRSV infection. Serial Analysis of Gene Expression (SAGE) was used to create and survey the transcriptome of in vitro mock-infected and PRRSV strain VR-2332-infected porcine alveolar macrophages (PAM) at 0, 6, 12, 16, and 24 hours after infection. The transcriptome data indicated changes in transcript abundance occurring in PRRSV-infected PAMs over time after infection with more than 590 unique tags with significantly altered transcript abundance levels identified (P < .01). Strikingly, innate immune genes (whose transcript abundances are typically altered in response to other pathogens or insults including IL-8, CCL4, and IL-1β) showed no or very little change at any time point following infection.
Collapse
|
31
|
Darwich L, Díaz I, Mateu E. Certainties, doubts and hypotheses in porcine reproductive and respiratory syndrome virus immunobiology. Virus Res 2010; 154:123-32. [PMID: 20659507 DOI: 10.1016/j.virusres.2010.07.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/15/2010] [Accepted: 07/18/2010] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most costly pathogens for the swine industry. Since its emergence some 20 years ago, much has been learned about the immunobiology of PRRSV. Although vaccines are available, they do not provide full and universal protection against PRRSV infection. In the present review, current knowledge on the virus's immunobiology will be discussed including: role of viral receptors, innate immune response to the virus, regulation of the immune response by PRRSV, and the characteristics and role of adaptive immunity. In addition, some hypotheses for future research in this area are presented.
Collapse
Affiliation(s)
- Laila Darwich
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
32
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. Immunogenicity of recombinant GP5 protein of porcine reproductive and respiratory syndrome virus expressed in tobacco plant. Vet Immunol Immunopathol 2010; 135:234-42. [PMID: 20053461 DOI: 10.1016/j.vetimm.2009.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/04/2009] [Accepted: 12/13/2009] [Indexed: 12/13/2022]
Abstract
The aim of the study was to evaluate the immunogenicity of the ORF5-encoded major envelop glycoprotein 5 (GP5) of porcine reproductive and respiratory syndrome virus (PRRSV) expressed in tobacco plant as a potential pig oral vaccine in protection against PRRSV infection. Six-week-old PRRSV-free pigs were fed four times orally with 50g of chopped fresh GP5 transgenic tobacco leaves (GP5-T) (GP5 reaching 0.011% of total soluble protein) or wild-type tobacco leaves (W-T) each on days 0, 14, 28, and 42. Samples of serum, saliva, and peripheral blood mononuclear cells (PBMCs) were collected on days -1, 6, 13, 20, 27, 34, 41, and 48 after the initial oral vaccination. A similar vaccination-dependent gradual increase in the responses of serum and saliva anti-PRRSV total IgG and IgA, respectively, and in the levels of PRRSV-specific blastogenic response of PBMCs was seen in GP5-T-treated pigs; all statistically significant elevations occurred after the 2nd vaccination and were revealed after 20 days post-initial oral vaccination (DPIOV). Pigs fed on GP5-T also developed serum neutralizing antibodies to PRRSV at a titer of 1:4-1:8 after the 4th vaccination by 48 DPIOV. No detectable anti-PRRSV antibody responses and PRRSV-specific blastogenic response were seen in W-T-treated pigs. The present study has demonstrated that pigs fed on GP5-T could develop specific mucosal as well as systemic humoral and cellular immune responses against PRRSV. The results also support that transgenic plant as GP5-T can be an effective system for oral delivery of recombinant subunit vaccines in pigs.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Base Sequence
- Bioreactors
- DNA, Viral/genetics
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Immunoglobulin A, Secretory/biosynthesis
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Lymphocyte Activation
- Male
- Plants, Genetically Modified
- Porcine Reproductive and Respiratory Syndrome/immunology
- Porcine Reproductive and Respiratory Syndrome/prevention & control
- Porcine respiratory and reproductive syndrome virus/genetics
- Porcine respiratory and reproductive syndrome virus/immunology
- Saliva/immunology
- Sus scrofa
- Swine
- Nicotiana/genetics
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. The immunogenicity of DNA constructs co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus conjugated by GPGP linker in pigs. Vet Microbiol 2010; 146:189-99. [PMID: 20570063 DOI: 10.1016/j.vetmic.2010.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/26/2010] [Accepted: 05/03/2010] [Indexed: 01/13/2023]
Abstract
The heterodimer of glycoprotein 5 (GP5) and non-glycosylated matrix protein (M) is the leading target for the development of new generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) infection. It has been demonstrated that DNA vaccine co-expressing GP5 and M proteins as a fusion protein aroused better immunogenicity than that expressing GP5 or M alone, but it was no better than the DNA vaccine co-expressing GP5 and M proteins with two different promoters. Altered natural conformation of the co-expressed GP5 and M fusion protein was considered as the major cause. Glycine-proline-glycine-proline (GPGP) linker can minimize the conformational changes in tertiary structure and provide flexibility of the peptide chain. The objective of this study was to evaluate whether the immunogenicity of DNA constructs co-expressing GP5 and M proteins linked by GPGP could be enhanced in pigs. Three recombinant DNA constructs expressing GP5/M fusion protein without GPGP linker (pcDNA-56), GP5/M fusion protein conjugated by GPGP linker (pcDNA-5L6), and M/GP5 fusion protein conjugated by GPGP linker (pcDNA-6L5) were established. Sixteen PRRSV-free pigs were randomly assigned to four groups and inoculated intramuscularly with 3 consecutive doses of 500 μg of empty vector pcDNA3.1, pcDNA-56, pcDNA-5L6 or pcDNA-6L5 each at a 2-week interval followed by challenge with 5 × 10(5) TCID(50) PRRSV at 3 weeks after the final inoculation. All pcDNA-56-, pcDNA-5L6-, and pcDNA-6L5- but not pcDNA-3.1-inoculated pigs developed neutralizing antibodies (NAs) 3 weeks after the final inoculation and a gradual increase in NA titers after PRRSV challenge, indicating that pigs inoculated with these DNA constructs could establish a sufficient immune memory. The pcDNA-5L6- and pcDNA-6L5-inoculated pigs displayed lower level and shorter period of viremia and lower tissue viral load following PRRSV challenge than did the pcDNA-56-inoculated pigs. The strategy of co-expressing GPGP-linked GP5 and M fusion protein may be a promising approach for future PRRSV vaccine development, possibly via the improvement of natural conformation of the target fusion protein.
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gudmundsdottir I, Risatti GR. Infection of porcine alveolar macrophages with recombinant chimeric porcine reproductive and respiratory syndrome virus: effects on cellular gene transcription and virus growth. Virus Res 2009; 145:145-50. [PMID: 19540286 DOI: 10.1016/j.virusres.2009.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) genetic determinants affecting the response of the host primary target cell, the macrophage, to infection are yet to be defined. Here we have used recombinant viruses encompassing ORF 1A to identify PRRSV determinants associated with growth and modulation of pro- and anti-inflammatory cytokine expression in primary pulmonary alveolar macrophages (PAMs) cultures. Three genomic chimeras encompassing ORF 1A of PRRSV live attenuated vaccine Prime Pac (LAV SP) in the genetic background of pathogenic strain NVSL 97-7895 (FL12v) were characterized in vitro. Unlike parental viruses, two of the recombinant viruses encompassing the area of the genome encoding for NSP2 to NSP8 showed reduced growth in PAM cultures. The effect of virus infections on gene activation was studied for 25 immunomodulatory cellular genes in PAMs at 24 and 48h post-infection (hpi). Steady state mRNA levels in PAMs infected with recombinant and LAV SP viruses were compared to levels observed in cells infected with parental virus FL12v. Recombinant viruses induced patterns of transcriptional activation differing from patterns induced by parental FL12v, suggesting a regulatory role of PRRSV ORF1A on PAM gene expression.
Collapse
Affiliation(s)
- Ingigerdur Gudmundsdottir
- Department of Pathobiology and Veterinary Science, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269-3089, USA
| | | |
Collapse
|
35
|
Role of Toll-like receptors in activation of porcine alveolar macrophages by porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:360-5. [PMID: 19144789 DOI: 10.1128/cvi.00269-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Control of virus replication initially depends on rapid activation of the innate immune response. Toll-like receptor (TLR) ligands are potent inducers of innate immunity against viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV), a positive-sense RNA virus, initiates infection in porcine alveolar macrophages (PAMs), elicits weak immune responses, and establishes a persistent infection. To understand the role of single-stranded RNA and double-stranded RNA (dsRNA) intermediates in eliciting host immunity, we sought to determine if TLRs, particularly those that respond to viral molecular patterns, are involved in PRRSV infection. Activation of TLR3 in PAMs with dsRNA increased gene expression for alpha interferon and suppressed PRRSV infectivity. In contrast, TLR4 activation by the treatment of PAMs with lipopolysaccharide did not influence PRRSV infectivity.
Collapse
|
36
|
Adjuvants for porcine reproductive and respiratory syndrome virus vaccines. Vet Immunol Immunopathol 2008; 129:1-13. [PMID: 19157569 DOI: 10.1016/j.vetimm.2008.12.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 12/03/2008] [Accepted: 12/08/2008] [Indexed: 01/13/2023]
Abstract
This review deals with present and past efforts in utilization of vaccine adjuvants for porcine reproductive and respiratory syndrome virus (PRRSV) vaccines. PRRSV vaccines elicit delayed and weak cell-mediated immune (CMI) and antibody responses after vaccination. Several kinds of vaccine adjuvants have been utilized to accelerate and magnify immune responses to PRRSV vaccines. These adjuvants include cytokines, chemical reagents, and bacterial products. Of 11 vaccine adjuvants tested, five (i.e. interleukin-2 (IL-2), IL-12, interferon alpha (IFNalpha), polyinosinic and polycytidylic acid, and cytidine-phosphate-guanosine oligodeoxynucleotides (CpG ODN)) significantly enhance CMI response to PRRSV vaccines. The response is characterized by proliferation, cytotoxicity, and IFNgamma secretion of peripheral blood mononuclear cells or T cells in response to recall PRRSV antigens in vitro. Two (i.e. CpG ODN and cholera toxin) significantly enhance PRRSV-specific antibody response after vaccination. Two (i.e. IL-2 and CpG ODN) significantly enhance protective efficacy of PRRSV vaccines in challenge models. Improvement of immune responses to PRRSV vaccines should focus in future studies on assessing more vaccine adjuvants for their efficiency in enhancing both CMI and antibody responses and on identifying PRRSV components and strategies that down-modulate pig immune responses in order to devise vaccine adjuvants that can regulate such strategies of the virus.
Collapse
|
37
|
Lewis CRG, Ait-Ali T, Clapperton M, Archibald AL, Bishop S. Genetic perspectives on host responses to porcine reproductive and respiratory syndrome (PRRS). Viral Immunol 2007; 20:343-58. [PMID: 17931105 DOI: 10.1089/vim.2007.0024] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically important disease in pig populations, worldwide. Current research, both in vitro and in vivo, has failed to provide industry with a reliable or effective method to combat the disease. In this paper the present knowledge of the genetics of the host response to porcine reproductive and respiratory syndrome virus (PRRSV) is reviewed. Special reference is made to clinical signs of disease, in vitro and in vivo studies, and evidence of genetic variation in host response to the disease. It is concluded that although clinical signs are numerous, and in vitro and in vivo studies often fail to yield comparable results, there is sufficient evidence of genetic variation in host responses to infection to examine the possibility of breeding for enhanced resistance or tolerance. Advances in genomics have allowed examination of changes in gene expression in response to infection to be examined in tandem with genomewide linkage disequilibrium scans. These advances could allow the possibility for commercial breeding programs to be established, selecting for PRRS resistance or tolerance. When breeding for resistance to one disease, such as PRRS, it could be postulated that the viral control mechanism being exploited could have beneficial effects on resistance to other viral diseases in pigs if, for example, the mechanisms act on primary immune pathways associated with viral replication. Conversely, however, selection for disease resistance could facilitate an increase in susceptibility to other diseases or a reduction in overall productivity. Extensive data recording may be required to guard against such possibilities. Overall, breeding for disease control in pigs is an underutilized tool that could have desirable long-term effects in breeding programs. More research is needed to examine the possible pathways of PRRS resistance so that viable control methods can be found to ease the disease burden and thus increase animal welfare and economic viability.
Collapse
Affiliation(s)
- Craig R G Lewis
- Division of Genetics and Genomics, Roslin Institute (Edinburgh), Roslin, Midlothian, United Kingdom.
| | | | | | | | | |
Collapse
|
38
|
Charerntantanakul W, Platt R, Roth JA. Effects of porcine reproductive and respiratory syndrome virus-infected antigen-presenting cells on T cell activation and antiviral cytokine production. Viral Immunol 2007; 19:646-61. [PMID: 17201660 DOI: 10.1089/vim.2006.19.646] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability of porcine reproductive and respiratory syndrome virus (PRRSV) to suppress T cell expression of CD25 (alpha chain of interleukin [IL]-2 receptor), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) was determined by flow cytometry in naive porcine T cells in response to mitogen (concanavalin A) and cytokine inducers (phorbol 12-myristate 13-acetate plus ionomycin [PMA/I]). Four PRRSV isolates of varying clinical virulence and three different types of porcine myeloid antigen-presenting cells (APCs) were used. T cells cultured with monocytes infected with virulent PRRSV (VR-2385, SDSU-73, and VR-2332), but not with a vaccine strain (Ingelvac PRRS MLV; Boehringer Ingelheim Vetmedica, St. Joseph, MO), demonstrated significantly reduced CD25 expression (%CD25(+)) and IFN-gamma expression (%IFN-gamma (+)) compared with T cells incubated with uninoculated monocyte cultures. T cells cultured with monocytes infected with all four PRRSV isolates demonstrated significantly reduced %TNF-alpha (+). The significant reduction of %CD25(+), %IFN-gamma (+), and %TNF-alpha (+) was not detected in T cells cultured with monocyte-derived macrophages (MDMs) and immature monocyte-derived dendritic cells (MDCs) infected with any PRRSV isolates. Heat-inactivated PRRSV did not induce significantly reduced T cell responses in any APC cultures. The reduction of T cell response in monocyte cultures was not due to PRRSV-induced T cell death. Gene expression of IL-10 detected by semiquantitative reverse transcriptase-polymerase chain reaction was significantly increased in virulent PRRSV-infected monocyte cultures after PMA/I, but not concanavalin A, stimulation compared with IL-10 gene expression from uninoculated monocyte cultures. Increased IL-10 gene expression contributed to significantly reduced %IFN-gamma (+) and %TNF-alpha (+), but not %CD25(+), as determined by IL-10 neutralization assay. This study reports that PRRSV has the ability to suppress T cell responses. The suppressive ability of PRRSV is associated with viral virulence and is mediated by virus-infected monocytes, but not by virus-infected MDMs and immature MDCs.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | | | | |
Collapse
|
39
|
Chang HW, Jeng CR, Lin TL, Liu JJ, Chiou MT, Tsai YC, Chia MY, Jan TR, Pang VF. Immunopathological effects of porcine circovirus type 2 (PCV2) on swine alveolar macrophages by in vitro inoculation. Vet Immunol Immunopathol 2005; 110:207-19. [PMID: 16310858 DOI: 10.1016/j.vetimm.2005.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 08/25/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS), a multifactorial disease, in pigs. Monocyte/macrophage lineage cells, including alveolar macrophages (AMs), are the major target cells for PCV2. Swine AMs are essential for the pulmonary defense system against various pathogens. Concurrent infection of lung with opportunistic pathogens in pigs suffered from PMWS is speculated as a feature of immunosuppression. The present study was conducted to characterize the effects of PCV2 inoculation on swine AMs in the in vitro system. The parameters selected for evaluation included PCV2 antigen- and nucleic acid-containing rate, viability, TUNEL-positive rate, phagocytosis, microbicidal capability, and capacity for production of reactive oxygen species (superoxide anion, O2-, and hydrogen peroxide, H2O2), cytokines, and chemokines. High intracytoplasmic PCV2 antigen- and nucleic acid-containing rate, absence of intranuclear signals for PCV2 antigen and nucleic acid, and lack of noticeable cell death were seen in PCV2-inoculated AMs. The PCV2-inoculated AMs displayed a transient as well as persistent reduction in the up-take and destruction of Candida albicans, respectively, accompanied by decrease in the production of O2- and H2O2. In PCV2-inoculated AMs, the levels of tumor necrosis-alpha (TNF-alpha) and interleukin-8 (IL-8) were significantly increased; the mRNA expression levels of alveolar macrophage-derived neutrophil chemotactic factors-II (AMCF-II), granulocyte colony-stimulating factor (G-CSF), monocyte chemotactic protein-1 (MCP-1), and IL-8 were strongly up-regulated. The reduced phagocytosis and microbicidal capability in conjunction with decreased production of reactive oxygen species in PCV2-inoculated AMs suggest that PCV2-containing AMs may favor the survival and spread of PCV2. It is speculated that the functional alterations observed in PCV2-containing AMs may be potentially harmful to the lung tissue and local pulmonary defense system, especially in those PCV2-infected pigs conditioned by various PMWS development-dependent co-factors.
Collapse
Affiliation(s)
- Hui-Wen Chang
- Department of Veterinary Medicine, College of Bio-Resources and Agriculture, Graduate Institute of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ramjeet M, Deslandes V, St Michael F, Cox AD, Kobisch M, Gottschalk M, Jacques M. Truncation of the Lipopolysaccharide Outer Core Affects Susceptibility to Antimicrobial Peptides and Virulence of Actinobacillus pleuropneumoniae Serotype 1. J Biol Chem 2005; 280:39104-14. [PMID: 16188878 DOI: 10.1074/jbc.m502852200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that the core oligosaccharide region of the lipopolysaccharide (LPS) is essential for optimal adhesion of Actinobacillus pleuropneumoniae, an important swine pathogen, to respiratory tract cells. Rough LPS and core LPS mutants of A. pleuropneumoniae serotype 1 were generated by using a mini-Tn10 transposon mutagenesis system. Here we performed a structural analysis of the oligosaccharide region of three core LPS mutants that still produce the same O-antigen by using methylation analyses and mass spectrometry. We also performed a kinetic study of proinflammatory cytokines production such as interleukin (IL)-6, tumor necrosis factor-alpha, IL1-beta, MCP-1, and IL8 by LPS-stimulated porcine alveolar macrophages, which showed that purified LPS of the parent strain, the rough LPS and core LPS mutants, had the same ability to stimulate the production of cytokines. Most interestingly, an in vitro susceptibility test of these LPS mutants to antimicrobial peptides showed that the three core LPS mutants were more susceptible to cationic peptides than both the rough LPS mutant and the wild type parent strain. Furthermore, experimental pig infections with these mutants revealed that the galactose (Gal I) and d,d-heptose (Hep IV) residues present in the outer core of A. pleuropneumoniae serotype 1 LPS are important for adhesion and overall virulence in the natural host, whereas deletion of the terminal GalNAc-Gal II disaccharide had no effect. Our data suggest that an intact core-lipid A region is required for optimal protection of A. pleuropneumoniae against cationic peptides and that deletion of specific residues in the outer LPS core results in the attenuation of the virulence of A. pleuropneumoniae serotype 1.
Collapse
Affiliation(s)
- Mahendrasingh Ramjeet
- Groupe de Recherche sur les Maladies Infectieuses du Porc and the Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec J2S 7C6, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Olin MR, Batista L, Xiao Z, Dee SA, Murtaugh MP, Pijoan CC, Molitor TW. γδ Lymphocyte Response to Porcine Reproductive and Respiratory Syndrome Virus. Viral Immunol 2005; 18:490-9. [PMID: 16212527 DOI: 10.1089/vim.2005.18.490] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be one of the most important diseases facing swine industry today. Following PRRSV infection pigs develop both humoral and cell-mediated responses following PRRSV exposure; however, the relative importance in protection and clearance of the virus is not yet completely understood. Swine contain a large percentage of gammadelta T-lymphocytes in peripheral circulation capable of responding to various pathogens in both an innate and specific immune response. The objectives of this study were to determine whether gammadelta lymphocytes functionally respond to PRRSV upon initial exposure and re-exposure. Four month old PRRSV free gilts were intranasally inoculated with a field isolate MN-30100 then assessed at various time points post infection. On day 120, pigs were re-exposed with MN-30100 PRRSV strain and subsequently were bled on days 0, 7, and 14 post re-exposure. Lymphocyte subpopulations, antigen specific proliferation, and IFN-gamma production were evaluated throughout the study. Circulating gammadelta lymphocytes in PRRSV exposed animals expanded between days 14 to 70 (d14-d70, p = 0.016); following antigen stimulation, gammadelta lymphocyte proliferated by day 14 (d0-d14, p = 0.001) continuing through day 60. gammadelta lymphocytes produced IFN-gamma by day 14 pi continuing through day 50 (d0-d50, p = 0.004). Following re-exposure both gammadelta+ and CD4+ lymphocytes increased in IFN-gamma production. These results are not fully conclusive on the role of gammadelta lymphocytes against PRRSV; the data indicate that gammadelta lymphocytes specifically respond to PRRSV.
Collapse
Affiliation(s)
- Michael R Olin
- Clinical and Population Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Chang HW, Jeng CR, Liu JJ, Lin TL, Chang CC, Chia MY, Tsai YC, Pang VF. Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha. Vet Microbiol 2005; 108:167-77. [PMID: 15936905 PMCID: PMC7117408 DOI: 10.1016/j.vetmic.2005.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 03/09/2005] [Accepted: 03/17/2005] [Indexed: 11/21/2022]
Abstract
Two common viral pathogens of swine, namely, porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV), were investigated in regard to their effects on monolayer cultures of swine alveolar macrophages (AMs). The purpose was to identify selected cellular changes and responses potentially associated with the clinical reactions of pigs infected with either or both of these viruses. Measurements included the (1) absolute and relative numbers of infected, viable, and apoptotic cells; (2) distribution of viral antigens; (3) levels of interferon-alpha (IFN-α) and tumor necrosis factor-alpha (TNF-α) produced and their association with the extent of virus-induced cytopathology. Four groups of AMs were studied, including mock-infected, PCV2 alone-infected (PCV2-A), PRRSV alone-infected (PRRSV-A), and PCV2 and PRRSV dually infected (PCV2/PRRSV) groups. The AMs of PCV2-A group had high antigen-containing rate without cell death. There was a marked increase in cell death and apoptosis in PRRSV-A group. However, a lower PRRSV-induced infectious rate, cell death, and apoptosis were seen in PCV2/PRRSV group. High levels of IFN-α production were detected in PCV2-infected groups, but not in mock-infected and PRRSV-A groups. The PRRSV-induced cytopathic effect (CPE) on MARC-145 cells or swine AMs was markedly reduced by pre-incubation of the cells with UV-treated or non-UV-treated supernatants of PCV2-infected AMs. In addition, the reduction in CPE was abolished when the supernatants of PCV2-infected AMs were pre-treated with a mouse anti-recombinant porcine IFN-α antibody. The results suggest that swine AMs were an important reservoir of PCV2; PCV2 infection reduced PRRSV infection and PRRSV-associated CPE in PCV2/PRRSV AMs; the reduction of PRRSV infection in AMs was mediated by IFN-α generated by PCV2 infection. The reduced PRRSV-associated CPE in AMs and increased pro-inflammatory cytokine production may lead to a more severe pneumonic lesion in those dually infected pigs.
Collapse
Affiliation(s)
- Hui-Wen Chang
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Toepfer-Berg TL, Escobar J, Van Alstine WG, Baker DH, Salak-Johnson J, Johnson RW. Vitamin E supplementation does not mitigate the acute morbidity effects of porcine reproductive and respiratory syndrome virus in nursery pigs1. J Anim Sci 2004; 82:1942-51. [PMID: 15309940 DOI: 10.2527/2004.8271942x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to determine whether feeding a vitamin E-rich diet would benefit nursery pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). Sixty-four pigs were subjected to one of four treatment combinations (2 x 2 factorial) of dietary vitamin E (adequate or excess) and PRRSV (medium or inoculation with VR-2385 isolate P-129). Pigs were fed experimental diets during a 3-wk period before inoculation as well as during a 12-d period after inoculation. Growth performance was determined throughout the study, and lipid peroxidation in liver, glutathione peroxidase (GPX) activity in serum, circulating white blood cells, and serum interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma) were determined in samples collected from pigs killed 4 or 12 d after inoculation. Infection by PRRSV (P < 0.001) induced a marked decrease in both ADFI and ADG, but neither the main effect of diet nor the diet x PRRSV interaction was significant. Neither diet nor PRRSV affected feed efficiency. At 12 d after inoculation, lipid peroxidation in liver and GPX activity in serum were lower in pigs fed excess vitamin E than in those fed adequate vitamin E (P < 0.01), suggesting that the diet high in vitamin E bolstered the antioxidant status of the pigs. However, PRRSV did not affect lipid peroxidation in liver or serum GPX activity, and the diet x PRRSV interaction was not significant. White blood cell counts were decreased and IFN-gamma, and IL-1beta were increased (P < 0.05) 4 and 12 d after inoculation in PRRSV-infected pigs, but neither diet nor the diet x PRRSV interaction was significant. Collectively, these results indicate that increasing antioxidant defenses by feeding high levels of vitamin E did not ameliorate the effects of PRRSV on decreased growth, leukopenia, and increased serum IL-1beta and IFN-gamma. Thus, feeding nursery pigs a diet high in vitamin E may not be useful for mitigating the acute morbidity effects of PRRSV infection.
Collapse
Affiliation(s)
- T L Toepfer-Berg
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
44
|
Li H, Yang H. Infection of porcine reproductive and respiratory syndrome virus suppresses the antibody response to classical swine fever virus vaccination. Vet Microbiol 2003; 95:295-301. [PMID: 12935755 DOI: 10.1016/s0378-1135(03)00158-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of porcine reproductive and respiratory syndrome virus (PRRSV) infection on the antibody response to vaccination with classical swine fever (CSF) vaccine in piglets were investigated. Piglets were inoculated intranasally with the PRRSV BJ-4 strain, and then vaccinated intramuscularly with CSF vaccine 2 days later. Control animals were either vaccinated with CSF vaccine or infected with PRRSV alone. Time course of the antibody response against either PRRSV or CSF vaccine was measured. In animals infected with PRRSV prior to CSF vaccination, the antibody response to CSF vaccine was significantly lower than that observed in animals treated with CSF vaccination alone, especially during 3-5 weeks after vaccination. At the same time, no significant difference in serum PRRSV antibody level was observed between the animals treated with both PRRSV and CSF vaccine and the animals treated with PRRSV alone. These results suggested that the reduced antibody response against CSF vaccine observed in PRRSV-infected animals might be related to the higher prevalence of CSF in PRRSV prevalent farms in China.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Ministry of Agriculture, Beijing 100094, PR China
| | | |
Collapse
|
45
|
Nielsen J, Bøtner A, Tingstedt JE, Aasted B, Johnsen CK, Riber U, Lind P. In utero infection with porcine reproductive and respiratory syndrome virus modulates leukocyte subpopulations in peripheral blood and bronchoalveolar fluid of surviving piglets. Vet Immunol Immunopathol 2003; 93:135-51. [PMID: 12814699 PMCID: PMC7119814 DOI: 10.1016/s0165-2427(03)00068-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well known that piglets congenitally infected with porcine reproductive and respiratory syndrome virus (PRRSV) can be viremic at birth, and that preweaning mortality due to secondary infections often increases during acute outbreaks of PRRS. Therefore, an immunosuppressive effect of in utero infection has been suggested. The aim of the present study was to characterise the changes of leukocyte populations in piglets surviving in utero infection with PRRSV. A total of 27 liveborn uninfected control piglets and 22 piglets infected transplacentally with a Danish strain of PRRSV were included. At 2 and 4 weeks of age, 21 of 22 (96%) and 7 of 14 (50%) examined infected piglets were still viremic, whereas PRRSV could not be detected in the six infected piglets examined at 6 weeks of age. Flow cytometry analysis was used to determine the phenotypic composition of leukocytes in peripheral blood and bronchoalveolar lavage fluid (BALF) of 2-, 4- and 6-week-old infected piglets and age-matched uninfected controls. The key observation in the present study is that high levels of CD8(+) cells constitute a dominant feature in peripheral blood and BALF of piglets surviving in utero infection with PRRSV. In BALF, the average high level of CD8(+) cells in 2-week-old infected piglets (33.4 +/- 12.6%) was followed by a decline to 7.3 +/- 3.0 and 11.1 +/- 3.0% at 4 and 6 weeks of age. BALF of control piglets contained 1.6 +/- 0.9, 2.3 +/- 1.8 and 1.9 +/- 0.5% CD8(+) cells, only. In peripheral blood, however, the average number of CD8(+) cells remained at high levels in the infected piglets throughout the post-natal experimental period (2.8 +/- 1.9, 2.9 +/- 1.8 and 3.2 +/- 1.7 x 10(6) CD8(+) cells/ml at 2, 4 and 6 weeks, respectively). In the controls, the average levels of CD8(+) cells were 0.9+/-0.2, 1.9 +/- 1.7 and 1.6 +/- 0.5 x 10(6)/ml, respectively. Furthermore, the numbers of CD2(+) , CD4(+)CD8(+) and SLA-classII(+) cells, respectively, in peripheral blood, together with the levels of CD2(+) and CD3(+) cells in BALF were increased in the infected piglets infected in utero compared to the uninfected controls. The kinetic analyses carried out in the present study reflect that in utero infection with PRRSV modulates immune cell populations in peripheral blood and BALF of surviving piglets. The observed changes are characterised by high levels of CD8(+) cells supporting an important role of these cells in PRRSV infection. The present results, however, do not support the existence of post-natal immunosuppression following in utero infection with PRRSV.
Collapse
Affiliation(s)
- J Nielsen
- Department of Virology, Danish Veterinary Institute, Lindholm, DK-4771 Kalvehave, Denmark.
| | | | | | | | | | | | | |
Collapse
|
46
|
Mori E, Mori C, Della Libera A, Lara M, Fernandes W. Evaluation of alveolar macrophage function after experimental infection with equine herpesvirus-1 in horses. ARQ BRAS MED VET ZOO 2003. [DOI: 10.1590/s0102-09352003000300005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of the pulmonary alveolar macrophages (PAM) in the lung defense mechanism was evaluated in horses infected with equine hespesvirus-1 (EHV-1). Five adult horses were exposed to 10(6.6) TCID50 EHV-1 by intranasal instillation. Cytology of bronchoalveolar lavage (BAL) was performed using cytocentrifugation of samples and slides stained by Rosenfeld. Cell concentration was adjusted to 2<FONT FACE=Symbol>´</FONT>10(6) cells/ml, for the measurement of macrophage activity - spreading, phagocytosis of zymosan particles and release of hydrogen peroxide (H2O2). All animals were positive in virus isolation on the second, third and fifth days post-inoculation (DPI). Seroconversion was observed on the 14th DPI. Lymphocytosis was observed by BAL cytology on the 16th DPI. Measurement of macrophage activity demonstrated a marked increase in the spreading rate, on the 23rd and 30th DPI. Phagocytosis was decreased on the second DPI, and returned to levels similar to those observed before inoculation on the 23rd DPI. The amount of H2O2 released by PAM declined on day 2, but, by day 16, they returned to values similar to those observed before inoculation. The decline in PAM activity in the acute phase of disease is indirect evidence that these cells have an important role in lung defense mechanisms against this agent.
Collapse
|
47
|
Murtaugh MP, Xiao Z, Zuckermann F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection. Viral Immunol 2003; 15:533-47. [PMID: 12513925 DOI: 10.1089/088282402320914485] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immunology of porcine reproductive and respiratory syndrome virus (PRRS) begins with an initial encounter of PRRSV with the pig. Regardless of the route of entry of PRRSV--via inhalation, intramuscular vaccination, insemination, or other routes--productive infection occurs predominately in alveolar macrophages of the lung. Thus, innate responses of the lung and the alveolar macrophage comprise the initial defense against PRRSV. The virus appears not to elicit innate interferon and cytokine responses characteristic of other strongly immunogenic viral pathogens, and its effects are consistent with induction of a weak adaptive immune response. Humoral and cell-mediated immunity is induced in due course, and results in clearance of virus from the circulation but not from lymphoid tissues, where the infection becomes persistent. Subsequent reexposure to PRRSV elicits an anamnestic response that is partially to completely protective. Within this unconventional picture of anti-PRRSV immunity lie a variety of unresolved issues, including the nature of protective immunity within individual pigs and among pigs in commercial populations, the efficacy of protective immunity against genetically different PRRSV isolates, the effects of developmental age, sex, genetics, and other host factors on the immune response to PRRSV, and the possible suppression of host immunity to other pathogens.
Collapse
Affiliation(s)
- Michael P Murtaugh
- Department of Veterinary PathoBiology, University of Minnesota, St Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
48
|
Aasted B, Bach P, Nielsen J, Lind P. Cytokine profiles in peripheral blood mononuclear cells and lymph node cells from piglets infected in utero with porcine reproductive and respiratory syndrome virus. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:1229-34. [PMID: 12414754 PMCID: PMC130102 DOI: 10.1128/cdli.9.6.1229-1234.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to investigate at 2, 4, and 6 weeks after birth cytokine expression by peripheral blood mononuclear cells and bronchial lymph node cells from piglets infected in utero with porcine reproductive and respiratory syndrome virus (PRRSV). Technically, by flow cytometry we were able to measure gamma interferon (gamma-IFN), tumor necrosis factor alpha (TNF-alpha), interleukin-4 (IL-4), and IL-8 levels. In general, we found increases in the percentages of IL-4-, gamma-IFN-, and TNF-alpha-producing lymphocytes in the infected piglets compared to the percentages in the uninfected control animals, while there was a decrease in the percentage of IL-8-producing monocytes. We believe that these findings reflect a general lymphocyte activation stage that is created due to the infection and that occurs in combination with impairment of the monocyte function, possibly due to the ongoing viral replication in these cells. Single-cell bronchial lymph node preparations exhibited very much the same cytokine profiles as peripheral blood mononuclear cells except for a lack of IL-8 production. When the levels of the individual cytokines in the three groups of PRRSV-infected piglets were compared, the levels of cytokine expression at 4 weeks diverged from those at 2 and 6 weeks, in that there was a significant decrease in the numbers of lymphocytes producing gamma-IFN and TNF-alpha. This tendency was also observed among blood monocytes and lymph node macrophages. Possible reasons for this temporary immunosuppression in the piglets at 4 weeks are discussed.
Collapse
Affiliation(s)
- B Aasted
- The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Kalvehave DK-4771, Denmark.
| | | | | | | |
Collapse
|
49
|
Girard M, Cléroux P, Tremblay P, Dea S, St-Pierre Y. Increased proteolytic activity and matrix metalloprotease expression in lungs during infection by porcine reproductive and respiratory syndrome virus. J Gen Virol 2001; 82:1253-1261. [PMID: 11369868 DOI: 10.1099/0022-1317-82-6-1253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The local increase in the secretion of extracellular proteases, allowing cleavage of the extracellular matrix and thereby facilitating the infiltration of T cells, monocytes and neutrophils, is a hallmark of chronic inflammation and autoimmunity. In pulmonary genetic diseases, such as emphysema and cystic fibrosis, proteases can also favour the development of local immunodeficiency by degrading key regulators of the immune response, such as CD4, CD8, IgG, ICAM-1 and C3b receptors. Since several infectious agents can give rise to severe pulmonary disorders associated with opportunistic infections, we sought to determine whether an increase in proteolytic activity occurred during infection with porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of a new disease in swine characterized by severe respiratory problems in young pigs. Piglets were infected with the virus and bronchoalveolar lavages were collected at various times post-infection to measure the net proteolytic activity. It was shown that PRRSV infection leads to a significant increase in proteolytic activity in pulmonary fluids. Maximal activity was found at 7 and 14 days post-infection, with a return towards normal levels at day 42. Zymographic analyses showed a significant increase in the secretion of matrix metalloproteases (MMPs) 2 and 9, two enzymes involved in tissue remodelling. Histological analyses showed a correlation between the increase in proteolytic activity and the appearance of lesions that were characterized by massive lymphomononuclear cell infiltration. These results suggest that virus infection of the lungs can lead to a transient increase in proteolytic activity that could favour opportunistic infection.
Collapse
Affiliation(s)
- Manon Girard
- Centre de Recherche en Santé Humaine1 et Centre de Recherche en Microbiologie et Biotechnologie2, INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Laval-des-Rapides, Québec, CanadaH7N 4Z3
| | - Patrick Cléroux
- Centre de Recherche en Santé Humaine1 et Centre de Recherche en Microbiologie et Biotechnologie2, INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Laval-des-Rapides, Québec, CanadaH7N 4Z3
| | - Pierre Tremblay
- Centre de Recherche en Santé Humaine1 et Centre de Recherche en Microbiologie et Biotechnologie2, INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Laval-des-Rapides, Québec, CanadaH7N 4Z3
| | - Serge Dea
- Centre de Recherche en Santé Humaine1 et Centre de Recherche en Microbiologie et Biotechnologie2, INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Laval-des-Rapides, Québec, CanadaH7N 4Z3
| | - Yves St-Pierre
- Centre de Recherche en Santé Humaine1 et Centre de Recherche en Microbiologie et Biotechnologie2, INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Laval-des-Rapides, Québec, CanadaH7N 4Z3
| |
Collapse
|