1
|
Yin M, Zhang Y, Liu S, Huang J, Li X. Gene Expression Signatures Reveal Common Virus Infection Pathways in Target Tissues of Type 1 Diabetes, Hashimoto's Thyroiditis, and Celiac Disease. Front Immunol 2022; 13:891698. [PMID: 35795668 PMCID: PMC9251511 DOI: 10.3389/fimmu.2022.891698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes (T1D) patients are at heightened risk for other autoimmune disorders, particularly Hashimoto's thyroiditis (HT) and celiac disease (CD). Recent evidence suggests that target tissues of autoimmune diseases engage in a harmful dialogue with the immune system. However, it is unclear whether shared mechanisms drive similar molecular signatures at the target tissues among T1D, HT, and CD. In our current study, microarray datasets were obtained and mined to identify gene signatures from disease-specific targeted tissues including the pancreas, thyroid, and intestine from individuals with T1D, HT, and CD, as well as their matched controls. Further, the threshold-free algorithm rank-rank hypergeometric overlap analysis (RRHO) was used to compare the genomic signatures of the target tissues of the three autoimmune diseases. Next, promising drugs that could potentially reverse the observed signatures in patients with two or more autoimmune disorders were identified using the cloud-based CLUE software platform. Finally, microarray data of auto-antibody positive individuals but not diagnosed with T1D and single cell sequencing data of patients with T1D and HT were used to validate the shared transcriptomic fingerprint. Our findings revealed significant common gene expression changes in target tissues of the three autoimmune diseases studied, many of which are associated with virus infections, including influenza A, human T-lymphotropic virus type 1, and herpes simplex infection. These findings support the importance of common environmental factors in the pathogenesis of T1D, HT, and CD.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Vig S, Lambooij JM, Zaldumbide A, Guigas B. Endoplasmic Reticulum-Mitochondria Crosstalk and Beta-Cell Destruction in Type 1 Diabetes. Front Immunol 2021; 12:669492. [PMID: 33936111 PMCID: PMC8085402 DOI: 10.3389/fimmu.2021.669492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In response to inflammatory signals, beta-cells engage adaptive mechanisms where the endoplasmic reticulum (ER) and mitochondria act in concert to restore cellular homeostasis. In the recent years it has become clear that this adaptive phase may trigger the development of autoimmunity by the generation of autoantigens recognized by autoreactive CD8 T cells. The participation of the ER stress and the unfolded protein response to the increased visibility of beta-cells to the immune system has been largely described. However, the role of the other cellular organelles, and in particular the mitochondria that are central mediator for beta-cell survival and function, remains poorly investigated. In this review we will dissect the crosstalk between the ER and mitochondria in the context of T1D, highlighting the key role played by this interaction in beta-cell dysfunctions and immune activation, especially through regulation of calcium homeostasis, oxidative stress and generation of mitochondrial-derived factors.
Collapse
Affiliation(s)
- Saurabh Vig
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Meziane FZ, Dali-Sahi M, Dennouni-Medjati N, Boulenouar H, Kachekouche Y, Benslama Y, Harek Y. Molecular mimicry between varicella, measles virus and Hsp60 in type 1 diabetes associated HLA-DR3/DR4 molecules. Diabetes Metab Syndr 2020; 14:1783-1789. [PMID: 32947109 DOI: 10.1016/j.dsx.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Type 1 diabetes (T1D) is a multifactorial autoimmune disease that combines genetics and environmental factors. The aim of this study is to determine the environmental risk factors and to investigate how virals infections are risks factors for type 1 diabetics whom have HLA DR3/DR4 predisposition in our population. METHODS This study includes 233 subjects, 145 diabetics and 88 controls from regions of the extreme western of Algeria. All the informations related to the disease were collected using predesigned questionnaire. Using in silico approach, we attempt to improve the understanding of this analytical result by molecular mimicry, which is associated with the breakdown of several autoimmune pathologies. RESULTS The statistical study showed that history of varicella and measles infection and T1D related inheritance and type 2 diabetes are risk factors for T1D in the population of Tlemcen. We have determined the homologous antigenic regions between the glycoprotein "gE" of the varicella virus, the "hemagglutinin" of measles and the human protein "HSP60" at the level of their sequence and 3D structure. These cross-reactive epitopes bind to MHC class II molecules (HLA DR3/DR4) that predispose to T1D but not to MHC class II molecules (HLA DR2) that protect against T1D. This epitopes induce Th2 cells but only "hemagglutinin" and "Hsp60" can activate Th1 differentiation. This indicates their potential to destroy pancreatic cells β. CONCLUSION Our study can allow us to adapt biological markers to genetically predisposed T1D and to establish a preventive strategy for healthy genetic predisposed individuals in Tlemcen population.
Collapse
Affiliation(s)
- Fatima Zohra Meziane
- Department of Biology, Laboratory of Analytical Chemistry and Electrochemistry, Unviversity of Tlemcen, Algeria.
| | - Majda Dali-Sahi
- Department of Biology, Laboratory of Analytical Chemistry and Electrochemistry, Unviversity of Tlemcen, Algeria
| | - Nouria Dennouni-Medjati
- Department of Biology, Laboratory of Analytical Chemistry and Electrochemistry, Unviversity of Tlemcen, Algeria
| | | | - Youssouf Kachekouche
- Department of Biology, Laboratory of Analytical Chemistry and Electrochemistry, Unviversity of Tlemcen, Algeria
| | - Yasmine Benslama
- Department of Biology, Laboratory of Analytical Chemistry and Electrochemistry, Unviversity of Tlemcen, Algeria
| | - Yahia Harek
- Department of Biology, Laboratory of Analytical Chemistry and Electrochemistry, Unviversity of Tlemcen, Algeria
| |
Collapse
|
4
|
Vulczak A, Catalão CHR, Freitas LAPD, Rocha MJA. HSP-Target of Therapeutic Agents in Sepsis Treatment. Int J Mol Sci 2019; 20:ijms20174255. [PMID: 31480313 PMCID: PMC6747181 DOI: 10.3390/ijms20174255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Sepsis is a syndrome characterized by a dysregulated inflammatory response, cellular stress, and organ injury. Sepsis is the main cause of death in intensive care units worldwide, creating need for research and new therapeutic strategies. Heat shock protein (HSP) analyses have recently been developed in the context of sepsis. HSPs have a cytoprotection role in stress conditions, signal to immune cells, and activate the inflammatory response. Hence, HSP analyses have become an important focus in sepsis research, including the investigation of HSPs targeted by therapeutic agents used in sepsis treatment. Many therapeutic agents have been tested, and their HSP modulation showed promising results. Nonetheless, the heterogeneity in experimental designs and the diversity in therapeutic agents used make it difficult to understand their efficacy in sepsis treatment. Therefore, future investigations should include the analysis of parameters related to the early and late immune response in sepsis, HSP localization (intra or extracellular), and time to the onset of treatment after sepsis. They also should consider the differences in experimental sepsis models. In this review, we present the main results of studies on therapeutic agents in targeting HSPs in sepsis treatment. We also discuss limitations and possibilities for future investigations regarding HSP modulators.
Collapse
Affiliation(s)
- Anderson Vulczak
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-904, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Luiz Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Maria José Alves Rocha
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-904, Brazil.
| |
Collapse
|
5
|
Sinha AA, Sajda T. The Evolving Story of Autoantibodies in Pemphigus Vulgaris: Development of the "Super Compensation Hypothesis". Front Med (Lausanne) 2018; 5:218. [PMID: 30155465 PMCID: PMC6102394 DOI: 10.3389/fmed.2018.00218] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Emerging data and innovative technologies are re-shaping our understanding of the scope and specificity of the autoimmune response in Pemphigus vulgaris (PV), a prototypical humorally mediated autoimmune skin blistering disorder. Seminal studies identified the desmosomal proteins Desmoglein 3 and 1 (Dsg3 and Dsg1), cadherin family proteins which function to maintain cell adhesion, as the primary targets of pathogenic autoAbs. Consequently, pathogenesis in PV has primarily considered to be the result of anti-Dsg autoAbs alone. However, accumulating data suggesting that anti-Dsg autoAbs by themselves cannot adequately explain the loss of cell-cell adhesion seen in PV, nor account for the disease heterogeneity exhibited across PV patients has spurred the notion that additional autoAb specificities may contribute to disease. To investigate the role of non-Dsg autoAbs in PV, an increasing number of studies have attempted to characterize additional targets of PV autoAbs. The recent advent of protein microarray technology, which allows for the rapid, highly sensitive, and multiplexed assessment of autoAb specificity has facilitated the comprehensive classification of the scope and specificity of the autoAb response in PV. Such detailed deconstruction of the autoimmune response in PV, beyond simply tracking anti-Dsg autoAbs, has provided invaluable new insights concerning disease mechanisms and enhanced disease classification which could directly translate into superior tools for prognostics and clinical management, as well as the development of novel, disease specific treatments.
Collapse
Affiliation(s)
- Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, United States
| | - Thomas Sajda
- Department of Dermatology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Positive or negative involvement of heat shock proteins in multiple sclerosis pathogenesis: an overview. J Neuropathol Exp Neurol 2015; 73:1092-106. [PMID: 25383635 DOI: 10.1097/nen.0000000000000136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is the most diffuse chronic inflammatory disease of the central nervous system. Both immune-mediated and neurodegenerative processes apparently play roles in the pathogenesis of this disease. Heat shock proteins (HSPs) are a family of highly evolutionarily conserved proteins; their expression in the nervous system is induced in a variety of pathologic states, including cerebral ischemia, neurodegenerative diseases, epilepsy, and trauma. To date, investigators have observed protective effects of HSPs in a variety of brain disease models (e.g. of Alzheimer disease and Parkinson disease). In contrast, unequivocal data have been obtained for their roles in MS that depend on the HSP family and particularly on their localization (i.e. intracellular or extracellular). This article reviews our current understanding of the involvement of the principal HSP families in MS.
Collapse
|
7
|
de Jong H, Koffeman EC, Meerding JM, Scholman RC, Wieten L, de Jager W, Klein M, Otten H, van Wijk F, van der Zee R, Bijlsma JWJ, Broere F, van Eden W, Prakken BJ. T cell recognition of naturally presented epitopes of self-heat shock protein 70. Cell Stress Chaperones 2014; 19:569-78. [PMID: 24425585 PMCID: PMC4041940 DOI: 10.1007/s12192-013-0484-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 12/01/2022] Open
Abstract
Self-reactive T cells have shown to have a potential role as regulators of the immune system preventing or even suppressing autoimmunity. One of the most abundant proteins that can be eluted from human HLA molecules is heat shock protein 70 (HSP70). The aims of the current study are to identify HSP70 epitopes based on published HLA elution studies and to investigate whether T cells from healthy individuals may respond to such self-epitopes. A literature search and subsequent in silico binding prediction based on theoretical MHC binding motifs resulted in the identification of seven HSP70 epitopes. PBMCs of healthy controls proliferated after incubation with two of the seven peptides (H167 and H290). Furthermore H161, H290, and H443 induced CD69 expression or production of cytokines IFNγ or TNFα in healthy controls. The identification of these naturally presented epitopes and the response they elicit in the normal immune system make them potential candidates to study during inflammatory conditions as well as in autoimmune diseases.
Collapse
Affiliation(s)
- Huib de Jong
- />Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- />Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Huispostnummer KE 04.131.1, Postbus 85090, 3508 AB Utrecht, The Netherlands
| | - Eva C. Koffeman
- />Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Huispostnummer KE 04.131.1, Postbus 85090, 3508 AB Utrecht, The Netherlands
| | - Jennifer M. Meerding
- />Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Huispostnummer KE 04.131.1, Postbus 85090, 3508 AB Utrecht, The Netherlands
| | - Rianne C. Scholman
- />Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Huispostnummer KE 04.131.1, Postbus 85090, 3508 AB Utrecht, The Netherlands
| | - Lotte Wieten
- />Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wilco de Jager
- />Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Huispostnummer KE 04.131.1, Postbus 85090, 3508 AB Utrecht, The Netherlands
| | - Mark Klein
- />Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Huispostnummer KE 04.131.1, Postbus 85090, 3508 AB Utrecht, The Netherlands
| | - Henny Otten
- />Department of Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Femke van Wijk
- />Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Huispostnummer KE 04.131.1, Postbus 85090, 3508 AB Utrecht, The Netherlands
| | - Ruurd van der Zee
- />Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Johannes W. J. Bijlsma
- />Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke Broere
- />Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Willem van Eden
- />Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berent J. Prakken
- />Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Huispostnummer KE 04.131.1, Postbus 85090, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
8
|
Exploring the MHC-peptide matrix of central tolerance in the human thymus. Nat Commun 2013; 4:2039. [PMID: 23783831 DOI: 10.1038/ncomms3039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/21/2013] [Indexed: 01/22/2023] Open
Abstract
Ever since it was discovered that central tolerance to self is imposed on developing T cells in the thymus through their interaction with self-peptide major histocompatibility complexes on thymic antigen-presenting cells, immunologists have speculated about the nature of these peptides, particularly in humans. Here, to shed light on the so-far unknown human thymic peptide repertoire, we analyse peptides eluted from isolated thymic dendritic cells, dendritic cell-depleted antigen-presenting cells and whole thymus. Bioinformatic analysis of the 842 identified natural major histocompatibility complex I and II ligands reveals significant cross-talk between major histocompatibility complex-class I and II pathways and differences in source protein representation between individuals as well as different antigen-presenting cells. Furthermore, several autoimmune- and tumour-related peptides, from enolase and vimentin for example, are presented in the healthy thymus. 302 peptides are directly derived from negatively selecting dendritic cells, thus providing the first global view of the peptide matrix in the human thymus that imposes self-tolerance in vivo.
Collapse
|
9
|
Miersch S, Bian X, Wallstrom G, Sibani S, Logvinenko T, Wasserfall CH, Schatz D, Atkinson M, Qiu J, LaBaer J. Serological autoantibody profiling of type 1 diabetes by protein arrays. J Proteomics 2013; 94:486-96. [PMID: 24148850 DOI: 10.1016/j.jprot.2013.10.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/04/2013] [Accepted: 10/01/2013] [Indexed: 12/30/2022]
Abstract
The need for biomarkers that illuminate the pathophysiology of type 1 diabetes (T1D), enhance early diagnosis and provide additional avenues for therapeutic intervention is well recognized in the scientific community. We conducted a proteome-scale, two-stage serological AAb screening followed by an independent validation study. In the first stage, the immunoreactivity was compared between T1D cases and healthy controls against ~6000 human proteins using the nucleic acid programmable protein array (NAPPA). Genes identified with higher signal intensities in patients were challenged with a larger sample set during the second stage. Statistical analysis revealed 26 novel autoantigens and a known T1D-associated autoantigen. During validation, we verified the presence of AAbs to dual specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) using the Luciferase ImmunoPrecipitation System (LIPS) assay (36% sensitivity, 98% specificity). The AUC for a combination of DYRK2A and the classical T1D AAb IA-2A was 0.90 compared to 0.72 for DYRK2A and 0.64 for IA-2A alone. This is the first systematic screening for seroreactivity against a large number of human proteins in T1D patients. We demonstrated the application of protein microarrays to identify novel autoantigens in T1D, expanded the current T1D "autoantigenome" and help fulfill the goal of searching for novel biomarker candidates for T1D. BIOLOGICAL SIGNIFICANCE Protein microarrays provide a high-throughput platform that enables the profiling of serum antibodies to a large number of protein antigens. The value of AAb biomarkers in diagnosis, prognosis and treatment is well recognized in autoimmune diseases including T1D. We performed a systematic screening for new T1D-associated autoantigens by adapting the innovative protein array platform NAPPA. We believe that the discovery in this study will add information on candidate autoantigens that could potentially improve the diagnosis and help uncover the pathophysiology of T1D. The successful use of NAPPA for T1D AAb profiling will open the window for larger studies including more human antigen genes and other autoimmune diseases.
Collapse
Affiliation(s)
- Shane Miersch
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xu D, Prasad S, Miller SD. Inducing immune tolerance: a focus on Type 1 diabetes mellitus. ACTA ACUST UNITED AC 2013; 3:415-426. [PMID: 24505231 DOI: 10.2217/dmt.13.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tolerogenic strategies that specifically target diabetogenic immune cells in the absence of complications of immunosuppression are the desired treatment for the prevention or even reversal of Type 1 diabetes (T1D). Antigen (Ag)-based therapies must not only suppress disease-initiating diabetogenic T cells that are already activated, but, more importantly, prevent activation of naive auto-Ag-specific T cells that may become autoreactive through epitope spreading as a result of Ag liberation from damaged islet cells. Therefore, identification of auto-Ags relevant to T1D initiation and progression is critical to the design of effective Ag-specific therapies. Animal models of T1D have been successfully employed to identify potential diabetogenic Ags, and have further facilitated translation of Ag-specific tolerance strategies into human clinical trials. In this review, we highlight important advances using animal models in Ag-specific T1D immunotherapies, and the application of the preclinical findings to human subjects. We provide an up-to-date overview of the strengths and weaknesses of various tolerance-inducing strategies, including infusion of soluble Ags/peptides by various routes of delivery, genetic vaccinations, cell- and inert particle-based tolerogenic approaches, and various other strategies that target distinct tolerance-inducing pathways.
Collapse
Affiliation(s)
- Dan Xu
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Suchitra Prasad
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Clemente-Casares X, Tsai S, Huang C, Santamaria P. Antigen-specific therapeutic approaches in Type 1 diabetes. Cold Spring Harb Perspect Med 2013; 2:a007773. [PMID: 22355799 DOI: 10.1101/cshperspect.a007773] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of strategies capable of specifically curbing pathogenic autoimmune responses in a disease- and organ-specific manner without impairing foreign or tumor antigen-specific immune responses represents a long sought-after goal in autoimmune disease research. Unfortunately, our current understanding of the intricate details of the different autoimmune diseases that affect mankind, including type 1 diabetes, is rudimentary. As a result, progress in the development of the so-called "antigen-specific" therapies for autoimmunity has been slow and fraught with limitations that interfere with bench-to-bedside translation. Absent or incomplete understanding of mechanisms of action and lack of adequate immunological biomarkers, for example, preclude the rational design of effective drug development programs. Here, we provide an overview of antigen-specific approaches that have been tested in preclinical models of T1D and, in some cases, human subjects. The evidence suggests that effective translation of these approaches through clinical trials and into patients will continue to meet with failure unless detailed mechanisms of action at the level of the organism are defined.
Collapse
Affiliation(s)
- Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre, University of Calgary, NW Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
12
|
Kahloon RA, Xue J, Bhargava A, Csizmadia E, Otterbein L, Kass DJ, Bon J, Soejima M, Levesque MC, Lindell KO, Gibson KF, Kaminski N, Banga G, Oddis CV, Pilewski JM, Sciurba FC, Donahoe M, Zhang Y, Duncan SR. Patients with idiopathic pulmonary fibrosis with antibodies to heat shock protein 70 have poor prognoses. Am J Respir Crit Care Med 2013; 187:768-75. [PMID: 23262513 DOI: 10.1164/rccm.201203-0506oc] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Diverse autoantibodies are present in most patients with idiopathic pulmonary fibrosis (IPF). We hypothesized that specific autoantibodies may associate with IPF manifestations. OBJECTIVES To identify clinically relevant, antigen-specific immune responses in patients with IPF. METHODS Autoantibodies were detected by immunoblots and ELISA. Intrapulmonary immune processes were evaluated by immunohistochemistry. Anti-heat shock protein 70 (HSP70) IgG was isolated from plasma by immunoaffinity. Flow cytometry was used for leukocyte functional studies. MEASUREMENTS AND MAIN RESULTS HSP70 was identified as a potential IPF autoantigen in discovery assays. Anti-HSP70 IgG autoantibodies were detected by immunoblots in 3% of 60 control subjects versus 25% of a cross-sectional IPF cohort (n = 122) (P = 0.0004), one-half the patients with IPF who died (P = 0.008), and 70% of those with acute exacerbations (P = 0.0005). Anti-HSP70 autoantibodies in patients with IPF were significantly associated with HLA allele biases, greater subsequent FVC reductions (P = 0.0004), and lesser 1-year survival (40 ± 10% vs. 80 ± 5%; hazard ratio = 4.2; 95% confidence interval, 2.0-8.6; P < 0.0001). HSP70 protein, antigen-antibody complexes, and complement were prevalent in IPF lungs. HSP70 protein was an autoantigen for IPF CD4 T cells, inducing lymphocyte proliferation (P = 0.004) and IL-4 production (P = 0.01). IPF anti-HSP70 autoantibodies activated monocytes (P = 0.009) and increased monocyte IL-8 production (P = 0.049). ELISA confirmed the association between anti-HSP70 autoreactivity and IPF outcome. Anti-HSP70 autoantibodies were also found in patients with other interstitial lung diseases but were not associated with their clinical progression. CONCLUSIONS Patients with IPF with anti-HSP70 autoantibodies have more near-term lung function deterioration and mortality. These findings suggest antigen-specific immunoassays could provide useful clinical information in individual patients with IPF and may have implications for understanding IPF progression.
Collapse
Affiliation(s)
- Rehan A Kahloon
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Recombinant heat shock protein 60 (Hsp60/GroEL) of Salmonella enterica serovar Typhi elicits cross-protection against multiple bacterial pathogens in mice. Vaccine 2013; 31:2035-41. [DOI: 10.1016/j.vaccine.2013.02.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/22/2013] [Accepted: 02/25/2013] [Indexed: 11/17/2022]
|
14
|
|
15
|
La Torre D. Immunobiology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:194-218. [PMID: 23393680 DOI: 10.1007/978-1-4614-5441-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes is a chronic disease characterized by severe insulin deficiency and hyperglycemia, due to autoimmune destruction of pancreatic islets of Langerhans. A susceptible genetic background is necessary, but not sufficient, for the development of the disease. Epidemiological and clinical observations underscore the importance of environmental factors as triggers of type 1 diabetes, currently under investigation. Islet-specific autoantibodies precede clinical onset by months to years and are established tools for risk prediction, yet minor players in the pathogenesis of the disease. Many efforts have been made to elucidate disease-relevant defects in the key immune effectors of islet destruction, from the early failure of specific tolerance to the vicious circle of destructive insulitis. However, the events triggering islet autoimmunity as well as the transition to overt diabetes are still largely unknown, making prevention and treatment strategies still a challenge.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, Clinical Research Center (CRC), Department of Clinical Sciences, Malmö, Sweden.
| |
Collapse
|
16
|
Bolhassani A, Rafati S. Mini-chaperones: potential immuno-stimulators in vaccine design. Hum Vaccin Immunother 2013; 9:153-61. [PMID: 23108356 PMCID: PMC3667931 DOI: 10.4161/hv.22248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/08/2012] [Accepted: 09/16/2012] [Indexed: 12/21/2022] Open
Abstract
The immunogenic properties of heat shock proteins (HSPs) have prompted investigations into their application as immuno-modulatory agents. HSPs have been used as potent adjuvants in immunotherapy of cancer and infectious diseases. Some studies showed that immune activities reside within N- or C-terminal fragments of HSPs. These small fragments are sufficient to link peptides, to bind and be taken up by the receptors CD91 and scavenger receptor type A on antigen presenting cells (APCs). Thus, these mini-chaperones can be used in immunotherapy of tumors and vaccine development. The data clearly demonstrated the potential of using HSP fragments as a possible adjuvant to augment CTL response against infectious diseases. Some HSP domains have been shown to inhibit endothelial cell growth, angiogenesis or tumor growth. In this review, we describe the immuno-stimulatory activities of various mini-chaperones in development of different vaccine strategies (DNA-based vaccine and protein/peptide-based vaccines).
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Lab., Pasteur Institute of Iran, Tehran, Iran. azam_bolhassani@yahoo
| | | |
Collapse
|
17
|
Verrijn Stuart AA, de Jager W, Klein MR, Teklenburg G, Nuboer R, Hoorweg JJG, de Vroede MAMJ, de Kruijff I, Fick M, Schroor EJ, van der Vlist GJ, Meerding J, Kamphuis S, Prakken BJ. Recognition of heat shock protein 60 epitopes in children with type 1 diabetes. Diabetes Metab Res Rev 2012; 28:527-34. [PMID: 22492505 DOI: 10.1002/dmrr.2306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Treatment with a specific HSP60 epitope in new onset of type 1 diabetes (T1D) patients has been shown to preserve endogenous insulin production. Previously, recognition of pan HLA-DR-binding HSP60 epitopes in various autoimmune diseases was found; this study investigated recognition of these epitopes in newly diagnosed T1D patients and correlated findings to the occurrence of a partial remission. METHODS Peripheral blood mononuclear cells of 18 children with T1D were prospectively collected at disease onset and a few months after diagnosis. Epitope-specific T-cell proliferation and cytokine production (intracellular and in culture supernatants) were measured. Results were compared with 31 longstanding T1D patients and ten healthy controls. RESULTS Although HSP60 epitope-specific T-cell proliferative responses were detected, overall proliferative responses were low. At onset, epitope-specific intracellular IFN-γ production was higher in T1D patients compared with healthy controls (p < 0.05). At follow-up, both IL-10 and IFN-γ production were higher in those without a partial remission than in those with a partial remission (both p < 0.05). Also, IL-10 and IFN-γ production were higher compared with onset for patients without a PR (both p < 0.01). In supernatants of HSP60 epitope-specific T-cell cultures, no substantial differences in cytokine production were found between T1D patients with and without a partial remission, either at onset or a few months after onset. As patient numbers were small, results should be interpreted with caution. CONCLUSIONS Pan-DR-binding HSP60 peptides induced low peptide-specific proliferative responses and peptide-specific production of some, mainly intracellular, cytokines in T1D patients. Recognition did not differ significantly between patient groups and various time points.
Collapse
Affiliation(s)
- A A Verrijn Stuart
- Department of Paediatric Endocrinology, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van Eden W, Spiering R, Broere F, van der Zee R. A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell Stress Chaperones 2012; 17:281-92. [PMID: 22139593 PMCID: PMC3312964 DOI: 10.1007/s12192-011-0311-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/15/2011] [Indexed: 01/19/2023] Open
Abstract
Until recently, the immune system was seen solely as a defense system with its primary task being the elimination of unwanted microbial invaders. Currently, however, the functional significance of the immune system has obtained a much wider perspective, to include among others the maintenance and restoration of homeostasis following tissue damage. In this latter aspect, there is a growing interest in the identification of molecules involved, such as the so-called danger or damage-associated molecular patterns (DAMPs), also called alarmins. Since heat shock proteins are archetypical molecules produced under stressful conditions, such as tissue damage or inflammation, they are frequently mentioned as prime examples of DAMPs (Bianchi, J Leukoc Biol 81:1-5, 2007; Kono and Rock, Nat Rev Immunol 8:279-289, 2008; Martin-Murphy et al., Toxicol Lett 192:387-394, 2010). See for instance also a recent review (Chen and Nunez, Science 298:1395-1401, 2010). Contrary to this description, we recently presented some of the arguments against a role of heat shock protein as DAMPs (Broere et al., Nat Rev Immunol 11:565-c1, 2011). With this perspective and reflection article, we hope to elaborate on this debate and provide additional thoughts to further ignite this discussion on this critical and evolving issue.
Collapse
Affiliation(s)
- Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands.
| | | | | | | |
Collapse
|
19
|
Chaparro RJ, Dilorenzo TP. An update on the use of NOD mice to study autoimmune (Type 1) diabetes. Expert Rev Clin Immunol 2011; 6:939-55. [PMID: 20979558 DOI: 10.1586/eci.10.68] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The widely used nonobese diabetic (NOD) mouse model of autoimmune (Type 1) diabetes mellitus shares multiple characteristics with the human disease, and studies employing this model continue to yield clinically relevant and important information. Here, we review some of the recent key findings obtained from NOD mouse investigations that have both advanced our understanding of disease pathogenesis and suggested new therapeutic targets and approaches. Areas discussed include antigen discovery, identification of genes and pathways contributing to disease susceptibility, development of strategies to image islet inflammation and the testing of therapeutics. We also review recent technical advances that, combined with an improved understanding of the NOD mouse model's limitations, should work to ensure its popularity, utility and relevance in the years ahead.
Collapse
Affiliation(s)
- Rodolfo José Chaparro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
20
|
Quintana FJ, Cohen IR. The HSP60 immune system network. Trends Immunol 2010; 32:89-95. [PMID: 21145789 DOI: 10.1016/j.it.2010.11.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 02/06/2023]
Abstract
Heat shock proteins (HSPs) were initially discovered as participants in the cellular response to stress. It is now clear, however, that self and microbial HSPs also play an important role in the control of the immune response. Here, we focus on HSP60 and its interactions with both the innate and adaptive immune system in mammals. We also consider that circulating HSP60 and the quantities and specificities of serum antibodies to HSP60 provide a biomarker to monitor the immune status of the individual. Thus, the dual role of HSP60 as an immune modulator and a biomarker, provides an opportunity to modulate immunity for therapeutic purposes, and to monitor the immune response in health and disease.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA.
| | | |
Collapse
|
21
|
Brorsson C, Tue Hansen N, Bergholdt R, Brunak S, Pociot F. The type 1 diabetes - HLA susceptibility interactome--identification of HLA genotype-specific disease genes for type 1 diabetes. PLoS One 2010; 5:e9576. [PMID: 20221424 PMCID: PMC2832689 DOI: 10.1371/journal.pone.0009576] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 01/14/2010] [Indexed: 11/19/2022] Open
Abstract
Background The individual contribution of genes in the HLA region to the risk of developing type 1 diabetes (T1D) is confounded by the high linkage disequilibrium (LD) in this region. Using a novel approach we have combined genetic association data with information on functional protein-protein interactions to elucidate risk independent of LD and to place the genetic association into a functional context. Methodology/Principal Findings Genetic association data from 2300 single nucleotide polymorphisms (SNPs) in the HLA region was analysed in 2200 T1D family trios divided into six risk groups based on HLA-DRB1 genotypes. The best SNP signal in each gene was mapped to proteins in a human protein interaction network and their significance of clustering in functional network modules was evaluated. The significant network modules identified through this approach differed between the six HLA risk groups, which could be divided into two groups based on carrying the DRB1*0301 or the DRB1*0401 allele. Proteins identified in networks specific for DRB1*0301 carriers were involved in stress response and inflammation whereas in DRB1*0401 carriers the proteins were involved in antigen processing and presentation. Conclusions/Significance In this study we were able to hypothesise functional differences between individuals with T1D carrying specific DRB1 alleles. The results point at candidate proteins involved in distinct cellular processes that could not only help the understanding of the pathogenesis of T1D, but also the distinction between individuals at different genetic risk for developing T1D.
Collapse
Affiliation(s)
- Caroline Brorsson
- Hagedorn Research Institute and Steno Diabetes Center, Gentofte, Denmark.
| | | | | | | | | |
Collapse
|
22
|
La Torre D, Lernmark A. Immunology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:537-83. [PMID: 20217514 DOI: 10.1007/978-90-481-3271-3_24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreatic islet beta-cells are the target for an autoimmune process that eventually results in an inability to control blood glucose due to the lack of insulin. The different steps that eventually lead to the complete loss of the beta-cells are reviewed to include the very first step of a triggering event that initiates the development of beta-cell autoimmunity to the last step of appearance of islet-cell autoantibodies, which may mark that insulitis is about to form. The observations that the initial beta-cell destruction by virus or other environmental factors triggers islet autoimmunity not in the islets but in the draining pancreatic lymph nodes are reviewed along with possible basic mechanisms of loss of tolerance to islet autoantigens. Once islet autoimmunity is established the question is how beta-cells are progressively killed by autoreactive lymphocytes which eventually results in chronic insulitis. Many of these series of events have been dissected in spontaneously diabetic mice or rats, but controlled clinical trials have shown that rodent observations are not always translated into mechanisms in humans. Attempts are therefore needed to clarify the step 1 triggering mechanisms and the step to chronic autoimmune insulitis to develop evidence-based treatment approaches to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, CRC, Department of Clinical Sciences, University Hospital MAS, SE-205 02, Malmö, Sweden.
| | | |
Collapse
|
23
|
Cauwe B, Martens E, Proost P, Opdenakker G. Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr Biol (Camb) 2009; 1:404-26. [PMID: 20023747 DOI: 10.1039/b904701h] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The action radius of matrix metalloproteinases or MMPs is not restricted to massive extracellular matrix (ECM) degradation, it extends to the proteolysis of numerous secreted and membrane-bound proteins. Although many instances exist in which cells disintegrate, often in conjunction with induction of MMPs, the intracellular MMP substrate repertoire or degradome remains relatively unexplored. We started an unbiased exploration of the proteolytic modification of intracellular proteins by MMPs, using gelatinase B/MMP-9 as a model enzyme. To this end, multidimensional degradomics technology was developed by the integration of broadly available biotechniques. In this way, 100-200 MMP-9 candidate substrates were isolated, of which 69 were identified. Integration of these results with the known biological functions of the substrates revealed many novel MMP-9 substrates from the intracellular matrix (ICM), such as actin, tubulin, gelsolin, moesin, ezrin, Arp2/3 complex subunits, filamin B and stathmin. About 2/3 of the identified candidates were autoantigens described in multiple autoimmune conditions and in cancer (e.g. annexin I, nucleolin, citrate synthase, HMGB1, alpha-enolase, histidyl-tRNA synthetase, HSP27, HSC70, HSP90, snRNP D3). These findings led to the insight that MMPs and other proteases may have novel (immuno)regulatory properties by the clearance of toxic and immunogenic burdens of abundant ICM proteins released after extensive necrosis. In line with the extracellular processing of organ-specific autoantigens, proteolysis might also assist in the generation of immunodominant 'neo-epitopes' from systemic autoantigens. The study of proteolysis of ICM molecules, autoantigens, alarmins and other crucial intracellular molecules may result in the discovery of novel roles for proteolytic modification.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, Leuven, Belgium
| | | | | | | |
Collapse
|
24
|
Kumar N, Kaur G, Mehra N. Genetic determinants of Type 1 diabetes: immune response genes. Biomark Med 2009; 3:153-73. [DOI: 10.2217/bmm.09.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease. Susceptibility to T1D is strongly linked to a major genetic locus that is the MHC, and several other minor loci including insulin, cytotoxic T-lymphocyte-associated antigen-4, PTPN22 and others that contribute to diabetes risk in an epistatic way. We have observed that there are three sets of DR3-positive autoimmunity-favoring haplotypes in the north-Indian population, including B50-DR3, B58-DR3 and B8-DR3. The classical Caucasian autoimmunity favoring AH8.1 (HLA-A1-B8-DR3) is rare in the Indian population, and has been replaced by a variant AH8.1v, which differs from the Caucasian AH8.1 at several gene loci. Similarly, there are additional HLA-DR3 haplotypes, A26-B8-DR3 (AH8.2), A24-B8-DR3 (AH8.3), A3-B8-DR3 (AH8.4) and A31-B8-DR3 (AH8.5), of which AH8.2 is the most common. The fact that disease-associated DR3-positive haplotypes show heterogeneity in different populations suggests that these might possess certain shared components that are involved in the development of autoimmunity.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Gurvinder Kaur
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Narinder Mehra
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
25
|
Hirai H, Miura J, Hu Y, Larsson H, Larsson K, Lernmark A, Ivarsson SA, Wu T, Kingman A, Tzioufas AG, Notkins AL. Selective screening of secretory vesicle-associated proteins for autoantigens in type 1 diabetes: VAMP2 and NPY are new minor autoantigens. Clin Immunol 2008; 127:366-74. [PMID: 18359275 PMCID: PMC3403618 DOI: 10.1016/j.clim.2008.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 12/13/2022]
Abstract
The four major autoantigens (IA-2, IA-2 beta, GAD65 and insulin) of type 1 diabetes are all associated with dense core or synaptic vesicles. This raised the possibility that other secretory vesicle-associated proteins might be targets of the autoimmune response in type 1 diabetes. To test this hypothesis 56 proteins, two-thirds of which are associated with secretory vesicles, were prepared by in vitro transcription/translation and screened for autoantibodies by liquid phase radioimmunoprecipitation. Two secretory vesicle-associated proteins, VAMP2 and NPY, were identified as new minor autoantigens with 21% and 9%, respectively, of 200 type 1 diabetes sera reacting positively. These findings add support to the hypothesis that secretory vesicle-associated proteins are particularly important, but not the exclusive, targets of the autoimmune response in type 1 diabetes. Selective screening of the human proteome offers a useful approach for identifying new autoantigens in autoimmune diseases.
Collapse
Affiliation(s)
- Hiroki Hirai
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hoffman WH, Casanova MF, Cudrici CD, Zafranskaia E, Venugopalan R, Nag S, Oglesbee MJ, Rus H. Neuroinflammatory response of the choroid plexus epithelium in fatal diabetic ketoacidosis. Exp Mol Pathol 2007; 83:65-72. [PMID: 17335802 PMCID: PMC1950467 DOI: 10.1016/j.yexmp.2007.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 01/11/2023]
Abstract
A systemic inflammatory response (SIR) occurs prior to and during the treatment of severe diabetic ketoacidosis (DKA). IL-1beta, TNF-alpha and C5b-9 are components of SIR and have been speculated to be involved in the clinical brain edema (BE) of DKA. We studied IL-1beta, TNF-alpha, C5b-9, inducible nitric oxide (iNOS), ICAM-1, IL-10 and Hsp70 expression in the brains of two patients who died as the result of clinical BE during the treatment of DKA. IL-1beta was strongly expressed in the choroid plexus epithelium (CPE) and ependyma, and to a lesser extent in the hippocampus, caudate, white matter radiation of the pons, molecular layer of the cerebellum and neurons of the cortical gray matter. TNF-alpha was expressed to a lesser extent than IL-1beta, and only in the CP. C5b-9, previously shown to be deposited on neurons and oligodendrocytes, was found on CPE and ependymal cells. iNOS and ICAM-1 had increased expression in the CPE and ependyma. Hsp70 and IL-10 were also expressed in the CPE of the case with the shorter duration of treatment. Our data demonstrate the presence of a multifaceted neuroinflammatory cytotoxic insult of the CPE, which may play a role in the pathophysiology of the fatal brain edema of DKA.
Collapse
Affiliation(s)
- William H. Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Manuel F. Casanova
- Department of Psychiatry, University of Louisville, Medical School, Louisville, KY, USA
| | - Cornelia D. Cudrici
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ekaterina Zafranskaia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Roopa Venugopalan
- Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, Ontario, Canada
| | - Sukriti Nag
- Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, Ontario, Canada
| | - Michael J. Oglesbee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
27
|
Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on type 1 diabetes: Systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 2007; 148:1-16. [PMID: 17349009 PMCID: PMC1868845 DOI: 10.1111/j.1365-2249.2006.03244.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
T cell epitopes represent the molecular code words through which the adaptive immune system communicates. In the context of a T cell-mediated autoimmune disease such as type 1 diabetes, CD4 and CD8 T cell recognition of islet autoantigenic epitopes is a key step in the autoimmune cascade. Epitope recognition takes place during the generation of tolerance, during its loss as the disease process is initiated, and during epitope spreading as islet cell damage is perpetuated. Epitope recognition is also a potentially critical element in therapeutic interventions such as antigen-specific immunotherapy. T cell epitope discovery, therefore, is an important component of type 1 diabetes research, in both human and murine models. With this in mind, in this review we present a comprehensive guide to epitopes that have been identified as T cell targets in autoimmune diabetes. Targets of both CD4 and CD8 T cells are listed for human type 1 diabetes, for humanized [human leucocyte antigen (HLA)-transgenic] mouse models, and for the major spontaneous disease model, the non-obese diabetic (NOD) mouse. Importantly, for each epitope we provide an analysis of the relative stringency with which it has been identified, including whether recognition is spontaneous or induced and whether there is evidence that the epitope is generated from the native protein by natural antigen processing. This analysis provides an important resource for investigating diabetes pathogenesis, for developing antigen-specific therapies, and for developing strategies for T cell monitoring during disease development and therapeutic intervention.
Collapse
Affiliation(s)
- T P Di Lorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | |
Collapse
|
28
|
Lazar L, Ofan R, Weintrob N, Avron A, Tamir M, Elias D, Phillip M, Josefsberg Z. Heat-shock protein peptide DiaPep277 treatment in children with newly diagnosed type 1 diabetes: a randomised, double-blind phase II study. Diabetes Metab Res Rev 2007; 23:286-91. [PMID: 17124721 DOI: 10.1002/dmrr.711] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is a T-cell-mediated autoimmune disease that leads to the destruction of insulin-producing beta cells. Treatment with DiaPep277, a peptide derived from heat-shock protein 60 (hsp60), has been found to slow the deterioration of beta-cell function after clinical onset of diabetes in NOD mice and human adults. Our aim was to evaluate the efficacy and safety of DiaPep277 treatment in attenuating beta-cell destruction in children with recent-onset T1DM. METHODS A prospective, randomized, double-blind, phase II design was used. The sample included 30 children (19 males) aged 7-14 years who had been diagnosed with T1DM from 53 to 116 days previously, and had basal C-peptide concentrations above 0.1 nmol/L. The children were randomized to receive subcutaneous injections of 1 mg DiaPep277 (15 patients) or 40 mg mannitol (placebo) at entry and at 1, 6, and 12 months. The duration of follow-up was 18 months. The groups were compared for stimulated C-peptide level, exogenous insulin dose, and HbA1c concentration. RESULTS C-peptide levels similarly decreased over time in the DiaPep277- and placebo-treated patients. There was no significant difference in insulin dose or HbA1c concentration between the groups at any time point. No serious drug-related adverse effects were recorded throughout the study period. CONCLUSIONS One-year treatment with DiaPep277 at a dosage of 1 mg is safe for use and well tolerated in children with recent-onset T1DM. However, it appears to have no beneficial effect in preserving beta-cell function or improving metabolic control.
Collapse
Affiliation(s)
- L Lazar
- The institute for Endocrinology and Diabetes, National Center of Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Raz I, Avron A, Tamir M, Metzger M, Symer L, Eldor R, Cohen IR, Elias D. Treatment of new-onset type 1 diabetes with peptide DiaPep277 is safe and associated with preserved beta-cell function: extension of a randomized, double-blind, phase II trial. Diabetes Metab Res Rev 2007; 23:292-8. [PMID: 17124720 DOI: 10.1002/dmrr.712] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Treatment with DiaPep277, a peptide derived from HSP60, has been shown to preserve beta-cell function in non-obese diabetic mouse (NOD) mice and in a trial with newly diagnosed human patients with type 1 diabetes treated over a 10-month period. This article extends the clinical trial observations to a total of 20 months of treatment to determine the safety and the effects of repeated doses of DiaPep277 on endogenous insulin secretion, metabolic control, and exogenous insulin requirements. METHODS Thirty-five male patients (aged 16-58) with a basal C-peptide greater than 0.1 nmol/L were assigned to periodic treatment with DiaPep277 (1 mg) or placebo for a 12-month treatment and 18-month observation protocol, later extended to an additional year of treatment. Stimulated C-peptide, HbA1c, and an exogenous insulin dose were the clinical endpoints. RESULTS At 18 months, stimulated C-peptide concentrations had fallen in the placebo group (p = 0.0005) but were maintained in the DiaPep277 group. The need for exogenous insulin was higher in the placebo group than in the DiaPep277 group. Mean HbA1c concentrations were similar in both groups. After extension of the study, patients continuing treatment with DiaPep277 and those switched from placebo to DiaPep277 manifested a trend towards a greater preservation of beta-cell function compared to patients maintained on or switched to placebo. The safety profile of DiaPep277 was similar between the treatment and placebo groups, and no drug-related adverse events occurred. CONCLUSIONS Periodic treatment of subjects with DiaPep277 over 2 years was safe and associated preservation of endogenous insulin secretion up to 18 months was observed.
Collapse
Affiliation(s)
- I Raz
- Department of Internal Medicine, Hadassah-Hebrew University Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kiszel P, Fust G, Pessi T, Hurme M, Prohászka Z. Associations between Interleukin-6 Genetic Polymorphisms and Levels of Autoantibodies to 60-kDa Heat-Shock Proteins. Hum Hered 2006; 62:77-83. [PMID: 17047337 DOI: 10.1159/000096095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 08/10/2006] [Indexed: 11/19/2022] Open
Abstract
AIMS Previously we reported an association between levels of anti-Hsp60 autoantibodies and interleukin-6 (IL-6) -174 SNP in Finnish population. The aim of this study was to investigate the same association in an independent population and to study four recently described SNP in IL-6. MATERIALS AND METHODS 313 healthy Hungarian subjects were recruited and genotyped for IL-6 -174(G-->C), -9316(T-->C), -1363(G-->T), +1753(C-->G), +2954(G-->C). IgG antibodies to Hsp60 were measured by ELISA. LD between SNPs was computed by Haploview 3.2 software. RESULTS A strong association between IL-6 -174 polymorphism and anti-Hsp60 autoantibody levels was observed. Carriers of -174 CC genotype had significantly lower levels of anti-Hsp60 (p = 0.0052). Eight haplotypes were observed with five SNP-s and autoantibody levels in individuals carrying the most common haplotype (containing allele C of -174) were significantly lower than in all other genotype combinations (p = 0.026). CONCLUSIONS Allele C of -174 promoter polymorphism of the IL-6 gene was repeatedly shown to be associated with low anti-Hsp60 autoantibody levels. Strong linkage in the IL-6 gene was observed and the most frequent haplotype containing the -174 C allele was significantly associated with autoantibody levels. Since the -174 SNP of IL-6 is a functional polymorphism, our results indicate for a direct regulatory effect of IL-6 genotypes in the determination of autoantibody levels.
Collapse
Affiliation(s)
- Petra Kiszel
- IIIrd Department of Internal Medicine and Szentágothai János Knowledge Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
31
|
Oglesbee MJ, Herdman AV, Passmore GG, Hoffman WH. Diabetic ketoacidosis increases extracellular levels of the major inducible 70-kDa heat shock protein. Clin Biochem 2006; 38:900-4. [PMID: 16009359 DOI: 10.1016/j.clinbiochem.2005.05.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/20/2005] [Accepted: 05/26/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Diabetic ketoacidosis (DKA) represents a metabolic stress whose treatment induces a systemic proinflammatory cytokine profile and accentuates life-threatening acute complications. The present study determined whether serum levels of the major inducible 70-kDa heat shock protein (Hsp72), a modulator of cytokine expression, were influenced by DKA and its treatment. DESIGN AND METHODS Serum levels of Hsp72 and glucose were measured in five adolescents with type 1 diabetes mellitus (T1DM) prior to, during and following correction of severe DKA. Samples from nine relatively euglycemic T1DM patients served as controls. RESULTS DKA pre-treatment samples showed significant elevation in Hsp72 (40.8 +/- 6.9 ng/ml) relative to euglycemic T1DM controls (33.6 +/- 3.2 ng/ml) (P < 0.05). Treatment resulted in a decline in Hsp72 to control levels within 24 h, with Hsp72 and glucose levels being tightly correlated (r = 0.9258). CONCLUSION Extracellular Hsp72 is increased by DKA, paralleling changes in serum glucose levels.
Collapse
Affiliation(s)
- Michael J Oglesbee
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
32
|
Fijak M, Iosub R, Schneider E, Linder M, Respondek K, Klug J, Meinhardt A. Identification of immunodominant autoantigens in rat autoimmune orchitis. J Pathol 2005; 207:127-38. [PMID: 16092147 DOI: 10.1002/path.1828] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Infection and inflammation of the genital tract are amongst the leading causes of male infertility. Experimental autoimmune orchitis (EAO) in the rat serves as a model for the investigation of inflammatory testicular impairment. In this study, experiments were conducted to identify the molecules that are responsible for eliciting the autoimmune attack on the testis. EAO was induced in in-bred Wistar rats by active immunization with testis homogenates (EAO group I). Development of disease was observed using histological techniques and a new non-invasive three-dimensional (3D) imaging technology for in vivo monitoring, termed flat-panel volumetric computed tomography (fpvCT). Examination of control and EAO testes demonstrated the superior image quality of high-resolution fpvCT. A proteomics approach using 2D SDS-PAGE and immunoblotting analysis with EAO sera identified 12 spots. Seven were subsequently identified by mass spectrometry as heat shock proteins 60 (Hsp60) and 70 (Hsp70), disulphide isomerase ER-60, alpha-1-anti-trypsin, heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1), sperm outer dense fibre major protein 2 (ODF-2), and phosphoglycerate kinase 1. Hsp70, ODF-2, hnRNP H1, and ER-60 were identified by all EAO sera studied. To test the capacity of the identified proteins to elicit testicular autoimmune disease, recombinant proteins were used either individually or in combination to immunize rats (EAO group II). In all groups, the incidence of EAO was 25%. Inflammatory-type (ED1+) and resident (ED2+) macrophages, lymphocytes (CD45RA+), and dendritic cells (Ox-62+) were strongly increased in EAO group II animals, comparable to the testes of EAO I rats. Pre-immunization with a low dose of recombinant Hsp 70, hnRNP H1 or ODF-2 before induction of EAO with testis homogenate significantly delayed the onset of EAO but could not prevent disease. The identification of testicular autoantigens will allow a better understanding of disease pathogenesis and could provide a basis for the development of novel therapies for inflammation-based male infertility.
Collapse
Affiliation(s)
- Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, D-35385 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Quintana FJ, Cohen IR. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. THE JOURNAL OF IMMUNOLOGY 2005; 175:2777-82. [PMID: 16116161 DOI: 10.4049/jimmunol.175.5.2777] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heat shock proteins (HSPs) have been reported to stimulate the immune system via innate receptors. However, the role of HSPs as endogenous adjuvants has been challenged by reports claiming that pure HSPs are not innate ligands; it is only the bacterial molecules trapped by the HSPs that can signal the innate immune system. In this review, we discuss data suggesting that both views, in essence, are correct; pure HSPs are indeed innate immunostimulators, but HSPs can also function as transducers of pathogen signals. In other words, HSPs perform diverse functions in two alternative modes of inflammation: sterile inflammation, which results from endogenous stimuli and is necessary for body maintenance, and septic inflammation, which protects us from environmental pathogens. Endogenous HSPs are key players in the modulation of these two modes of inflammation, and as such, they are potential targets for new and more efficient therapies for cancer, infections, and autoimmunity.
Collapse
|
34
|
Abstract
Type 1A diabetes is a chronic autoimmune disease usually preceded by a long prodrome during which autoantibodies to islet autoantigens are present. These antibodies are directed to a variety of antigens, but the best characterized are glutamic acid decarboxylase-65, insulinoma-associated antigen-2, and insulin. We hypothesize that the natural history of type 1A diabetes can be represented by several stages, starting from genetic susceptibility and ending in complete beta-cell destruction and overt diabetes. Type 1A diabetes probably results from a balance between genetic susceptibility and environmental influences. In both humans and animal models, the major determinants of the disease are genes within the major histocompatibility complex. The next best-characterized susceptibility locus is the insulin gene, the variable nucleotide tandem repeat locus. This gene affects the expression of insulin in the thymus and thus may play a role in the modulation of tolerance to this molecule. In a subset of genetically susceptible individuals, the activation of autoimmunity may be triggered by environmental factors such as viruses and/or diet. However, no conclusive association has been established between type 1A diabetes and specific environmental triggers. In this review, we provide evidence that insulin has a fundamental role in anti-islet autoimmunity.
Collapse
Affiliation(s)
- Roberto Gianani
- The Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO, USA.
| | | |
Collapse
|
35
|
Okazaki T, Honjo T. Pathogenic roles of cardiac autoantibodies in dilated cardiomyopathy. Trends Mol Med 2005; 11:322-6. [PMID: 15935731 DOI: 10.1016/j.molmed.2005.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 04/27/2005] [Accepted: 05/19/2005] [Indexed: 01/22/2023]
Abstract
Whether autoimmunity could cause dilated cardiomyopathy (DCM) was disputed for more than half a century. Autoantibodies against various cardiac antigens have been found in the sera of patients with DCM but none of these autoantibodies has been shown to have a substantial role in the development of DCM. It was recently reported that the injection of autoantibodies against cardiac troponin I (cTnI) can induce DCM in normal mice. This observation showed that autoantibodies can cause DCM and put an end to the controversy. Clinical trials of immunoglobulin-adsorption therapy for DCM have already started in Germany and the results seem promising. Here, we discuss the recent findings and possibilities of immunoglobulin-adsorption therapy for this deadly disease.
Collapse
Affiliation(s)
- Taku Okazaki
- 21st Century COE formation, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
36
|
van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 2005; 5:318-30. [PMID: 15803151 DOI: 10.1038/nri1593] [Citation(s) in RCA: 393] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immune responses to certain heat-shock proteins (HSPs) develop in almost all inflammatory diseases; however, the significance of such responses is only now becoming clear. In experimental disease models, HSPs can prevent or arrest inflammatory damage, and in initial clinical trials in patients with chronic inflammatory disease, HSP-derived peptides have been shown to promote the production of anti-inflammatory cytokines, indicating that HSPs have immunoregulatory potential. In this Review, we discuss the unique characteristics of HSPs that endow them with these immunoregulatory qualities.
Collapse
Affiliation(s)
- Willem van Eden
- Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.
| | | | | |
Collapse
|
37
|
Canelle L, Bousquet J, Pionneau C, Deneux L, Imam-Sghiouar N, Caron M, Joubert-Caron R. An efficient proteomics-based approach for the screening of autoantibodies. J Immunol Methods 2005; 299:77-89. [PMID: 15914192 DOI: 10.1016/j.jim.2005.01.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 01/04/2005] [Accepted: 01/19/2005] [Indexed: 11/30/2022]
Abstract
This study presents an improved method for the complete transfer of proteins separated by two-dimensional gel electrophoresis to a membrane, specifically designed for the screening and identification of antigens recognized by autoantibodies in patients with breast cancer (BCP) and healthy volunteers. This paper reports the evaluation of this technique using proteins from MCF7 as a source of antigens following 2-DE separation. The appropriate quantity of protein to be loaded on gels (150 microg) has been determined, the aim being a complete and reproducible recovery of all separated proteins onto the polyvinylidene fluoride membrane (2D-blot) after a semi-dry electrotransfer. Several different transfer methods were tested in parallel, resulting in the selection and optimisation of one using a discontinuous buffer system, based on the isotachophoresis theory. To facilitate the comparative analysis of the different sets of 2D-blots probed with individual sera from BCP and healthy volunteers, the 2D-blots were stained with colloidal gold following the immunodetection step. The gels and 2D-blots were scanned and analysed by imaging software. The matching permitted exact localisation of particular relevant protein spots hybridised by antibodies on the 2D-blots. These spots were subsequently located on preparative gels for identification by mass spectrometry. A set of 40 2D-blots was probed with 20 sera from patients with breast cancer and 20 sera from healthy volunteers. In the protein profiles submitted to immunodetection, 15 proteins were repeatedly immunodetected by both BCP and sera from healthy people. Those proteins were identified by mass spectrometry. Conversely, some protein isoforms were preferentially immunodetected by BCP sera and may reflect the presence of this cancer. The improved isotachophoretic method described in this study is suitable for comparing the overall profile of autoimmunity between different populations and for subsequent identification of relevant antigens.
Collapse
Affiliation(s)
- Ludovic Canelle
- Laboratoire de Biochimie des Protéines et Protéomique (LBPP), EA 3408 Immuno-Pathologie et Immuno-Intervention, Université Paris 13, UFR SMBH Léonard de Vinci, 93017-Bobigny, Cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Quintana FJ, Hagedorn PH, Elizur G, Merbl Y, Domany E, Cohen IR. Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc Natl Acad Sci U S A 2004; 101 Suppl 2:14615-21. [PMID: 15308778 PMCID: PMC521990 DOI: 10.1073/pnas.0404848101] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
One's present repertoire of antibodies encodes the history of one's past immunological experience. Can the present autoantibody repertoire be consulted to predict resistance or susceptibility to the future development of an autoimmune disease? Here, we developed an antigen microarray chip and used bioinformatic analysis to study a model of type 1 diabetes developing in nonobese diabetic male mice in which the disease was accelerated and synchronized by exposing the mice to cyclophosphamide at 4 weeks of age. We obtained sera from 19 individual mice, treated the mice to induce cyclophosphamide-accelerated diabetes (CAD), and found, as expected, that 9 mice became severely diabetic, whereas 10 mice permanently resisted diabetes. We again obtained serum from each mouse after CAD induction. We then analyzed, by using rank-order and superparamagnetic clustering, the patterns of antibodies in individual mice to 266 different antigens spotted on the chip. A selected panel of 27 different antigens (10% of the array) revealed a pattern of IgG antibody reactivity in the pre-CAD sera that discriminated between the mice resistant or susceptible to CAD with 100% sensitivity and 82% specificity (P = 0.017). Surprisingly, the set of IgG antibodies that was informative before CAD induction did not separate the resistant and susceptible groups after the onset of CAD; new antigens became critical for post-CAD repertoire discrimination. Thus, at least for a model disease, present antibody repertoires can predict future disease, predictive and diagnostic repertoires can differ, and decisive information about immune system behavior can be mined by bioinformatic technology. Repertoires matter.
Collapse
|
39
|
Lieberman SM, DiLorenzo TP. A comprehensive guide to antibody and T-cell responses in type 1 diabetes. ACTA ACUST UNITED AC 2004; 62:359-77. [PMID: 14617043 DOI: 10.1034/j.1399-0039.2003.00152.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease in which the insulin-producing beta cells in the pancreatic islets are selectively eliminated. T cells specific for beta-cell antigens are the mediators of this precise cellular destruction. However, antibodies to beta-cell proteins are also generated and may be used for predicting disease in at-risk populations. Over the past two decades, numerous beta-cell proteins and lipids have been implicated as autoantigens in patients or in non-obese diabetic (NOD) mice, a well-studied animal model of T1D. Here, we present a review of these antigens, accompanied by their T-cell epitopes, where known, and a discussion of our current understanding of why particular self-proteins become disease-inciting antigens. Although two dozen beta-cell antigens have been identified to date, few of these have been confirmed to be recognized by pathogenic T cells early in the disease process. Further identification and characterization of initiating beta-cell antigens targeted by pathogenic T cells should be a priority for future studies.
Collapse
Affiliation(s)
- S M Lieberman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|