1
|
Padzińska-Pruszyńska IB, Taciak B, Kiraga Ł, Smolarska A, Górczak M, Kucharzewska P, Kubiak M, Szeliga J, Matejuk A, Król M. Targeting Cancer: Microenvironment and Immunotherapy Innovations. Int J Mol Sci 2024; 25:13569. [PMID: 39769334 PMCID: PMC11679359 DOI: 10.3390/ijms252413569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In 2024, the United States was projected to experience 2 million new cancer diagnoses and approximately 611,720 cancer-related deaths, reflecting a broader global trend in which cancer cases are anticipated to exceed 35 million by 2050. This increasing burden highlights ongoing challenges in cancer treatment despite significant advances that have reduced cancer mortality by 31% since 1991. Key obstacles include the disease's inherent heterogeneity and complexity, such as treatment resistance, cancer stem cells, and the multifaceted tumor microenvironment (TME). The TME-comprising various tumor and immune cells, blood vessels, and biochemical factors-plays a crucial role in tumor growth and resistance to therapies. Recent innovations in cancer treatment, particularly in the field of immuno-oncology, have leveraged insights into TME interactions. An emerging example is the FDA-approved therapy using tumor-infiltrating lymphocytes (TILs), demonstrating the potential of cell-based approaches in solid tumors. However, TIL therapy is just one of many strategies being explored. This review provides a comprehensive overview of the emerging field of immuno-oncology, focusing on how novel therapies targeting or harnessing components of the TME could enhance treatment efficacy and address persistent challenges in cancer care.
Collapse
Affiliation(s)
- Irena Barbara Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Jacek Szeliga
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| |
Collapse
|
2
|
Baloch AA, Steinhagen D, Gela D, Kocour M, Piačková V, Adamek M. Immune responses in carp strains with different susceptibility to carp edema virus disease. PeerJ 2023; 11:e15614. [PMID: 37465154 PMCID: PMC10351508 DOI: 10.7717/peerj.15614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/01/2023] [Indexed: 07/20/2023] Open
Abstract
Carp edema virus disease (CEVD), also known as koi sleepy disease (KSD), represents a serious threat to the carp industry. The expression of immune-related genes to CEV infections could lead to the selection of crucial biomarkers of the development of the disease. The expression of a total of eleven immune-related genes encoding cytokines (IL-1β, IL-10, IL-6a, and TNF-α2), antiviral response (Mx2), cellular receptors (CD4, CD8b1, and GzmA), immunoglobulin (IgM), and genes encoding-mucins was monitored in gills of four differently KSD-susceptible strains of carp (Amur wild carp, Amur Sasan, AS; Ropsha scaly carp, Rop; Prerov scaly carp, PS; and koi) on days 6 and 11 post-infection. Carp strains were infected through two cohabitation infection trials with CEV genogroups I or IIa. The results showed that during the infection with both CEV genogroups, KSD-susceptible koi induced an innate immune response with significant up-regulation (p < 0.05) of IL-1β, IL-10, IL-6a, and TNF-α2 genes on both 6 and 11 days post-infection (dpi) compared to the fish sampled on day 0. Compared to koi, AS and Rop strains showed up-regulation of IL-6a and TNF-α2 but no other cytokine genes. During the infection with CEV genogroup IIa, Mx2 was significantly up-regulated in all strains and peaked on 6 dpi in AS, PS, and Rop. In koi, it remained high until 11 dpi. With genogroup I infection, Mx2 was up-expressed in koi on 6 dpi and in PS on both 6 and 11 dpi. No significant differences were noticed in selected mucin genes expression measured in gills of any carp strains exposed to both CEV genogroups. During both CEV genogroups infections, the expression levels of most of the genes for T cell response, including CD4, CD8b1, and GzmA were down-regulated in AS and koi at all time points compared to day 0 control. The expression data for the above experimental trials suggest that both CEV genogroups infections in common carp strains lead to activation of the same expression pattern regardless of the fish's susceptibility towards the virus. The expression of the same genes in AS and koi responding to CEV genogroup IIa infection in mucosal tissues such as gill, gut, and skin showed the significant up-regulation of all the cytokine genes in gill and gut tissues from koi carp at 5 dpi. Significant down-regulation of CD4 and GzmA levels were only detected in koi gill on 5 dpi but not in other tissues. AS carp displayed significant up-expression of Mx2 gene in all mucosal tissues on 5 dpi, whereas in koi, it was up-regulated in gill and gut only. In both carp strains, gill harbored a higher virus load on 5 dpi compared to the other tissues. The results showed that resistance to CEV could not be linked with the selected immune responses measured. The up-regulation of mRNA expression of most of the selected immune-related genes in koi gill and gut suggests that CEV induces a more systemic mucosal immune response not restricted to the target tissue of gills.
Collapse
Affiliation(s)
- Ali Asghar Baloch
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - David Gela
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Martin Kocour
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Veronika Piačková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Qin R, An C, Chen W. Physical-Chemical Regulation of Membrane Receptors Dynamics in Viral Invasion and Immune Defense. J Mol Biol 2023; 435:167800. [PMID: 36007627 PMCID: PMC9394170 DOI: 10.1016/j.jmb.2022.167800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
Mechanical cues dynamically regulate membrane receptors functions to trigger various physiological and pathological processes from viral invasion to immune defense. These cues mainly include various types of dynamic mechanical forces and the spatial confinement of plasma membrane. However, the molecular mechanisms of how they couple with biochemical cues in regulating membrane receptors functions still remain mysterious. Here, we review recent advances in methodologies of single-molecule biomechanical techniques and in novel biomechanical regulatory mechanisms of critical ligand recognition of viral and immune receptors including SARS-CoV-2 spike protein, T cell receptor (TCR) and other co-stimulatory immune receptors. Furthermore, we provide our perspectives of the general principle of how force-dependent kinetics determine the dynamic functions of membrane receptors and of biomechanical-mechanism-driven SARS-CoV-2 neutralizing antibody design and TCR engineering for T-cell-based therapies.
Collapse
Affiliation(s)
- Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Yang WK, Kim SW, Youn SH, Hyun SH, Han CK, Park YC, Lee YC, Kim SH. Respiratory protective effects of Korean Red Ginseng in a mouse model of particulate matter 4-induced airway inflammation. J Ginseng Res 2023; 47:81-88. [PMID: 36644393 PMCID: PMC9834024 DOI: 10.1016/j.jgr.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background Air pollution has led to an increased exposure of all living organisms to fine dust. Therefore, research efforts are being made to devise preventive and therapeutic remedies against fine dust-induced chronic diseases. Methods Research of the respiratory protective effects of KRG extract in a particulate matter (PM; aerodynamic diameter of <4 μm) plus diesel exhaust particle (DEP) (PM4+D)-induced airway inflammation model. Nitric oxide production, expression of pro-inflammatory mediators and cytokines, and IRAK-1, TAK-1, and MAPK pathways were examined in PM4-stimulated MH-S cells. BALB/c mice exposed to PM4+D mixture by intranasal tracheal injection three times a day for 12 days at 3 day intervals and KRGE were administered orally for 12 days. Histological of lung and trachea, and immune cell subtype analyses were performed. Expression of pro-inflammatory mediators and cytokines in bronchoalveolar lavage fluid (BALF) and lung were measured. Immunohistofluorescence staining for IRAK-1 localization in lung were also evaluated. Results KRGE inhibited the production of nitric oxide, the expression of pro-inflammatory mediators and cytokines, and expression and phosphorylation of all downstream factors of NF-κB, including IRAK-1 and MAPK/AP1 pathway in PM4-stimulated MH-S cells. KRGE suppressed inflammatory cell infiltration and number of immune cells, histopathologic damage, and inflammatory symptoms in the BALF and lungs induced by PM4+D; these included increased alveolar wall thickness, accumulation of collagen fibers, and TNF-α, MIP2, CXCL-1, IL-1α, and IL-17 cytokine release. Moreover, PM4 participates induce alveolar macrophage death and interleukin-1α release by associating with IRAK-1 localization was also potently inhibited by KRGE in the lungs of PM4+D-induced airway inflammation model. KRGE suppresses airway inflammatory responses, including granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines via inhibition of IRAK-1 and MAPK pathway. Conclusion: Our results indicate the potential of KRGE to serve as an effective therapeutic agent against airway inflammation and respiratory diseases.
Collapse
Affiliation(s)
- Won-Kyung Yang
- Division of Respiratory Medicine, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Sung-Won Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Soo Hyun Youn
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Medicine, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
- Corresponding author. Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
5
|
Qiu L, Song J, Zhang JZH. Computational Alanine Scanning Reveals Common Features of TCR/pMHC Recognition in HLA-DQ8-Associated Celiac Disease. Methods Mol Biol 2022; 2385:293-312. [PMID: 34888725 DOI: 10.1007/978-1-0716-1767-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In HLA-DQ8-associated celiac disease, Gliadin-γ1 or Gliadin-α1 peptide is presented to the cell surface and recognized by several types of T-cell receptor (TCR), but it is still unclear how the TCR, peptide, and the major histocompatibility complex (MHC) act together to trigger celiac disease. For now, most of the analysis is based on static crystal structures. And the detailed information about these structures based on energetic interaction is still lacking. Here, we took four types of celiac disease-related MHC-peptide-TCR structures from three patients to perform computational alanine scanning calculations using the molecular mechanics generalized born surface area (MM/GBSA) approach combined with a recently developed interaction entropy (IE) method to identify the key residues on TCR, peptide, and MHC. Our study aims to shed some light on the interaction mechanism of this complex protein interaction system. Based on detailed computational analysis and mutational calculations, important binding interactions in these triple-interaction complexes are analyzed, and critical residues responsible for TCR/pMHC recognition pattern in HLA-DQ8-associated celiac disease are presented. These detailed analysis and computational result should help shed light on our understanding of the celiac disease and the development of the medical treatment.
Collapse
Affiliation(s)
- Linqiong Qiu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Jianing Song
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, China
| | - John Z H Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, China.
- Department of Chemistry, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
CD8 coreceptor-mediated focusing can reorder the agonist hierarchy of peptide ligands recognized via the T cell receptor. Proc Natl Acad Sci U S A 2021; 118:2019639118. [PMID: 34272276 PMCID: PMC8307375 DOI: 10.1073/pnas.2019639118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD8+ T cells are inherently cross-reactive and recognize numerous peptide antigens in the context of a given major histocompatibility complex class I (MHCI) molecule via the clonotypically expressed T cell receptor (TCR). The lineally expressed coreceptor CD8 interacts coordinately with MHCI at a distinct and largely invariant site to slow the TCR/peptide-MHCI (pMHCI) dissociation rate and enhance antigen sensitivity. However, this biological effect is not necessarily uniform, and theoretical models suggest that antigen sensitivity can be modulated in a differential manner by CD8. We used two intrinsically controlled systems to determine how the relationship between the TCR/pMHCI interaction and the pMHCI/CD8 interaction affects the functional sensitivity of antigen recognition. Our data show that modulation of the pMHCI/CD8 interaction can reorder the agonist hierarchy of peptide ligands across a spectrum of affinities for the TCR.
Collapse
|
8
|
Liu Y, Chen R, Liang R, Sun B, Wu Y, Zhang L, Kaufman J, Xia C. The Combination of CD8αα and Peptide-MHC-I in a Face-to-Face Mode Promotes Chicken γδT Cells Response. Front Immunol 2020; 11:605085. [PMID: 33329601 PMCID: PMC7719794 DOI: 10.3389/fimmu.2020.605085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022] Open
Abstract
The CD8αα homodimer is crucial to both thymic T cell selection and the antigen recognition of cytotoxic T cells. The CD8-pMHC-I interaction can enhance CTL immunity via stabilizing the TCR-pMHC-I interaction and optimizing the cross-reactivity and Ag sensitivity of CD8+ T cells at various stages of development. To date, only human and mouse CD8-pMHC-I complexes have been determined. Here, we resolved the pBF2*1501 complex and the cCD8αα/pBF2*1501 and cCD8αα/pBF2*0401 complexes in nonmammals for the first time. Remarkably, cCD8αα/pBF2*1501 and the cCD8αα/pBF2*0401 complex both exhibited two binding modes, including an “antibody-like” mode similar to that of the known mammal CD8/pMHC-I complexes and a “face-to-face” mode that has been observed only in chickens to date. Compared to the “antibody-like” mode, the “face-to-face” binding mode changes the binding orientation of the cCD8αα homodimer to pMHC-I, which might facilitate abundant γδT cells to bind diverse peptides presented by limited BF2 alleles in chicken. Moreover, the forces involving in the interaction of cCD8αα/pBF2*1501 and the cCD8αα/pBF2*0401 are different in this two binding model, which might change the strength of the CD8-pMHC-I interaction, amplifying T cell cross-reactivity in chickens. The coreceptor CD8αα of TCR has evolved two peptide-MHC-I binding patterns in chickens, which might enhance the T cell response to major or emerging pathogens, including chicken-derived pathogens that are relevant to human health, such as high-pathogenicity influenza viruses.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Beibei Sun
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Nomura A, Taniuchi I. The Role of CD8 Downregulation during Thymocyte Differentiation. Trends Immunol 2020; 41:972-981. [DOI: 10.1016/j.it.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/26/2022]
|
10
|
Yang WK, Lyu YR, Kim SH, Chae SW, Kim KM, Jung IC, Park YC. Protective Effect of GHX02 Extract on Particulate Matter-Induced Lung Injury. J Med Food 2020; 23:611-632. [PMID: 32316823 DOI: 10.1089/jmf.2019.4568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Industrial development, along with the rapid growth of the economy, has greatly improved the quality of life in humans. Moreover, advancements in medical technology have increased life expectancy. Small particles increase airway inflammation when they penetrate the alveoli. We observed that GHX02 decreased the frequency and delayed the onset time of citric acid-induced coughing in guinea pigs. A phenol red secretion assay indicated that the GHX02 extract exhibits potent expectorant activity. The GHX02 extract also greatly reduced leukocyte levels. Our results indicate that GHX02 inhibits airway inflammation, reduces sputum production, and relieves cough. The GHX02 extract suppressed histamine release from mast cells resulting from compound 48/80-induced degranulation. The extract exhibited antimicrobial activity against Streptococcus pneumoniae and significantly inhibited the formation of LTC4. At high concentrations, the GHX02 extract suppressed the formation of PGE2 (prostaglandin E2). Interleukin (IL)-4 and IL-13 levels decreased with an increasing dosage of GHX02. Oral administration of the GHX02 extract suppressed PM10D-induced inflammatory symptoms in the lung, including increased alveolar wall thickness, accumulation of collagen fibers, and cytokine release. Treatment with the GHX02 extract also resulted in lower levels of inflammatory cells, in bronchoalveolar lavage fluid and lung tissue. Our results indicate that GHX02 may be a useful therapeutic agent for treatment of respiratory diseases.
Collapse
Affiliation(s)
- Won-Kyung Yang
- Department of Internal Medicine and College of Korean Medicine, Daejeon University, Daejeon, Korea.,Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Yee Ran Lyu
- Department of Internal Medicine and College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Sung-Wook Chae
- Herbal Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Ki Mo Kim
- Herbal Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - In Chul Jung
- Department of Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Yang-Chun Park
- Department of Internal Medicine and College of Korean Medicine, Daejeon University, Daejeon, Korea.,Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| |
Collapse
|
11
|
Fernandes RA, Perez-Andres M, Blanco E, Jara-Acevedo M, Criado I, Almeida J, Botafogo V, Coutinho I, Paiva A, van Dongen JJM, Orfao A, Faria E. Complete Multilineage CD4 Expression Defect Associated With Warts Due to an Inherited Homozygous CD4 Gene Mutation. Front Immunol 2019; 10:2502. [PMID: 31781092 PMCID: PMC6856949 DOI: 10.3389/fimmu.2019.02502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Idiopathic T-CD4 lymphocytopenia (ICL) is a rare and heterogeneous syndrome characterized by opportunistic infections due to reduced CD4 T-lymphocytes (<300 cells/μl or <20% T-cells) in the absence of HIV infection and other primary causes of lymphopenia. Molecular testing of ICL has revealed defects in genes not specific to CD4 T-cells, with pleiotropic effects on other cell types. Here we report for the first time an absolute CD4 lymphocytopenia (<0.01 CD4+ T-cells/μl) due to an autosomal recessive CD4 gene mutation that completely abrogates CD4 protein expression on the surface membrane of T-cells, monocytes, and dendritic cells. A 45-year-old female born to consanguineous parents consulted because of exuberant, relapsing, and treatment-refractory warts on her hands and feet since the age of 10 years, in the absence of other recurrent infections or symptoms. Serological studies were negative for severe infections, including HIV 1/2, HTLV-1, and syphilis, but positive for CMV and EBV. Blood analysis showed the absence of CD4+ T-cells (<0.01%) with repeatedly increased counts of B-cells, naïve CD8+ T-lymphocytes, and particularly, CD4/CD8 double-negative (DN) TCRαβ+ TCRγδ- T-cells (30% of T-cells; 400 cells/μl). Flow cytometric staining of CD4 using monoclonal antibodies directed against five different epitopes, located in two different domains of the protein, confirmed no cell surface membrane or intracytoplasmic expression of CD4 on T-cells, monocytes, and dendritic cells but normal soluble CD4 plasma levels. DN T-cells showed a phenotypic and functional profile similar to normal CD4+ T-cells as regards expression of maturation markers, T-helper and T-regulatory chemokine receptors, TCRvβ repertoire, and in vitro cytokine production against polyclonal and antigen-specific stimuli. Sequencing of the CD4 gene revealed a homozygous (splicing) mutation affecting the last bp on intron 7-8, leading to deletion of the juxtamembrane and intracellular domains of the protein and complete abrogation of CD4 expression on the cell membrane. These findings support previous studies in CD4 KO mice suggesting that surrogate DN helper and regulatory T-cells capable of supporting antigen-specific immune responses are produced in the absence of CD4 signaling and point out the need for better understanding the role of CD4 on thymic selection and the immune response.
Collapse
Affiliation(s)
- Rosa Anita Fernandes
- Allergy and Clinical Immunology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Martin Perez-Andres
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Maria Jara-Acevedo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain.,Sequencing DNA Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Ignacio Criado
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Julia Almeida
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Vitor Botafogo
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Ines Coutinho
- Dermatology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit-Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Ciências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Emilia Faria
- Allergy and Clinical Immunology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Runx-dependent and silencer-independent repression of a maturation enhancer in the Cd4 gene. Nat Commun 2018; 9:3593. [PMID: 30185787 PMCID: PMC6125603 DOI: 10.1038/s41467-018-05803-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
An intronic silencer, S4, in the Cd4 gene has been shown to be responsible for the helper-lineage-specific expression of CD4; S4 requires Runx complex binding to exert its silencer function against the enhancer-mediated Cd4 activation by modulating the epigenetic state of the Cd4 gene. Here we identify a late-acting maturation enhancer. Bcl11b plays essential roles for activation of both the early-acting proximal enhancer and maturation enhancer of Cd4. Notably, Runx complexes suppress these enhancers by distinct mechanisms. Whereas repression of the proximal enhancer depends on the S4 silencer, the maturation enhancer is repressed by Runx in the absence of S4. Moreover, ThPOK, known to antagonize S4-mediated Cd4 repression, assists Runx complexes to restrain maturation enhancer activation. Distinct modes of S4 silencer action upon distinct enhancers thus unravel a pathway that restricts CD4 expression to helper-lineage cells by silencer-independent and Runx-dependent repression of maturation enhancer activity in cytotoxic-lineage cells. The commitment of helper and cytotoxic lineages for CD4 and CD8 T cells, respectively, is associated with the regulation of Cd4 gene expression. Here the authors show that an intronic silencer, S4, has differential effects and synergy with the RUNX complex to act on two enhancer elements of the CD4 gene to control T cell lineage commitment in the thymus.
Collapse
|
13
|
Dockree T, Holland CJ, Clement M, Ladell K, McLaren JE, van den Berg HA, Gostick E, L Miners K, Llewellyn-Lacey S, Bridgeman JS, Man S, Bailey M, Burrows SR, Price DA, Wooldridge L. CD8 + T-cell specificity is compromised at a defined MHCI/CD8 affinity threshold. Immunol Cell Biol 2017; 95:68-76. [PMID: 27670790 PMCID: PMC5215125 DOI: 10.1038/icb.2016.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
Abstract
The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity.
Collapse
Affiliation(s)
- Tamsin Dockree
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Mathew Clement
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kelly L Miners
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - John S Bridgeman
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Stephen Man
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Mick Bailey
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Scott R Burrows
- Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
14
|
Clement M, Pearson JA, Gras S, van den Berg HA, Lissina A, Llewellyn-Lacey S, Willis MD, Dockree T, McLaren JE, Ekeruche-Makinde J, Gostick E, Robertson NP, Rossjohn J, Burrows SR, Price DA, Wong FS, Peakman M, Skowera A, Wooldridge L. Targeted suppression of autoreactive CD8 + T-cell activation using blocking anti-CD8 antibodies. Sci Rep 2016; 6:35332. [PMID: 27748447 PMCID: PMC5066216 DOI: 10.1038/srep35332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 01/12/2023] Open
Abstract
CD8+ T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8+ T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8+ T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8+ T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, “blocking” anti-CD8 antibodies can suppress autoreactive CD8+ T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8+ T-cell compartment.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - James A Pearson
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | | | - Anya Lissina
- Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | - Mark D Willis
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff CF14 4XN, UK
| | - Tamsin Dockree
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Julia Ekeruche-Makinde
- Mucosal Infection and Immunity Group, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff CF14 4XN, UK
| | - Jamie Rossjohn
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Ania Skowera
- Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
15
|
Recurrent Respiratory Infections Revealing CD8α Deficiency. J Clin Immunol 2015; 35:692-5. [PMID: 26563160 DOI: 10.1007/s10875-015-0213-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
CD8A encodes the CD8α chain of the dimeric CD8 protein, a critical coreceptor of cytotoxic T cells. We report here the comprehensive immunological evaluation of a child with a CD8A missense mutation, providing evidence that CD8 deficiency increases susceptibility to recurrent respiratory infections without interfering with the TCR-mediated proliferation of T cells. These observations expand the known phenotypes associated with CD8 deficiency.
Collapse
|
16
|
Inhibitory effects of Cnidium monnieri fruit extract on pulmonary inflammation in mice induced by cigarette smoke condensate and lipopolysaccharide. Chin J Nat Med 2015; 12:641-7. [PMID: 25263974 DOI: 10.1016/s1875-5364(14)60098-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 01/13/2023]
Abstract
The aim of this study was to investigate the inhibitory effect of Cnidium monnieri fruit (CM) extracts on pulmonary inflammation induced in mice by cigarette smoke condensate (CSC) and lipopolysaccharide (LPS). Pulmonary inflammation was induced by intratracheal instillation of LPS and CSC five times within 12 days. CM extract was administered orally at a dose of 50 or 200 mg·kg(-1). The number of inflammatory cells in the bronchoalveolar lavage fluid was counted using a fluorescence activated cell sorter. Inflammatory mediator levels were determined by enzyme-linked immunosorbent assay. The administration of LPS and CSC exacerbated airway hyper-responsiveness (AHR) and induced an accumulation of inflammatory cells and mediators, and led to histological changes. However, these responses are modulated by treatment with CM, and the treatment with CM extract produces similar or more extensive results than the treatment with cyclosporin A (CSA). CM extract may have an inhibitory effect on pulmonary inflammation related with chronic obstructive pulmonary disease.
Collapse
|
17
|
Wang L, Zhao C, Peng Q, Shi J, Gu G. Expression levels of CD28, CTLA-4, PD-1 and Tim-3 as novel indicators of T-cell immune function in patients with chronic hepatitis B virus infection. Biomed Rep 2014; 2:270-274. [PMID: 24649109 DOI: 10.3892/br.2014.217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023] Open
Abstract
Chronic hepatitis B (CHB) is one of the most common types of infectious diseases worldwide. The interaction between hepatitis B virus (HBV) and the host immune response is vital for the clinical outcome of HBV infection. Costimulatory signals are key factors for the host immune response and play a critical role in innate immunity, particularly antiviral immunity. The aim of the present study was to investigate the correlation between the expression levels of costimulatory molecules and the different states of CHB infection, including the expression levels prior to and following treatment with antiviral agents. The expression levels of CD28, CTLA-4, PD-1, Tim-3 and T-cell subsets were determined by flow cytometry. The load of HBV DNA in the serum was detected by quantitative polymerase chain reaction and the serology markers, including HBeAg and alanine aminotransferase (ALT), were measured by conventional methods. Compared to the healthy control group, the expression levels of CD28 and CTLA-4 on CD4 T cells prior to and following treatment with antiviral agents (the pre- and post-treatment groups, respectively) were significantly decreased, while the expression levels of Tim-3 on CD4 and CD8 T cells were significantly increased. In addition, the expression levels of PD-1 on CD4 and CD8 T cells in the pre-treatment group were significantly increased compared to those in the post-treatment and healthy control groups. Moreover, the multivariate analysis revealed that the levels of ALT and HBV-DNA in the serum were significantly positively correlated with PD-1 expression levels. In conclusion, the expression levels of these costimulatory molecules reflect the immune dysfunction of T cells in patients with CHB and, combined with T-cell subset analysis may be used as a novel evaluation system of immune function in patients with HBV infection.
Collapse
Affiliation(s)
- Lin Wang
- Department of Laboratory Medicine, Key Laboratory of Clinical Immunology of Jiangsu Province, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chunnan Zhao
- Department of Laboratory Medicine, Key Laboratory of Clinical Immunology of Jiangsu Province, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qunxin Peng
- Department of Laboratory Medicine, Key Laboratory of Clinical Immunology of Jiangsu Province, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jinfang Shi
- Department of Laboratory Medicine, Key Laboratory of Clinical Immunology of Jiangsu Province, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guohao Gu
- Department of Laboratory Medicine, Key Laboratory of Clinical Immunology of Jiangsu Province, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
18
|
Li Y, Yin Y, Mariuzza RA. Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol 2013; 4:206. [PMID: 23885256 PMCID: PMC3717711 DOI: 10.3389/fimmu.2013.00206] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
T cell receptors (TCRs) recognize peptides presented by MHC molecules (pMHC) on an antigen-presenting cell (APC) to discriminate foreign from self-antigens and initiate adaptive immune responses. In addition, T cell activation generally requires binding of this same pMHC to a CD4 or CD8 co-receptor, resulting in assembly of a TCR–pMHC–CD4 or TCR–pMHC–CD8 complex and recruitment of Lck via its association with the co-receptor. Here we review structural and biophysical studies of CD4 and CD8 interactions with MHC molecules and TCR–pMHC complexes. Crystal structures have been determined of CD8αα and CD8αβ in complex with MHC class I, of CD4 bound to MHC class II, and of a complete TCR–pMHC–CD4 ternary complex. Additionally, the binding of these co-receptors to pMHC and TCR–pMHC ligands has been investigated both in solution and in situ at the T cell–APC interface. Together, these studies have provided key insights into the role of CD4 and CD8 in T cell activation, and into how these co-receptors focus TCR on MHC to guide TCR docking on pMHC during thymic T cell selection.
Collapse
Affiliation(s)
- Yili Li
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| | | | | |
Collapse
|
19
|
Martin A, Tisch RM, Getts DR. Manipulating T cell-mediated pathology: Targets and functions of monoclonal antibody immunotherapy. Clin Immunol 2013; 148:136-47. [DOI: 10.1016/j.clim.2013.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 12/16/2022]
|
20
|
Huang G, Zeng Y, Liang P, Zhou C, Zhao S, Huang X, Wu L, He X. Indoleamine 2,3-dioxygenase (IDO) downregulates the cell surface expression of the CD4 molecule. Int J Mol Sci 2012; 13:10863-10879. [PMID: 23109825 PMCID: PMC3472717 DOI: 10.3390/ijms130910863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 02/05/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) has been implicated in preventing the fetus from undergoing maternal T cell-mediated immune responses, yet the mechanism underlying these kinds of IDO-mediated immune responses has not been fully elucidated. Since the CD4 molecule plays a central role in the onset and regulation of antigen-specific immune responses, and T cell is sensitive in the absence of tryptophan, we hypothesize that IDO may reduce cell surface CD4 expression. To test this hypothesis, an adenoviral vector-based construct IDO-EGFP was generated and the effect of IDO-EGFP on CD4 expression was determined on recombinant adenoviral infected C8166 and MT-2 cells, by flow cytometry and/or Western blot analysis. The results revealed a significant downregulation of cell membrane CD4 in pAd-IDOEGFP infected cells when compared to that of mock-infected cells or infection with empty vector pAd-EGFP. Further experiments disclosed that either an addition of tryptophan or IDO inhibitor could partly restore CD4 expression in pAd-IDOEGFP infected C8166 cells. Our findings suggest that downregulation of CD4 by IDO might be one of the mechanisms through which IDO regulates T cell-mediated immune responses.
Collapse
Affiliation(s)
- Guanyou Huang
- Reproductive Medicine Center, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; E-Mails: (C.Z.); (S.Z.)
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China; E-Mails: (Y.Z.); (X.H.); (X.H.)
| | - Yaoying Zeng
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China; E-Mails: (Y.Z.); (X.H.); (X.H.)
| | - Peiyan Liang
- Peking University Shenzhen Graduate School, Shenzhen 518000, China; E-Mail:
| | - Congrong Zhou
- Reproductive Medicine Center, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; E-Mails: (C.Z.); (S.Z.)
| | - Shuyun Zhao
- Reproductive Medicine Center, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; E-Mails: (C.Z.); (S.Z.)
| | - Xiuyan Huang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China; E-Mails: (Y.Z.); (X.H.); (X.H.)
| | - Lingfei Wu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China; E-Mail:
| | - Xianhui He
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China; E-Mails: (Y.Z.); (X.H.); (X.H.)
| |
Collapse
|
21
|
Imataki O, Ansén S, Tanaka M, Butler MO, Berezovskaya A, Milstein MI, Kuzushima K, Nadler LM, Hirano N. IL-21 can supplement suboptimal Lck-independent MAPK activation in a STAT-3-dependent manner in human CD8(+) T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:1609-19. [PMID: 22238455 DOI: 10.4049/jimmunol.1003446] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although both MHC class II/CD8α double-knockout and CD8β null mice show a defect in the development of MHC class I-restricted CD8(+) T cells in the thymus, they possess low numbers of high-avidity peripheral CTL with limited clonality and are able to contain acute and chronic infections. These in vivo data suggest that the CD8 coreceptor is not absolutely necessary for the generation of Ag-specific CTL. Lack of CD8 association causes partial TCR signaling because of the absence of CD8/Lck recruitment to the proximity of the MHC/TCR complex, resulting in suboptimal MAPK activation. Therefore, there should exist a signaling mechanism that can supplement partial TCR activation caused by the lack of CD8 association. In this human study, we have shown that CD8-independent stimulation of Ag-specific CTL previously primed in the presence of CD8 coligation, either in vivo or in vitro, induced severely impaired in vitro proliferation. When naive CD8(+) T cells were primed in the absence of CD8 binding and subsequently restimulated in the presence of CD8 coligation, the proliferation of Ag-specific CTL was also severely hampered. However, when CD8-independent T cell priming and restimulation were supplemented with IL-21, Ag-specific CD8(+) CTL expanded in two of six individuals tested. We found that IL-21 rescued partial MAPK activation in a STAT3- but not STAT1-dependent manner. These results suggest that CD8 coligation is critical for the expansion of postthymic peripheral Ag-specific CTL in humans. However, STAT3-mediated IL-21 signaling can supplement partial TCR signaling caused by the lack of CD8 association.
Collapse
Affiliation(s)
- Osamu Imataki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
CD8αα and -αβ isotypes are equally recruited to the immunological synapse through their ability to bind to MHC class I. EMBO Rep 2011; 12:1251-6. [PMID: 22081144 DOI: 10.1038/embor.2011.209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/08/2022] Open
Abstract
Bimolecular fluorescence complementation was used to engineer CD8 molecules so that CD8αα and CD8αβ dimers can be independently visualized on the surface of a T cell during antigen recognition. Using this approach, we show that CD8αα is recruited to the immunological synapse almost as well as CD8αβ, but because the kinase Lck associates preferentially with CD8αβ in lipid rafts, CD8αα is the weaker co-receptor. During recognition of the strong CD8αα ligand H2-TL, CD8αα is preferentially recruited. Thus, recruitment of the two CD8 species correlates with their relative binding to the available ligands, rather than with the co-receptor functions of the CD8 species.
Collapse
|
23
|
Shi Y, Qi J, Iwamoto A, Gao GF. Plasticity of human CD8αα binding to peptide-HLA-A*2402. Mol Immunol 2011; 48:2198-202. [PMID: 21645925 DOI: 10.1016/j.molimm.2011.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 02/04/2023]
Abstract
The human CD8 functions as a co-receptor for specific T cell recognition, and only one complex structure of human CD8αα binding to HLA-A*0201 has been solved, revealing the molecular basis of CD8 interacting with its ligand pHLA. Here, we present the complex structures of human CD8αα bound to HLA-A*2402, which demonstrate two opposite α3 domain CD loop shifts (either pull or push) in the HLA heavy chain upon CD8 engagement. Taking the previously reported mouse CD8-pMHC complex structures into account, from the structural view, all of the data indicate the plasticity of CD8 binding to pMHC/HLA, which facilitates its co-receptor function for T cells. The plasticity of CD8 binding appears not to affect the specificity of TCR recognition, as no peptide conformation change extends to the pMHC interface for TCR contacting.
Collapse
Affiliation(s)
- Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
24
|
Han X, Ye P, Luo L, Zheng L, Liu Y, Chen L, Wang S. The development and functions of CD4(+) T cells expressing a transgenic TCR specific for an MHC-I-restricted tumor antigenic epitope. Cell Mol Immunol 2011; 8:333-40. [PMID: 21643003 DOI: 10.1038/cmi.2011.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
It has been reported that the ratio of CD4(+) to CD8(+) T cells has no bias in a few class I major histocompatibility complex (MHC-I)-restricted T-cell receptor (TCR)-transgenic mice specific for alloantigens or autoantigens, in which most CD4(+) T cells express an MHC-I-restricted TCR. In this study, we further showed that more than 50% of CD4(+) T cells in MHC-I-restricted P1A tumor antigen-specific TCR (P1ATCR)-transgenic mice could specifically bind to MHC-I/P1A peptide complex. P1A peptide could stimulate the transgenic CD4(+) T cells to proliferate and secrete both type 1 helper T cell and type 2 helper T cell cytokines. The activated CD4(+) T cells also showed cytotoxicity against P1A-expressing tumor cells. The analysis of TCR α-chains showed that these CD4(+) T cells were selected by co-expressing endogenous TCRs. Our results show that CD4(+) T cells from P1ATCR transgenic mice co-expressed an MHC-I-restricted transgenic TCR and another rearranged endogenous TCRs, both of which were functional.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Jovanovic DV, Boumsell L, Bensussan A, Chevalier X, Mancini A, Di Battista JA. CD101 expression and function in normal and rheumatoid arthritis-affected human T cells and monocytes/macrophages. J Rheumatol 2010; 38:419-28. [PMID: 21159825 DOI: 10.3899/jrheum.100676] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE It was recently reported that CD101 surface expression discriminates potency among CD4+CD25+ FoxP3+ regulatory T cells in the mouse. We investigated whether CD101 may also have a role in the suppressor function of regulatory T cells in humans given that the latter population may affect the autoimmune response in patients with rheumatoid arthritis (RA). METHODS Sorted T cells and monocyte/macrophage cell populations were analyzed by flow cyto metry using conjugated antibodies specific for cell-surface markers. T cell proliferation assays were conducted by [(3)H]thymidine incorporation and CD8(high) cytotoxicity measurements by Cyto-Scan-LDH cytotoxicity assays. ELISA were used to measure cytokines in cell culture supernatants and Western blotting was performed for profiling mitogen-activated protein (MAP) kinase activation using specific antiphospholipid antibodies. RESULTS CD101 expression coincided with PMA-induced monocyte/leukocyte lineage differentiation. CD8(high)CD101- T cells exhibited greater cytotoxic activity than CD8(high)CD101+ T cells, while no difference was observed between CD4CD25(high)CD101+ and CD4CD25(high)CD101- Treg inhibitory activity through responder T cells. LPS-induced proinflammatory cytokine production and p38 MAP kinase activation were made possible by ligation of CD101 with an anti-CD101 antibody F(ab')(2) fragment. CONCLUSION These results suggested a modulatory/coregulatory function of CD101 in the human immune system, in contrast to murine models, in which CD101 surface expression discriminates potency among FoxP3+ regulatory T cells. Cytotoxic CD8(high)CD101+ T cells were markedly less cytotoxic than CD8(high) T cells negative for the CD101 antigen and were conspicuously downregulated in patients with RA, suggesting a possible role for CD101 expression and function in the control of certain manifestations of RA pathology.
Collapse
Affiliation(s)
- Dragan V Jovanovic
- Division of Rheumatology and Clinical Immunology, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Martínez-Barriocanal A, Comas-Casellas E, Schwartz S, Martín M, Sayós J. CD300 heterocomplexes, a new and family-restricted mechanism for myeloid cell signaling regulation. J Biol Chem 2010; 285:41781-94. [PMID: 20959446 DOI: 10.1074/jbc.m110.140889] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The CD300 family of myeloid immunoglobulin receptors includes activating (CD300b, CD300e) and inhibitory members (CD300a, CD300f), as well as molecules of uncertain function presenting a negative charge within their transmembrane domain (CD300c, CD300d). In this paper, we establish that CD300c is a functional immune receptor able to deliver activating signals upon ligation in RBL-2H3 mast cells. CD300c signaling is partially mediated by a direct association with the immune receptor tyrosine-based activation motif-bearing adaptor FcεRγ. The existence of complementary transmembrane-charged residues in certain CD300 receptors suggested the formation of heterodimers within this family. Indeed, we proved the interaction between CD300b and CD300c in transfected COS-7 cells and demonstrated that it has important functional consequences. Unexpectedly, dimmer formation was dependent on the immunoglobulin domains rather than the charged transmembrane residues. Concordantly, all CD300 members were found to interact with each other, even with themselves, forming both homo- and heterodimers. We found that the combination of CD300 receptors in a complex differentially modulates the signaling outcome, strongly suggesting a new mechanism by which CD300 complexes could regulate the activation of myeloid cells upon interaction with their natural ligands.
Collapse
Affiliation(s)
- Agueda Martínez-Barriocanal
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebrón, Institut de Recerca, Universitat Autónoma de Barcelona, Barcelona 08035, Spain.
| | | | | | | | | |
Collapse
|
27
|
Wooldridge L, Laugel B, Ekeruche J, Clement M, van den Berg HA, Price DA, Sewell AK. CD8 controls T cell cross-reactivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:4625-32. [PMID: 20844204 PMCID: PMC3018649 DOI: 10.4049/jimmunol.1001480] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estimates of human αβ TCR diversity suggest that there are <10(8) different Ag receptors in the naive T cell pool, a number that is dwarfed by the potential number of different antigenic peptide-MHC (pMHC) molecules that could be encountered. Consequently, an extremely high degree of cross-reactivity is essential for effective T cell immunity. Ag recognition by T cells is unique in that it involves a coreceptor that binds at a site distinct from the TCR to facilitate productive engagement of the pMHC. In this study, we show that the CD8 coreceptor controls T cell cross-reactivity for pMHCI Ags, thereby ensuring that the peripheral T cell repertoire is optimally poised to negotiate the competing demands of responsiveness in the face of danger and quiescence in the presence of self.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wooldridge L, Clement M, Lissina A, Edwards ESJ, Ladell K, Ekeruche J, Hewitt RE, Laugel B, Gostick E, Cole DK, Debets R, Berrevoets C, Miles JJ, Burrows SR, Price DA, Sewell AK. MHC class I molecules with Superenhanced CD8 binding properties bypass the requirement for cognate TCR recognition and nonspecifically activate CTLs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3357-66. [PMID: 20190139 PMCID: PMC3024536 DOI: 10.4049/jimmunol.0902398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) CTLs are essential for effective immune defense against intracellular microbes and neoplasia. CTLs recognize short peptide fragments presented in association with MHC class I (MHCI) molecules on the surface of infected or dysregulated cells. Ag recognition involves the binding of both TCR and CD8 coreceptor to a single ligand (peptide MHCI [pMHCI]). The TCR/pMHCI interaction confers Ag specificity, whereas the pMHCI/CD8 interaction mediates enhanced sensitivity to Ag. Striking biophysical differences exist between the TCR/pMHCI and pMHCI/CD8 interactions; indeed, the pMHCI/CD8 interaction can be >100-fold weaker than the cognate TCR/pMHCI interaction. In this study, we show that increasing the strength of the pMHCI/CD8 interaction by approximately 15-fold results in nonspecific, cognate Ag-independent pMHCI tetramer binding at the cell surface. Furthermore, pMHCI molecules with superenhanced affinity for CD8 activate CTLs in the absence of a specific TCR/pMHCI interaction to elicit a full range of effector functions, including cytokine/chemokine release, degranulation and proliferation. Thus, the low solution binding affinity of the pMHCI/CD8 interaction is essential for the maintenance of CTL Ag specificity.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Infection, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen JL, Morgan AJ, Stewart-Jones G, Shepherd D, Bossi G, Wooldridge L, Hutchinson SL, Sewell AK, Griffiths GM, van der Merwe PA, Jones EY, Galione A, Cerundolo V. Ca2+ release from the endoplasmic reticulum of NY-ESO-1-specific T cells is modulated by the affinity of TCR and by the use of the CD8 coreceptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1829-1839. [PMID: 20053942 PMCID: PMC4222200 DOI: 10.4049/jimmunol.0902103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although several cancer immunotherapy strategies are based on the use of analog peptides and on the modulation of the TCR affinity of adoptively transferred T cells, it remains unclear whether tumor-specific T cell activation by strong and weak TCR stimuli evoke different Ca(2+) signatures from the Ca(2+) intracellular stores and whether the amplitude of Ca(2+) release from the endoplasmic reticulum (ER) can be further modulated by coreceptor binding to peptide/MHC. In this study, we combined functional, structural, and kinetic measurements to correlate the intensity of Ca(2+) signals triggered by the stimulation of the 1G4 T cell clone specific to the tumor epitope NY-ESO-1(157-165). Two analogs of the NY-ESO-1(157-165) peptide, having similar affinity to HLA-A2 molecules, but a 6-fold difference in binding affinity for the 1G4 TCR, resulted in different Ca(2+) signals and T cell activation. 1G4 stimulation by the stronger stimulus emptied the ER of stored Ca(2+), even in the absence of CD8 binding, resulting in sustained Ca(2+) influx. In contrast, the weaker stimulus induced only partial emptying of stored Ca(2+), resulting in significantly diminished and oscillatory Ca(2+) signals, which were enhanced by CD8 binding. Our data define the range of TCR/peptide MHC affinities required to induce depletion of Ca(2+) from intracellular stores and provide insights into the ability of T cells to tailor the use of the CD8 coreceptor to enhance Ca(2+) release from the ER. This, in turn, modulates Ca(2+) influx from the extracellular environment, ultimately controlling T cell activation.
Collapse
Affiliation(s)
- Ji-Li Chen
- Weatherall Institute of Molecular Medicine, OX3 9DS, Oxford
| | - Anthony J. Morgan
- Dept of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Guillaume Stewart-Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dawn Shepherd
- Weatherall Institute of Molecular Medicine, OX3 9DS, Oxford
| | - Giovanna Bossi
- Immunocore, Limited, 57c Milton Park, Abingdon, Oxon, OX14 4RX, UK
| | - Linda Wooldridge
- Dept of Infection, Immunity and Biochemistry, The Henry Wellcome Building, Cardiff University School of Medicine, Cardiff, CF14 4XN
| | | | - Andrew K. Sewell
- Dept of Infection, Immunity and Biochemistry, The Henry Wellcome Building, Cardiff University School of Medicine, Cardiff, CF14 4XN
| | - Gillian M. Griffiths
- Cambridge Institute for Medical Research, PO Box 139, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antony Galione
- Dept of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | |
Collapse
|
30
|
Carpino N, Chen Y, Nassar N, Oh HW. The Sts proteins target tyrosine phosphorylated, ubiquitinated proteins within TCR signaling pathways. Mol Immunol 2009; 46:3224-31. [PMID: 19733910 DOI: 10.1016/j.molimm.2009.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
The T cell receptor (TCR) detects the presence of infectious pathogens and activates numerous intracellular signaling pathways. Protein tyrosine phosphorylation and ubiquitination serve as key regulatory mechanisms downstream of the TCR. Negative regulation of TCR signaling pathways is important in controlling the immune response, and the Suppressor of TCR Signaling proteins (Sts-1 and Sts-2) have been shown to function as critical negative regulators of TCR signaling. Although their mechanism of action has yet to be fully uncovered, it is known that the Sts proteins possess intrinsic phosphatase activity. Here, we demonstrate that Sts-1 and Sts-2 are instrumental in down-modulating proteins that are dually modified by both protein tyrosine phosphorylation and ubiquitination. Specifically, both naïve and activated T cells derived from genetically engineered mice that lack the Sts proteins display strikingly elevated levels of tyrosine phosphorylated, ubiquitinated proteins following TCR stimulation. The accumulation of the dually modified proteins is transient, and in activated T cells but not naïve T cells is significantly enhanced by co-receptor engagement. Our observations hint at a novel regulatory mechanism downstream of the T cell receptor.
Collapse
Affiliation(s)
- Nick Carpino
- Department of Molecular Genetics and Microbiology, Room 130, Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5222, USA.
| | | | | | | |
Collapse
|
31
|
Wang R, Natarajan K, Margulies DH. Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2554-64. [PMID: 19625641 PMCID: PMC2782705 DOI: 10.4049/jimmunol.0901276] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the immune system, B cells, dendritic cells, NK cells, and T lymphocytes all respond to signals received via ligand binding to receptors and coreceptors. Although the specificity of T cell recognition is determined by the interaction of T cell receptors with MHC/peptide complexes, the development of T cells in the thymus and their sensitivity to Ag are also dependent on coreceptor molecules CD8 (for MHC class I (MHCI)) and CD4 (for MHCII). The CD8alphabeta heterodimer is a potent coreceptor for T cell activation, but efforts to understand its function fully have been hampered by ignorance of the structural details of its interactions with MHCI. In this study we describe the structure of CD8alphabeta in complex with the murine MHCI molecule H-2D(d) at 2.6 A resolution. The focus of the CD8alphabeta interaction is the acidic loop (residues 222-228) of the alpha3 domain of H-2D(d). The beta subunit occupies a T cell membrane proximal position, defining the relative positions of the CD8alpha and CD8beta subunits. Unlike the CD8alphaalpha homodimer, CD8alphabeta does not contact the MHCI alpha(2)- or beta(2)-microglobulin domains. Movements of the CD8alpha CDR2 and CD8beta CDR1 and CDR2 loops as well as the flexibility of the H-2D(d) CD loop facilitate the monovalent interaction. The structure resolves inconclusive data on the topology of the CD8alphabeta/MHCI interaction, indicates that CD8beta is crucial in orienting the CD8alphabeta heterodimer, provides a framework for understanding the mechanistic role of CD8alphabeta in lymphoid cell signaling, and offers a tangible context for design of structurally altered coreceptors for tumor and viral immunotherapy.
Collapse
Affiliation(s)
- Rui Wang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892,Address correspondence and reprint requests to Dr. Kannan Natarajan, or Dr. David H. Margulies, Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11N311; 10 Center Drive, Bethesda, MD 20892-1892. and
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892,Address correspondence and reprint requests to Dr. Kannan Natarajan, or Dr. David H. Margulies, Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11N311; 10 Center Drive, Bethesda, MD 20892-1892. and
| |
Collapse
|
32
|
Zhong L, Zeng G, Lu X, Wang RC, Gong G, Yan L, Huang D, Chen ZW. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation. PLoS One 2009; 4:e5945. [PMID: 19536289 PMCID: PMC2693923 DOI: 10.1371/journal.pone.0005945] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 05/21/2009] [Indexed: 12/04/2022] Open
Abstract
Direct molecular imaging of nano-spatial relationship between T cell receptor (TCR)/CD3 and CD4 or CD8 co-receptor before and after activation of a primary T cell has not been reported. We have recently innovated application of near-field scanning optical microscopy (NSOM) and immune-labeling quantum dots (QD) to image Ag-specific TCR response during in vivo clonal expansion, and now up-graded the NSOM/QD-based nanotechnology through dipole-polarization and dual-color imaging. Using this imaging system scanning cell-membrane molecules at a best-optical lateral resolution, we demonstrated that CD3, CD4 or CD8 molecules were distinctly distributed as single QD-bound molecules or nano-clusters equivalent to 2–4 QD fluorescence-intensity/size on cell-membrane of un-stimulated primary T cells, and ∼6–10% of CD3 were co-clustering with CD4 or CD8 as 70–110 nm nano-clusters without forming nano-domains. The ligation of TCR/CD3 on CD4 or CD8 T cells led to CD3 nanoscale co-clustering or interaction with CD4 or CD8 co-receptors forming 200–500 nm nano-domains or >500 nm micro-domains. Such nano-spatial co-clustering of CD3 and CD4 or CD3 and CD8 appeared to be an intrinsic event of TCR/CD3 ligation, not purely limited to MHC engagement, and be driven by Lck phosphorylation. Importantly, CD28 co-stimulation remarkably enhanced TCR/CD3 nanoscale co-clustering or interaction with CD4 co-receptor within nano- or micro-domains on the membrane. In contrast, CD28 co-stimulation did not enhance CD8 clustering or CD3–CD8 co-clustering in nano-domains although it increased molecular number and density of CD3 clustering in the enlarged nano-domains. These nanoscale findings provide new insights into TCR/CD3 interaction with CD4 or CD8 co-receptor in T-cell activation.
Collapse
Affiliation(s)
- Liyun Zhong
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Gucheng Zeng
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xiaoxu Lu
- School for Information and Optoelectronic Engineering, South China Normal University, Guangzhou, Guangdong, China
| | - Richard C. Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Guangming Gong
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Lin Yan
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Wang A, Yu H, Gao X, Li X, Qiao S. Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets. Antonie van Leeuwenhoek 2009; 96:89-98. [PMID: 19347600 DOI: 10.1007/s10482-009-9339-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
The effect of feeding Lactobacillus fermentum I5007 on the immune system of weaned pigs with or without E. coli challenge was determined. Twenty-four weaned barrows (6.07 +/- 0.63 kg BW) were randomly assigned to one of four treatments (N = 6) in a factorial design experiment. The first two treatments consisted of healthy piglets with half of the pigs receiving no treatment while the other half was orally administered with L. fermentum I5007 (10(8) CFU/ml) at a daily dose of 20 ml. Pigs in the second two treatments were challenged on the first day with 20 ml of E. coli K88ac (10(8) CFU/ml). Half of these pigs were not treated while the remaining pigs were treated with 20 ml of L. fermentum I5007 (10(8) CFU/ml). Peripheral blood lymphocytes subsets were determined using flow cytometry. The intestinal mucosal immunity of the pigs was monitored by real time polymerase chain reaction. The cytokine content of the pig's serum was also analyzed. Oral administration of L. fermentum I5007 increased blood CD4(+) lymphocyte subset percentage as well as tumor necrosis factor-alpha and interferon-gamma expression in the ileum. Pigs challenged with E. coli had elevated jejunal tumor necrosis factor-alpha while interferon-gamma expression was increased throughout the small intestine. There was no difference in the concentration of the cytokines interleukin-2, interleukin-6, tumor necrosis factor-alpha and interferon-gamma in the serum. CD8(+) and CD4(+)/CD8(+) in peripheral blood were not affected by treatment. In conclusion, L. fermentum I5007 can enhance T cell differentiation and induce ileum cytokine expression suggesting that this probiotic strain could modulate immune function in piglets.
Collapse
Affiliation(s)
- Aina Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
The phospholipid scramblases 1 and 4 are cellular receptors for the secretory leukocyte protease inhibitor and interact with CD4 at the plasma membrane. PLoS One 2009; 4:e5006. [PMID: 19333378 PMCID: PMC2659420 DOI: 10.1371/journal.pone.0005006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 02/22/2009] [Indexed: 01/01/2023] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) is secreted by epithelial cells in all the mucosal fluids such as saliva, cervical mucus, as well in the seminal liquid. At the physiological concentrations found in saliva, SLPI has a specific antiviral activity against HIV-1 that is related to the perturbation of the virus entry process at a stage posterior to the interaction of the viral surface glycoprotein with the CD4 receptor. Here, we confirm that recombinant SLPI is able to inhibit HIV-1 infection of primary T lymphocytes, and show that SLPI can also inhibit the transfer of HIV-1 virions from primary monocyte-derived dendritic cells to autologous T lymphocytes. At the molecular level, we show that SLPI is a ligand for the phospholipid scramblase 1 (PLSCR1) and PLSCR4, membrane proteins that are involved in the regulation of the movements of phospholipids between the inner and outer leaflets of the plasma membrane. Interestingly, we reveal that PLSCR1 and PLSCR4 also interact directly with the CD4 receptor at the cell surface of T lymphocytes. We find that the same region of the cytoplasmic domain of PLSCR1 is involved in the binding to CD4 and SLPI. Since SLPI was able to disrupt the association between PLSCR1 and CD4, our data suggest that SLPI inhibits HIV-1 infection by modulating the interaction of the CD4 receptor with PLSCRs. These interactions may constitute new targets for antiviral intervention.
Collapse
|
35
|
Abstract
The immune response to cancer has been long recognized, including both innate and adaptive responses, showing that the immune system can recognize protein products of genetic and epigenetic changes in transformed cells. The accumulation of antigen-specific T cells within the tumor, the draining lymph node, and the circulation, either in newly diagnosed patients or resultant from experimental immunotherapy, proves that tumors produce antigens and that priming occurs. Unfortunately, just as obviously, tumors grow, implying that anti-tumor immune responses are either not sufficiently vigorous to eliminate the cancer or that anti-tumor immunity is suppressed. Both possibilities are supported by current data. In experimental animal models of cancer and also in patients, systemic immunity is usually not dramatically suppressed, because tumor-bearing animals and patients develop T-cell-dependent immune responses to microbes and to either model antigens or experimental cancer vaccines. However, inhibition of specific anti-tumor immunity is common, and several possible explanations of tolerance to tumor antigens or tumor-induced immunesuppression have been proposed. Inhibition of effective anti-tumor immunity results from the tumor or the host response to tumor growth, inhibiting the activation, differentiation, or function of anti-tumor immune cells. As a consequence, anti-tumor T cells cannot respond productively to developmental, targeting, or activation cues. While able to enhance the number and phenotype of anti-tumor T cells, the modest success of immunotherapy has shown the necessity to attempt to reverse tolerance in anti-tumor T cells, and the vanguard of experimental therapy now focuses on vaccination in combination with blockade of immunosuppressive mechanisms. This review discusses several potential mechanisms by which anti-tumor T cells may be inhibited in function.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
36
|
Hong JJ, Reynolds MR, Mattila TL, Hage A, Watkins DI, Miller CJ, Skinner PJ. Localized populations of CD8 MHC class I tetramer SIV-specific T cells in lymphoid follicles and genital epithelium. PLoS One 2009; 4:e4131. [PMID: 19122815 PMCID: PMC2607009 DOI: 10.1371/journal.pone.0004131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 12/02/2008] [Indexed: 11/18/2022] Open
Abstract
CD8 T cells play an important role in controlling viral infections. We investigated the in situ localization of simian immunodeficiency virus (SIV)-specific T cells in lymph and genital tissues from SIV-infected macaques using MHC-class I tetramers. The majority of tetramer-binding cells localized in T cell zones and were CD8+. Curiously, small subpopulations of tetramer-binding cells that had little to no surface CD8 were detected in situ both early and late post-infection, and in both vaginally and rectally inoculated macaques. These tetramer+CD8low/− cells were more often localized in apparent B cell follicles relative to T cell zones and more often found near or within the genital epithelium than the submucosa. Cells analyzed by flow cytometry showed similar populations of cells. Further immunohistological characterization revealed small populations of tetramer+CD20− cells inside B cell follicles and that tetramer+ cells did not stain with γδ-TCR nor CD4 antibodies. Negative control tetramer staining indicated that tetramer+CD8low/− cells were not likely NK cells non-specifically binding to MHC tetramers. These findings have important implications for SIV-specific and other antigen-specific T cell function in these specific tissue locations, and suggest a model in which antigen-specific CD8+ T cells down modulate CD8 upon entering B cell follicles or the epithelial layer of tissues, or alternatively a model in which only antigen-specific CD8 T cells that down-modulate CD8 can enter B cell follicles or the epithelium.
Collapse
Affiliation(s)
- Jung Joo Hong
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Matthew R. Reynolds
- Wisconsin National Primate Research Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Teresa L. Mattila
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Aaron Hage
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - David I. Watkins
- Wisconsin National Primate Research Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | | | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
37
|
Riley RS, Williams D, Ross M, Zhao S, Chesney A, Clark BD, Ben-Ezra JM. Bone marrow aspirate and biopsy: a pathologist's perspective. II. interpretation of the bone marrow aspirate and biopsy. J Clin Lab Anal 2009; 23:259-307. [PMID: 19774631 PMCID: PMC6648980 DOI: 10.1002/jcla.20305] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/19/2009] [Indexed: 12/11/2022] Open
Abstract
Bone marrow examination has become increasingly important for the diagnosis and treatment of hematologic and other illnesses. Morphologic evaluation of the bone marrow aspirate and biopsy has recently been supplemented by increasingly sophisticated ancillary assays, including immunocytochemistry, cytogenetic analysis, flow cytometry, and molecular assays. With our rapidly expanding knowledge of the clinical and biologic diversity of leukemia and other hematologic neoplasms, and an increasing variety of therapeutic options, the bone marrow examination has became more critical for therapeutic monitoring and planning optimal therapy. Sensitive molecular techniques, in vitro drug sensitivity testing, and a number of other special assays are available to provide valuable data to assist these endeavors. Fortunately, improvements in bone marrow aspirate and needle technology has made the procurement of adequate specimens more reliable and efficient, while the use of conscious sedation has improved patient comfort. The procurement of bone marrow specimens was reviewed in the first part of this series. This paper specifically addresses the diagnostic interpretation of bone marrow specimens and the use of ancillary techniques.
Collapse
Affiliation(s)
- Roger S Riley
- Medical College of Virginia Hospitals of Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mallaun M, Naeher D, Daniels MA, Yachi PP, Hausmann B, Luescher IF, Gascoigne NRJ, Palmer E. The T cell receptor's alpha-chain connecting peptide motif promotes close approximation of the CD8 coreceptor allowing efficient signal initiation. THE JOURNAL OF IMMUNOLOGY 2008; 180:8211-21. [PMID: 18523287 DOI: 10.4049/jimmunol.180.12.8211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The CD8 coreceptor contributes to the recognition of peptide-MHC (pMHC) ligands by stabilizing the TCR-pMHC interaction and enabling efficient signaling initiation. It is unclear though, which structural elements of the TCR ensure a productive association of the coreceptor. The alpha-chain connecting peptide motif (alpha-CPM) is a highly conserved sequence of eight amino acids in the membrane proximal region of the TCR alpha-chain. TCRs lacking the alpha-CPM respond poorly to low-affinity pMHC ligands and are unable to induce positive thymic selection. In this study we show that CD8 participation in ligand binding is compromised in T lineage cells expressing mutant alpha-CPM TCRs, leading to a slight reduction in apparent affinity; however, this by itself does not explain the thymic selection defect. By fluorescence resonance energy transfer microscopy, we found that TCR-CD8 association was compromised for TCRs lacking the alpha-CPM. Although high-affinity (negative-selecting) pMHC ligands showed reduced TCR-CD8 interaction, low-affinity (positive-selecting) ligands completely failed to induce molecular approximation of the TCR and its coreceptor. Therefore, the alpha-CPM of a TCR is an important element in mediating CD8 approximation and signal initiation.
Collapse
Affiliation(s)
- Michel Mallaun
- Laboratory of Transplantation Immunology and Nephrology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Belyakov IM, Kozlowski S, Mage M, Ahlers JD, Boyd LF, Margulies DH, Berzofsky JA. Role of alpha3 domain of class I MHC molecules in the activation of high- and low-avidity CD8+ CTLs. Int Immunol 2007; 19:1413-20. [PMID: 17981793 DOI: 10.1093/intimm/dxm111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD8 can serve as a co-receptor or accessory molecule on the surface of CTL. As a co-receptor, CD8 can bind to the alpha3 domain of the same MHC class I molecules as the TCR to facilitate TCR signaling. To evaluate the role of the MHC class I molecule alpha3 domain in the activation of CD8(+) CTL, we have produced a soluble 227 mutant of H-2D(d), with a point mutation in the alpha3 domain (Glu227 --> Lys). 227 mutant class I-peptide complexes were not able to effectively activate H-2D(d)-restricted CD8 T cells in vitro, as measured by IFN-gamma production by an epitope-specific CD8(+) CTL line. However, the 227 mutant class I-peptide complexes in the presence of another MHC class I molecule (H-2K(b)) (that cannot present the peptide) with a normal alpha3 domain can induce the activation of CD8(+) CTL. Therefore, in order to activate CD8(+) CTL, the alpha3 domain of MHC class I does not have to be located on the same molecule with the alpha1 and alpha2 domains of MHC class I. A low-avidity CD8(+) CTL line was significantly less sensitive to stimulation by the 227 mutant class I-peptide complexes in the presence of the H-2K(b) molecule. Thus, low-avidity CTL may not be able to take advantage of the interaction between CD8 and the alpha3 domain of non-presenting class I MHC molecules, perhaps because of a shorter dwell time for the TCR-MHC interaction.
Collapse
Affiliation(s)
- Igor M Belyakov
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Krogsgaard M, Juang J, Davis MM. A role for "self" in T-cell activation. Semin Immunol 2007; 19:236-44. [PMID: 17548210 PMCID: PMC2731063 DOI: 10.1016/j.smim.2007.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/24/2022]
Abstract
The mechanisms by which alphabeta T-cells are selected in the thymus and then recognize peptide MHC (pMHC) complexes in the periphery remain an enigma. Recent work particularly with respect to quantification of T-cell sensitivity and the role of self-ligands in T-cell activation has provided some important clues to the details of how TCR signaling might be initiated. Here, we highlight recent experimental data that provides insights into the initiation of T-cell activation and also discuss the main controversies and uncertainties in this area.
Collapse
Affiliation(s)
- Michelle Krogsgaard
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
41
|
Laugel B, van den Berg HA, Gostick E, Cole DK, Wooldridge L, Boulter J, Milicic A, Price DA, Sewell AK. Different T cell receptor affinity thresholds and CD8 coreceptor dependence govern cytotoxic T lymphocyte activation and tetramer binding properties. J Biol Chem 2007; 282:23799-810. [PMID: 17540778 DOI: 10.1074/jbc.m700976200] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cells have evolved a unique system of ligand recognition involving an antigen T cell receptor (TCR) and a coreceptor that integrate stimuli provided by the engagement of peptide-major histocompatibility complex (pMHC) antigens. Here, we use altered pMHC class I (pMHCI) molecules with impaired CD8 binding (CD8-null) to quantify the contribution of coreceptor extracellular binding to (i) the engagement of soluble tetrameric pMHCI molecules, (ii) the kinetics of TCR/pMHCI interactions on live cytotoxic T lymphocytes (CTLs), and (iii) the activation of CTLs by cell-surface antigenic determinants. Our data indicate that the CD8 coreceptor substantially enhances binding efficiency at suboptimal TCR/pMHCI affinities through effects on both association and dissociation rates. Interestingly, coreceptor requirements for efficient tetramer labeling of CTLs or for CTL activation by determinants displayed on the cell surface operated in different TCR/pMHCI affinity ranges. Wild-type and CD8-null pMHCI tetramers required monomeric affinities for cognate TCRs of KD < approximately 80 microM and approximately 35 microM, respectively, to label human CTLs at 37 degrees C. In contrast, activation by cellular pMHCI molecules was strictly dependent on CD8 binding only for TCR/pMHCI interactions with KD values >200 microM. Altogether, our data provide information on the binding interplay between CD8 and the TCR and support a model of CTL activation in which the extent of coreceptor dependence is inversely correlated to TCR/pMHCI affinity. In addition, the results reported here define the range of TCR/pMHCI affinities required for the detection of antigen-specific CTLs by flow cytometry.
Collapse
Affiliation(s)
- Bruno Laugel
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Populations of unconventional T lymphocytes that express alpha beta T cell antigen receptors (TCRs) have been characterized, including T cells reactive to glycolipids presented by CD1 molecules. The CD1 molecules have a structure broadly similar to major histocompatibility complex (MHC) class I and class II proteins, but because the antigens CD 1 presents are so different from peptides, it is possible that glycolipid reactive TCRs have properties that distinguish them from TCRs expressed by conventional T cells. Consistent with this possibility, CD1-reactive T cells have an unrestrained pattern of co-receptor expression, as they include CD4+, CD8+, and double-negative cells. Furthermore, unlike peptide-reactive T cells, there are populations of glycolipid-reactive T cells with invariant alpha chain TCRs that are conserved across species. There are also glycolipid reactive populations with more variable TCRs, however, suggesting that it may be difficult to make categorical generalizations about glycolipid reactive TCRs. Among the glycolipid reactive TCRs, the invariant TCR expressed by CD1d reactive NKT cells has been by far the most thoroughly studied, and in this article we emphasize the unique features of this antigen recognition system, including repertoire formation, fine specificity, TCR affinity, and TCR structure.
Collapse
MESH Headings
- Animals
- Antigens, CD1/chemistry
- Antigens, CD1/metabolism
- Glycolipids/chemistry
- Glycolipids/metabolism
- Humans
- Killer Cells, Natural/immunology
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- B A Sullivan
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
43
|
Wooldridge L, Lissina A, Vernazza J, Gostick E, Laugel B, Hutchinson SL, Mirza F, Dunbar PR, Boulter JM, Glick M, Cerundolo V, van den Berg HA, Price DA, Sewell AK. Enhanced immunogenicity of CTL antigens through mutation of the CD8 binding MHC class I invariant region. Eur J Immunol 2007; 37:1323-33. [PMID: 17429845 PMCID: PMC2699427 DOI: 10.1002/eji.200636765] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 01/26/2007] [Accepted: 03/12/2007] [Indexed: 11/22/2022]
Abstract
CD8(+) cytotoxic T lymphocytes (CTL) are key determinants of immunity to intracellular pathogens and neoplastic cells. Recognition of specific antigens in the form of peptide-MHC class I complexes (pMHCI) presented on the target cell surface is mediated by T cell receptor (TCR) engagement. The CD8 coreceptor binds to invariant domains of pMHCI and facilitates antigen recognition. Here, we investigate the biological effects of a Q115E substitution in the alpha2 domain of human leukocyte antigen (HLA)-A*0201 that enhances CD8 binding by approximately 50% without altering TCR/pMHCI interactions. Soluble and cell surface-expressed forms of Q115E HLA-A*0201 exhibit enhanced recognition by CTL without loss of specificity. These CD8-enhanced antigens induce greater CD3 zeta chain phosphorylation in cognate CTL leading to substantial increases in cytokine production, proliferation and priming of naive T cells. This effect provides a fundamental new mechanism with which to enhance cellular immunity to specific T cell antigens.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Medical Biochemistry & Immunology, University of Cardiff, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gostick E, Cole DK, Hutchinson SL, Wooldridge L, Tafuro S, Laugel B, Lissina A, Oxenius A, Boulter JM, Price DA, Sewell AK. Functional and biophysical characterization of an HLA-A*6801-restricted HIV-specific T cell receptor. Eur J Immunol 2007; 37:479-86. [PMID: 17273992 PMCID: PMC2699040 DOI: 10.1002/eji.200636243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 10/24/2006] [Accepted: 12/14/2006] [Indexed: 11/13/2022]
Abstract
HLA-A*6801 exhibits several unusual features. First, it is known to bind weakly to CD8 due to the presence of an A245V substitution in the alpha3 domain. Second, it is able to accommodate unusually long peptides as a result of peptide 'kinking' in the binding groove. Third, CD8+ cytotoxic T lymphocytes that recognise HLA-A*6801-restricted antigens can tolerate substantial changes in the peptide sequence without apparent loss of recognition. In addition, it has been suggested that HLA-A68-restricted TCR might bind with higher affinity than other TCR due to their selection in the presence of a decreased contribution from CD8. Here we (1) examine monoclonal T cell recognition of an HLA-A*6801-restricted HIV-1 Tat-derived 11-amino acid peptide (ITKGLGISYGR) and natural variant sequences thereof; (2) measure the affinity and kinetics of a TCR/pHLA-A68 interaction biophysically for the first time, showing that equilibrium binding occurs within the range previously determined for non-HLA-A68-restricted TCR (KD approx. 7 microM); and (3) show that "normalization" of the non-canonical HLA-A*6801 CD8-binding domain enhances recognition of agonist peptides without inducing non-specific activation. This latter effect may provide a fundamental new mechanism with which to enhance T cell immunity to specific antigens.
Collapse
Affiliation(s)
- Emma Gostick
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Arnesano F, Banci L, Bertini I, Capozzi F, Ciofi-Baffoni S, Ciurli S, Luchinat C, Mangani S, Rosato A, Turano P, Viezzoli MS. An Italian contribution to structural genomics: Understanding metalloproteins. Coord Chem Rev 2006. [DOI: 10.1016/j.ccr.2006.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Yachi PP, Ampudia J, Gascoigne NR, Zal T. Nonstimulatory peptides contribute to antigen-induced CD8-T cell receptor interaction at the immunological synapse. Nat Immunol 2005; 6:785-92. [PMID: 15980863 PMCID: PMC1352171 DOI: 10.1038/ni1220] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 05/19/2005] [Indexed: 11/09/2022]
Abstract
It is unclear if the interaction between CD8 and the T cell receptor (TCR)-CD3 complex is constitutive or antigen induced. Here, fluorescence resonance energy transfer microscopy between fluorescent chimeras of CD3zeta and CD8beta showed that this interaction was induced by antigen recognition in the immunological synapse. Nonstimulatory endogenous or exogenous peptides presented simultaneously with antigenic peptides increased the CD8-TCR interaction. This finding indicates that the interaction between the intracellular regions of a TCR-CD3 complex recognizing its cognate peptide-major histocompatibility complex (MHC) antigen, and CD8 (plus the kinase Lck), is enhanced by a noncognate CD8-MHC interaction. Thus, the interaction of CD8 with a nonstimulatory peptide-MHC complex helps mediate T cell recognition of antigen, improving the coreceptor function of CD8.
Collapse
Affiliation(s)
- Pia P. Yachi
- Department of Immunology, IMM1, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jeanette Ampudia
- Department of Immunology, IMM1, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Nicholas R.J. Gascoigne
- Department of Immunology, IMM1, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
47
|
Gakamsky DM, Luescher IF, Pramanik A, Kopito RB, Lemonnier F, Vogel H, Rigler R, Pecht I. CD8 kinetically promotes ligand binding to the T-cell antigen receptor. Biophys J 2005; 89:2121-33. [PMID: 15980174 PMCID: PMC1366714 DOI: 10.1529/biophysj.105.061671] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanism of CD8 cooperation with the TCR in antigen recognition was studied on live T cells. Fluorescence correlation measurements yielded evidence of the presence of two TCR and CD8 subpopulations with different lateral diffusion rate constants. Independently, evidence for two subpopulations was derived from the experimentally observed two distinct association phases of cognate peptide bound to class I MHC (pMHC) tetramers and the T cells. The fast phase rate constant ((1.7 +/- 0.2) x 10(5) M(-1) s(-1)) was independent of examined cell type or MHC-bound peptides' structure. Its value was much faster than that of the association of soluble pMHC and TCR ((7.0 +/- 0.3) x 10(3) M(-1) s(-1)), and close to that of the association of soluble pMHC with CD8 ((1-2) x 10(5) M(-1) s(-1)). The fast binding phase disappeared when CD8-pMHC interaction was blocked by a CD8-specific mAb. The latter rate constant was slowed down approximately 10-fold after cells treatment with methyl-beta-cyclodextrin. These results suggest that the most efficient pMHC-cell association route corresponds to a fast tetramer binding to a colocalized CD8-TCR subpopulation, which apparently resides within membrane rafts: the reaction starts by pMHC association with the CD8. This markedly faster step significantly increases the probability of pMHC-TCR encounters and thereby promotes pMHC association with CD8-proximal TCR. The slow binding phase is assigned to pMHC association with a noncolocalized CD8-TCR subpopulation. Taken together with results of cytotoxicity assays, our data suggest that the colocalized, raft-associated CD8-TCR subpopulation is the one capable of inducing T-cell activation.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Binding Sites
- Biophysical Phenomena
- Biophysics
- Biotinylation
- CD8 Antigens/chemistry
- CD8 Antigens/physiology
- Cell Line
- Cell Membrane/metabolism
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Diffusion
- Humans
- Kinetics
- Ligands
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Chemical
- Models, Statistical
- Peptides/chemistry
- Probability
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Spectrometry, Fluorescence
- T-Lymphocytes/metabolism
- Time Factors
- beta-Cyclodextrins/chemistry
Collapse
Affiliation(s)
- Dmitry M Gakamsky
- Department of Immunology, and Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Park YK, Lee JW, Ko YG, Hong S, Park SH. Lipid rafts are required for efficient signal transduction by CD1d. Biochem Biophys Res Commun 2005; 327:1143-54. [PMID: 15652515 DOI: 10.1016/j.bbrc.2004.12.121] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Indexed: 12/13/2022]
Abstract
Plasma membranes of eukaryotic cells are not uniform, possessing distinct cholesterol- and sphingolipid-rich lipid raft microdomains which constitute critical sites for signal transduction through various immune cell receptors and their co-receptors. CD1d is a conserved family of major histocompatibility class I-like molecules, which has been established as an important factor in lipid antigen presentation to natural killer T (NKT) cells. Unlike conventional T cells, recognition of CD1d by the T cell receptor (TCR) of NKT cells does not require CD4 or CD8 co-receptors, which are critical for efficient TCR signaling. We found that murine CD1d (mCD1d) was constitutively present in the plasma membrane lipid rafts on antigen presenting cells, and that this restricted localization was critically important for efficient signal transduction to the target NKT cells, at low ligand densities, even without the involvement of co-receptors. Further our results indicate that there may be additional regulatory molecule(s), co-located in the lipid raft with mCD1d for NKT cell signaling.
Collapse
Affiliation(s)
- Yoon-Kyung Park
- Graduate School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Koneru M, Schaer D, Monu N, Ayala A, Frey AB. Defective Proximal TCR Signaling Inhibits CD8+ Tumor-Infiltrating Lymphocyte Lytic Function. THE JOURNAL OF IMMUNOLOGY 2005; 174:1830-40. [PMID: 15699109 DOI: 10.4049/jimmunol.174.4.1830] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD8+ tumor-infiltrating lymphocytes (TIL) are severely deficient in cytolysis, a defect that may permit tumor escape from immune-mediated destruction. Because lytic function is dependent upon TCR signaling, we have tested the hypothesis that primary TIL have defective signaling by analysis of the localization and activation status of TIL proteins important in TCR-mediated signaling. Upon conjugate formation with cognate target cells in vitro, TIL do not recruit granzyme B+ granules, the microtubule-organizing center, F-actin, Wiskott-Aldrich syndrome protein, nor proline rich tyrosine kinase-2 to the target cell contact site. In addition, TIL do not flux calcium nor demonstrate proximal tyrosine kinase activity, deficiencies likely to underlie failure to fully activate the lytic machinery. Confocal microscopy and fluorescence resonance energy transfer analyses demonstrate that TIL are triggered by conjugate formation in that the TCR, p56lck, CD3zeta, LFA-1, lipid rafts, ZAP70, and linker for activation of T cells localize at the TIL:tumor cell contact site, and CD43 and CD45 are excluded. However, proximal TCR signaling is blocked upon conjugate formation because the inhibitory motif of p56lck is rapidly phosphorylated (Y505) and COOH-terminal Src kinase is recruited to the contact site, while Src homology 2 domain-containing protein phosphatase 2 is cytoplasmic. Our data support a novel mechanism explaining how tumor-induced inactivation of proximal TCR signaling regulates lytic function of antitumor T cells.
Collapse
MESH Headings
- Actins/deficiency
- Actins/metabolism
- Animals
- CD2 Antigens/metabolism
- CD3 Complex/metabolism
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Calcium/metabolism
- Cell Line, Tumor
- Cell Separation
- Cytoplasmic Granules/immunology
- Cytoplasmic Granules/metabolism
- Cytotoxicity, Immunologic
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocytes, Tumor-Infiltrating/enzymology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein Transport/immunology
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Mythili Koneru
- Department of Cell Biology and Kaplan Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
50
|
Parel Y, Chizzolini C. CD4+ CD8+ double positive (DP) T cells in health and disease. Autoimmun Rev 2005; 3:215-20. [PMID: 15110234 DOI: 10.1016/j.autrev.2003.09.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 09/03/2003] [Indexed: 11/17/2022]
Abstract
The expression of CD4 and CD8alphabeta co-receptors on mature T cells is generally considered to be mutually exclusive and reflects subset-related, specific functions (helper vs. cytolytic) and differences in major histocompatibility complex-restriction for antigen recognition. However, double positive (DP) T cells expressing both CD4 and CD8 have been described in several pathological conditions as well as in normal individuals. DP T cells represent a heterogeneous population. Strong evidence indicates that in vivo terminally differentiated effector CD4 may acquire the alpha-chain of CD8. Reciprocally, in vitro activation of CD8+ T cells results in the expression of low levels of CD4 that may mediate HIV entry and responses to chemotactic cytokines. Particularly intriguing, a subset of DP T cells expressing high levels of both CD4 and CD8alphabeta heterodimer (CD4(hi)CD8(hi)), has been identified in autoimmune and chronic inflammatory disorders. While no definitive proof exists, it could be speculated that CD4(hi)CD8(hi) T cells may be endowed with auto-reactivity due to faulty thymic selection.
Collapse
Affiliation(s)
- Yann Parel
- Division of Immunology and Allergy, Department of Internal Medicine, Geneva University Hospital, 1211 Geneva 14, Switzerland
| | | |
Collapse
|