1
|
van Wyk M, Kleinlogel S. A visual opsin from jellyfish enables precise temporal control of G protein signalling. Nat Commun 2023; 14:2450. [PMID: 37117224 PMCID: PMC10147646 DOI: 10.1038/s41467-023-38231-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Phototransduction is mediated by distinct types of G protein cascades in different animal taxa: bilateral invertebrates typically utilise the Gαq pathway whereas vertebrates typically utilise the Gαt(i/o) pathway. By contrast, photoreceptors in jellyfish (Cnidaria) utilise the Gαs intracellular pathway, similar to olfactory transduction in mammals1. How this habitually slow pathway has adapted to support dynamic vision in jellyfish remains unknown. Here we study a light-sensing protein (rhodopsin) from the box jellyfish Carybdea rastonii and uncover a mechanism that dramatically speeds up phototransduction: an uninterrupted G protein-coupled receptor - G protein complex. Unlike known G protein-coupled receptors (GPCRs), this rhodopsin constitutively binds a single downstream Gαs partner to enable G-protein activation and inactivation within tens of milliseconds. We use this GPCR in a viral gene therapy to restore light responses in blind mice.
Collapse
Affiliation(s)
- Michiel van Wyk
- Department of Biomedical Research, University of Bern, Bern, Switzerland.
- Institute of Physiology, University of Bern, Bern, Switzerland.
| | - Sonja Kleinlogel
- Department of Biomedical Research, University of Bern, Bern, Switzerland.
- Institute of Physiology, University of Bern, Bern, Switzerland.
- Roche Pharma and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
2
|
Biological characterization of ligands targeting the human CC chemokine receptor 8 (CCR8) reveals the biased signaling properties of small molecule agonists. Biochem Pharmacol 2021; 188:114565. [PMID: 33872569 DOI: 10.1016/j.bcp.2021.114565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
The human CC chemokine receptor 8 (CCR8) is a promising drug target for cancer immunotherapy and autoimmune disease. Besides human and viral chemokines, previous studies revealed diverse classes of CCR8-targeting small molecules. We characterized a selection of these CCR8 ligands (hCCL1, vCCL1, ZK756326, AZ6; CCR8 agonists and a naphthalene-sulfonamide-based CCR8 antagonist), in in vitro cell-based assays (hCCL1AF647 binding, calcium mobilization, cellular impedance, cell migration, β-arrestin 1/2 recruitment), and used pharmacological tools to determine G protein-dependent and -independent signaling pathways elicited by these ligands. Our data reveal differences in CCR8-mediated signaling induced by chemokines versus small molecules, which was most pronounced in cell migration studies. Human CCL1 most efficiently induced cell migration whereby Gβγ signaling was indispensable. In contrast, Gβγ signaling did not contribute to cell migration induced by other CCR8 ligands (vCCL1, ZK756326, AZ6). Although all tested CCR8 agonists were full agonists for calcium mobilization, a significant contribution for Gβγ signaling herein was only apparent for human and viral CCL1. Despite both Gαi- and Gαq-signaling regulate intracellular Ca2+-release, cellular impedance experiments showed that CCR8 agonists predominantly induce Gαi-dependent signaling. Finally, small molecule agonists displayed higher efficacy in β-arrestin 1 recruitment, which occurred independently of Gαi signaling. Also in this latter assay, only hCCL1-induced activity was dependent on Gβγ-signaling. Our study provides insight into CCR8 signaling and function and demonstrates differential CCR8 activation by different classes of ligands. This reflects the ability of CCR8 small molecules to evoke different subsets of the receptor's signaling repertoire, which categorizes them as biased agonists.
Collapse
|
3
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Rago V, De Rose D, Santoro M, Panza S, Malivindi R, Andò S, D'Agata R, Aquila S. Human Sperm Express the Receptor for Glucagon-like Peptide-1 (GLP-1), Which Affects Sperm Function and Metabolism. Endocrinology 2020; 161:5802751. [PMID: 32157297 DOI: 10.1210/endocr/bqaa031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) produces pleiotropic effects binding to the GLP-1 receptor (GLP1-R), potentiating insulin secretion in the pancreas. GLP1-R is expressed in peripheral tissues and evidence for its role in reproduction has come from knockout mice, although the relationship between GLP-1 and male fertility needs to be clarified. Given that human sperm is an insulin-sensitive and insulin-secreting cell, we hypothesized that the GLP-1/GLP1-R axis may be expressed and functional in these cells. RESULTS AND DISCUSSION We revealed the presence of GLP1-R by Western blotting and immunofluorescence analyses. Because Exendin-4 (Ex-4) displays similar functional properties to native GLP-1, we used this agonist to perform a dose-response study on progressive motility and cholesterol efflux, showing that 300 pM Ex-4 was the most effective treatment. These actions are mediated by GLP1-R and independent from sperm-secreted insulin. The exposure to Ex-4 fueled phosphatidylinositol-3-kinase (PI3K)/AKT signaling and was reversed by H89, indicating a protein kinase A (PKA)-dependence of GLP-1/GLP1-R signaling. It emerged that in sperm, insulin secretion regulated by Ex-4 did not occur in a strictly glucose-dependent manner. A stimulatory action of Ex-4/GLP1-R on lactate dehydrogenase and glucose-6-phosphate dehydrogenase (G6PDH) activities was observed. Ex-4/GLP1-R decreased triglycerides content concomitantly to enhanced lipase and acyl-coenzyme A (acyl-CoA) dehydrogenase activities, addressing a lipolytic effect. CONCLUSION Collectively, we discovered that human sperm is a new GLP1 incretin target, broadening our knowledge about the effects of the GLP1-R agonist in the male reproductive field. Further findings in humans should be conducted in the future to confirm it and to improve the translational aspect of this study.
Collapse
Affiliation(s)
- Vittoria Rago
- Department of Pharmacy and Sciences of Health and Nutrition, University of Calabria Cosenza, Italy
| | - Daniela De Rose
- Department of Pharmacy and Sciences of Health and Nutrition, University of Calabria Cosenza, Italy
- Centro Sanitario, University of Calabria Cosenza, Italy
| | - Marta Santoro
- Department of Pharmacy and Sciences of Health and Nutrition, University of Calabria Cosenza, Italy
- Centro Sanitario, University of Calabria Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy and Sciences of Health and Nutrition, University of Calabria Cosenza, Italy
- Centro Sanitario, University of Calabria Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy and Sciences of Health and Nutrition, University of Calabria Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy and Sciences of Health and Nutrition, University of Calabria Cosenza, Italy
- Centro Sanitario, University of Calabria Cosenza, Italy
| | - Rosario D'Agata
- Department of Experimental and Clinical Medicine, University of Catania, Catania, Italy
| | - Saveria Aquila
- Department of Pharmacy and Sciences of Health and Nutrition, University of Calabria Cosenza, Italy
- Centro Sanitario, University of Calabria Cosenza, Italy
| |
Collapse
|
5
|
Kankanamge D, Tennakoon M, Weerasinghe A, Cedeno-Rosario L, Chadee DN, Karunarathne A. G protein αq exerts expression level-dependent distinct signaling paradigms. Cell Signal 2019; 58:34-43. [PMID: 30849518 DOI: 10.1016/j.cellsig.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
G protein αq-coupled receptors (Gq-GPCRs) primarily signal through GαqGTP mediated phospholipase Cβ (PLCβ) stimulation and the subsequent hydrolysis of phosphatidylinositol 4, 5 bisphosphate (PIP2). Though Gq-heterotrimer activation results in both GαqGTP and Gβγ, unlike Gi/o-receptors, it is unclear if Gq-coupled receptors employ Gβγ as a major signal transducer. Compared to Gi/o- and Gs-coupled receptors, we observed that most cell types exhibit a limited free Gβγ generation upon Gq-pathway and Gαq/11 heterotrimer activation. We show that cells transfected with Gαq or endogenously expressing more than average-levels of Gαq/11 compared to Gαs and Gαi exhibit a distinct signaling regime primarily characterized by recovery-resistant PIP2 hydrolysis. Interestingly, the elevated Gq-expression is also associated with enhanced free Gβγ generation and signaling. Furthermore, the gene GNAQ, which encodes for Gαq, has recently been identified as a cancer driver gene. We also show that GNAQ is overexpressed in tumor samples of patients with Kidney Chromophobe (KICH) and Kidney renal papillary (KIRP) cell carcinomas in a matched tumor-normal sample analysis, which demonstrates the clinical significance of Gαq expression. Overall, our data indicates that cells usually express low Gαq levels, likely safeguarding cells from excessive calcium as wells as from Gβγ signaling.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Amila Weerasinghe
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Luis Cedeno-Rosario
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Deborah N Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
6
|
Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect. Proc Natl Acad Sci U S A 2018; 115:E2653-E2662. [PMID: 29487210 DOI: 10.1073/pnas.1716224115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is currently an unmet need for versatile techniques to monitor the assembly and dynamics of ternary complexes in live cells. Here we describe bioluminescence resonance energy transfer with fluorescence enhancement by combined transfer (BRETFect), a high-throughput technique that enables robust spectrometric detection of ternary protein complexes based on increased energy transfer from a luciferase to a fluorescent acceptor in the presence of a fluorescent intermediate. Its unique donor-intermediate-acceptor relay system is designed so that the acceptor can receive energy either directly from the donor or indirectly via the intermediate in a combined transfer, taking advantage of the entire luciferase emission spectrum. BRETFect was used to study the ligand-dependent cofactor interaction properties of the estrogen receptors ERα and ERβ, which form homo- or heterodimers whose distinctive regulatory properties are difficult to dissect using traditional methods. BRETFect uncovered the relative capacities of hetero- vs. homodimers to recruit receptor-specific cofactors and regulatory proteins, and to interact with common cofactors in the presence of receptor-specific ligands. BRETFect was also used to follow the assembly of ternary complexes between the V2R vasopressin receptor and two different intracellular effectors, illustrating its use for dissection of ternary protein-protein interactions engaged by G protein-coupled receptors. Our results indicate that BRETFect represents a powerful and versatile technique to monitor the dynamics of ternary interactions within multimeric complexes in live cells.
Collapse
|
7
|
Abstract
In the present study, we show that inverse agonists at histamine H2 receptors display positive efficacy regarding receptor desensitization/internalization and ERK1/2 phosphorylation. These findings demonstrate that histamine receptor ligands show functional selectivity respect to distinct receptor behaviours.
Collapse
|
8
|
Jayachandran R, Liu X, BoseDasgupta S, Müller P, Zhang CL, Moshous D, Studer V, Schneider J, Genoud C, Fossoud C, Gambino F, Khelfaoui M, Müller C, Bartholdi D, Rossez H, Stiess M, Houbaert X, Jaussi R, Frey D, Kammerer RA, Deupi X, de Villartay JP, Lüthi A, Humeau Y, Pieters J. Coronin 1 regulates cognition and behavior through modulation of cAMP/protein kinase A signaling. PLoS Biol 2014; 12:e1001820. [PMID: 24667537 PMCID: PMC3965382 DOI: 10.1371/journal.pbio.1001820] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/12/2014] [Indexed: 01/14/2023] Open
Abstract
Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic-AMP-protein kinase A-dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1-deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes.
Collapse
Affiliation(s)
| | - Xiaolong Liu
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Chun-Lei Zhang
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | | | - Vera Studer
- Biozentrum, University of Basel, Basel, Switzerland
| | - Jacques Schneider
- Department of Radiology, University Children Hospital, UKBB, Basel, Switzerland
| | - Christel Genoud
- Center for Cellular Imaging and NanoAnalytics, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | - Malik Khelfaoui
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | | | | | | | | | - Xander Houbaert
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Rolf Jaussi
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniel Frey
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| | - Richard A. Kammerer
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| | - Xavier Deupi
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
- Condensed Matter Theory, Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Rebois RV, Maki K, Meeks JA, Fishman PH, Hébert TE, Northup JK. D2-like dopamine and β-adrenergic receptors form a signaling complex that integrates Gs- and Gi-mediated regulation of adenylyl cyclase. Cell Signal 2012; 24:2051-60. [PMID: 22759790 PMCID: PMC3432756 DOI: 10.1016/j.cellsig.2012.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/13/2012] [Accepted: 06/22/2012] [Indexed: 12/20/2022]
Abstract
β-Adrenergic receptors (βAR) and D(2)-like dopamine receptors (which include D(2)-, D(3)- and D(4)-dopamine receptors) activate G(s) and G(i), the stimulatory and inhibitory heterotrimeric G proteins, respectively, which in turn regulate the activity of adenylyl cyclase (AC). β(2)-Adrenergic receptors (β(2)AR) and D(4)-dopamine receptors (D(4)DR) co-immunoprecipitated when co-expressed in HEK 293 cells, suggesting the existence of a signaling complex containing both receptors. In order to determine if these receptors are closely associated with each other, and with other components involved in G protein-mediated signal transduction, β(2)AR, D(4)DR, G protein subunits (Gα(i1) and the Gβ(1)γ(2) heterodimer) and AC were tagged so that bioluminescence resonance energy transfer (BRET) could be used to monitor their interactions. All of the tagged proteins retained biological function. For the first time, FlAsH-labeled proteins were used in BRET experiments as fluorescent acceptors for the energy transferred from Renilla luciferase-tagged donor proteins. Our experiments revealed that β(2)AR, D(4)DR, G proteins and AC were closely associated in a functional signaling complex in cellulo. Furthermore, BRET experiments indicated that although activation of G(i) caused a conformational change within the heterotrimeric protein, it did not cause the Gβγ heterodimer to dissociate from the Gα(i1) subunit. Evidence for the presence of a signaling complex in vivo was obtained by purifying βAR from detergent extracts of mouse brain with alprenolol-Sepharose and showing that the precipitate also contained both D(2)-like dopamine receptors and AC.
Collapse
Affiliation(s)
- R Victor Rebois
- Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, United States.
| | | | | | | | | | | |
Collapse
|
10
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
11
|
Abstract
Assembly of the G-αβγ heterotrimer is required for receptor signaling. Although much has been learned about the assembly process itself, the identities of the G-αβγ combinations that actually exist in physiological setting are largely unknown. Moreover, there is uncertainty regarding whether the individual subunits associate by a random process, or combine by a regulated process to form quasi-stable G-αβγ complexes. In this chapter, we will focus on emerging genetic -evidence that supports the latter model. Specifically, we will discuss how use of gene targeted mice has revealed preferential assembly of the striatal-specific Gα(olf)β(2)γ(7) complex occurs by a sequential process that is directed by the γ(7) subunit. The existence of specific G-αβγ complexes responsible for transducing the signals from different receptors may have profound implications by providing a possible explanation for biased agonism.
Collapse
Affiliation(s)
- Janet D Robishaw
- Weis Center for Research, Geisinger Clinic, 100 N. Academy Ave, Danville, PA, USA,
| |
Collapse
|
12
|
Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Pétrin D, Robitaille M, Hébert TE. Real-time BRET assays to measure G protein/effector interactions. Methods Mol Biol 2011; 756:245-261. [PMID: 21870230 DOI: 10.1007/978-1-61779-160-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Advances in imaging assays based on resonance energy transfer (RET) have made it possible to study protein/protein interactions in living cells under physiological conditions. It is now possible to measure the kinetics of changes in these interactions in response to ligand stimulation in real time. Here we describe protocols for these assays focusing on the basal and ligand-stimulated interaction between tagged Gβγ subunits and adenylyl cyclase II. We describe relevant positive and negative controls and various experimental considerations for optimization of these experiments.
Collapse
Affiliation(s)
- Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | | | |
Collapse
|
14
|
Heterogeneous Prenyl Processing of the Heterotrimeric G protein Gamma Subunits. PROTEIN PRENYLATION PART A 2011. [DOI: 10.1016/b978-0-12-381339-8.00006-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Khafizov K, Lattanzi G, Carloni P. G protein inactive and active forms investigated by simulation methods. Proteins 2009; 75:919-30. [PMID: 19089952 DOI: 10.1002/prot.22303] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molecular dynamics and computational alanine scanning techniques have been used to investigate G proteins in their inactive state (the Galpha(i1)beta(1)gamma(2) heterotrimer) as well as in their empty and monomeric active states (Galpha(i1) subunit). We find that: (i) the residue Q204 of Galpha(i1) plays a key role for binding Gbeta(1)gamma(2) and is classified among the most relevant in the interaction with a key cellular partner, the so-called regulator of G protein signaling protein. The mutation of this residue to L, which is observed in a variety of diseases, provides still fair stability to the inactive state because of the formation of van der Waals interactions. (ii) The empty state turns out to adopt some structural features of the active one, including a previously unrecognized rearrangement of a key residue (K46). (iii) The so-called Switch IV region increases its mobility on passing from the empty to the active state, and, even more, to the inactive state. Such change in mobility could be important for its several structural and functional roles. (iv) A large scale motion of the helical domain in the inactive state might be important for GDP release upon activation by GPCR, consistently with experimental data.
Collapse
Affiliation(s)
- Kamil Khafizov
- International School for Advanced Studies and INFM-DEMOCRITOS Modeling Center for Research in Atomistic Simulation, via Beirut 4, I-34014 Trieste, Italy
| | | | | |
Collapse
|
16
|
Khafizov K. GoLoco motif proteins binding to Galpha(i1): insights from molecular simulations. J Mol Model 2009; 15:1491-9. [PMID: 19437048 PMCID: PMC2847169 DOI: 10.1007/s00894-009-0516-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/01/2009] [Indexed: 11/30/2022]
Abstract
Molecular dynamics simulations, computational alanine scanning and sequence analysis were used to investigate the structural properties of the Gαi1/GoLoco peptide complex. Using these methodologies, binding of the GoLoco motif peptide to the Gαi1 subunit was found to restrict the relative movement of the helical and catalytic domains in the Gαi1 subunit, which is in agreement with a proposed mechanism of GDP dissociation inhibition by GoLoco motif proteins. In addition, the results provide further insights into the role of the “Switch IV” region located within the helical domain of Gα, the conformation of which might be important for interactions with various Gα partners.
Collapse
Affiliation(s)
- Kamil Khafizov
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Dupré DJ, Robitaille M, Rebois RV, Hébert TE. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol 2009; 49:31-56. [PMID: 18834311 DOI: 10.1146/annurev-pharmtox-061008-103038] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of Gbetagamma subunits in cellular signaling has become well established in the past 20 years. Not only do they regulate effectors once thought to be the sole targets of Galpha subunits, but it has become clear that they also have a unique set of binding partners and regulate signaling pathways that are not always localized to the plasma membrane. However, this may be only the beginning of the story. Gbetagamma subunits interact with G protein-coupled receptors, Galpha subunits, and several different effector molecules during assembly and trafficking of receptor-based signaling complexes and not simply in response to ligand stimulation at sites of receptor cellular activity. Gbetagamma assembly itself seems to be tightly regulated via the action of molecular chaperones and in turn may serve a similar role in the assembly of specific signaling complexes. We propose that specific Gbetagamma subunits have a broader role in controlling the architecture, assembly, and activity of cellular signaling pathways.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
18
|
Rubin JB. Chemokine signaling in cancer: one hump or two? Semin Cancer Biol 2009; 19:116-22. [PMID: 18992347 PMCID: PMC2694237 DOI: 10.1016/j.semcancer.2008.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Chemokines and their receptors play essential roles in the development and function of multiple tissues. Chemokine expression, particularly CXCL12 and its receptor CXCR4, has prognostic significance in several cancers apparently due to chemokine mediated growth and metastatic spread. These observations provide the rationale for pursuing CXCR4 inhibition for cancer chemotherapy. However, the multiple homeostatic functions of CXCR4 may preclude global inhibition as a therapeutic strategy. Here I review CXCR4 signaling and how it might differ in normal and transformed cells with special emphasis on the role that altered CXCR4 counter-regulation might play in tumor biology. I propose that CXCR4 mediates unique signals in cancer cells as a consequence of abnormal counter-regulation and that this results in novel biological responses. The importance of testing this hypothesis lies in the possibility that targeting abnormal CXCR4 signaling might provide an anti-tumor effect without disturbing normal CXCR4 functions.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics/Division of Pediatric Hematology and Oncology, Campus Box 8208, 660 South Euclid Avenue, Washington University School of Medicine, St Louis, MO 63110, USA. rubin
| |
Collapse
|
19
|
Hollins B, Kuravi S, Digby GJ, Lambert NA. The c-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. Cell Signal 2009; 21:1015-21. [PMID: 19258039 DOI: 10.1016/j.cellsig.2009.02.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Signals mediated by heterotrimeric G proteins often develop over the course of tens of milliseconds, and could require either conformational rearrangement or complete physical dissociation of Galphabetagamma heterotrimers. Although it is known that some active heterotrimers are dissociated (into Galpha and Gbetagamma) at steady-state, it is not clear that dissociation occurs quickly enough to participate in rapid signaling. Here we show that fusion proteins containing the c-terminus of GPCR kinase 3 (GRK3ct) and either the fluorescent protein cerulean or Renilla luciferase bind to venus-labeled Gbetagamma dimers (Gbetagamma-V), resulting in Förster or bioluminescence resonance energy transfer (FRET or BRET). GRK3ct fusion proteins are freely-diffusible, and do not form preassembled complexes with G proteins. GRK3ct fusion proteins bind to free Gbetagamma-V dimers but not to rearranged heterotrimers, and thus can report G protein dissociation with high temporal resolution. We find that heterotrimer dissociation can occur in living cells in less than 100 ms. Under the conditions of these experiments diffusion and collision of masGRK3ct fusion proteins and Gbetagamma-V were not rate-limiting. These results indicate that G protein heterotrimers can dissociate quickly enough to participate in rapid signaling.
Collapse
Affiliation(s)
- Bettye Hollins
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Heterotrimeric G proteins dissociate into their component Galpha and Gbetagamma subunits when these proteins are activated in solution. Until recently, it has not been known if subunit dissociation also occurs in cells. The development of optical methods to study G protein activation in live cells has made it possible to demonstrate heterotrimer dissociation at the plasma membrane. However, subunit dissociation is far from complete, and many active [guanosine triphosphate (GTP)-bound] heterotrimers are intact in a steady state. This unexpectedly reluctant dissociation calls for inclusion of a GTP-bound heterotrimeric state in models of the G protein cycle and places renewed emphasis on the relation between subunit dissociation and effector activation.
Collapse
Affiliation(s)
- Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2300, USA.
| |
Collapse
|
21
|
Trusov Y, Zhang W, Assmann SM, Botella JR. Ggamma1 + Ggamma2 not equal to Gbeta: heterotrimeric G protein Ggamma-deficient mutants do not recapitulate all phenotypes of Gbeta-deficient mutants. PLANT PHYSIOLOGY 2008; 147:636-49. [PMID: 18441222 PMCID: PMC2409028 DOI: 10.1104/pp.108.117655] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/22/2008] [Indexed: 05/20/2023]
Abstract
Heterotrimeric G proteins are signaling molecules ubiquitous among all eukaryotes. The Arabidopsis (Arabidopsis thaliana) genome contains one Galpha (GPA1), one Gbeta (AGB1), and two Ggamma subunit (AGG1 and AGG2) genes. The Gbeta requirement of a functional Ggamma subunit for active signaling predicts that a mutant lacking both AGG1 and AGG2 proteins should phenotypically resemble mutants lacking AGB1 in all respects. We previously reported that Gbeta- and Ggamma-deficient mutants coincide during plant pathogen interaction, lateral root development, gravitropic response, and some aspects of seed germination. Here, we report a number of phenotypic discrepancies between Gbeta- and Ggamma-deficient mutants, including the double mutant lacking both Ggamma subunits. While Gbeta-deficient mutants are hypersensitive to abscisic acid inhibition of seed germination and are hyposensitive to abscisic acid inhibition of stomatal opening and guard cell inward K+ currents, none of the available Ggamma-deficient mutants shows any deviation from the wild type in these responses, nor do they show the hypocotyl elongation and hook development defects that are characteristic of Gbeta-deficient mutants. In addition, striking discrepancies were observed in the aerial organs of Gbeta- versus Ggamma-deficient mutants. In fact, none of the distinctive traits observed in Gbeta-deficient mutants (such as reduced size of cotyledons, leaves, flowers, and siliques) is present in any of the Ggamma single and double mutants. Despite the considerable amount of phenotypic overlap between Gbeta- and Ggamma-deficient mutants, confirming the tight relationship between Gbeta and Ggamma subunits in plants, considering the significant differences reported here, we hypothesize the existence of new and as yet unknown elements in the heterotrimeric G protein signaling complex.
Collapse
Affiliation(s)
- Yuri Trusov
- Plant Genetic Engineering Laboratory, Department of Botany, School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
22
|
Abstract
Signalling by heterotrimeric G proteins is often isoform-specific, meaning certain effectors are regulated exclusively by one family of heterotrimers. For example, in excitable cells inwardly rectifying potassium (GIRK) channels are activated by G betagamma dimers derived specifically from G(i/o) heterotrimers. Since all active heterotrimers are thought to dissociate and release free G betagamma dimers, it is unclear why these channels respond primarily to dimers released by G(i/o) heterotrimers. We reconstituted GIRK channel activation in cells where we could quantify heterotrimer expression at the plasma membrane, GIRK channel activation, and heterotrimer dissociation. We find that G(oA) heterotrimers are more effective activators of GIRK channels than G(s) heterotrimers when comparable amounts of each are available. We also find that active G(oA) heterotrimers dissociate more readily than active G(s) heterotrimers. Differential dissociation may thus provide a simple explanation for G alpha-specific activation of GIRK channels and other G betagamma-sensitive effectors.
Collapse
Affiliation(s)
- Gregory J Digby
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30809, USA
| | | | | |
Collapse
|
23
|
Strickfaden SC, Pryciak PM. Distinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein. Mol Biol Cell 2007; 19:181-97. [PMID: 17978098 DOI: 10.1091/mbc.e07-04-0385] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Galphabetagamma) into Galpha-guanosine triphosphate (GTP) and Gbetagamma. The Gbetagamma dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gbetagamma in isolation from its signaling role. MAP kinase signaling alone could induce cell asymmetry but not directional growth. Surprisingly, active Gbetagamma, either alone or with Galpha-GTP, could not organize a persistent polarization axis. Instead, following pheromone gradients (chemotropism) or directional growth without pheromone gradients (de novo polarization) required an intact receptor-Galphabetagamma module and GTP hydrolysis by Galpha. Our results indicate that chemoattractant-induced cell polarization requires continuous receptor-Galphabetagamma communication but not modulation of MAP kinase signaling. To explore regulation of Gbetagamma by Galpha, we mutated Gbeta residues in two structurally distinct Galpha-Gbeta binding interfaces. Polarity control was disrupted only by mutations in the N-terminal interface, and not the Switch interface. Incorporation of these mutations into a Gbeta-Galpha fusion protein, which enforces subunit proximity, revealed that Switch interface dissociation regulates signaling, whereas the N-terminal interface may govern receptor-Galphabetagamma coupling. These findings raise the possibility that the Galphabetagamma heterotrimer can function in a partially dissociated state, tethered by the N-terminal interface.
Collapse
Affiliation(s)
- Shelly C Strickfaden
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
24
|
Wu Y, Buranda T, Simons PC, Lopez GP, McIntire WE, Garrison JC, Prossnitz ER, Sklar LA. Rapid-mix flow cytometry measurements of subsecond regulation of G protein-coupled receptor ternary complex dynamics by guanine nucleotides. Anal Biochem 2007; 371:10-20. [PMID: 17904091 PMCID: PMC2254650 DOI: 10.1016/j.ab.2007.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 07/13/2007] [Accepted: 08/06/2007] [Indexed: 01/28/2023]
Abstract
We have used rapid-mix flow cytometry to analyze the early subsecond dynamics of the disassembly of ternary complexes of G protein-coupled receptors (GPCRs) immobilized on beads to examine individual steps associated with guanine nucleotide activation. Our earlier studies suggested that the slow dissociation of Galpha and Gbetagamma subunits was unlikely to be an essential component of cell activation. However, these studies did not have adequate time resolution to define precisely the disassembly kinetics. Ternary complexes were assembled using three formyl peptide receptor constructs (wild type, formyl peptide receptor-Galpha(i2) fusion, and formyl peptide receptor-green fluorescent protein fusion) and two isotypes of the alpha subunit (alpha(i2) and alpha(i3)) and betagamma dimer (beta(1)gamma(2) and beta(4)gamma(2)). At saturating nucleotide levels, the disassembly of a significant fraction of ternary complexes occurred on a subsecond time frame for alpha(i2) complexes and tau(1/2)< or =4s for alpha(i3) complexes, time scales that are compatible with cell activation. beta(1)gamma(2) isotype complexes were generally more stable than beta(4)gamma(2)-associated complexes. The comparison of the three constructs, however, proved that the fast step was associated with the separation of receptor and G protein and that the dissociation of the ligand or of the alpha and betagamma subunits was slower. These results are compatible with a cell activation model involving G protein conformational changes rather than disassembly of Galphabetagamma heterotrimer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Larry A. Sklar
- To whom correspondence should be addressed: Larry A Sklar: Department of Pathology and Cancer Research Facility, University of New Mexico Health Sciences Center, MSC 116020 Albuquerque, New Mexico 87131. . Tel: (505) 272-6892; Fax: (505) 272-6995
| |
Collapse
|
25
|
Buranda T, Waller A, Wu Y, Simons PC, Biggs S, Prossnitz ER, Sklar LA. Some mechanistic insights into GPCR activation from detergent-solubilized ternary complexes on beads. ADVANCES IN PROTEIN CHEMISTRY 2007; 74:95-135. [PMID: 17854656 DOI: 10.1016/s0065-3233(07)74003-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The binding of full and partial agonist ligands (L) to G protein-coupled receptors (GPCRs) initiates the formation of ternary complexes with G proteins [ligand-receptor-G protein (LRG) complexes]. Cyclic ternary complex models are required to account for the thermodynamically plausible complexes. It has recently become possible to assemble solubilized formyl peptide receptor (FPR) and beta(2)-adrenergic receptor (beta(2)AR) ternary complexes for flow cytometric bead-based assays. In these systems, soluble ternary complex formation of the receptors with G proteins allows direct quantitative measurements which can be analyzed in terms of three-dimensional concentrations (molarity). In contrast to the difficulty of analyzing comparable measurements in two-dimensional membrane systems, the output of these flow cytometric experiments can be analyzed via ternary complex simulations in which all of the parameters can be estimated. An outcome from such analysis yielded lower affinity for soluble ternary complex assembly by partial agonists compared with full agonists for the beta(2)AR. In the four-sided ternary complex model, this behavior is consistent with distinct ligand-induced conformational states for full and partial agonists. Rapid mix flow cytometry is used to analyze the subsecond dynamics of guanine nucleotide-mediated ternary complex disassembly. The modular breakup of ternary complex components is highlighted by the finding that the fastest step involves the departure of the ligand-activated GPCR from the intact G protein heterotrimer. The data also show that, under these experimental conditions, G protein subunit dissociation does not occur within the time frame relevant to signaling. The data and concepts are discussed in the context of a review of current literature on signaling mechanism based on structural and spectroscopic (FRET) studies of ternary complex components.
Collapse
Affiliation(s)
- Tione Buranda
- Department of Pathology and Cancer Center, University of New Mexico Health Science Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Fowler CE, Aryal P, Suen KF, Slesinger PA. Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol 2006; 580:51-65. [PMID: 17185339 PMCID: PMC2075413 DOI: 10.1113/jphysiol.2006.123216] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many neurotransmitters and hormones signal by stimulating G protein-coupled neurotransmitter receptors (GPCRs), which activate G proteins and their downstream effectors. Whether these signalling proteins diffuse freely within the plasma membrane is not well understood. Recent studies have suggested that direct protein-protein interactions exist between GPCRs, G proteins and G protein-gated inwardly rectifying potassium (GIRK or Kir3) channels. Here, we used fluorescence resonance energy transfer (FRET) combined with total internal reflection fluorescence microscopy to investigate whether proteins within this signalling pathway move within 100 A of each other in the plasma membrane of living cells. GABA(B) R1 and R2 receptors, Kir3 channels, Galphao subunits and regulators of G protein signalling (RGS4) proteins were each fused to cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP) and first assessed for functional expression in HEK293 cells. The presence of the fluorophore did not significantly alter the signalling properties of these proteins. Possible FRET was then investigated for different protein pair combinations. As a positive control, FRET was measured between tagged GABA(B) R1 and R2 subunits ( approximately 12% FRET), which are known to form heterodimers. We measured significant FRET between tagged RGS4 and GABA(B) R1 or R2 subunits ( approximately 13% FRET), and between Galphao and GABA(B) R1 or R2 subunits ( approximately 10% FRET). Surprisingly, FRET also occurred between tagged Kir3.2a/Kir3.4 channels and GABA(B) R1 or R2 subunits ( approximately 10% FRET). FRET was not detected between Kir3.2a and RGS4 nor between Kir3.2a and Galphao. These data are discussed in terms of a model in which GABA(B) receptors, G proteins, RGS4 proteins and Kir3 channels are closely associated in a signalling complex.
Collapse
Affiliation(s)
- Catherine E Fowler
- The Salk Institute, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
27
|
Digby GJ, Lober RM, Sethi PR, Lambert NA. Some G protein heterotrimers physically dissociate in living cells. Proc Natl Acad Sci U S A 2006; 103:17789-94. [PMID: 17095603 PMCID: PMC1693825 DOI: 10.1073/pnas.0607116103] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins mediate physiological processes ranging from phototransduction to cell migration. In the accepted model of G protein signaling, Galphabetagamma heterotrimers physically dissociate after activation, liberating free Galpha subunits and Gbetagamma dimers. This model is supported by evidence obtained in vitro with purified proteins, but its relevance in vivo has been questioned. Here, we show that at least some heterotrimeric G protein isoforms physically dissociate after activation in living cells. Galpha subunits extended with a transmembrane (TM) domain and cyan fluorescent protein (CFP) were immobilized in the plasma membrane by biotinylation and cross-linking with avidin. Immobile CFP-TM-Galpha greatly decreased the lateral mobility of intracellular Gbeta1gamma2-YFP, indicating the formation of stable heterotrimers. A GTPase-deficient (constitutively active) mutant of CFP-TM-GalphaoA lost the ability to restrict Gbeta1gamma2-YFP mobility, whereas GTPase-deficient mutants of CFP-TM-Galphai3 and CFP-TM-Galphas retained this ability. Activation of cognate G protein-coupled receptors partially relieved the constraint on Gbeta1gamma2-YFP mobility induced by immobile CFP-TM-GalphaoA and CFP-TM-Galphai3 but had no effect on the constraint induced by CFP-TM-Galphas. These results demonstrate the physical dissociation of heterotrimers containing GalphaoA and Galphai3 subunits in living cells, supporting the subunit dissociation model of G protein signaling for these subunits. However, these results are also consistent with the suggestion that G protein heterotrimers (e.g., Galphas) may signal without physically dissociating.
Collapse
Affiliation(s)
- Gregory J. Digby
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, 30912
| | - Robert M. Lober
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, 30912
| | - Pooja R. Sethi
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, 30912
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, 30912
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Dupré DJ, Robitaille M, Ethier N, Villeneuve LR, Mamarbachi AM, Hébert TE. Seven Transmembrane Receptor Core Signaling Complexes Are Assembled Prior to Plasma Membrane Trafficking. J Biol Chem 2006; 281:34561-73. [PMID: 16959776 DOI: 10.1074/jbc.m605012200] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Much is known about beta2-adrenergic receptor trafficking and internalization following prolonged agonist stimulation. However, less is known about outward trafficking of the beta2-adrenergic receptor to the plasma membrane or the role that trafficking might play in the assembly of receptor signaling complexes, important for targeting, specificity, and rapidity of subsequent signaling events. Here, by using a combination of bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and confocal microscopy, we evaluated the steps in the formation of the core receptor-G protein heterotrimer complex. By using dominant negative Rab and Sar GTPase constructs, we demonstrate that receptor dimers and receptor-G betagamma complexes initially associate in the endoplasmic reticulum, whereas G alpha subunits are added to the complex during endoplasmic reticulum-Golgi transit. We also observed that G protein heterotrimers adopt different trafficking itineraries when expressed alone or with stoichiometric co-expression with receptor. Furthermore, deliberate mistargeting of specific components of these complexes leads to diversion of other members from their normal subcellular localization, confirming the role of these early interactions in targeting and formation of specific signaling complexes.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Galés C, Van Durm JJJ, Schaak S, Pontier S, Percherancier Y, Audet M, Paris H, Bouvier M. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 2006; 13:778-86. [PMID: 16906158 DOI: 10.1038/nsmb1134] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 07/21/2006] [Indexed: 12/12/2022]
Abstract
Activation of heterotrimeric G proteins by their cognate seven transmembrane domain receptors is believed to involve conformational changes propagated from the receptor to the G proteins. However, the nature of these changes remains unknown. We monitored the conformational rearrangements at the interfaces between receptors and G proteins and between G protein subunits by measuring bioluminescence resonance energy transfer between probes inserted at multiple sites in receptor-G protein complexes. Using the data obtained for the alpha(2A)AR-G alpha(i1) beta1gamma2 complex and the available crystal structures of G alpha(i1) beta1gamma2, we propose a model wherein agonist binding induces conformational reorganization of a preexisting receptor-G protein complex, leading the G alpha-G betagamma interface to open but not dissociate. This conformational change may represent the movement required to allow nucleotide exit from the G alpha subunit, thus reflecting the initial activation event.
Collapse
Affiliation(s)
- Céline Galés
- Department of Biochemistry and Groupe de Recherche Universitaire sur le Médicament, Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown station, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rebois RV, Robitaille M, Galés C, Dupré DJ, Baragli A, Trieu P, Ethier N, Bouvier M, Hébert TE. Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci 2006; 119:2807-18. [PMID: 16787947 DOI: 10.1242/jcs.03021] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bioluminescence resonance energy transfer (BRET) and co-immunoprecipitation experiments revealed that heterotrimeric G proteins and their effectors were found in stable complexes that persisted during signal transduction. Adenylyl cyclase, Kir3.1 channel subunits and several G-protein subunits (Gαs, Gαi, Gβ1 and Gγ2) were tagged with luciferase (RLuc) or GFP, or the complementary fragments of YFP (specifically Gβ1-YFP1-158 and Gγ2-YFP159-238, which heterodimerize to produce fluorescent YFP-Gβ1γ2). BRET was observed between adenylyl-cyclase-RLuc or Kir3.1-RLuc and GFP-Gγ2, GFP-Gβ1 or YFP-Gβ1γ2. Gα subunits were also stably associated with both effectors regardless of whether or not signal transduction was initiated by a receptor agonist. Although BRET between effectors and Gβγ was increased by receptor stimulation, our data indicate that these changes are likely to be conformational in nature. Furthermore, receptor-sensitive G-protein-effector complexes could be detected before being transported to the plasma membrane, providing the first direct evidence for an intracellular site of assembly.
Collapse
Affiliation(s)
- R Victor Rebois
- Laboratory of Cellular Biology, 5 Research Court, National Institute of Deafness and Communicative Disorders, National Institutes of Health, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Clancy SM, Fowler CE, Finley M, Suen KF, Arrabit C, Berton F, Kosaza T, Casey PJ, Slesinger PA. Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex. Mol Cell Neurosci 2005; 28:375-89. [PMID: 15691717 DOI: 10.1016/j.mcn.2004.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 10/25/2004] [Indexed: 11/19/2022] Open
Abstract
Neuronal G-protein-gated inwardly rectifying potassium (Kir3; GIRK) channels are activated by G-protein-coupled receptors that selectively interact with PTX-sensitive (Galphai/o) G proteins. Although the Gbetagamma dimer is known to activate GIRK channels, the role of the Galphai/o subunit remains unclear. Here, we established that Galphao subunits co-immunoprecipitate with neuronal GIRK channels. In vitro binding studies led to the identification of six amino acids in the GIRK2 C-terminal domain essential for Galphao binding. Further studies suggested that the Galphai/obetagamma heterotrimer binds to the GIRK2 C-terminal domain via Galpha and not Gbetagamma. Galphai/o binding-impaired GIRK2 channels exhibited reduced receptor-activated currents, but retained normal ethanol- and Gbetagamma-activated currents. Finally, PTX-insensitive Galphaq or Galphas subunits did not bind to the GIRK2 C-terminus. Together, these results suggest that the interaction of PTX-sensitive Galphai/o subunit with the GIRK2 C-terminal domain regulates G-protein receptor coupling, and may be important for establishing specific Galphai/o signaling pathways.
Collapse
Affiliation(s)
- Sinead M Clancy
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Steiner D, Saya D, Schallmach E, Simonds WF, Vogel Z. Adenylyl cyclase type-VIII activity is regulated by G(betagamma) subunits. Cell Signal 2005; 18:62-8. [PMID: 15925485 DOI: 10.1016/j.cellsig.2005.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
The Ca2+-activated adenylyl cyclase type VIII (AC-VIII) has been implicated in several forms of neural plasticity, including drug addiction and learning and memory. It has not been clear whether Gi/o proteins and G-protein coupled receptors regulate the activity of AC-VIII. Here we show in intact mammalian cell system that AC-VIII is inhibited by mu-opioid receptor activation and that this inhibition is pertussis toxin sensitive. Moreover, we show that G(betagamma) subunits inhibit AC-VIII activity, while constitutively active alphai/o subunits do not. Different Gbeta isoforms varied in their efficacies, with Gbeta1gamma2 or Gbeta2gamma2 being more efficient than Gbeta3gamma2 and Gbeta4gamma2, while Gbeta5 (transfected with gamma2) had no effect. As for the Ggamma subunits, Gbeta1 inhibited AC-VIII activity in the presence of all gamma subunits tested except for gamma5 that had only a marginal activity. Moreover, cotransfection with proteins known to serve as scavengers of Gbetagamma dimers, or to reduce Gbetagamma plasma membrane anchorage, markedly attenuated the mu-opioid receptor-induced inhibition of AC-VIII. These results demonstrate that Gbetagamma (originating from agonist activation of these receptors) and probably not Galphai/o subunits are involved in the agonist inhibition of AC-VIII.
Collapse
Affiliation(s)
- Debora Steiner
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
33
|
Galés C, Rebois RV, Hogue M, Trieu P, Breit A, Hébert TE, Bouvier M. Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2005; 2:177-84. [PMID: 15782186 DOI: 10.1038/nmeth743] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 01/25/2005] [Indexed: 11/08/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of proteins involved in signal transduction. Here we present a bioluminescence resonance energy transfer (BRET) assay that directly monitors in real time the early interactions between human GPCRs and their cognate G-protein subunits in living human cells. In addition to detecting basal precoupling of the receptors to Galpha-, Gbeta- and Ggamma-subunits, BRET measured very rapid ligand-induced increases in the interaction between receptor and Galphabetagamma-complexes (t(1/2) approximately 300 ms) followed by a slower (several minutes) decrease, reflecting receptor desensitization. The agonist-promoted increase in GPCR-Gbetagamma interaction was highly dependent on the identity of the Galpha-subunit present in the complex. Therefore, this G protein-activity biosensor provides a novel tool to directly probe the dynamics and selectivity of receptor-mediated, G-protein activation-deactivation cycles that could be advantageously used to identify ligands for orphan GPCRs.
Collapse
Affiliation(s)
- Céline Galés
- Department of Biochemistry, Université de Montréal, P.O. Box 6128 Down-town station, Montréal, H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Evanko DS, Thiyagarajan MM, Takida S, Wedegaertner PB. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling. Cell Signal 2005; 17:1218-28. [PMID: 16038796 DOI: 10.1016/j.cellsig.2004.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
The G protein subunit, betagamma, plays an important role in targeting alpha subunits to the plasma membrane and is essential for binding and activation of the heterotrimer by heptahelical receptors. Mutation of residues in the N-terminal alpha-helix of alpha s and alpha q that contact betagamma in the crystal structure of alpha i reduces binding between alpha and betagamma, inhibits plasma membrane targeting and palmitoylation of the alpha subunit, and results in G proteins that fail to couple receptor activation to stimulation of effector. Overexpression of betagamma can recover this loss of signaling through Gs but not Gq. In fact, a single mutation (I25A) in alpha q can block alpha q-mediated generation of inositol phosphates. Function is not recovered by betagamma overexpression nor myristoylation directed plasma membrane localization. Introduction of a Q209L activating mutation with I25A results in a constitutively active alpha q as expected, but surprisingly a R183C activating mutation does not result in constitutive activity when present with I25A. Examination of binding between alpha and betagamma via a pull down assay shows that the N-terminal betagamma-binding mutations inhibit alpha-betagamma binding significantly more than the R183C or Q209L activating mutations do. Moreover, introduction of the I25A mutation into alpha q RC disrupts co-immunoprecipitation with PLCbeta1. Taken together, results presented here suggest that alpha-betagamma binding is necessary at a point downstream from receptor activation of the heterotrimeric G protein for signal transduction by alpha q.
Collapse
Affiliation(s)
- Daniel S Evanko
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th St., 839 BLSB, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
35
|
Cervia D, Fehlmann D, Hoyer D. Native somatostatin sst2 and sst5 receptors functionally coupled to Gi/o-protein, but not to the serum response element in AtT-20 mouse tumour corticotrophs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:578-87. [PMID: 12750875 DOI: 10.1007/s00210-003-0752-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Accepted: 03/17/2003] [Indexed: 10/25/2022]
Abstract
Of the five cloned somatostatin (SRIF: somatotropin release inhibitory factor) receptors (sst1-5), only sst2 and sst5 receptors appear to be endogenously expressed and functionally active in AtT-20 mouse anterior pituitary tumour cells. In this study, the presence and the functional coupling of SRIF receptors to G-protein in AtT-20 cells was evaluated by receptor autoradiography and guanosine-5'-Omicron-(3-[35S]thio)-triphosphate ([35S]GTPgammaS) binding, respectively. In addition, transcriptional effects via the serum response element (SRE) were assessed in AtT-20-SRE-luci cells, engineered to express constitutively SRE upstream of the luciferase reporter gene. [125I]LTT-SRIF-28, [125I]CGP 23996 and [125I]Tyr3-octreotide binding illustrates the high level of sst2/5 receptor in AtT-20 cell membranes. SRIF-14 and SRIF-28 produced a concentration-dependent increase in [35S]GTPgammaS binding (pEC50=6.72 and 7.45; Emax=79 and 74.9, respectively) which was completely abolished by pertussis toxin. sst2/5 receptor-selective ligands caused a concentration-dependent increase in [35S]GTPgammaS binding (pEC50=7.74-5.84; Emax=76.6-20.2) while sst1/3/4 receptor-selective ligands were devoid of activity. The binding profiles of [125I]LTT-SRIF-28 and the inhibition of cAMP accumulation correlated highly significantly with their corresponding [35S]GTPgammaS binding profiles (r=0.862 and 0.874, respectively). The effects of the sst2 receptor-preferring agonists Tyr3-octreotide and BIM 23027 on [35S]GTPgammaS binding, but not those of SRIF-14 and the sst5/1 receptor selective-agonist L-817,818, were competitively antagonised by the sst2 receptor antagonist d-Tyr8-CYN 154806 (pKB=7.36 and 7.72, respectively; slope factors not significantly different from unity). In AtT-20-SRE-luci cells, which carry a SRE-luciferase construct functioning in a very efficient manner, SRIF and its analogues did not affect luciferase activity. Taken together, these results demonstrate that in AtT-20 cells the expression of sst2 and sst5 receptors fit with their functional coupling to G(i/o)-proteins. The pharmacological implications of the existence of different ligand/receptor complexes are discussed. However, the intracellular pathways coupled to the activation of sst2 and sst5 receptors appear not to modulate the SRE-mediated transcriptional activity, suggesting that SRIF effects on gene expression coupled to mechanisms that have promoters other than SRE.
Collapse
Affiliation(s)
- Davide Cervia
- Dipartimento di Fisiologia e Biochimica G. Moruzzi, Università di Pisa, 56127 Pisa, Italy.
| | | | | |
Collapse
|
36
|
Seifert R, Wenzel-Seifert K, Arthur JM, Jose PO, Kobilka BK. Efficient adenylyl cyclase activation by a beta2-adrenoceptor-G(i)alpha2 fusion protein. Biochem Biophys Res Commun 2002; 298:824-8. [PMID: 12419329 DOI: 10.1016/s0006-291x(02)02569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The G-protein G(i)alpha can activate adenylyl cyclase (AC), but the relevance of this AC activation is unknown. We used receptor-G protein co-expression and receptor-G protein fusion proteins to investigate G(i)alpha(2) regulation of AC in Sf9 cells. G(i)alpha(2) was fused to the beta(2)-adrenoceptor (beta(2)AR), a preferentially G(s)-coupled receptor, or the formyl peptide receptor (FPR), a G(i)-coupled receptor. The FPR co-expressed with, or fused to, G(i)alpha(2), reduced AC activity. In contrast, the beta(2)AR fused to G(i)alpha(2) was a highly efficient AC activator, while the beta(2)AR co-expressed with G(i)alpha(2) was not. Agonist efficiently stimulated incorporation of [alpha-32P]GTP azidoanilide into beta(2)AR-G(i)alpha(2). We explain AC activation by beta(2)AR-G(i)alpha(2) by a model in which there is interaction of the beta(2)AR and AC, preventing tethered G(i)alpha(2) from interacting with the inhibitory G(i)alpha site of AC. The postulated beta(2)AR/AC interaction brings G(i)alpha(2) into close proximity of the G(s)alpha site of AC, enabling G(i)alpha(2) to activate AC.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Cell Line
- Colforsin/pharmacology
- Enzyme Activation/drug effects
- GTP-Binding Protein alpha Subunit, Gi2
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Isoproterenol/pharmacology
- Models, Biological
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Formyl Peptide
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Spodoptera
Collapse
Affiliation(s)
- Roland Seifert
- Howard Hughes Medical Institute, Beckman Center, B-157, Stanford University Medical Center, CA 94305-5428, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Skeletal muscle hypertrophy is characterized, in part, by increases in protein mass per fiber. This increased accumulation of protein results from a net increase in protein synthesis relative to breakdown. Increases in rates of protein synthesis (translation) have been reported across different models of resistance exercise and across all species studied. However, although an increase in protein synthesis after exercise is reported commonly, the mechanisms underlying this response are not understood clearly. Therefore, the aim of the current review was to select areas of research within which translational control has been well-studied. The logic is that the mechanisms described in this review have the potential to contribute to the changes seen in protein synthesis after high-resistance exercise. The field of translational control has seen rapid growth in the past 5 to 10 years and although attempts have been made to include all contributing studies, apologies are given from the start because many have undoubtedly been overlooked.
Collapse
Affiliation(s)
- Gustavo A Nader
- Muscle Biology Laboratory, School of Kinesiology (M/C 194), University of Illinois, 901 W. Roosevelt Road, Chicago, IL 60608-1516, USA
| | | | | |
Collapse
|
38
|
Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, Rebois RV, Bouvier M, Hebert TE, Van Tol HHM. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 2002; 277:46010-9. [PMID: 12297500 DOI: 10.1074/jbc.m205035200] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large number of studies have demonstrated co-purification or co-immunoprecipitation of receptors with G proteins. We have begun to look for the presence of effector molecules in these receptor complexes. Co-expression of different channel and receptor permutations in COS-7 and HEK 293 cells in combination with co-immunoprecipitation experiments established that the dopamine D(2) and D(4), and beta(2)-adrenergic receptors (beta(2)-AR) form stable complexes with Kir3 channels. The D(4)/Kir3 and D(2) receptor/Kir3 interaction does not occur when the channel and receptor are expressed separately and mixed prior to immunoprecipitation, indicating that the interaction is not an artifact of the experimental protocol and reflects a biosynthetic event. The observed complexes are stable in that they are not disrupted by receptor activation or modulation of G protein alpha subunit function. However, using a peptide that binds Gbetagamma (betaARKct), we show that Gbetagamma is critical for dopamine receptor-Kir3 complex formation, but not for maintenance of the complex. We also provide evidence that Kir3 channels and another effector, adenylyl cyclase, are stably associated with the beta(2)-adrenergic receptor and can be co-immunoprecipitated by anti-receptor antibodies. Using bioluminescence resonance energy transfer, we have shown that in living cells under physiological conditions, beta(2)AR interacts directly with Kir3.1/3.4 and Kir3.1/3.2c heterotetramers as well as with adenylyl cyclase. All of these interactions are stable in the presence of receptor agonists, suggesting that these signaling complexes persist during signal transduction. In addition, we provide evidence that the receptor-effector complexes are also found in vivo. The observation that several G protein-coupled receptors form stable complexes with their effectors suggests that this arrangement might be a general feature of G protein-coupled signal transduction.
Collapse
Affiliation(s)
- Natalie Lavine
- Centre for Addiction and Mental Health, Department of Pharmacology, Institute of Medical Science, University of Toronto, Ontario M5T 1R8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu HY, Seifert R. Distinct interactions of G(salpha-long), G(salpha-short), and G(alphaolf) with GTP, ITP, and XTP. Biochem Pharmacol 2002; 64:583-93. [PMID: 12167477 DOI: 10.1016/s0006-2952(02)01251-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The G(s)-proteins G(salpha-short) (G(salphaS)) and G(salpha-long) (G(salphaL)), and the olfactory G(s) protein (G(alphaolf)) mediate activation of adenylyl cyclase by the beta(2)-adrenoceptor (beta(2)AR). Early studies showed that the purine nucleotides GTP, ITP, and XTP differentially support receptor-mediated adenylyl cyclase activation in various native membrane systems, but those findings have remained unexplained thus far. We systematically analyzed the effects of GTP, ITP, and XTP on the coupling of the beta(2)AR to G(salphaS), G(salphaL), and G(alphaolf), respectively, using fusion proteins expressed in Sf9 insect cells. Fusion proteins ensure defined receptor/G-protein stoichiometry and efficient coupling. At all three fusion proteins, GTP, ITP, and XTP exhibited unique profiles with respect to their potency and efficacy at disrupting high-affinity agonist binding and supporting adenylyl cyclase activation by partial and full agonists. Our data can be interpreted in two ways: (i) GTP, ITP, and XTP may stabilize different active conformations in various G(s)-proteins, or (ii) GTP, ITP, and XTP may differ from one another in the kinetics of interaction with various G(s)-proteins. Regardless of which of the two explanations is correct, our present data demonstrate that GTP, ITP, and XTP are highly efficient regulators of signal transduction mediated through a specific G-protein. Also discussed is the possibility that G-protein activation by ITP and XTP may be of relevance in Lesch-Nyhan syndrome, a defect of the purine salvage pathway associated with abnormalities in various neurotransmitter systems.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Department of Pharmacology and Toxicology, The University of Kansas, Malott Hall, Room 5064, 1251 Wescoe Hall Drive, Lawrence 66045, USA
| | | |
Collapse
|
40
|
Wenzel-Seifert K, Liu HY, Seifert R. Similarities and differences in the coupling of human beta1- and beta2-adrenoceptors to Gs(alpha) splice variants. Biochem Pharmacol 2002; 64:9-20. [PMID: 12106601 DOI: 10.1016/s0006-2952(02)00924-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human beta1-adrenoceptor (beta1AR) and beta2-adrenoceptor (beta2AR) couple to Gs-proteins to activate adenylyl cyclase (AC). There are differences in desensitization between the beta2AR and the originally cloned Gly389-beta1AR, but with respect to ternary complex formation, constitutive activity, and AC activation the picture is unclear. To learn more about the similarities and differences between the beta1AR and beta2AR, we analyzed coupling of the Gly389-beta1AR to the G(s(alpha)) splice variants Gs(alpha)L and Gs(alpha)S using beta1AR-Gs(alpha) fusion proteins expressed in Sf9 cells and compared the data with previously published data on beta2AR-Gs(alpha) fusion proteins (Seifert et al., J Biol Chem 1998;273:5109-16). Fusion ensures defined receptor/G-protein stoichiometry and efficient coupling. The agonist (-)-isoproterenol stabilized the ternary complex at beta1AR-Gs(alpha)S, beta1AR-Gs(alpha)L, beta2AR-Gs(alpha)S, and beta2AR-Gs(alpha)L with similar efficiency. beta1AR-Gs(alpha)L but not beta1AR-Gs(alpha)S showed the hallmarks of constitutive activity as assessed by increased potencies and efficacies of partial agonists and AC activation by the agonist-free receptor. Similar differences were observed previously for beta2AR-Gs(alpha)S and beta2AR-Gs(alpha)L. beta1AR-Gs(alpha)S and beta2AR-Gs(alpha)S were similarly efficient at activating AC, but beta1AR-Gs(alpha)L was approximately 4-fold more efficient at activating AC than beta2AR-Gs(alpha)L. Our data show that (i) the beta1AR and beta2AR are similarly efficient at stabilizing the ternary complex with Gs(alpha) splice variants, (ii) Gs(alpha)L confers constitutive activity to the beta1AR and beta2AR, and (iii) the beta1AR coupled to Gs(alpha)L is more efficient at activating AC than the beta2AR coupled to Gs(alpha)L. These data help us understand some of the discrepancies regarding similarities and differences between the beta1AR and beta2AR.
Collapse
Affiliation(s)
- Katharina Wenzel-Seifert
- Department of Pharmacology and Toxicology, The University of Kansas, Malott Hall, Room 5064, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
41
|
Vanderbeld B, Kelly GM. New thoughts on the role of the beta-gamma subunit in G-protein signal transduction. Biochem Cell Biol 2001; 78:537-50. [PMID: 11103944 DOI: 10.1139/o00-075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heterotrimeric G proteins are involved in numerous biological processes, where they mediate signal transduction from agonist-bound G-protein-coupled receptors to a variety of intracellular effector molecules and ion channels. G proteins consist of two signaling moieties: a GTP-bound alpha subunit and a beta-gamma heterodimer. The beta-gamma dimer, recently credited as a significant modulator of G-protein-mediated cellular responses, is postulated to be a major determinant of signaling fidelity between G-protein-coupled receptors and downstream effectors. In this review we have focused on the role of beta-gamma signaling and have included examples to demonstrate the heterogeneity in the heterodimer composition and its implications in signaling fidelity. We also present an overview of some of the effectors regulated by beta-gamma and draw attention to the fact that, although G proteins and their associated receptors play an instrumental role in development, there is rather limited information on beta-gamma signaling in embryogenesis.
Collapse
Affiliation(s)
- B Vanderbeld
- Department of Zoology, University of Western Ontario, London, Canada
| | | |
Collapse
|
42
|
Schwindinger WF, Robishaw JD. Heterotrimeric G-protein betagamma-dimers in growth and differentiation. Oncogene 2001; 20:1653-60. [PMID: 11313913 DOI: 10.1038/sj.onc.1204181] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterotrimeric G-proteins are components of the signal transduction pathways for the soluble and cell-contact signals that regulate normal growth and differentiation. There is now a greater appreciation of the role of the Gbetagamma-dimer in the regulation of a variety of intracellular effectors, including ion channels, adenylyl cyclase, and phospholipase Cbeta. In many cases, Gbetagamma-dimers are required for the activation of mitogen activated protein kinase (MAPK) pathways that promote cellular proliferation, although the underlying mechanisms have yet to be fully elucidated. Activation of phosphotidylinositol-3-kinase (PI3K) is a critical step in the intracellular transduction of survival signals. Gbetagamma-dimers directly activate PI3Kgamma as well as the more widely distributed PI3Kbeta. The activation of PI3Kgamma by Gbetagamma-dimers likely involves direct binding of specific Gbetagamma-dimers to both subunits of PI3Kgamma. Thus, Gbetagamma-dimers transmit signals from numerous receptors to a variety of intracellular effectors in distinct cellular contexts. Five distinct Gbeta-subunits and 12 distinct Ggamma-subunits have been identified. New experimental approaches are needed to elucidate the specific roles of individual Gbetagamma-dimers in the pathways that transduce signals for proliferation and survival.
Collapse
Affiliation(s)
- W F Schwindinger
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA
| | | |
Collapse
|
43
|
Robillard L, Ethier N, Lachance M, Hébert TE. Gbetagamma subunit combinations differentially modulate receptor and effector coupling in vivo. Cell Signal 2000; 12:673-82. [PMID: 11080620 DOI: 10.1016/s0898-6568(00)00118-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro, little specificity is seen for modulation of effectors by different combinations of Gbetagamma subunits from heterotrimeric G proteins. Here, we demonstrate that the coupling of specific combinations of Gbetagamma subunits to different receptors leads to a differential ability to modulate effectors in vivo. We have shown that the beta(1)AR and beta(2)AR can activate homomultimers of the human inwardly rectifying potassium channel Kir 3.2 when coexpressed in Xenopus oocytes, and that this requires a functional mammalian Gs heterotrimer. Modulation was independent of cAMP production, suggesting a membrane-delimited mechanism. To analyze further the importance of different Gbetagamma combinations, we have tested the facilitation of Kir 3.2 activation by betaAR mediated by different Gbetagamma subunits. The subunits tested were Gbeta(1,5) and Ggamma(1,2,7,11). These experiments demonstrated significant variation between the ability of the Gbetagamma combinations to activate the channels after receptor stimulation. This was in marked contrast to the situation in vitro where little specificity for binding of a Kir 3.1 C-terminal GST fusion protein by different Gbetagamma combinations was detected. More importantly, neither receptor, although homologous both structurally and functionally, shared the same preference for Gbetagamma subunits. In the presence of beta(1)AR, Gbeta(5)gamma(1) and Gbeta(5)gamma(11) activated Kir 3.2 to the greatest extent, while for the beta(2)AR, Gbeta(1)gamma(7), Gbeta(1)gamma(11,) and Gbeta(5)gamma(2) produced the greatest responses. Interestingly, no preference was seen in the ability of different Gbetagamma subunits to facilitate receptor-stimulated GTPase activity of the Gsalpha. These results suggest that it is not the receptor/G protein alpha subunit interaction or the Gbetagamma/effector interaction that is altered by Gbetagamma, but rather that the ability of the receptor to interact productively with the Gbetagamma subunit directly and/or the G protein/effector complex is dependent on the specific G protein heterotrimer associated with the receptor.
Collapse
Affiliation(s)
- L Robillard
- Centre de recherche, Institut de cardiologie de Montréal et Département d'anésthesie-réanimation, Université de Montréal 5000 rue Bélanger est, H1T 1C8, Montréal, PQ, Canada
| | | | | | | |
Collapse
|
44
|
Willard FS, Crouch MF. Nuclear and cytoskeletal translocation and localization of heterotrimeric G-proteins. Immunol Cell Biol 2000; 78:387-94. [PMID: 10947863 DOI: 10.1046/j.1440-1711.2000.00927.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterotrimeric GTP-binding proteins (G-proteins) are involved in a diverse array of signalling pathways. They are generally thought to be membrane-bound proteins, which disassociate on receptor activation and binding of GTP. A model to explain this has been proposed, which is often described as 'the G-protein cycle'. The 'G-protein cycle' is discussed in the present paper in relation to evidence that now exists regarding the non- membranous localization of G-proteins. Specifically, the experimental evidence demonstrating association of G-proteins with the cytoskeleton and the nucleus, and the mechanisms by which G-proteins translocate to these sites are reviewed. Furthermore, the possible effector pathways and the physiological function of G-proteins at these sites are discussed.
Collapse
Affiliation(s)
- F S Willard
- Molecular Signalling Group, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
45
|
Melien O, Sandnes D, Johansen EJ, Christoffersen T. Effects of pertussis toxin on extracellular signal-regulated kinase activation in hepatocytes by hormones and receptor-independent agents: evidence suggesting a stimulatory role of G(i) proteins at a level distal to receptor coupling. J Cell Physiol 2000; 184:27-36. [PMID: 10825231 DOI: 10.1002/(sici)1097-4652(200007)184:1<27::aid-jcp3>3.0.co;2-q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It was previously found that pertussis toxin (PTX) pretreatment inhibits the activation of extracellular signal-regulated kinases ERK1 (p44(mapk)) and ERK2 (p42(mapk)) in hepatocytes in response to either agonists that bind to heptahelical receptors or epidermal growth factor (EGF), suggesting a role of G(i) proteins in stimulatory mechanisms for ERK1/2. The present work shows that ERK1/2 is activated in a PTX-sensitive way not only by vasopressin, angiotensin II, prostaglandin (PG) F(2alpha), alpha(1)-adrenergic stimulation, and EGF but also by agents whose actions bypass receptors and stimulate protein kinase C (PKC) and/or elevate intracellular Ca(2+), such as 12-O-tetradecanoyl phorbol-13-acetate (TPA), exogenous phosphatidylcholine-specific phospholipase C (PC-PLC, from Bacillus cereus), thapsigargin, and the Ca(2+) ionophore A23187. Under the same conditions, PTX did not affect agonist stimulation of phosphoinositide-specific phospholipase C (PI-PLC) (IP(3) generation), and did not reduce the activation by these agents of phospholipase D (PLD). The results suggest that in hepatocytes a PTX-sensitive mechanism, presumably involving G(i) proteins, exerts a stimulatory effect on ERK at a level distal to receptor coupling, acting either as an integral part of the signaling pathway(s) or by a permissive, synergistic regulation.
Collapse
Affiliation(s)
- O Melien
- Department of Pharmacology, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway.
| | | | | | | |
Collapse
|
46
|
Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc Natl Acad Sci U S A 2000. [PMID: 10725354 PMCID: PMC16219 DOI: 10.1073/pnas.050015797] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many signal transduction pathways involve heterotrimeric G proteins. The accepted model for activation of heterotrimeric G proteins states that the protein dissociates to the free G(alpha) (GTP)-bound subunit and free G(betagamma) dimer. On GTP hydrolysis, G(alpha) (GDP) then reassociates with G(betagamma) [Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615-649]. We reexamined this hypothesis, by using the mating G protein of the yeast Saccharomyces cerevisiae encoded by the genes GPA1, STE4, and STE18. In the absence of mating pheromone, the G(alpha) (Gpa1) subunit represses the mating pathway. On activation by binding of pheromone to a serpentine receptor, the G(betagamma) (Ste4, Ste18) dimer transmits the signal to a mitogen-activated protein kinase cascade, leading to gene activation, arrest in the G(1) stage of the cell cycle, production of shmoos (mating projections), and cell fusion. We found that a Ste4-Gpa1 fusion protein transmitted the pheromone signal and activated the mating pathway as effectively as when Ste4 (G(beta)) and Gpa1 (G(alpha)) were coexpressed as separate proteins. Hence, dissociation of this G protein is not required for its activation. Rather, a conformational change in the heterotrimeric complex is likely to be involved in signal transduction.
Collapse
|
47
|
Klein S, Reuveni H, Levitzki A. Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc Natl Acad Sci U S A 2000; 97:3219-23. [PMID: 10725354 PMCID: PMC16219 DOI: 10.1073/pnas.97.7.3219] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many signal transduction pathways involve heterotrimeric G proteins. The accepted model for activation of heterotrimeric G proteins states that the protein dissociates to the free G(alpha) (GTP)-bound subunit and free G(betagamma) dimer. On GTP hydrolysis, G(alpha) (GDP) then reassociates with G(betagamma) [Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615-649]. We reexamined this hypothesis, by using the mating G protein of the yeast Saccharomyces cerevisiae encoded by the genes GPA1, STE4, and STE18. In the absence of mating pheromone, the G(alpha) (Gpa1) subunit represses the mating pathway. On activation by binding of pheromone to a serpentine receptor, the G(betagamma) (Ste4, Ste18) dimer transmits the signal to a mitogen-activated protein kinase cascade, leading to gene activation, arrest in the G(1) stage of the cell cycle, production of shmoos (mating projections), and cell fusion. We found that a Ste4-Gpa1 fusion protein transmitted the pheromone signal and activated the mating pathway as effectively as when Ste4 (G(beta)) and Gpa1 (G(alpha)) were coexpressed as separate proteins. Hence, dissociation of this G protein is not required for its activation. Rather, a conformational change in the heterotrimeric complex is likely to be involved in signal transduction.
Collapse
Affiliation(s)
- S Klein
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | | |
Collapse
|
48
|
Ganpat MM, Nishimura M, Toyoshige M, Okuya S, Pointer RH, Rebois RV. Evidence for stimulation of adenylyl cyclase by an activated G(s) heterotrimer in cell membranes: an experimental method for controlling the G(s) subunit composition of cell membranes. Cell Signal 2000; 12:113-22. [PMID: 10679580 DOI: 10.1016/s0898-6568(99)00078-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Heterotrimeric (alphabetagamma) G(s) mediates agonist-induced stimulation of adenylyl cyclase (AC). Cholera toxin (CTx) will ADP-ribosylate the alpha-subunit of G(s) (G(s)alpha). G(s)alpha-deficient cyc(-) membranes were "stripped" of Gbeta. When the stripped cyc(-) were incubated with G(s)alpha and/or Gbetagamma, each was incorporated into the membranes independently of the other. Both G(s)alpha and Gbetagamma had to be present in the membranes, and they had to be able to form a heterotrimer in order for CTx to ADP-ribosylate G(s)alpha, indicating that the membrane bound G(s) heterotrimer is a substrate for CTx, but the G(s)alpha subunit by itself is not. When G(s)alpha was completely and irreversibly activated with GTPgammaS and incorporated into stripped cyc(-), it was a poor substrate for CTx and a weak stimulator of AC unless Gbetagamma was also incorporated. Furthermore, the level of AC stimulation corresponded to the amount of G(s) heterotrimer that was formed in the membranes from GTPgammaS-activated G(s)alpha and Gbetagamma. These data suggest that AC is stimulated by an activated G(s) heterotrimer in cell membranes.
Collapse
Affiliation(s)
- M M Ganpat
- Membrane Biochemistry Section, Laboratory of Molecular and Cellular Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4440, USA
| | | | | | | | | | | |
Collapse
|
49
|
Lachance M, Ethier N, Wolbring G, Schnetkamp PP, Hébert TE. Stable association of G proteins with beta 2AR is independent of the state of receptor activation. Cell Signal 1999; 11:523-33. [PMID: 10405763 DOI: 10.1016/s0898-6568(99)00024-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
beta 2-Adrenergic receptors expressed in Sf9 cells activate endogenous Gs and adenylyl cyclase [Mouillac B., Caron M., Bonin H., Dennis M. and Bouvier M. (1992) J. Biol. Chem. 267, 21733-21737]. However, high affinity agonist binding is not detectable under these conditions suggesting an improper stoichiometry between the receptor and the G protein and possibly the effector molecule as well. In this study we demonstrate that when beta 2-adrenergic receptors were co-expressed with various mammalian G protein subunits in Sf9 cells using recombinant baculoviruses signalling properties found in native receptor systems were reconstituted. For example, when beta 2AR was co-expressed with the Gs alpha subunit, maximal receptor-mediated adenylyl cyclase stimulation was greatly enhanced (60 +/- 9.0 versus 150 +/- 52 pmol cAMP/min/mg protein) and high affinity, GppNHp-sensitive, agonist binding was detected. When G beta gamma subunits were co-expressed with Gs alpha and the beta 2AR, receptor-stimulated GTPase activity was also demonstrated, in contrast to when the receptor was expressed alone, and this activity was higher than when beta 2AR was co-expressed with Gs alpha alone. Other properties of the receptor, including receptor desensitization and response to inverse agonists were unaltered. Using antisera against an epitope-tagged beta 2AR, both Gs alpha and beta gamma subunits could be co-immunoprecipitated with the beta 2AR under conditions where subunit dissociation would be expected given current models of G protein function. A desensitization-defective beta 2AR (S261, 262, 345, 346A) and a mutant which is constitutively desensitized (C341G) could also co-immunoprecipitate G protein subunits. These results will be discussed in terms of a revised view of G protein-mediated signalling which may help address issues of specificity in receptor/G protein coupling.
Collapse
Affiliation(s)
- M Lachance
- Centre de Recherche, Institut de Cardiologie de Montréal, PQ, Canada
| | | | | | | | | |
Collapse
|
50
|
Montrose-Rafizadeh C, Avdonin P, Garant MJ, Rodgers BD, Kole S, Yang H, Levine MA, Schwindinger W, Bernier M. Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology 1999; 140:1132-40. [PMID: 10067836 DOI: 10.1210/endo.140.3.6550] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chinese hamster ovary (CHO) cells stably expressing the human insulin receptor and the rat glucagon-like peptide-1 (GLP-1) receptor (CHO/GLPR) were used to study the functional coupling of the GLP-1 receptor with G proteins and to examine the regulation of the mitogen-activated protein (MAP) kinase signaling pathway by GLP-1. We showed that ligand activation of GLP-1 receptor led to increased incorporation of GTP-azidoanilide into Gs alpha, Gq/11 alpha, and Gi1,2 alpha, but not Gi3 alpha. GLP-1 increased p38 MAP kinase activity 2.5- and 2.0-fold over the basal level in both CHO/GLPR cells and rat insulinoma cells (RIN 1046-38), respectively. Moreover, GLP-1 induced phosphorylation of the immediate upstream kinases of p38, MKK3/MKK6, in CHO/GLPR and RIN 1046-38 cells. Ligand-stimulated GLP-1 receptor produced 1.45- and 2.7-fold increases in tyrosine phosphorylation of 42-kDa extracellular signal-regulated kinase (ERK) in CHO/GLPR and RIN 1046-38 cells, respectively. In CHO/GLPR cells, these effects of GLP-1 on the ERK and p38 MAP kinase pathways were inhibited by pretreatment with cholera toxin (CTX), but not with pertussis toxin. The combination of insulin and GLP-1 resulted in an additive response (1.6-fold over insulin alone) that was attenuated by CTX. In contrast, the ability of insulin alone to activate these pathways was insensitive to either toxin. Our study indicates a direct coupling between the GLP-1 receptor and several G proteins, and that CTX-sensitive proteins are required for GLP-1-mediated activation of MAP kinases.
Collapse
Affiliation(s)
- C Montrose-Rafizadeh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|