1
|
Elois MA, Pavi CP, Jempierre YFSH, Pilati GVT, Zanchetta L, Grisard HBDS, García N, Rodríguez-Lázaro D, Fongaro G. Trends and Challenges in the Detection and Environmental Surveillance of the Hepatitis E Virus. Microorganisms 2025; 13:998. [PMID: 40431171 PMCID: PMC12114463 DOI: 10.3390/microorganisms13050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
The Hepatitis E virus (HEV) is responsible for causing Hepatitis E, a zoonotic disease that has emerged as a significant global health concern, accounting for about 20 million infections and 70,000 deaths annually. Although it is often recognized as a disease that is acute in low-income countries, HEV has also been recognized as a zoonotic disease in high-income countries. The zoonotic transmission requires flexible approaches to effectively monitor the virus, vectors, and reservoirs. However, the environmental monitoring of HEV presents additional challenges due to limitations in current detection methods, making it difficult to accurately assess the global prevalence of the virus. These challenges hinder efforts to fully understand the scope of the disease and to implement effective control measures. This review will explore these and other critical concerns, addressing gaps in HEV research and highlighting the need for improved strategies in the monitoring, prevention, and management of Hepatitis E using a One Health approach.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Catielen Paula Pavi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Yasmin Ferreira Souza Hoffmann Jempierre
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Lucas Zanchetta
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Henrique Borges da Silva Grisard
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Nerea García
- Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain;
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| |
Collapse
|
2
|
Raji YE, Toung OP, Taib NM, Sekawi ZB. Hepatitis E Virus: An emerging enigmatic and underestimated pathogen. Saudi J Biol Sci 2022; 29:499-512. [PMID: 35002446 PMCID: PMC8716866 DOI: 10.1016/j.sjbs.2021.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is an RNA virus causing hepatitis E disease. The virus is of one serotype but has diverse genotypes infecting both humans and animals. Based on evidence from seroprevalence studies, about 2 billion people are estimated to have been infected with HEV globally. HEV, therefore, poses a significant public health and economic challenge worldwide. HEV was discovered in the 1980s and was traced back to the 1955 - 1956 outbreak of hepatitis that occurred in India. Subsequently, several HEV epidemics involving thousands of individuals have occurred nearly annually in different countries in Asia and Africa. Initially, the virus was thought to be only enterically transmitted, and endemic in developing countries. Due to the environmental hygiene and sanitation challenges in those parts of the world. However, recent studies have suggested otherwise with the report of autochthonous cases in industrialised countries with no history of travel to the so-called endemic countries. Thus, suggesting that HEV has a global distribution with endemicity in both developing and industrialised nations. Studies have also revealed that HEV has multiple risk factors, and modes of transmission as well as zoonotic potentials. Additionally, recent findings have shown that HEV leads to severe disease, particularly among pregnant women. In contrast to the previous narration of a strictly mild and self-limiting infection. Studies have likewise demonstrated chronic HEV infection among immunocompromised persons. Consequent to these recent discoveries, this pathogen is considered a re - emerging virus, particularly in the developed nations. However, despite the growing public health challenges of this pathogen, the burden is still underestimated. The underestimation is often attributed to poor awareness among clinicians and a lack of routine checks for the disease in the hospitals. Thus, leading to misdiagnosis and underdiagnosis. Hence, this review provides a concise overview of epidemiology, diagnosis, and prevention of hepatitis E.
Collapse
Affiliation(s)
- Yakubu Egigogo Raji
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
- Faculty of Natural and Applied Sciences Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Ooi Peck Toung
- Department of Veterinary Clinical Studies Faculty of Veterinary Medicine, Universiti Putra Malaysia 2, Malaysia
| | - Niazlin Mohd Taib
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| | - Zamberi Bin Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| |
Collapse
|
3
|
Koyuncu A, Mapemba D, Ciglenecki I, Gurley ES, Azman AS. Setting a Course for Preventing Hepatitis E in Low and Lower-Middle-Income Countries: A Systematic Review of Burden and Risk Factors. Open Forum Infect Dis 2021; 8:ofab178. [PMID: 34113684 PMCID: PMC8186248 DOI: 10.1093/ofid/ofab178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/09/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is responsible for outbreaks of acute jaundice in Africa and Asia, many of which occur among displaced people or in crisis settings. Although an efficacious vaccine for HEV has been developed, we lack key epidemiologic data needed to understand how best to use the vaccine for hepatitis E control in endemic countries. METHODS We conducted a systematic review of articles published on hepatitis E in low-income and lower-middle-income countries in Africa and Asia. We searched PubMed, Scopus, and Embase databases to identify articles with data on anti-HEV immunoglobulin (Ig)G seroprevalence, outbreaks of HEV, or risk factors for HEV infection, disease, or death, and all relevant data were extracted. Using these data we describe the evidence around temporal and geographical distribution of HEV transmission and burden. We estimated pooled age-specific seroprevalence and assessed the consistency in risk factor estimates. RESULTS We extracted data from 148 studies. Studies assessing anti-HEV IgG antibodies used 18 different commercial assays. Most cases of hepatitis E during outbreaks were not confirmed. Risk factor data suggested an increased likelihood of current or recent HEV infection and disease associated with fecal-oral transmission of HEV, as well as exposures to blood and animals. CONCLUSIONS Heterogeneity in diagnostic assays used and exposure and outcome assessment methods hinder public health efforts to quantify burden of disease and evaluate interventions over time and space. Prevention tools such as vaccines are available, but they require a unified global strategy for hepatitis E control to justify widespread use.
Collapse
Affiliation(s)
| | - Daniel Mapemba
- South African Field Epidemiology Training Program, National Institute for Communicable Diseases, Division of National Health Laboratory Services, Johannesburg, South Africa
| | | | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew S Azman
- Médecins Sans Frontières, Geneva, Switzerland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Pallerla SR, Harms D, Johne R, Todt D, Steinmann E, Schemmerer M, Wenzel JJ, Hofmann J, Shih JWK, Wedemeyer H, Bock CT, Velavan TP. Hepatitis E Virus Infection: Circulation, Molecular Epidemiology, and Impact on Global Health. Pathogens 2020; 9:856. [PMID: 33092306 PMCID: PMC7589794 DOI: 10.3390/pathogens9100856] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Infection with hepatitis E virus (HEV) represents the most common source of viral hepatitis globally. Although infecting over 20 million people annually in endemic regions, with major outbreaks described since the 1950s, hepatitis E remains an underestimated disease. This review gives a current view of the global circulation and epidemiology of this emerging virus. The history of HEV, from the first reported enteric non-A non-B hepatitis outbreaks, to the discovery of the viral agent and the molecular characterization of the different human pathogenic genotypes, is discussed. Furthermore, the current state of research regarding the virology of HEV is critically assessed, and the challenges towards prevention and diagnosis, as well as clinical risks of the disease described. Together, these points aim to underline the significant impact of hepatitis E on global health and the need for further in-depth research to better understand the pathophysiology and its role in the complex disease manifestations of HEV infection.
Collapse
Affiliation(s)
- Srinivas Reddy Pallerla
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi 100000, Vietnam
| | - Dominik Harms
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany;
| | - Reimar Johne
- Unit Viruses in Food, Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany; (D.T.); (E.S.)
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany; (D.T.); (E.S.)
| | - Mathias Schemmerer
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, 93053 Regensburg, Germany; (M.S.); (J.J.W.)
| | - Jürgen J. Wenzel
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, 93053 Regensburg, Germany; (M.S.); (J.J.W.)
| | - Jörg Hofmann
- Institute of Virology, Charité Universitätsmedizin Berlin, Labor Berlin-Charité-Vivantes GmbH, 13353 Berlin, Germany;
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30623 Hannover, Germany;
- German Center for Infection Research, Partner Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - C.-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany;
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi 100000, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
5
|
Abstract
At least 20 million hepatitis E virus (HEV) infections occur annually, with >3 million symptomatic cases and ∼60,000 fatalities. Hepatitis E is generally self-limiting, with a case fatality rate of 0.5-3% in young adults. However, it can cause up to 30% mortality in pregnant women in the third trimester and can become chronic in immunocompromised individuals, such as those receiving organ transplants or chemotherapy and individuals with HIV infection. HEV is transmitted primarily via the faecal-oral route and was previously thought to be a public health concern only in developing countries. It is now also being frequently reported in industrialized countries, where it is transmitted zoonotically or through organ transplantation or blood transfusions. Although a vaccine for HEV has been developed, it is only licensed in China. Additionally, no effective, non-teratogenic and specific treatments against HEV infections are currently available. Although progress has been made in characterizing HEV biology, the scarcity of adequate experimental platforms has hampered further research. In this Review, we focus on providing an update on the HEV life cycle. We will further discuss existing cell culture and animal models and highlight platforms that have proven to be useful and/or are emerging for studying other hepatotropic (viral) pathogens.
Collapse
Affiliation(s)
- Ila Nimgaonkar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
6
|
Hakim MS, Wang W, Bramer WM, Geng J, Huang F, de Man RA, Peppelenbosch MP, Pan Q. The global burden of hepatitis E outbreaks: a systematic review. Liver Int 2017; 37:19-31. [PMID: 27542764 DOI: 10.1111/liv.13237] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis E virus (HEV) is responsible for repeated water-borne outbreaks since the past century, representing an emerging issue in public health. However, the global burden of HEV outbreak has not been comprehensively described. We performed a systematic review of confirmed HEV outbreaks based on published literatures. HEV outbreaks have mainly been reported from Asian and African countries, and only a few from European and American countries. India represents a country with the highest number of reported HEV outbreaks. HEV genotypes 1 and 2 were responsible for most of the large outbreaks in developing countries. During the outbreaks in developing countries, a significantly higher case fatality rate was observed in pregnant women. In fact, outbreaks have occurred both in open and closed populations. The control measures mainly depend upon improvement of sanitation and hygiene. This study highlights that HEV outbreak is not new, yet it is a continuous global health problem.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Microbiology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wichor M Bramer
- Medical Library, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jiawei Geng
- Department of Infectious Diseases, The First People's Hospital of Yunnan Province, Kunming, China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Sadik S, van Rijckevorsel GGC, van Rooijen MS, Sonder GJB, Bruisten SM. Seroprevalence of hepatitis E virus differs in Dutch and first generation migrant populations in Amsterdam, the Netherlands: a cross-sectional study. BMC Infect Dis 2016; 16:659. [PMID: 27825308 PMCID: PMC5101818 DOI: 10.1186/s12879-016-2007-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background In the last decade hepatitis E virus (HEV) is increasingly recognized as a cause of acute viral hepatitis in developed countries. HEV is transmitted via the fecal-oral route. In countries like the Netherlands, HEV infection is suspected to be a zoonosis but HEV may also be introduced by migrants. We studied the seroprevalence of HEV among different migrants, mainly Moroccans and Turks, and compared this to that of the native Dutch population in Amsterdam, the Netherlands. Methods Data were obtained from a cross-sectional survey of the adult Amsterdam population performed in 2004; the Amsterdam Health Monitor. A total of 1199 plasma samples were tested for IgG-and IgM antibodies to HEV using the Wantai kit according to instructions of the manufacturer. Basic demographic data (gender, age, country of birth, and age at immigration) were used in the analyses. Hepatitis A virus (HAV) serology data were available from a previous study. Results The total weighted anti-HEV IgG seroprevalence in the overall Amsterdam population was 26.7 %, based on 1199 samples. In the study population (not-weighted) this HEV seroprevalence was 157/426 (36.9 %) for the Dutch participants and it was 161/257 (62.6 %) for Moroccans, 99/296 (33.4 %) for Turks and 42/220 (19.1 %) for other ethnicities. HEV seroprevalence increased significantly with age. First-generation Moroccan migrants (44.0 %) had a significantly higher weighted HEV seroprevalence than the Dutch participants (29.7 %). In the first generation Turks (20.3 %) and first generation migrants from other countries (16.7 %) this weighted seroprevalence was lower, but this was only significant for the ‘other ethnicities’. The median age of migration was significantly higher in the Moroccan and Turkish migrants who were HEV IgG positive versus HEV IgG negative. However, when stratifying for age at time of study, median migration age was only significantly different for HEV sero-status for younger Turks and younger ‘other ethnicities’. HEV IgM antibodies were found in 0.6 % (n = 7) of participants and none were positive for HEV RNA, showing that there were no acute infections. Despite the common route of fecal-oral transmission for both viruses, there was no relation between HEV and HAV seropositivity. Conclusion Within the multi-ethnical capital city of Amsterdam the HEV seroprevalence in first generation migrant populations differed from each other and from the autochthonous Dutch population. The relation between being HEV seropositive and a higher median age of migration suggests that younger migrants got more often infected in their country of origin than in the Netherlands.
Collapse
Affiliation(s)
- S Sadik
- Department of Infectious Diseases, Public Health Service of Amsterdam, Nieuwe Achtergracht 100, 1018, WT, Amsterdam, The Netherlands
| | - G G C van Rijckevorsel
- Department of Infectious Diseases, Public Health Service of Amsterdam, Nieuwe Achtergracht 100, 1018, WT, Amsterdam, The Netherlands.,National Institute for Public Health and the Environment, RIVM, Bilthoven, The Netherlands
| | - M S van Rooijen
- Department of Infectious Diseases, Public Health Service of Amsterdam, Nieuwe Achtergracht 100, 1018, WT, Amsterdam, The Netherlands
| | - G J B Sonder
- Department of Infectious Diseases, Public Health Service of Amsterdam, Nieuwe Achtergracht 100, 1018, WT, Amsterdam, The Netherlands.,Academic Medical Centre, Division of Infectious Diseases, Amsterdam, The Netherlands
| | - S M Bruisten
- Department of Infectious Diseases, Public Health Service of Amsterdam, Nieuwe Achtergracht 100, 1018, WT, Amsterdam, The Netherlands. .,Academic Medical Centre, Division of Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Elduma AH, Zein MMA, Karlsson M, Elkhidir IME, Norder H. A Single Lineage of Hepatitis E Virus Causes Both Outbreaks and Sporadic Hepatitis in Sudan. Viruses 2016; 8:E273. [PMID: 27782061 PMCID: PMC5086609 DOI: 10.3390/v8100273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022] Open
Abstract
Few studies have reported sporadic hepatitis E virus (HEV) infections during non-outbreak periods in Africa. In this study, the prevalence of HEV infection in Sudan was investigated in 432 patients with acute hepatitis from 12 localities in North Kordofan, and from 152 patients involved in smaller outbreaks of hepatitis in the neighbouring Darfur. HEV infection was diagnosed in 147 (25%) patients: 98 from Kordofan and 49 from Darfur. The mortality was 10%; six of the patients who died from the infection were pregnant women. HEV RNA was detected by quantitative real-time polymerase chain reaction (RT-qPCR) in 38 (26%) patients: 22 from Kordofan and 16 from Darfur. Partial open reading frame (ORF) 1 and ORF2 were sequenced from HEV from nine and three patients, respectively. Phylogenetic analysis showed that the Sudanese strains belonged to genotype 1 (HEV1), and confirmed the segregation of African HEV1 strains into one branch divergent from Asian HEV1. It also revealed that the Sudanese strains from this study and from an outbreak in 2004 formed a separate clade with a common ancestor, distinct from strains from the neighbouring Chad and Egypt. This HEV strain has thus spread in a large area of Sudan, where it has caused both sporadic hepatitis E and outbreaks from at least 2004 and onwards. These data demonstrate that hepatitis E is a constant, on-going public health problem in Sudan and that there is a need for hepatitis E surveillance, outbreak preparedness, and general improvements of the sanitation in these remote areas of the country.
Collapse
Affiliation(s)
- Adel Hussein Elduma
- National Public Health Laboratory, Ministry of Health-Sudan, 11111 Khartoum, Sudan.
| | - Mai Mohammed Adam Zein
- Public Health Laboratory, Ministry of Health North Kordofan State-Sudan, 51111 Obeid, Sudan.
| | - Marie Karlsson
- Department of Infectious Diseases, Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Isam M E Elkhidir
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum-Sudan, Khartoum, Sudan.
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
9
|
Kim JH, Nelson KE, Panzner U, Kasture Y, Labrique AB, Wierzba TF. A systematic review of the epidemiology of hepatitis E virus in Africa. BMC Infect Dis 2014; 14:308. [PMID: 24902967 PMCID: PMC4055251 DOI: 10.1186/1471-2334-14-308] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 05/28/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hepatitis E Virus (HEV) infection is a newly recognized serious threat to global public health and Africa is suspected to be among the most severely affected regions in the world. Understanding HEV epidemiology in Africa will expedite the implementation of evidence-based control policies aimed at preventing the spread of HEV including policies for the use of available resources such as HEV vaccines. METHODS Here we present a comprehensive review of HEV epidemiology in Africa based on published data. We searched for articles on HEV epidemiology in Africa from online databases such as PubMed, Scopus, and ISI Web of Science and critically reviewed appropriate publications to extract consistent findings, identify knowledge gaps, and suggest future studies. RESULTS Taking a particularly high toll in pregnant women and their fetuses, HEV has infected human populations in 28 of 56 African countries. Since 1979, 17 HEV outbreaks have been reported about once every other year from Africa causing a reported 35,300 cases with 650 deaths. CONCLUSIONS In Africa, HEV infection is not new, is widespread, and the number of reported outbreaks are likely a significant underestimate. The authors suggest that this is a continent-wide public health problem that deserves the attention of local, regional and international agencies to implement control policies that can save numerous lives, especially those of pregnant women and their fetuses.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, Seoul 151-919, South Korea
| | - Kenrad E Nelson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Ursula Panzner
- International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, Seoul 151-919, South Korea
| | - Yogita Kasture
- International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, Seoul 151-919, South Korea
| | - Alain B Labrique
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Thomas F Wierzba
- International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, Seoul 151-919, South Korea
| |
Collapse
|
10
|
Song YJ, Park WJ, Park BJ, Lee JB, Park SY, Song CS, Lee NH, Seo KH, Kang YS, Choi IS. Hepatitis E virus infections in humans and animals. Clin Exp Vaccine Res 2013; 3:29-36. [PMID: 24427760 PMCID: PMC3890447 DOI: 10.7774/cevr.2014.3.1.29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 11/15/2022] Open
Abstract
Hepatitis E has traditionally been considered an endemic disease of developing countries. It generally spreads through contaminated water. However, seroprevalence studies have shown that hepatitis E virus (HEV) infections are not uncommon in industrialized countries. In addition, the number of autochthonous hepatitis E cases in these countries is increasing. Most HEV infections in developed countries can be traced to the ingestion of contaminated raw or undercooked pork meat or sausages. Several animal species, including pigs, are known reservoirs of HEV that transmit the virus to humans. HEVs are now recognized as an emerging zoonotic agent. In this review, we describe the general characteristics of HEVs isolated from humans and animals, the risk factors for human HEV infection, and the current status of human vaccine development.
Collapse
Affiliation(s)
- Young-Jo Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Woo-Jung Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Nak-Hyung Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Kun-Ho Seo
- Department of Public Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Young-Sun Kang
- Department of Biomedical Science and Technology, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea. ; Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
11
|
Rein DB, Stevens GA, Theaker J, Wittenborn JS, Wiersma ST. The global burden of hepatitis E virus genotypes 1 and 2 in 2005. Hepatology 2012; 55:988-97. [PMID: 22121109 DOI: 10.1002/hep.25505] [Citation(s) in RCA: 511] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED We estimated the global burden of hepatitis E virus (HEV) genotypes 1 and 2 in 2005. HEV is an emergent waterborne infection that causes source-originated epidemics of acute disease with a case fatality rate thought to vary by age and pregnancy status. To create our estimates, we modeled the annual disease burden of HEV genotypes 1 and 2 for 9 of 21 regions defined for the Global Burden of Diseases, Injuries, and Risk Factors Study (the GBD 2010 Study), which represent 71% of the world's population. We estimated the seroprevalence of anti-HEV antibody and annual incidence of infection for each region using data from 37 published national studies and the DISMOD 3, a generic disease model designed for the GBD Study. We converted incident infections into three mutually exclusive results of infection: (1) asymptomatic episodes, (2) symptomatic disease, and (3) death from HEV. We also estimated incremental cases of stillbirths among infected pregnant women. For 2005, we estimated 20.1 (95% credible interval [Cr.I.]: 2.8-37.0) million incident HEV infections across the nine GBD Regions, resulting in 3.4 (95% Cr.I.: 0.5-6.5) million symptomatic cases, 70,000 (95% Cr.I.: 12,400-132,732) deaths, and 3,000 (95% Cr.I.: 1,892-4,424) stillbirths. We estimated a probability of symptomatic illness given infection of 0.198 (95% Cr.I.: 0.167-0.229) and a probability of death given symptomatic illness of 0.019 (95% Cr.I.: 0.017-0.021) for nonpregnant cases and 0.198 (95% Cr.I.: 0.169-0.227) for pregnant cases. CONCLUSION The model was most sensitive to estimates of age-specific incidence of HEV disease.
Collapse
Affiliation(s)
- David B Rein
- NORC at the University of Chicago, Atlanta, GA 30306, USA.
| | | | | | | | | |
Collapse
|
12
|
Houcine N, Jacques R, Salma F, Anne-Gaëlle D, Amin S, Mohsen H, Hamadi B, Christophe R, Patrice A, Mahjoub A, Caroline S. Seroprevalence of hepatitis E virus infection in rural and urban populations, Tunisia. Clin Microbiol Infect 2012; 18:E119-21. [PMID: 22404115 DOI: 10.1111/j.1469-0691.2012.03793.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatitis E virus (HEV) is one of the leading agents of acute hepatitis. This study investigated the prevalence and risk factors of HEV infection in the Tunisian adult general population, either in blood donors (n=687) or in patients hospitalized for acute hepatitis (n=202). The mode of transmission differed between these two populations: contact with animals and living in a rural habitat were the main risk factors for being in contact with HEV in asymptomatic blood donors, while HEV was contracted through contaminated water in symptomatic cases. HEV seroprevalence in adult blood donors in Tunisia was relatively low (5.4%) and increased with age.
Collapse
Affiliation(s)
- Neffati Houcine
- Laboratory of Infectious Diseases and Biological Agents, Faculty of Pharmacy, Monastir, Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fatal outbreaks of jaundice in pregnancy and the epidemic history of hepatitis E. Epidemiol Infect 2012; 140:767-87. [PMID: 22273541 DOI: 10.1017/s0950268811002925] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Space-time clustering of people who fall acutely ill with jaundice, then slip into coma and death, is an alarming phenomenon, more markedly so when the victims are mostly or exclusively pregnant. Documentation of the peculiar, fatal predisposition of pregnant women during outbreaks of jaundice identifies hepatitis E and enables construction of its epidemic history. Between the last decade of the 18th century and the early decades of the 20th century, hepatitis E-like outbreaks were reported mainly from Western Europe and several of its colonies. During the latter half of the 20th century, reports of these epidemics, including those that became serologically confirmed as hepatitis E, emanated from, first, the eastern and southern Mediterranean littoral and, thereafter, Southern and Central Asia, Eastern Europe, and the rest of Africa. The dispersal has been accompanied by a trend towards more frequent and larger-scale occurrences. Epidemic and endemic hepatitis E still beset people inhabiting Asia and Africa, especially pregnant women and their fetuses and infants. Their relief necessitates not only accelerated access to potable water and sanitation but also vaccination against hepatitis E.
Collapse
|
14
|
Zhang K, Wang L, Liu M, Zhang R, Li J. Synthetic rabbit-human antibody conjugate as a control in immunoassays for immunoglobulin M specific to hepatitis E virus. Virol J 2010; 7:101. [PMID: 20482892 PMCID: PMC2881894 DOI: 10.1186/1743-422x-7-101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/20/2010] [Indexed: 11/12/2022] Open
Abstract
Background In assays for anti-hepatitis E virus (HEV) immunoglobulin M (IgM), large volumes of the patient's sera cannot be easily obtained for use as a positive control. In this study, we investigated an alternative chemical method in which rabbit anti-HEV IgG was conjugated with human IgM and was used as a positive control in the anti-HEV IgM assay. Rabbit anti-HEV IgG was isolated from immune sera by chromatography on protein A-Sepharose and was conjugated with human IgM by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a crosslinker. Results The specific anti-HEV IgG antibody titer was 100,000 times that of the negative control, i.e., prebleed rabbit serum. The results of anti-HEV IgM enzyme-linked immunosobent assay showed that the antibody conjugate was similar to anti-HEV IgM antibodies produced in humans. The results of a stability experiment showed that the antibody conjugate was stable for use in external quality assessment or internal quality control trials. Conclusions We concluded that the chemically conjugated rabbit-human antibody could be used instead of the traditional serum control as a positive control in the anti-HEV IgM assay.
Collapse
Affiliation(s)
- Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, PR China
| | | | | | | | | |
Collapse
|
15
|
Kamal SM, Mahmoud S, Hafez T, EL-Fouly R. Viral hepatitis a to e in South mediterranean countries. Mediterr J Hematol Infect Dis 2010; 2:e2010001. [PMID: 21415943 PMCID: PMC3033107 DOI: 10.4084/mjhid.2010.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/04/2010] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis represents an important health problem in the South Mediterranean countries, Egypt, Libya, Tunisia, Algeria and Morocco. Emerging natural history and epidemiological information reveal differences in the overall epidemiology, risk factors and modes of transmission of viral hepatitis A, B, C, D, E infections in the South Mediterranean region. The differences in the in incidence and prevalence of viral hepatitis across North African countries is attributed to variations in health care and sanitation standards, risk factors and immunization strategies. The active continuous population movement through travel, tourism and migration from and to the South Mediterranean countries contribute to the spread of infections due to hepatitis viruses across borders leading to outbreaks and emergence of new patterns of infection or introduction of uncommon genotypes in other countries, particularly in Europe.
Collapse
Affiliation(s)
- Sanaa M. Kamal
- Department of Tropical Medicine, Gastroenterology and Liver Disease, Ain Shams University, Cairo, Egypt
| | - Sara Mahmoud
- Department of Tropical Medicine, Gastroenterology and Liver Disease, Ain Shams University, Cairo, Egypt
| | - Tamer Hafez
- Department of Tropical Medicine, Gastroenterology and Liver Disease, Ain Shams University, Cairo, Egypt
| | - Runia EL-Fouly
- Department of Tropical Medicine, Gastroenterology and Liver Disease, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Suijkerbuijk AWM, van Steenbergen JE, Sonder GJB, Lindeboom R, Doorduyn Y. Response to 'too early to stop immigrant vaccination programmes'. Eur J Public Health 2010; 20:7. [DOI: 10.1093/eurpub/ckp139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Adjei AA, Tettey Y, Aviyase JT, Adu-Gyamfi C, Obed S, Mingle JAA, Ayeh-Kumi PF, Adiku TK. Hepatitis E virus infection is highly prevalent among pregnant women in Accra, Ghana. Virol J 2009; 6:108. [PMID: 19619291 PMCID: PMC2717077 DOI: 10.1186/1743-422x-6-108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background Hepatitis E virus (HEV) is highly endemic in several African countries with high mortality rate among pregnant women. The prevalence of antibodies to HEV in Ghana is not known. Therefore we evaluated the prevalence of anti-HEV IgG and anti-HEV IgM among pregnant women seen between the months of January and May, 2008 at the Obstetrics and Gynaecology Department, Korle-Bu Teaching Hospital, Accra, Ghana. Results One hundred and fifty-seven women provided blood samples for unlinked anonymous testing for the presence of antibodies to HEV. The median age of participants was 28.89 ± 5.76 years (range 13–42 years). Of the 157 women tested, HEV seroprevelance was 28.66% (45/157). Among the seropositive women, 64.40% (29/45) tested positive for anti-HEV IgM while 35.60% (16/45) tested positive to HEV IgG antibodies. HEV seroprevalence was highest (46.15%) among women 21–25 years of age, followed by 42.82% in = 20 year group, then 36.84% in = 36 year group. Of the 157 women, 75.79% and 22.92% were in their third and second trimesters of pregnancy, respectively. Anti-HEV antibodies detected in women in their third trimester of pregnancy (30.25%) was significantly higher, P < 0.05, than in women in their second trimester of pregnancy (25.0%). Conclusion Consistent with similar studies worldwide, the results of our studies revealed a high prevalence of HEV infection in pregnant women.
Collapse
Affiliation(s)
- Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Caron M, Kazanji M. Hepatitis E virus is highly prevalent among pregnant women in Gabon, central Africa, with different patterns between rural and urban areas. Virol J 2008; 5:158. [PMID: 19102767 PMCID: PMC2628354 DOI: 10.1186/1743-422x-5-158] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 12/22/2008] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV) is highly endemic in several African countries with high mortality rate among pregnant women. Nothing is known about the circulation of this virus in central Africa. We evaluated therefore the prevalence of anti-HEV IgG in samples collected from pregnant women living in the five main cities of Gabon, central Africa. We found that 14.1% (119/840) of pregnant women had anti-HEV IgG. The prevalence differed between regions and between age groups. In 391 newly collected samples from the region where the highest prevalence was found, a significant difference (p < 0.05) in seroprevalence was found between rural (6.4%) and urban (13.5%) areas. These data provide evidence of a high prevalence of HEV in Gabon, providing indirect evidence of past contact with this virus.
Collapse
Affiliation(s)
- Mélanie Caron
- Departement de Virologie, Centre International de Recherches Médicales (CIRMF), BP 769, Franceville, Gabon.
| | | |
Collapse
|
19
|
Escribà JM, Nakoune E, Recio C, Massamba PM, Matsika-Claquin MD, Goumba C, Rose AMC, Nicand E, García E, Leklegban C, Koffi B. Hepatitis E, Central African Republic. Emerg Infect Dis 2008; 14:681-3. [PMID: 18394300 PMCID: PMC2570933 DOI: 10.3201/eid1404.070833] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatitis E, Central African Republic
Collapse
|
20
|
Chen GB, Meng JH. Identification of 5’ capped structure and 3’ terminal sequence of hepatitis E virus isolated from Morocco. World J Gastroenterol 2004; 10:2045-9. [PMID: 15237431 PMCID: PMC4572330 DOI: 10.3748/wjg.v10.i14.2045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To examine 5’ and 3’ terminal sequences of hepatitis E virus (HEV) isolated from Morocco, to confirm 5’ methylated cap structure of the genome, and to investigate whether the 3’ UTR can be used to distinguish HEV genotypes instead of HEV complete genome sequence.
METHODS: RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) was employed to obtain the 5’ and 3’ terminal sequences of HEV Morocco strain. The 3’ UTR sequence of the Morocco strain was compared with that of the other 29 HEV strains using the DNAStar software.
RESULTS: The 5’ PCR product was obtained only from the RLM-RACE based on the capped RNA template. The 5’ UTR of the Morocco strain had 26 nucleotides, and the 3’ UTR had 65 nucleotides upstream to the polyA. The 5’ UTR between HEV strains had only point mutations of nucleotides. The phylogenetic tree based on the sequences of 3’ UTR was not the same as that based on the complete sequences.
CONCLUSION: The genome of HEV Morocco strain was methylated cap structure. The 3’ terminal sequence can not be used for distinguishing HEV genotype for all HEV strains in place of the whole HEV genome sequence.
Collapse
Affiliation(s)
- Guo-Bing Chen
- Department of Microbiology and Immunology, Southeast University School of Medicine, Nanjing 210009, Jiangsu Province, China
| | | |
Collapse
|
21
|
Maila HT, Bowyer SM, Swanepoel R. Identification of a new strain of hepatitis E virus from an outbreak in Namibia in 1995. J Gen Virol 2004; 85:89-95. [PMID: 14718623 DOI: 10.1099/vir.0.19587-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endemic circulation of hepatitis E virus (HEV) in Namibia was suspected from serological data during an outbreak of non-A, non-B hepatitis in Rundu in 1995. The source of the outbreak was suspected to be the water supply, which had been compromised approximately 6 months earlier. Four HEV isolates from four different persons in this outbreak were successfully amplified, sequenced and analysed over a 451 bp region of a subgenomic fragment from the 3' end of the genome in ORF2. Phylogenetic analysis showed that the four Namibian HEV isolates clustered with a Mexican isolate in genotype II and shared 85.8-86.3 % nucleotide identity with the 1987 Mexican isolate, but were only 77.6-79.6 % similar to other African isolates. HEV isolated from the same region of Namibia in 1983 was reported to cluster in genotype I. However, virus isolates from sporadic cases of HEV isolated in 1997/8 in Nigeria were also from genotype II.
Collapse
Affiliation(s)
- Hazel T Maila
- National Institute for Communicable Diseases and Department of Medical Virology, University of Witwatersrand, Private Bag X4, Sandringham 2131, South Africa
| | - Sheila M Bowyer
- National Institute for Communicable Diseases and Department of Medical Virology, University of Witwatersrand, Private Bag X4, Sandringham 2131, South Africa
| | - Robert Swanepoel
- National Institute for Communicable Diseases and Department of Medical Virology, University of Witwatersrand, Private Bag X4, Sandringham 2131, South Africa
| |
Collapse
|
22
|
Abstract
Hepatitis E accounts for the major part of enterally transmitted non-A, non-B hepatitis worldwide. Its agent, the hepatitis E virus (HEV), is a small, single-stranded RNA virus. Only one serotype of HEV is recognised. Infection results in protective immunity with long-lived neutralising antibodies. In developing countries with poor sanitary conditions and high population density, hepatitis E causes water-borne epidemics with substantial mortality rates in pregnant women. In addition, more than 50% of cases of acute hepatic failure and sporadic acute hepatitis are due to hepatitis E. The overall prevalence rates of antibodies to the HEV in populations native to these areas rarely exceed 25%. Hence, many individuals remain susceptible to hepatitis E infection, making hepatitis E an important public health concern. In this context, the development of an HEV vaccine is warranted. Because HEV does not grow adequately in cell cultures the development of a vaccine based on inactivated or attenuated whole-virus particles is not feasible. HEV vaccines currently under study are based on recombinant proteins derived from immunogenic parts of the HEV capsid gene. Other approaches such as DNA-based vaccines or transgenic tomatoes have also been developed. Several recombinant protein-based vaccines elicited neutralising antibodies and protective immunity in vaccinated non-human primates. One such vaccine has passed phase I trial and is currently under further evaluation in field trials. Even so, several questions remain to be answered before vaccination programmes could be implemented.
Collapse
Affiliation(s)
- Harald Claus Worm
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Clinic Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
| | | |
Collapse
|
23
|
Zhang JZ, Im SWK, Lau SH, Chau TN, Lai ST, Ng SP, Peiris M, Tse C, Ng TK, Ng MH. Occurrence of hepatitis E virus IgM, low avidity IgG serum antibodies, and viremia in sporadic cases of non-A, -B, and -C acute hepatitis. J Med Virol 2002; 66:40-8. [PMID: 11748657 DOI: 10.1002/jmv.2109] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serum samples were taken from 57 patients with sporadic non-A, -B, and -C (Non A, B, C) acute hepatitis at different times after onset of the disease and tested for the presence of the hepatitis E virus (HEV) RNA, IgM, and low avidity IgG antibodies. The viral antibodies were detected using two ELISA. One assay (GL) was produced using a mixture of recombinant peptides specified by ORF2 and ORF3 of the viral genome. The other was produced with an ORF2 specified peptide, pE2. The latter occurs naturally as homodimer, it is recognized strongly in its dimeric form by human sera and, in the primate model, it confers protection against experimental HEV infection. Nineteen samples were positive for one or more of these acute markers of HEV infection, 14 of which were acute sera with elevated ALT levels and 5 were convalescent sera with normal ALT level. The results showed that icteric phase of sporadic hepatitis lasts for about 17 days and it coincides with a period when viremia is subsiding as HEV antibodies are developing. Viremia was intermittent and all but one of the 5 instances were confined to the icteric phase with elevated ALT levels. On two of these occasions, viremia preceded detection of HEV antibody, on another 2 occasions it was concurrent with the detection of pE2 specific IgM and/or low avidity IgG and only in one case of protracted viremia was the viral genome detected concurrently with avid pE2 IgG antibody. Ten (71%) of the 14 acute sera were reactive for pE2 IgM, eight (57%) were reactive for low avidity pE2 IgG, and six (43%) for the GL IgM. The sensitivity for the diagnosis of acute hepatitis E may be increased to 87% by combining pE2 IgM and viremia. GL IgM was detected later, but persisted for a longer period of time than the pE2 antibodies, and it was the only acute antibody detected in the convalescent sera.
Collapse
Affiliation(s)
- J Z Zhang
- Department of Microbiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Meng J, Cong ME, Dai X, Pillot J, Purdy MA, Fields HA, Khudyakov YE. Primary structure of open reading frame 2 and 3 of the hepatitis E virus isolated from Morocco. J Med Virol 1999. [DOI: 10.1002/(sici)1096-9071(199902)57:2<126::aid-jmv7>3.0.co;2-o] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Meng J, Pillot J, Dai X, Fields HA, Khudyakov YE. Neutralization of different geographic strains of the hepatitis E virus with anti-hepatitis E virus-positive serum samples obtained from different sources. Virology 1998; 249:316-24. [PMID: 9791023 DOI: 10.1006/viro.1998.9346] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A recently developed polymerase chain reaction (PCR)-based cell culture neutralization assay was used to investigate cross-neutralization of known hepatitis E virus (HEV) strains obtained from various HEV-endemic regions of the world with different anti-HEV-positive serum samples. Serum specimens obtained from cynomolgus macaques experimentally infected with strains from Burma, Mexico, or Pakistan cross-neutralized the infectivity of each strain as well as an isolate from Morocco. Serum samples obtained either from infected patients who reside in HEV-endemic regions of the world or from U.S. residents who became infected while traveling to such regions also neutralized all four strains. In contrast, antibodies obtained from rabbits immunized with full-length Burma strain ORF2 protein neutralized only the Burma and Pakistan strains, not the Mexico or Morocco strains. In addition, antibodies obtained from guinea pigs immunized with an N-terminal truncated Burma strain ORF2 protein neutralized each strain except the Morocco strain. These data strongly suggest that antibodies elicited during an HEV infection demonstrate broad HEV neutralizing activity, whereas antibodies elicited after immunization with recombinant Burma ORF2 protein demonstrate a more limited ability to neutralize various HEV strains obtained from different regions of the world endemic for the disease.
Collapse
Affiliation(s)
- J Meng
- National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia, 30333, USA.
| | | | | | | | | |
Collapse
|