1
|
Manning E, Placzek M. Organizing activities of axial mesoderm. Curr Top Dev Biol 2024; 157:83-123. [PMID: 38556460 DOI: 10.1016/bs.ctdb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.
Collapse
Affiliation(s)
- Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Gautam S, Fenner JL, Wang B, Range RC. Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos. iScience 2024; 27:108616. [PMID: 38179064 PMCID: PMC10765061 DOI: 10.1016/j.isci.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Studies across a diverse group of metazoan embryos indicate that Wnt signaling often activates the transcription factor Sp5, forming a signaling 'cassette' that plays critical roles in many developmental processes. This study explores the role of Wnt/Sp5 signaling during the specification and patterning of the primary germ layers during early anterior-posterior axis formation in the deuterostome sea urchin embryo. Our functional analyses show that Sp5 is critical for endomesoderm specification downstream of Wnt/β-catenin in posterior cells as well as anterior neuroectoderm patterning downstream of non-canonical Wnt/JNK signaling in anterior cells. Interestingly, expression and functional data comparisons show that Wnt/Sp5 signaling often plays similar roles in posterior endomesoderm as well as neuroectoderm patterning along the AP axis of several deuterostome embryos, including vertebrates. Thus, our findings provide strong support for the idea that Wnt-Sp5 signaling cassettes were critical for the establishment of early germ layers in the common deuterostome ancestor.
Collapse
Affiliation(s)
- Sujan Gautam
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer L. Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Boyuan Wang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C. Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Čapek D, Safroshkin M, Morales-Navarrete H, Toulany N, Arutyunov G, Kurzbach A, Bihler J, Hagauer J, Kick S, Jones F, Jordan B, Müller P. EmbryoNet: using deep learning to link embryonic phenotypes to signaling pathways. Nat Methods 2023; 20:815-823. [PMID: 37156842 PMCID: PMC10250202 DOI: 10.1038/s41592-023-01873-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Evolutionarily conserved signaling pathways are essential for early embryogenesis, and reducing or abolishing their activity leads to characteristic developmental defects. Classification of phenotypic defects can identify the underlying signaling mechanisms, but this requires expert knowledge and the classification schemes have not been standardized. Here we use a machine learning approach for automated phenotyping to train a deep convolutional neural network, EmbryoNet, to accurately identify zebrafish signaling mutants in an unbiased manner. Combined with a model of time-dependent developmental trajectories, this approach identifies and classifies with high precision phenotypic defects caused by loss of function of the seven major signaling pathways relevant for vertebrate development. Our classification algorithms have wide applications in developmental biology and robustly identify signaling defects in evolutionarily distant species. Furthermore, using automated phenotyping in high-throughput drug screens, we show that EmbryoNet can resolve the mechanism of action of pharmaceutical substances. As part of this work, we freely provide more than 2 million images that were used to train and test EmbryoNet.
Collapse
Affiliation(s)
- Daniel Čapek
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | | | - Hernán Morales-Navarrete
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany
| | - Nikan Toulany
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | | | - Anica Kurzbach
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
| | - Johanna Bihler
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Julia Hagauer
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Sebastian Kick
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Felicity Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Ben Jordan
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
| | - Patrick Müller
- Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany.
| |
Collapse
|
4
|
Abstract
A definite identification of epidermal stem cells is not known and the mechanism of epidermal differentiation is not fully understood. Toward both of these quests, considerable information is available from the research on lineage tracing and clonal growth analysis in the basal layer of the epidermis, on the hair follicle and the interfollicular epidermal stem cells, and on Wnt signaling along with its role in the developmental patterning and cell differentiation. In this paper, literature on the aforementioned research has been collated and analyzed. In addition, models of the basal layer cellular composition and the epidermal differentiation have been presented. Graphical Abstract.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
5
|
Westphal M, Panza P, Kastenhuber E, Wehrle J, Driever W. Wnt/β-catenin signaling promotes neurogenesis in the diencephalospinal dopaminergic system of embryonic zebrafish. Sci Rep 2022; 12:1030. [PMID: 35046434 PMCID: PMC8770493 DOI: 10.1038/s41598-022-04833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Wnt/β-catenin signaling contributes to patterning, proliferation, and differentiation throughout vertebrate neural development. Wnt/β-catenin signaling is important for mammalian midbrain dopaminergic neurogenesis, while little is known about its role in ventral forebrain dopaminergic development. Here, we focus on the A11-like, Otp-dependent diencephalospinal dopaminergic system in zebrafish. We show that Wnt ligands, receptors and extracellular antagonist genes are expressed in the vicinity of developing Otp-dependent dopaminergic neurons. Using transgenic Wnt/β-catenin-reporters, we found that Wnt/β-catenin signaling activity is absent from these dopaminergic neurons, but detected Wnt/β-catenin activity in cells adjacent to the caudal DC5/6 clusters of Otp-dependent dopaminergic neurons. Pharmacological manipulations of Wnt/β-catenin signaling activity, as well as heat-shock driven overexpression of Wnt agonists and antagonists, interfere with the development of DC5/6 dopaminergic neurons, such that Wnt/β-catenin activity positively correlates with their number. Wnt/β-catenin activity promoted dopaminergic development specifically at stages when DC5/6 dopaminergic progenitors are in a proliferative state. Our data suggest that Wnt/β-catenin signaling acts in a spatially and temporally restricted manner on proliferative dopaminergic progenitors in the hypothalamus to positively regulate the size of the dopaminergic neuron groups DC5 and DC6.
Collapse
Affiliation(s)
- Markus Westphal
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Paolo Panza
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,Department of Developmental Genetics, Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Edda Kastenhuber
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Johanna Wehrle
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany. .,CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
6
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Torres-Paz J, Leclercq J, Rétaux S. Maternally regulated gastrulation as a source of variation contributing to cavefish forebrain evolution. eLife 2019; 8:50160. [PMID: 31670659 PMCID: PMC6874477 DOI: 10.7554/elife.50160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022] Open
Abstract
Sequential developmental events, starting from the moment of fertilization, are crucial for the acquisition of animal body plan. Subtle modifications in such early events are likely to have major impacts in later morphogenesis, bringing along morphological diversification. Here, comparing the blind cave and the surface morphotypes of Astyanax mexicanus fish, we found heterochronies during gastrulation that produce organizer and axial mesoderm tissues with different properties (including differences in the expression of dkk1b) that may have contributed to cavefish brain evolution. These variations observed during gastrulation depend fully on maternal factors. The developmental evolution of retinal morphogenesis and hypothalamic patterning are among those traits that retained significant maternal influence at larval stages. Transcriptomic analysis of fertilized eggs from both morphotypes and reciprocal F1 hybrids showed a strong and specific maternal signature. Our work strongly suggests that maternal effect genes and developmental heterochronies that occur during gastrulation have impacted morphological brain change during cavefish evolution.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julien Leclercq
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
10
|
Specification of positional identity in forebrain organoids. Nat Biotechnol 2019; 37:436-444. [PMID: 30936566 PMCID: PMC6447454 DOI: 10.1038/s41587-019-0085-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/22/2019] [Indexed: 01/28/2023]
Abstract
Human brain organoids generated with current technologies recapitulate histological features of the human brain, but they lack a reproducible topographic organization. During development, spatial topography is determined by gradients of signaling molecules released from discrete signaling centers. We hypothesized that introduction of a signaling center into forebrain organoids would specify the positional identity of neural tissue in a distance-dependent manner. Here, we present a system to trigger a sonic hedgehog (SHH) protein gradient in developing forebrain organoids that enables ordered self-organization along dorso-ventral and antero-posterior positional axes. SHH-patterned forebrain organoids establish major forebrain subdivisions that are positioned with in vivo-like topography. Consistent with its behavior in vivo, SHH exhibits long-range signaling activity in organoids. Finally, we use SHH-patterned cerebral organoids as a tool to study the role of cholesterol metabolism in SHH signaling. Together, this work identifies inductive signaling as an effective organizing strategy to recapitulate in vivo-like topography in human brain organoids.
Collapse
|
11
|
Newman EA, Wu D, Taketo MM, Zhang J, Blackshaw S. Canonical Wnt signaling regulates patterning, differentiation and nucleogenesis in mouse hypothalamus and prethalamus. Dev Biol 2018; 442:236-248. [PMID: 30063881 DOI: 10.1016/j.ydbio.2018.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
Abstract
The hypothalamus is a small, but anatomically and functionally complex region of the brain whose development is poorly understood. In this study, we have explored its development by studying the canonical Wnt signaling pathway, generating gain and loss of function mutations of beta-catenin (Ctnnb1) in both hypothalamic and prethalamic neuroepithelium. Deletion of Ctnnb1 resulted in an anteriorized and hypoplastic hypothalamus. Posterior structures were lost or reduced, and anterior structures were expanded. In contrast, overexpression of a constitutively active mutant form of Ctnnb1 resulted in severe hyperplasia of prethalamus and hypothalamus, and expanded expression of a subset of posterior and premamillary hypothalamic markers. Moderate defects in differentiation of Arx-positive GABAergic neural precursors were observed in both prethalamus and hypothalamus of Ctnnb1 loss of function mutants, while in gain of function mutants, their differentiation was completely suppressed, although markers of prethalamic progenitors were preserved. Multiple other region-specific markers, including several specific posterior hypothalamic structures, were also suppressed in Ctnnb1 gain of function mutations. Severe, region-specific defects in hypothalamic nucleogenesis were also observed in both gain and loss of function mutations of Ctnnb1. Finally, both gain and loss of function of Ctnnb1 also produced severe, non-cell autonomous disruptions of pituitary development. These findings demonstrate a central and multifaceted role for canonical Wnt signaling in regulating growth, patterning, differentiation and nucleogenesis in multiple diencephalic regions.
Collapse
Affiliation(s)
- Elizabeth A Newman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiangyang Zhang
- Department of Radiology, NYU Langone School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Ren X, Hamilton N, Müller F, Yamamoto Y. Cellular rearrangement of the prechordal plate contributes to eye degeneration in the cavefish. Dev Biol 2018; 441:221-234. [PMID: 30031755 DOI: 10.1016/j.ydbio.2018.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022]
Abstract
Astyanax mexicanus consists of two different populations: a sighted surface-dwelling form (surface fish) and a blind cave-dwelling form (cavefish). In the cavefish, embryonic expression of sonic hedgehog a (shha) in the prechordal plate is expanded towards the anterior midline, which has been shown to contribute to cavefish specific traits such as eye degeneration, enhanced feeding apparatus, and specialized brain anatomy. However, it is not clear how this expanded expression is achieved and which signaling pathways are involved. Nodal signaling has a crucial role for expression of shh and formation of the prechordal plate. In this study, we report increased expression of prechordal plate marker genes, nodal-related 2 (ndr2) and goosecoid (gsc) in cavefish embryos at the tailbud stage. To investigate whether Nodal signaling is responsible for the anterior expansion of the prechordal plate, we used an inhibitor of Nodal signaling and showed a decreased anterior expansion of the prechordal plate and increased pax6 expression in the anterior midline in treated cavefish embryos. Later in development, the lens and optic cup of treated embryos were significantly larger than untreated embryos. Conversely, increasing Nodal signaling in the surface fish embryo resulted in the expansion of anterior prechordal plate and reduction of pax6 expression in the anterior neural plate together with the formation of small lenses and optic cups later in development. These results confirmed that Nodal signaling has a crucial role for the anterior expansion of the prechordal plate and plays a significant role in cavefish eye development. We showed that the anterior expansion of the prechordal plate was not due to increased total cell number, suggesting the expansion is achieved by changes in cellular distribution in the prechordal plate. In addition, the distribution of presumptive prechordal plate cells in Spemann's organiser was also altered in the cavefish. These results suggested that changes in the cellular arrangement of Spemann's organiser in early gastrulae could have an essential role in the anterior expansion of the prechordal plate contributing to eye degeneration in the cavefish.
Collapse
Affiliation(s)
- Xiaoyun Ren
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Noémie Hamilton
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yoshiyuki Yamamoto
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
13
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
14
|
Hino H, Nakanishi A, Seki R, Aoki T, Yamaha E, Kawahara A, Shimizu T, Hibi M. Roles of maternal wnt8a transcripts in axis formation in zebrafish. Dev Biol 2017; 434:96-107. [PMID: 29208373 DOI: 10.1016/j.ydbio.2017.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/05/2023]
Abstract
In early zebrafish development, the program for dorsal axis formation begins soon after fertilization. Previous studies suggested that dorsal determinants (DDs) localize to the vegetal pole, and are transported to the dorsal blastomeres in a microtubule-dependent manner. The DDs activate the canonical Wnt pathway and induce dorsal-specific genes that are required for dorsal axis formation. Among wnt-family genes, only the wnt8a mRNA is reported to localize to the vegetal pole in oocytes and to induce the dorsal axis, suggesting that Wnt8a is a candidate DD. Here, to reveal the roles of maternal wnt8a, we generated wnt8a mutants by transcription activator-like effector nucleases (TALENs), and established zygotic, maternal, and maternal zygotic wnt8a mutants by germ-line replacement. Zebrafish wnt8a has two open reading frames (ORF1 and ORF2) that are tandemly located in the genome. Although the zygotic ORF1 or ORF2 wnt8a mutants showed little or no axis-formation defects, the ORF1/2 compound mutants showed antero-dorsalized phenotypes, indicating that ORF1 and ORF2 have redundant roles in ventrolateral and posterior tissue formation. Unexpectedly, the maternal wnt8a ORF1/2 mutants showed no axis-formation defects. The maternal-zygotic wnt8a ORF1/2 mutants showed more severe antero-dorsalized phenotypes than the zygotic mutants. These results indicated that maternal wnt8a is dispensable for the initial dorsal determination, but cooperates with zygotic wnt8a for ventrolateral and posterior tissue formation. Finally, we re-examined the maternal wnt genes and found that Wnt6a is an alternative candidate DD.
Collapse
Affiliation(s)
- Hiromu Hino
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiko Nakanishi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Ryoko Seki
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Tsubasa Aoki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Etsuro Yamaha
- Nanae Fresh Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Kameda, Hokkaido 041-1105, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
15
|
Kim HT, Lee MS, Jeong YM, Ro H, Kim DI, Shin YH, Kim JE, Hwang KS, Choi JH, Bahn M, Lee JJ, Lee SH, Bae YK, Lee JS, Choi JK, Kim NS, Yeo CY, Kim CH. Ottogi Inhibits Wnt/β-catenin Signaling by Regulating Cell Membrane Trafficking of Frizzled8. Sci Rep 2017; 7:13278. [PMID: 29038508 PMCID: PMC5643531 DOI: 10.1038/s41598-017-13429-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023] Open
Abstract
Wnt signaling controls critical developmental processes including tissue/body patterning. Here we report the identification of a novel regulator of Wnt signaling, OTTOGI (OTG), isolated from a large-scale expression screening of human cDNAs in zebrafish embryos. Overexpression of OTG in zebrafish embryos caused dorso-anteriorized phenotype, inhibited the expression of Wnt target genes, and prevented nuclear accumulation of β-catenin. Conversely, knockdown of zebrafish otg using specific antisense morpholino promoted nuclear accumulation of β-catenin and caused ventralization. However, OTG failed to rescue headless-like phenotype induced by inhibition of GSK-3β activity, suggesting that OTG acts upstream of GSK-3β. OTG bound specifically to Frizzled8 (Fz8) receptor and caused retention of Fz8 in the endoplasmic reticulum possibly by preventing N-linked glycosylation of Fz8. Taken together, our data indicate that OTG functions as a novel negative regulator of Wnt signaling during development by the modulation of cell surface expression of Fz receptor.
Collapse
Affiliation(s)
- Hyun-Taek Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Mi-Sun Lee
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Yun-Mi Jeong
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyunju Ro
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Dong-Il Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Yong-Hwan Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Ji-Eun Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Kyu-Seok Hwang
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Jung-Hwa Choi
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Minjin Bahn
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 120-750, South Korea
| | - Jeong-Ju Lee
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, South Korea
| | - Sang H Lee
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Young-Ki Bae
- National Cancer Center, Goyang, 410-769, South Korea
| | - Jin-Soo Lee
- National Cancer Center, Goyang, 410-769, South Korea
| | - Joong-Kook Choi
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, 361-763, South Korea
| | - Nam-Soon Kim
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, South Korea.
| | - Chang-Yeol Yeo
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 120-750, South Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
16
|
Xie Y, Dorsky RI. Development of the hypothalamus: conservation, modification and innovation. Development 2017; 144:1588-1599. [PMID: 28465334 DOI: 10.1242/dev.139055] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamus, which regulates fundamental aspects of physiological homeostasis and behavior, is a brain region that exhibits highly conserved anatomy across vertebrate species. Its development involves conserved basic mechanisms of induction and patterning, combined with a more plastic process of neuronal fate specification, to produce brain circuits that mediate physiology and behavior according to the needs of each species. Here, we review the factors involved in the induction, patterning and neuronal differentiation of the hypothalamus, highlighting recent evidence that illustrates how changes in Wnt/β-catenin signaling during development may lead to species-specific form and function of this important brain structure.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Tanaka S, Hosokawa H, Weinberg ES, Maegawa S. Chordin and dickkopf-1b are essential for the formation of head structures through activation of the FGF signaling pathway in zebrafish. Dev Biol 2017; 424:189-197. [PMID: 28259755 DOI: 10.1016/j.ydbio.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
The ability of the Spemann organizer to induce dorsal axis formation is dependent on downstream factors of the maternal Wnt/β-catenin signaling pathway. The fibroblast growth factor (FGF) signaling pathway has been identified as one of the downstream components of the maternal Wnt/β-catenin signaling pathway. The ability of the FGF signaling pathway to induce the formation of a dorsal axis with a complete head structure requires chordin (chd) expression; however, the molecular mechanisms involved in this developmental process, due to activation of FGF signaling, remain unclear. In this study, we showed that activation of the FGF signaling pathway induced the formation of complete head structures through the expression of chd and dickkopf-1b (dkk1b). Using the organizer-deficient maternal mutant, ichabod, we identified dkk1b as a novel downstream factor in the FGF signaling pathway. We also demonstrate that dkk1b expression is necessary, after activation of the FGF signaling pathway, to induce neuroectoderm patterning along the anteroposterior (AP) axis and for formation of complete head structures. Co-injection of chd and dkk1b mRNA resulted in the formation of a dorsal axis with a complete head structure in ichabod embryos, confirming the role of these factors in this developmental process. Unexpectedly, we found that chd induced dkk1b expression in ichabod embryos at the shield stage. However, chd failed to maintain dkk1b expression levels in cells of the shield and, subsequently, in the cells of the prechordal plate after mid-gastrula stage. In contrast, activation of the FGF signaling pathway maintained the dkk1b expression from the beginning of gastrulation to early somitogenesis. In conclusion, activation of the FGF signaling pathway induces the formation of a dorsal axis with a complete head structure through the expression of chd and subsequent maintenance of dkk1b expression levels.
Collapse
Affiliation(s)
- Shingo Tanaka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Eric S Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shingo Maegawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
18
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
19
|
Thisse B, Thisse C. Formation of the vertebrate embryo: Moving beyond the Spemann organizer. Semin Cell Dev Biol 2015; 42:94-102. [PMID: 25999320 DOI: 10.1016/j.semcdb.2015.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
During the course of their classic experiments, Hilde Mangold and Hans Spemann discovered that the dorsal blastopore lip of an amphibian gastrula was able to induce formation of a complete embryonic axis when transplanted into the ventral side of a host gastrula embryo. Since then, the inducing activity of the dorsal lip has been known as the Spemann or dorsal organizer. During the past 25 years, studies performed in a variety of species have led to the identification of molecular factors associated with the properties of this tissue. However, none of them is, by itself, able to induce formation of the main body axis from a population of naive pluripotent embryonic cells. Recently, experiments performed using the zebrafish (Danio rerio) revealed that the organizing activities present in the embryo are not restricted to the Spemann organizer but are distributed along the entire blastula/gastrula margin. These organizing activities result from the interaction between two opposing gradients of morphogens, BMP and Nodal, that are the primary signals that trigger the cascade of developmental events leading to the organization of the embryo. These studies mark the end of the era during which developmental biologists saw the Spemann organizer as the core element for the organization of the vertebrate embryonic axis and, instead, provides opportunities for the experimental control of morphogenesis starting with a population of embryonic pluripotent cells that will be instructed using those two morphogen gradients.
Collapse
Affiliation(s)
- Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
20
|
Xu X, He Y, Sun L, Ma S, Luo C. Maternal Vsx1 plays an essential role in regulating prechordal mesendoderm and forebrain formation in zebrafish. Dev Biol 2014; 394:264-76. [PMID: 25150888 DOI: 10.1016/j.ydbio.2014.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/15/2022]
Abstract
Prechordal mesendoderm (PME) is a derivative of gastrula organizer underlying the anterior neural plate of vertebrate embryos. It has been firmly established that PME is critical for head induction and anterior-posterior patterning. Therefore, the establishment of PME in a desired shape and size at a correct position during early embryogenesis is crucial for normal head patterning. However, it remains largely unclear how the desired form and size of PME is generated at a predestined position during early embryogenesis. Here we show that in zebrafish a maternal transcription repressor Vsx1 is essential for this early developmental regulation. Knocking down maternal vsx1 resulted in impaired PME formation and progression associated with a deficient and posteriorized forebrain. Loss- and gain-of-function experiments showed that maternal Vsx1 is essential for repressing ntl ectopic expression in more animal region at early gastrula stages. Chromatin immunoprecipitation assay in combination with core consensus sequence mutation analysis further revealed that maternal Vsx1 can directly repress ntl transcription by binding to the proximal promoter at a specific site. Simultaneous inhibition of ntl function could successfully suppress the defects of both PME and forebrain formation in maternal Vsx1 knockdown embryos. Our results reveal a pivotal role for maternal Vsx1 as a direct transcriptional repressor of ntl expression at the margin of the zebrafish gastrula to ensure directional cell polarization and migration of PME cells.
Collapse
Affiliation(s)
- Xiaofeng Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ying He
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lei Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shanshan Ma
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Chen Luo
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
21
|
Rong X, Chen C, Zhou P, Zhou Y, Li Y, Lu L, Liu Y, Zhou J, Duan C. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos. PLoS One 2014; 9:e99514. [PMID: 24918770 PMCID: PMC4053527 DOI: 10.1371/journal.pone.0099514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/15/2014] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.
Collapse
Affiliation(s)
- Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Chen Chen
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Pin Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yumei Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- * E-mail: (CD); (JZ)
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (CD); (JZ)
| |
Collapse
|
22
|
Range R. Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genesis 2014; 52:222-34. [PMID: 24549984 DOI: 10.1002/dvg.22759] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 02/01/2023]
Abstract
The molecular mechanisms used by deuterostome embryos (vertebrates, urochordates, cephalochordates, hemichordates, and echinoderms) to specify and then position the anterior neuroectoderm (ANE) along the anterior-posterior axis are incompletely understood. Studies in several deuterostome embryos suggest that the ANE is initially specified by an early, broad regulatory state. Then, a posterior-to-anterior wave of respecification restricts this broad ANE potential to the anterior pole. In vertebrates, sea urchins and hemichordates a posterior-anterior gradient of Wnt/β-catenin signaling plays an essential and conserved role in this process. Recent data collected from the basal deuterostome sea urchin embryo suggests that positioning the ANE to the anterior pole involves more than the Wnt/β-catenin pathway, instead relying on the integration of information from the Wnt/β-catenin, Wnt/JNK, and Wnt/PKC pathways. Moreover, comparison of functional and expression data from the ambulacrarians, invertebrate chordates, and vertebrates strongly suggests that this Wnt network might be an ANE positioning mechanism shared by all deuterostomes.
Collapse
Affiliation(s)
- Ryan Range
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
23
|
Stewart S, Gomez AW, Armstrong BE, Henner A, Stankunas K. Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration. Cell Rep 2014; 6:482-98. [PMID: 24485659 PMCID: PMC4009375 DOI: 10.1016/j.celrep.2014.01.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/29/2013] [Accepted: 01/07/2014] [Indexed: 01/20/2023] Open
Abstract
Zebrafish fully regenerate lost bone, including after fin amputation, through a process mediated by dedifferentiated, lineage-restricted osteoblasts. Mechanisms controlling the osteoblast regenerative program from its initiation through reossification are poorly understood. We show that fin amputation induces a Wnt/β-catenin-dependent epithelial to mesenchymal transformation (EMT) of osteoblasts in order to generate proliferative Runx2+ preosteoblasts. Localized Wnt/β-catenin signaling maintains this progenitor population toward the distal tip of the regenerative blastema. As they become proximally displaced, preosteoblasts upregulate sp7 and subsequently mature into re-epithelialized Runx2−/sp7+ osteoblasts that extend preexisting bone. Auto-crine bone morphogenetic protein (BMP) signaling promotes osteoblast differentiation by activating sp7 expression and counters Wnt by inducing Dickkopf-related Wnt antagonists. As such, opposing activities of Wnt and BMP coordinate the simultaneous demand for growth and differentiation during bone regeneration. This hierarchical signaling network model provides a conceptual framework for understanding innate bone repair and regeneration mechanisms and rationally designing regenerative therapeutics.
Collapse
Affiliation(s)
- Scott Stewart
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Alan W Gomez
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Astra Henner
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
24
|
Han HW, Chou CM, Chu CY, Cheng CH, Yang CH, Hung CC, Hwang PP, Lee SJ, Liao YF, Huang CJ. The Nogo-C2/Nogo receptor complex regulates the morphogenesis of zebrafish lateral line primordium through modulating the expression of dkk1b, a Wnt signal inhibitor. PLoS One 2014; 9:e86345. [PMID: 24466042 PMCID: PMC3897714 DOI: 10.1371/journal.pone.0086345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022] Open
Abstract
The fish lateral line (LL) is a mechanosensory system closely related to the hearing system of higher vertebrates, and it is composed of several neuromasts located on the surface of the fish. These neuromasts can detect changes in external water flow, to assist fish in maintaining a stationary position in a stream. In the present study, we identified a novel function of Nogo/Nogo receptor signaling in the formation of zebrafish neuromasts. Nogo signaling in zebrafish, like that in mammals, involves three ligands and four receptors, as well as three co-receptors (TROY, p75, and LINGO-1). We first demonstrated that Nogo-C2, NgRH1a, p75, and TROY are able to form a Nogo-C2 complex, and that disintegration of this complex causes defective neuromast formation in zebrafish. Time-lapse recording of the CldnB::lynEGFP transgenic line revealed that functional obstruction of the Nogo-C2 complex causes disordered morphogenesis, and reduces rosette formation in the posterior LL (PLL) primordium during migration. Consistent with these findings, hair-cell progenitors were lost from the PLL primordium in p75, TROY, and Nogo-C2/NgRH1a morphants. Notably, the expression levels of pea3, a downstream marker of Fgf signaling, and dkk1b, a Wnt signaling inhibitor, were both decreased in p75, TROY, and Nogo-C2/NgRH1a morphants; moreover, dkk1b mRNA injection could rescue the defects in neuromast formation resulting from knockdown of p75 or TROY. We thus suggest that a novel Nogo-C2 complex, consisting of Nogo-C2, NgRH1a, p75, and TROY, regulates Fgf signaling and dkk1b expression, thereby ensuring stable organization of the PLL primordium.
Collapse
Affiliation(s)
- Hao-Wei Han
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Ming Chou
- Department of Biochemistry, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry, Taipei Medical University, Taipei, Taiwan
| | | | - Chin-Chun Hung
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shyh-Jye Lee
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (CJH); (YFL)
| | - Chang-Jen Huang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail: (CJH); (YFL)
| |
Collapse
|
25
|
Wylie AD, Fleming JAGW, Whitener AE, Lekven AC. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development. Dev Biol 2013; 386:53-63. [PMID: 24333179 DOI: 10.1016/j.ydbio.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022]
Abstract
wnt8a Is essential for normal patterning during vertebrate embryonic development, and either gain or loss-of-function gene dysregulation results in severe axis malformations. The zebrafish wnt8a locus is structured such that transcripts may possess two regulatory 3' untranslated regions (UTRs), raising the possibility of post-transcriptional regulation as an important mode of wnt8a signaling control. To determine whether both UTRs contribute to post-transcriptional wnt8a gene regulation, each UTR (UTR1 and UTR2) was tested in transient and transgenic reporter assays. Both UTRs suppress EGFP reporter expression in cis, with UTR2 exhibiting a more pronounced effect. UTR2 contains a 6 base sequence necessary for UTR2 regulatory function that is complementary to the seed of the microRNA, miR-430. A target protector morpholino that overlaps the seed complement stabilizes both reporter mRNAs and wnt8a mRNAs, and produces phenotypic abnormalities consistent with wnt8a gain-of-function. In rescue assays, specific functions can be attributed to each of the two wnt8a proteins encoded by the locus. An interplay of wnt8a.1 and wnt8a.2 regulates neural and mesodermal patterning and morphogenesis as well as patterning between brain subdivisions. Thus, post-transcriptional control of wnt8a is essential to fine tune the balance of the signaling outputs of the complex wnt8a locus.
Collapse
Affiliation(s)
- Annika D Wylie
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Jo-Ann G W Fleming
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Amy E Whitener
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Arne C Lekven
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States.
| |
Collapse
|
26
|
Angonin D, Van Raay TJ. Nkd1 functions as a passive antagonist of Wnt signaling. PLoS One 2013; 8:e74666. [PMID: 24009776 PMCID: PMC3756965 DOI: 10.1371/journal.pone.0074666] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022] Open
Abstract
Wnt signaling is involved in many aspects of development and in the homeostasis of stem cells. Its importance is underscored by the fact that misregulation of Wnt signaling has been implicated in numerous diseases, especially colorectal cancer. However, how Wnt signaling regulates itself is not well understood. There are several Wnt negative feedback regulators, which are active antagonists of Wnt signaling, but one feedback regulator, Nkd1, has reduced activity compared to other antagonists, yet is still a negative feedback regulator. Here we describe our efforts to understand the role of Nkd1 using Wnt signaling compromised zebrafish mutant lines. In several of these lines, Nkd1 function was not any more active than it was in wild type embryos. However, we found that Nkd1’s ability to antagonize canonical Wnt/β-catenin signaling was enhanced in the Wnt/Planar Cell Polarity mutants silberblick (slb/wnt11) and trilobite (tri/vangl2). While slb and tri mutants do not display alterations in canonical Wnt signaling, we found that they are hypersensitive to it. Overexpression of the canonical Wnt/β-catenin ligand Wnt8a in slb or tri mutants resulted in dorsalized embryos, with tri mutants being much more sensitive to Wnt8a than slb mutants. Furthermore, the hyperdorsalization caused by Wnt8a in tri could be rescued by Nkd1. These results suggest that Nkd1 functions as a passive antagonist of Wnt signaling, functioning only when homeostatic levels of Wnt signaling have been breached or when Wnt signaling becomes destabilized.
Collapse
Affiliation(s)
- Diane Angonin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Terence J. Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Generation and characterization of a transgenic zebrafish expressing the reverse tetracycline transactivator. J Genet Genomics 2013; 40:523-31. [PMID: 24156918 DOI: 10.1016/j.jgg.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/20/2013] [Accepted: 06/19/2013] [Indexed: 01/27/2023]
Abstract
Conditional expression of a target gene during zebrafish development is a powerful approach to elucidate gene functions. The tetracycline-controlled systems have been successfully used in the modulation of gene expression in mammalian cells, but few lines of zebrafish carrying these systems are currently available. In this study, we had generated a stable transgenic zebrafish line that ubiquitously expressed the second-generation of reverse Tet transactivator (rtTA-M2). Southern blotting analysis and high-throughput genome sequencing verified that a single copy of rtTA-M2 gene had stably integrated into the zebrafish genome. After induction with doxycycline (Dox), a strong green fluorescent protein (GFP) was seen in rtTA-transgenic eggs injected with pTRE-EGFP plasmids. The fluorescent signal gradually decreased after the withdrawal of Dox and disappeared. However, leaky expression of GFP was undetectable before Dox-induction. Additionally, transgenic embryos expressing rtTA-M2 exhibited no obvious defects in morphological phenotypes, hatching behavior and expression patterns of developmental marker genes, suggesting that rtTA-M2 had little effect on the development of transgenic zebrafish. Moreover, expressed Dickkopf-1 (DKK1) in pTRE-DKK1-injected embryos led to alterations in the expression of marker genes associated with Wnt signaling. Thus, this rtTA-transgenic zebrafish can be utilized to dissect functions of genes in a temporal manner.
Collapse
|
28
|
Full transcriptome analysis of early dorsoventral patterning in zebrafish. PLoS One 2013; 8:e70053. [PMID: 23922899 PMCID: PMC3726443 DOI: 10.1371/journal.pone.0070053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway.
Collapse
|
29
|
Wada H, Ghysen A, Asakawa K, Abe G, Ishitani T, Kawakami K. Wnt/Dkk negative feedback regulates sensory organ size in zebrafish. Curr Biol 2013; 23:1559-65. [PMID: 23891113 DOI: 10.1016/j.cub.2013.06.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/16/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022]
Abstract
Correct organ size must involve a balance between promotion and inhibition of cell proliferation. A mathematical model has been proposed in which an organ is assumed to produce its own growth activator as well as a growth inhibitor [1], but there is as yet no molecular evidence to support this model [2]. The mechanosensory organs of the fish lateral line system (neuromasts) are composed of a core of sensory hair cells surrounded by nonsensory support cells. Sensory cells are constantly replaced and are regenerated from surrounding nonsensory cells [3], while each organ retains the same size throughout life. Moreover, neuromasts also bud off new neuromasts, which stop growing when they reach the same size [4, 5]. Here, we show that the size of neuromasts is controlled by a balance between growth-promoting Wnt signaling activity in proliferation-competent cells and Wnt-inhibiting Dkk activity produced by differentiated sensory cells. This negative feedback loop from Dkk (secreted by differentiated cells) on Wnt-dependent cell proliferation (in surrounding cells) also acts during regeneration to achieve size constancy. This study establishes Wnt/Dkk as a novel mechanism to determine the final size of an organ.
Collapse
Affiliation(s)
- Hironori Wada
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 322-0012, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Lawton AK, Nandi A, Stulberg MJ, Dray N, Sneddon MW, Pontius W, Emonet T, Holley SA. Regulated tissue fluidity steers zebrafish body elongation. Development 2013; 140:573-82. [PMID: 23293289 DOI: 10.1242/dev.090381] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tailbud is the posterior leading edge of the growing vertebrate embryo and consists of motile progenitors of the axial skeleton, musculature and spinal cord. We measure the 3D cell flow field of the zebrafish tailbud and identify changes in tissue fluidity revealed by reductions in the coherence of cell motion without alteration of cell velocities. We find a directed posterior flow wherein the polarization between individual cell motion is high, reflecting ordered collective migration. At the posterior tip of the tailbud, this flow makes sharp bilateral turns facilitated by extensive cell mixing due to increased directional variability of individual cell motions. Inhibition of Wnt or Fgf signaling or cadherin 2 function reduces the coherence of the flow but has different consequences for trunk and tail extension. Modeling and additional data analyses suggest that the balance between the coherence and rate of cell flow determines whether body elongation is linear or whether congestion forms within the flow and the body axis becomes contorted.
Collapse
Affiliation(s)
- Andrew K Lawton
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081. [PMID: 23085770 DOI: 10.1101/cshperspect.a015081] [Citation(s) in RCA: 495] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
32
|
Range RC, Angerer RC, Angerer LM. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos. PLoS Biol 2013; 11:e1001467. [PMID: 23335859 PMCID: PMC3545869 DOI: 10.1371/journal.pbio.1001467] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022] Open
Abstract
Three different Wnt signaling pathways function to restrict the anterior neuroectoderm state to the anterior end of the sea urchin embryo, a mechanism of anterior fate restriction that could be conserved among deuterostomes. Patterning the neuroectoderm along the anterior–posterior (AP) axis is a critical event in the early development of deuterostome embryos. However, the mechanisms that regulate the specification and patterning of the neuroectoderm are incompletely understood. Remarkably, the anterior neuroectoderm (ANE) of the deuterostome sea urchin embryo expresses many of the same transcription factors and secreted modulators of Wnt signaling, as does the early vertebrate ANE (forebrain/eye field). Moreover, as is the case in vertebrate embryos, confining the ANE to the anterior end of the embryo requires a Wnt/β-catenin-dependent signaling mechanism. Here we use morpholino- or dominant negative-mediated interference to demonstrate that the early sea urchin embryo integrates information not only from Wnt/β-catenin but also from Wnt/Fzl5/8-JNK and Fzl1/2/7-PKC pathways to provide precise spatiotemporal control of neuroectoderm patterning along its AP axis. Together, through the Wnt1 and Wnt8 ligands, they orchestrate a progressive posterior-to-anterior wave of re-specification that restricts the initial, ubiquitous, maternally specified, ANE regulatory state to the most anterior blastomeres. There, the Wnt receptor antagonist, Dkk1, protects this state through a negative feedback mechanism. Because these different Wnt pathways converge on the same cell fate specification process, our data suggest they may function as integrated components of an interactive Wnt signaling network. Our findings provide strong support for the idea that the sea urchin ANE regulatory state and the mechanisms that position and define its borders represent an ancient regulatory patterning system that was present in the common echinoderm/vertebrate ancestor. The initial regulatory state of most cells in many deuterostome embryos, including those of vertebrates and sea urchins, supports anterior neural fate specification. It is important to restrict this neurogenic potential to the anterior end of the embryo during early embryogenesis, but the molecular mechanisms by which this re-specification of posterior fate occurs are incompletely understood in any embryo. The sea urchin embryo is ideally suited to study this process because, in contrast to vertebrates, anterior–posterior neuroectoderm patterning occurs independently of dorsal-ventral axis patterning and takes place before the complex cell movements of gastrulation. In this study, we show that a linked, three-step process involving at least three different Wnt signaling pathways provides precise spatiotemporal restriction of the anterior neuroectoderm regulatory state to the anterior end of the sea urchin embryo. Because these three pathways impinge on the same developmental process, they could be functioning as an integrated Wnt signaling network. Moreover, striking parallels among gene expression patterns and functional studies suggest that this mechanism of anterior fate restriction could be highly conserved among deuterostomes.
Collapse
Affiliation(s)
- Ryan C. Range
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert C. Angerer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynne M. Angerer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Flowers GP, Topczewska JM, Topczewski J. A zebrafish Notum homolog specifically blocks the Wnt/β-catenin signaling pathway. Development 2012; 139:2416-25. [PMID: 22669824 DOI: 10.1242/dev.063206] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple developmental processes require tightly controlled Wnt signaling, and its misregulation leads to congenital abnormalities and diseases. Glypicans are extracellular proteins that modulate the Wnt pathway. In addition to interacting with Wnts, these glycosophosphotidylinositol (GPI)-anchored, heparan-sulfate proteoglycans bind ligands of several other signaling pathways in both vertebrates and invertebrates. In Drosophila, Notum, a secreted α/β-hydrolase, antagonizes the signaling of the prototypical Wnt Wingless (Wg), by releasing glypicans from the cell surface. Studies of mammalian Notum indicate promiscuous target specificity in cell culture, but the role of Notum in vertebrate development has not been studied. Our work shows that zebrafish Notum 1a, an ortholog of mammalian Notum, contributes to a self-regulatory loop that restricts Wnt/β-catenin signaling. Notum 1a does not interact with Glypican 4, an essential component of the Wnt/planar cell polarity (PCP) pathway. Our results suggest a surprising specific role of Notum in the developing vertebrate embryo.
Collapse
Affiliation(s)
- G Parker Flowers
- Northwestern University Feinberg School of Medicine, Department of Pediatrics, Children's Memorial Research Center, Children's Plaza 2300, Box 204, Chicago, IL 60614, USA
| | | | | |
Collapse
|
34
|
Cadwalader EL, Condic ML, Yost HJ. 2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly. Development 2012; 139:1296-305. [PMID: 22357927 DOI: 10.1242/dev.078238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-sulfotransferases modify heparan sulfate proteoglycans (HSPGs) by catalyzing the transfer of a sulfate to a specific position on heparan sulfate glycosaminoglycan (GAG) chains. Although the roles of specific HSPG modifications have been described in cell culture and invertebrates, little is known about their functions or abilities to modulate specific cell signaling pathways in vertebrate development. Here, we report that 2-O-sulfotransferase (2-OST) is an essential component of canonical Wnt signaling in zebrafish development. 2-OST-deficient embryos have reduced GAG chain sulfation and are refractory to exogenous Wnt8 overexpression. Embryos in which maternally encoded 2-OST is knocked down have normal activation of several zygotic mesoderm, endoderm and ectoderm patterning genes, but have decreased deep cell adhesion and fail to initiate epiboly, which can be rescued by re-expression of 2-OST protein. Reduced cell adhesion and altered cell cycle regulation in 2-OST-deficient embryos are associated with decreased β-catenin and E-cadherin protein levels at cell junctions, and these defects can be rescued by reactivation of the intracellular Wnt pathway, utilizing stabilized β-catenin or dominant-negative Gsk3, but not by overexpression of Wnt8 ligand. Together, these results indicate that 2-OST functions within the Wnt pathway, downstream of Wnt ligand signaling and upstream of Gsk3β and β-catenin intracellular localization and function.
Collapse
Affiliation(s)
- Erin L Cadwalader
- Department of Neurobiology and Anatomy, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
35
|
Miyake A, Nihno S, Murakoshi Y, Satsuka A, Nakayama Y, Itoh N. Neucrin, a novel secreted antagonist of canonical Wnt signaling, plays roles in developing neural tissues in zebrafish. Mech Dev 2012; 128:577-90. [PMID: 22265871 DOI: 10.1016/j.mod.2012.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
Abstract
Wnt signaling plays crucial roles in neural development. We previously identified Neucrin, a neural-specific secreted antagonist of canonical Wnt/β-catenin signaling, in humans and mice. Neucrin has one cysteine-rich domain, in which the positions of 10 cysteine residues are similar to those in the second cysteine-rich domain of Dickkopfs, secreted Wnt antagonists. Here, we have identified zebrafish neucrin to understand its roles in vivo. Zebrafish Neucrin also has one cysteine-rich domain, which is significantly similar to that of mouse Neucrin. Zebrafish neucrin was also predominantly expressed in developing neural tissues. To examine roles of neucrin in neural development, we analyzed neucrin knockdown embryos. Neural development in zebrafish embryos was impaired by the knockdown of neucrin. The knockdown of neucrin caused increased expression of the Wnt/β-catenin target genes. In contrast, overexpression of neucrin reduced the expression of the Wnt/β-catenin target genes. The knockdown of neucrin affected specification of dorsal region in the midbrain and hindbrain. The knockdown of neucrin also suppressed neuronal differentiation and caused increased cell proliferation and apoptosis in developing neural tissues. Neucrin is a unique secreted Wnt antagonist that is predominantly expressed in developing neural tissues and plays roles in neural development in zebrafish.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Wang WD, Melville DB, Montero-Balaguer M, Hatzopoulos AK, Knapik EW. Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population. Dev Biol 2011; 360:173-85. [PMID: 21963426 PMCID: PMC3236700 DOI: 10.1016/j.ydbio.2011.09.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 08/24/2011] [Accepted: 09/15/2011] [Indexed: 01/18/2023]
Abstract
The neural crest is a stem cell-like population exclusive to vertebrates that gives rise to many different cell types including chondrocytes, neurons and melanocytes. Arising from the neural plate border at the intersection of Wnt and Bmp signaling pathways, the complexity of neural crest gene regulatory networks has made the earliest steps of induction difficult to elucidate. Here, we report that tfap2a and foxd3 participate in neural crest induction and are necessary and sufficient for this process to proceed. Double mutant tfap2a (mont blanc, mob) and foxd3 (mother superior, mos) mob;mos zebrafish embryos completely lack all neural crest-derived tissues. Moreover, tfap2a and foxd3 are expressed during gastrulation prior to neural crest induction in distinct, complementary, domains; tfap2a is expressed in the ventral non-neural ectoderm and foxd3 in the dorsal mesendoderm and ectoderm. We further show that Bmp signaling is expanded in mob;mos embryos while expression of dkk1, a Wnt signaling inhibitor, is increased and canonical Wnt targets are suppressed. These changes in Bmp and Wnt signaling result in specific perturbations of neural crest induction rather than general defects in neural plate border or dorso-ventral patterning. foxd3 overexpression, on the other hand, enhances the ability of tfap2a to ectopically induce neural crest around the neural plate, overriding the normal neural plate border limit of the early neural crest territory. Although loss of either Tfap2a or Foxd3 alters Bmp and Wnt signaling patterns, only their combined inactivation sufficiently alters these signaling gradients to abort neural crest induction. Collectively, our results indicate that tfap2a and foxd3, in addition to their respective roles in the differentiation of neural crest derivatives, also jointly maintain the balance of Bmp and Wnt signaling in order to delineate the neural crest induction domain.
Collapse
Affiliation(s)
- Wen-Der Wang
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - David B. Melville
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | - Antonis K. Hatzopoulos
- Division of Cardiovascular Medicine, Department of Medicine and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Ela W. Knapik
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Developmental Biology, Institute Biology I, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Qian GH, Wang YQ. [Wnt signaling pathway and the Evo-Devo of deuterostome axis]. YI CHUAN = HEREDITAS 2011; 33:684-94. [PMID: 22049680 DOI: 10.3724/sp.j.1005.2011.00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A series of signal transduction pathways have been found to regulate the polarity establishment and formation of animal primary body axis. Among them, Wnt signaling pathway is extremely conserved and several key components in the pathway have been identified in the demosponge lineage. This implies that it is one of the earliest pathways involved in the ancestral metazoan axis development and might play an important role in specification and development of posterior and ventral fate of animal axis. Recently, with the establishment of functional experiments in vitro, the body plan formation has been found to be affected, in varying degrees, by many genes in the Wnt signaling pathway, such as members of wnt gene family, maternal gene beta-catenin and some transcription factor encoding genes. In this review, we analyzed the evolutionary origin of the wnt gene family involved in development of metazoan body plans, and then made a brief review on the roles of canonical Wnt/beta-catenin signaling in the polarity establishment and formation of primary body axis in diverse deuterostomes including sea urchin, amphioxus, zebrafish, frog, and mouse.
Collapse
Affiliation(s)
- Guang-Hui Qian
- School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | | |
Collapse
|
38
|
Untergasser G, Martowicz A, Hermann M, Töchterle S, Meyer D. Distinct expression patterns of dickkopf genes during late embryonic development of Danio rerio. Gene Expr Patterns 2011; 11:491-500. [PMID: 21889616 DOI: 10.1016/j.gep.2011.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 11/28/2022]
Abstract
Dickkopf (dkk) genes belong to the family of secreted wnt-inhibitors with conserved cysteine-rich domains. In contrast to the prototype dkk1, dkk3 does not modulate canonical Wnt/β-catenin signalling. Until now, neither functions nor interaction partners of dkk3 in lower vertebrates have been described. In this study we cloned two dkk3 homologues dkk3a(dkk3l) and dkk3b(dkk3) and a dkk1 homologue dkk1a of the zebrafish and studied their expression patterns during embryonic development in comparison to the known dkk1b gene. Moreover, mutants with defects in hedgehog signalling (smo), notch (mib) signalling, nodal signalling (Zoep) or retinoic acid synthesis (neckless) were analyzed for changes in dkk3 gene expression. In situ hybridization analyses showed a dynamic expression of dkk1a and dkk1b primarily in epidermal structures of the otic vesicle, lens, branchial arches and fin folds. While dkk1a was expressed mainly in deep tissues, dkk1b expression was mainly found in protrusions at the outer surface of the branchial arch epidermis. In contrast, dkk3 genes showed expression in different tissues. Strong signals for dkk3a(dkk3l) were present in various neuronal structures of the head, whereas dkk3b(dkk3) expression was restricted mainly to endocrine cells of the pancreas and to the brachial arches. In summary, both dkk3 genes display a unique and distinct expression pattern in late embryonic development, pointing to a specific role during neuronal and pancreatic cell differentiation.
Collapse
Affiliation(s)
- Gerold Untergasser
- Division of Internal Medicine V, Medical University of Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
39
|
Hu S, Wu Z, Yan Y, Li Y. Sox31 is involved in central nervous system anteroposterior regionalization through regulating the organizer activity in zebrafish. Acta Biochim Biophys Sin (Shanghai) 2011; 43:387-99. [PMID: 21467072 DOI: 10.1093/abbs/gmr025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sox superfamily proteins are DNA-binding transcriptional factors that contain highly conserved high-mobility group (HMG) box and take part in various development process. Sox31 is a maternal factor supplied in the oocyte and starts its zygotic expression during mid-blastula transition (MBT). From gastrulation stage, it mainly resides in neural tissue. Ectopically expression of Sox31 mRNA leads to cyclopia, fusion eyes, or totally loss of anterior head structure, in accompany with severe notochord defects. Molecular markers indicate that forebrain tissue reduces sharply while the posterior neural tissue expands anteriorly. In addition, organizer specification is also suppressed. Oppositely, an antisense morpholino designed functionally knockdown Sox31 causes typically dorsalized phenotype and reversed central nervous system (CNS) anteroposterior (AP) patterning. Gain of function with chimeric construct, where Sox31 HMG DNA binding domain is fused to a transcription activation domain (VP16) or transcription suppression domain (EnR), suggests that Sox31 acts as a transcriptional suppressor in vivo. The expression of Bozozok (Dharma), a direct target gene of pre-MBT Wnt/β-catenin signal, is suppressed by Sox31. Thus, to unveil the relationship between Sox31 and β-catenin-related transcriptional activity, we designed Top/Fop luciferase assay in HEK293T cells, and found that Sox31 could indeed suppress Tcf/Lef-dependent transcriptional activity without influencing the stability of β-catenin. Moreover, post-MBT Wnt signal was reduced in Sox31 morphants corresponding to the suppressed hindbrain structure, while phenotypic defects caused by excessive Sox31 could be rescued by Wnt antagonist dkk1. Taken together, Sox31 functions as an essential CNS AP patterning determinant and coordinates the CNS AP patterning process with organizer specification.
Collapse
Affiliation(s)
- Shengnan Hu
- Laboratory of Molecular Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
40
|
Ribeiro D, Ellwanger K, Glagow D, Theofilopoulos S, Corsini NS, Martin-Villalba A, Niehrs C, Arenas E. Dkk1 regulates ventral midbrain dopaminergic differentiation and morphogenesis. PLoS One 2011; 6:e15786. [PMID: 21347250 PMCID: PMC3037958 DOI: 10.1371/journal.pone.0015786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/24/2010] [Indexed: 12/17/2022] Open
Abstract
Dickkopf1 (Dkk1) is a Wnt/β-catenin inhibitor that participates in many processes during embryonic development. One of its roles during embryogenesis is to induce head formation, since Dkk1-null mice lack head structures anterior to midbrain. The Wnt/β-catenin pathway is also known to regulate different aspects of ventral midbrain (VM) dopaminergic (DA) neuron development and, in vitro, Dkk1-mediated inhibition of the Wnt/β-catenin pathway improves the DA differentiation in mouse embryonic stem cells (mESC). However, the in vivo function of Dkk1 on the development of midbrain DA neurons remains to be elucidated. Here we examined Dkk1+/− embryos and found that Dkk1 is required for the differentiation of DA precursors/neuroblasts into DA neurons at E13.5. This deficit persisted until E17.5, when a defect in the number and distribution of VM DA neurons was detected. Furthermore, analysis of the few Dkk1−/− embryos that survived until E17.5 revealed a more severe loss of midbrain DA neurons and morphogenesis defects. Our results thus show that Dkk1 is required for midbrain DA differentiation and morphogenesis.
Collapse
Affiliation(s)
- Diogo Ribeiro
- Section of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kristina Ellwanger
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Désirée Glagow
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Spyridon Theofilopoulos
- Section of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Nina S. Corsini
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ernest Arenas
- Section of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
41
|
Fossat N, Jones V, Khoo PL, Bogani D, Hardy A, Steiner K, Mukhopadhyay M, Westphal H, Nolan PM, Arkell R, Tam PPL. Stringent requirement of a proper level of canonical WNT signalling activity for head formation in mouse embryo. Development 2011; 138:667-76. [PMID: 21228006 DOI: 10.1242/dev.052803] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mouse embryos, loss of Dickkopf-1 (DKK1) activity is associated with an ectopic activation of WNT signalling responses in the precursors of the craniofacial structures and leads to a complete truncation of the head at early organogenesis. Here, we show that ENU-induced mutations of genes coding for two WNT canonical pathway factors, the co-receptor LRP6 and the transcriptional co-activator β-catenin, also elicit an ectopic signalling response and result in loss of the rostral tissues of the forebrain. Compound mutant embryos harbouring combinations of mutant alleles of Lrp6, Ctnnb1 and Dkk1 recapitulate the partial to complete head truncation phenotype of individual homozygous mutants. The demonstration of a synergistic interaction of Dkk1, Lrp6 and Ctnnb1 provides compelling evidence supporting the concepts that (1) stringent regulation of the level of canonical WNT signalling is necessary for head formation, (2) activity of the canonical pathway is sufficient to account for the phenotypic effects of mutations in three different components of the signal cascade and (3) rostral parts of the brain and the head are differentially more sensitive to canonical WNT signalling and their development is contingent on negative modulation of WNT signalling activity.
Collapse
Affiliation(s)
- Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Caveolin-1 regulates dorsoventral patterning through direct interaction with β-catenin in zebrafish. Dev Biol 2010; 344:210-23. [DOI: 10.1016/j.ydbio.2010.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 01/22/2023]
|
43
|
Seo J, Asaoka Y, Nagai Y, Hirayama J, Yamasaki T, Namae M, Ohata S, Shimizu N, Negishi T, Kitagawa D, Kondoh H, Furutani-Seiki M, Penninger JM, Katada T, Nishina H. Negative regulation of wnt11 expression by Jnk signaling during zebrafish gastrulation. J Cell Biochem 2010; 110:1022-37. [PMID: 20564202 DOI: 10.1002/jcb.22616] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Stress-induced Sapk/Jnk signaling is involved in cell survival and apoptosis. Recent studies have increased our understanding of the physiological roles of Jnk signaling in embryonic development. However, still unclear is the precise function of Jnk signaling during gastrulation, a critical step in the establishment of the vertebrate body plan. Here we use morpholino-mediated knockdown of the zebrafish orthologs of the Jnk activators Mkk4 and Mkk7 to examine the effect of Jnk signaling abrogation on early vertebrate embryogenesis. Depletion of zebrafish Mkk4b led to abnormal convergent extension (CE) during gastrulation, whereas Mkk7 morphants exhibited defective somitogenesis. Surprisingly, Mkk4b morphants displayed marked upregulation of wnt11, which is the triggering ligand of CE and stimulates Jnk activation via the non-canonical Wnt pathway. Conversely, ectopic activation of Jnk signaling by overexpression of an active form of Mkk4b led to wnt11 downregulation. Mosaic lineage tracing studies revealed that Mkk4b-Jnk signaling suppressed wnt11 expression in a non-cell-autonomous manner. These findings provide the first evidence that wnt11 itself is a downstream target of the Jnk cascade in the non-canonical Wnt pathway. Our work demonstrates that Jnk activation is indispensable for multiple steps during vertebrate body plan formation. Furthermore, non-canonical Wnt signaling may coordinate vertebrate CE movements by triggering Jnk activation that represses the expression of the CE-triggering ligand wnt11.
Collapse
Affiliation(s)
- Jungwon Seo
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Neucrin is a novel neural-specific secreted antagonist to canonical Wnt signaling. Biochem Biophys Res Commun 2009; 390:1051-5. [PMID: 19857465 DOI: 10.1016/j.bbrc.2009.10.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 10/21/2009] [Indexed: 11/23/2022]
Abstract
A gene encoding a novel secreted protein in mice and humans was identified, and named Neucrin. Mouse Neucrin consists of 343 amino acids with a cysteine-rich domain in its carboxyl terminal region. The positions of 10 cysteine residues in the cysteine-rich domain are similar to those of Dickkopfs (Dkks), secreted Wnt antagonists. However, whereas Dkks have two cysteine-rich domains, Neucrin has only one. Neucrin as well as Dkks bound to LDL receptor-related protein 6 and inhibited the stabilization of cytosolic beta-catenin, indicating that Neucrin is an antagonist of canonical Wnt signaling. Mouse Neucrin expression was not detected in any major tissues in the adult, but was detected in developing neural tissues, including the brain and spinal cord. The expression pattern of Neucrin is distinct from that of any Dkk. Neucrin is a unique secreted Wnt antagonist that is predominantly expressed in developing neural tissues.
Collapse
|
45
|
Viktorin G, Chiuchitu C, Rissler M, Varga ZM, Westerfield M. Emx3 is required for the differentiation of dorsal telencephalic neurons. Dev Dyn 2009; 238:1984-98. [PMID: 19650145 PMCID: PMC2975037 DOI: 10.1002/dvdy.22031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
emx3 is first expressed in prospective telencephalic cells at the anterior border of the zebrafish neural plate. Knockdown of Emx3 function by morpholino reduces the expression of markers specific to dorsal telencephalon, and impairs axon tract formation. Rescue of both early and late markers requires low-level expression of emx3 at the one- or two-somite stage. Higher emx3 expression levels cause dorsal telencephalic markers to expand ventrally, which points to a possible role of emx3 in specifying dorsal telencephalon and a potential new function for Wnt/beta-catenin pathway activation. In contrast to mice, where Emx2 plays a major role in dorsal telencephalic development, knockdown of zebrafish Emx2 apparently does not affect telencephalic development. Similarly, Emx1 knockdown has little effect. Previously, emx3 was thought to be fish-specific. However, we found all three emx orthologs in Xenopus tropicalis and opossum (Monodelphis domestica) genomes, indicating that emx3 was present in an ancestral tetrapod genome.
Collapse
Affiliation(s)
- Gudrun Viktorin
- Institute of Developmental Biology, University of Freiburg, Freiburg, Germany
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Christina Chiuchitu
- Institute of Developmental Biology, University of Freiburg, Freiburg, Germany
| | - Michael Rissler
- Institute of Developmental Biology, University of Freiburg, Freiburg, Germany
| | - Zoltán M. Varga
- Institute of Developmental Biology, University of Freiburg, Freiburg, Germany
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
46
|
Zoltewicz JS, Ashique AM, Choe Y, Lee G, Taylor S, Phamluong K, Solloway M, Peterson AS. Wnt signaling is regulated by endoplasmic reticulum retention. PLoS One 2009; 4:e6191. [PMID: 19593386 PMCID: PMC2703784 DOI: 10.1371/journal.pone.0006191] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 06/10/2009] [Indexed: 12/11/2022] Open
Abstract
Precise regulation of Wnt signaling is important in many contexts, as in development of the vertebrate forebrain, where excessive or ectopic Wnt signaling leads to severe brain defects. Mutation of the widely expressed oto gene causes loss of the anterior forebrain during mouse embryogenesis. Here we report that oto is the mouse ortholog of the gpi deacylase gene pgap1, and that the endoplasmic reticulum (ER)-resident Oto protein has a novel and deacylase-independent function during Wnt maturation. Oto increases the hydrophobicities of Wnt3a and Wnt1 by promoting the addition of glycophosphatidylinositol (gpi)-like anchors to these Wnts, which results in their retention in the ER. We also report that oto-deficient embryos exhibit prematurely robust Wnt activity in the Wnt1 domain of the early neural plate. We examine the effect of low oto expression on Wnt1 in vitro by knocking down endogenous oto expression in 293 and M14 melanoma cells using shRNA. Knockdown of oto results in increased Wnt1 secretion which is correlated with greatly enhanced canonical Wnt activity. These data indicate that oto deficiency increases Wnt signaling in vivo and in vitro. Finally, we address the mechanism of Oto-mediated Wnt retention under oto-abundant conditions, by cotransfecting Wnt1 with gpi-specific phospholipase D (GPI-PLD). The presence of GPI-PLD in the secretory pathway results in increased secretion of soluble Wnt1, suggesting that the gpi-like anchor lipids on Wnt1 mediate its retention in the ER. These data now provide a mechanistic framework for understanding the forebrain defects in oto mice, and support a role for Oto-mediated Wnt regulation during early brain development. Our work highlights a critical role for ER retention in regulating Wnt signaling in the mouse embryo, and gives insight into the notoriously inefficient secretion of Wnts.
Collapse
Affiliation(s)
- J. Susie Zoltewicz
- Ernest Gallo Clinic & Research Center, Emeryville, California, United States of America
- * E-mail: (JSZ); (ASP)
| | - Amir M. Ashique
- Ernest Gallo Clinic & Research Center, Emeryville, California, United States of America
| | - Youngshik Choe
- Ernest Gallo Clinic & Research Center, Emeryville, California, United States of America
| | - Gena Lee
- Ernest Gallo Clinic & Research Center, Emeryville, California, United States of America
| | - Stacy Taylor
- Ernest Gallo Clinic & Research Center, Emeryville, California, United States of America
| | - Khanhky Phamluong
- Ernest Gallo Clinic & Research Center, Emeryville, California, United States of America
| | - Mark Solloway
- Ernest Gallo Clinic & Research Center, Emeryville, California, United States of America
| | - Andrew S. Peterson
- Ernest Gallo Clinic & Research Center, Emeryville, California, United States of America
- * E-mail: (JSZ); (ASP)
| |
Collapse
|
47
|
Hoch RV, Rubenstein JL, Pleasure S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 2009; 20:378-86. [DOI: 10.1016/j.semcdb.2009.02.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 12/18/2022]
|
48
|
Normal forebrain development may require continual Wnt antagonism until mid-somitogenesis in zebrafish. Biochem Biophys Res Commun 2009; 381:717-21. [PMID: 19258008 DOI: 10.1016/j.bbrc.2009.02.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/23/2009] [Indexed: 11/22/2022]
Abstract
During normal forebrain development in vertebrates, rostral neural tissue must be protected from Wnt signals via the actions of locally expressed Wnt antagonistic factors. In zebrafish zygotic oep (Zoep) mutants, forebrain structure is severely disrupted with reduced expression of the Wnt antagonists secreted frizzled related protein1 and dickkopf1. To analyze the temporal effects of Wnt antagonism on forebrain development, we generated transgenic zebrafish that overexpressed the dominant negative form of frizzled8a (DNfz8a) in wild-type and Zoep mutants under the control of a heat-inducible promoter. This model allowed for assessment of the dynamics of Wnt antagonistic signaling during forebrain development. Our results demonstrated that overexpression of DNfz8a in Zoep embryos between 7 and 16hpf increased putative forebrain region demarcated by anf and distal-less2 expressions. These results suggest that normal forebrain development requires continual Wnt antagonism from the early gastrula to the mid-somitogenesis stage.
Collapse
|
49
|
Dickkopf (Dkk) 1 promotes the differentiation of mouse embryonic stem cells toward neuroectoderm. In Vitro Cell Dev Biol Anim 2008; 45:185-93. [PMID: 19057969 DOI: 10.1007/s11626-008-9157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 10/16/2008] [Indexed: 12/31/2022]
Abstract
Wnt signaling has been demonstrated to have extensive roles during embryogenesis. The Wnt family is highly conserved. In mice, there are 19 Wnt genes. Dickkopf (Dkk), through its interactions with Wnt co-receptors, low-density lipoprotein receptor-related protein (LRP), Frizzled and Kremen, can act as a negative regulator to block the Wnt-signaling pathway. There are four Dkk genes in the human genome, and three in that of the mouse. Dkk1 is involved in a variety of craniofacial developmental processes and behaves as a strong head inducer and limb regulator. Dkk1 mutant mice are embryonic-lethal. Here, we investigated the effects of Dkk1 on the differentiation of murine ESCs in both the ESC and embryoid body (EB) states. The results demonstrate that Dkk1 overexpression can initiate the differentiation program of ESCs toward neuroectoderm. We believe this finding can augment our understanding of mouse ESC differentiation.
Collapse
|
50
|
Korol O, Gupta RW, Mercola M. A novel activity of the Dickkopf-1 amino terminal domain promotes axial and heart development independently of canonical Wnt inhibition. Dev Biol 2008; 324:131-8. [PMID: 18840423 PMCID: PMC3038239 DOI: 10.1016/j.ydbio.2008.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 09/06/2008] [Accepted: 09/09/2008] [Indexed: 11/23/2022]
Abstract
The secreted Dickkopf-1 (Dkk1) protein mediates numerous cell fate decisions and morphogenetic processes. Its carboxyl terminal cysteine-rich region (termed C1) binds LRP5/6 and inhibits canonical Wnt signaling. Paradoxically, the isolated C1 domain of Dkk1 as well as Wnt antagonists that act by sequestering Wnts, such as Frz-B, WIF-1 and Crescent, are poor mimics of the inductive and patterning activities of Dkk1 critical for heart and axial development. To understand the basis for the unique properties of Dkk1, we investigated the function of its amino terminal cysteine-rich region (N1). N1 does not bind LRP or Kremen nor inhibit Wnt signaling and has had no known function. We show that it can synergize with BMP antagonism to induce prechordal and axial mesoderm when expressed as an independent protein in Xenopus embryos. Moreover, we show that it can function in trans to complement the activity of C1 protein to mediate two embryologic functions of Dkk1: induction of chordal and prechordal mesoderm and specification of heart tissue from non-cardiogenic mesoderm. Remarkably, N1 also synergizes with WIF-1 and Crescent, indicating that N1 signals independently of C1 and its interactions with LRP. Since cleavage of Dkk1 is not detected, these results define N1 as a novel signaling domain within the intact protein that is responsible for the potent effects of Dkk1 on the induction and patterning of the body axis and heart. We conclude that this new activity is also likely to synergize with canonical Wnt inhibitory in the numerous developmental and disease processes that involve Dkk1.
Collapse
Affiliation(s)
| | | | - Mark Mercola
- Address for Correspondence: Burnham Institute for Medical Research, 10901 N.Torrey Pines Road, La Jolla, CA 92037, Tel: 858-795-5242,
| |
Collapse
|