1
|
Ku J, Asuri P. Stem cell-based approaches for developmental neurotoxicity testing. FRONTIERS IN TOXICOLOGY 2024; 6:1402630. [PMID: 39238878 PMCID: PMC11374538 DOI: 10.3389/ftox.2024.1402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Neurotoxicants are substances that can lead to adverse structural or functional effects on the nervous system. These can be chemical, biological, or physical agents that can cross the blood brain barrier to damage neurons or interfere with complex interactions between the nervous system and other organs. With concerns regarding social policy, public health, and medicine, there is a need to ensure rigorous testing for neurotoxicity. While the most common neurotoxicity tests involve using animal models, a shift towards stem cell-based platforms can potentially provide a more biologically accurate alternative in both clinical and pharmaceutical research. With this in mind, the objective of this article is to review both current technologies and recent advancements in evaluating neurotoxicants using stem cell-based approaches, with an emphasis on developmental neurotoxicants (DNTs) as these have the most potential to lead to irreversible critical damage on brain function. In the next section, attempts to develop novel predictive model approaches for the study of both neural cell fate and developmental neurotoxicity are discussed. Finally, this article concludes with a discussion of the future use of in silico methods within developmental neurotoxicity testing, and the role of regulatory bodies in promoting advancements within the space.
Collapse
Affiliation(s)
- Joy Ku
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
2
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
3
|
Abstract
Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on the roles and functions of SGCs. In the DRG located on the posterior root of spinal nerves, satellite glial cells wrap around each sensory neuron to form an anatomically and functionally distinct unit with the sensory neurons. Following nerve injury, satellite glial cells up-regulate the expression of progenitor markers, and can differentiate into neurons.
Collapse
|
4
|
Applications of Xylosides in the Manipulation of Stem Cell Niche to Regulate Human Neural Stem Cell Differentiation and Neurite Outgrowth. Methods Mol Biol 2021. [PMID: 34626422 DOI: 10.1007/978-1-0716-1398-6_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The extracellular matrix (ECM) plays a pivotal role in the regulation of neural stem cell differentiation, axon guidance and growth, and neural plasticity. Glycosaminoglycans, such as heparan sulfate and chondroitin sulfate, are significant components of brain ECM that dictates neurogenesis and neural repair. Herein, we describe a simple method to assess the effect of xylsoides, which serve as primers and inhibitors of GAG biosynthesis, on human neural stem cell differentiation and neurite outgrowth in in vitro culture conditions.
Collapse
|
5
|
Tang Y, Zuniga-Hertz JP, Han C, Yu B, Cai D. Multifaceted secretion of htNSC-derived hypothalamic islets induces survival and antidiabetic effect via peripheral implantation in mice. eLife 2020; 9:52580. [PMID: 32081132 PMCID: PMC7062468 DOI: 10.7554/elife.52580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
We report that mouse hypothalamic stem/progenitor cells produce multiple pancreatic, gastrointestinal and hypothalamic peptides in addition to exosomes. Through cell sorting and selection according to insulin promoter activity, we generated a subpopulation(s) of these cells which formed 3D spherical structure with combined features of hypothalamic neurospheres and pancreatic islets. Through testing streptozotocin-induced pancreatic islet disruption and fatal diabetes, we found that peripheral implantation of these spheres in mice led to remarkable improvements in general health and survival in addition to a moderate antidiabetic effect, and notably these pro-survival versus metabolic effects were dissociable to a significant extent. Mechanistically, secretion of exosomes by these spheres was essential for enhancing survival while production of insulin was important for the antidiabetic effect. In summary, hypothalamic neural stem/progenitor cells comprise subpopulations with multifaceted secretion, and their derived hypothalamic islets can be implanted peripherally to enhance general health and survival together with an antidiabetic benefit.
Collapse
Affiliation(s)
- Yizhe Tang
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| | - Juan Pablo Zuniga-Hertz
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| | - Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| | - Bin Yu
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
6
|
Wiszniak S, Schwarz Q. Notch signalling defines dorsal root ganglia neuroglial fate choice during early neural crest cell migration. BMC Neurosci 2019; 20:21. [PMID: 31036074 PMCID: PMC6489353 DOI: 10.1186/s12868-019-0501-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background The dorsal root ganglia (DRG) are a critical component of the peripheral nervous system, and function to relay somatosensory information from the body’s periphery to sensory perception centres within the brain. The DRG are primarily comprised of two cell types, sensory neurons and glia, both of which are neural crest-derived. Notch signalling is known to play an essential role in defining the neuronal or glial fate of bipotent neural crest progenitors that migrate from the dorsal ridge of the neural tube to the sites of the DRG. However, the involvement of Notch ligands in this process and the timing at which neuronal versus glial fate is acquired has remained uncertain. Results We have used tissue specific knockout of the E3 ubiquitin ligase mindbomb1 (Mib1) to remove the function of all Notch ligands in neural crest cells. Wnt1-Cre; Mib1fl/fl mice exhibit severe DRG defects, including a reduction in glial cells, and neuronal cell death later in development. By comparing formation of sensory neurons and glia with the expression and activation of Notch signalling in these mice, we define a critical period during embryonic development in which early migrating neural crest cells become biased toward neuronal and glial phenotypes. Conclusions We demonstrate active Notch signalling between neural crest progenitors as soon as trunk neural crest cells delaminate from the neural tube and during their early migration toward the site of the DRG. This data brings into question the timing of neuroglial fate specification in the DRG and suggest that it may occur much earlier than originally considered. Electronic supplementary material The online version of this article (10.1186/s12868-019-0501-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5001, Australia.
| |
Collapse
|
7
|
Sengupta D, Kar S. Deciphering the Dynamical Origin of Mixed Population during Neural Stem Cell Development. Biophys J 2019; 114:992-1004. [PMID: 29490258 DOI: 10.1016/j.bpj.2017.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 12/27/2017] [Indexed: 02/04/2023] Open
Abstract
Neural stem cells (NSCs) often give rise to a mixed population of cells during differentiation. However, the dynamical origin of these mixed states is poorly understood. In this article, our mathematical modeling study demonstrates that the bone morphogenetic protein 2 (BMP2) mediated disparate differentiation dynamics of NSCs in central and peripheral nervous systems essentially function through two distinct bistable switches that are mutually interconnected via a mushroom-like bifurcation. Stochastic simulations of the model reveal that the mixed population originates due to the existence of these bistable switching regulations and that the maintenance of such mixed states depends on the level of stochastic fluctuations of the system. It further demonstrates that due to extrinsic variability, cells in an NSC population can dynamically transit from mushroom to a unique isola kind of bifurcation state, which essentially extends the range of the BMP2-driven mixed population state during differentiation. Importantly, the model predicts that by individually altering the expression level of key regulatory proteins, the NSCs can be converted entirely to a preferred phenotype for BMP2 doses that previously resulted in a mixed population. Our findings show that efficient neuronal regeneration can be achieved by systematically maneuvering the differentiation dynamics.
Collapse
Affiliation(s)
- Dola Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai, India.
| |
Collapse
|
8
|
Ebrahimikia Y, Darabi S, Rajaei F. Roles of stem cells in the treatment of Parkinson's disease. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.4.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
9
|
Effect of melatonin on neuronal differentiation requires CBP/p300-mediated acetylation of histone H3 lysine 14. Neuroscience 2017; 364:45-59. [DOI: 10.1016/j.neuroscience.2017.07.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
|
10
|
The Preclinical Research Progress of Stem Cells Therapy in Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5683097. [PMID: 27379248 PMCID: PMC4917676 DOI: 10.1155/2016/5683097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a type of degenerative disorder of the basal ganglia, causing tremor at rest, muscle rigidity hypokinesia, and dementia. The effectiveness of drug treatments gradually diminishes because the conversion to dopamine within the brain is increasingly disrupted by the progressive degeneration of the dopaminergic terminals. After long-term treatment, most patients with PD suffer from disability that cannot be satisfactorily controlled. To solve these issues, stem cells have recently been used for cell therapy of PD. In this review, the characteristics of different stem cells and their therapeutic effects on PD treatment will be discussed.
Collapse
|
11
|
Accetta R, Damiano S, Morano A, Mondola P, Paternò R, Avvedimento EV, Santillo M. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes. Front Cell Neurosci 2016; 10:146. [PMID: 27313511 PMCID: PMC4889614 DOI: 10.3389/fncel.2016.00146] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/18/2016] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1-4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation.
Collapse
Affiliation(s)
- Roberta Accetta
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Annalisa Morano
- Laboratori di Ricerca Preclinica e Traslazionale, Istituto di Ricovero e Cura a Carattere Scientifico - Centro di Riferimento Oncologico della Basilicata Rionero in Vulture, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Roberto Paternò
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Enrico V Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| |
Collapse
|
12
|
Nelson BR, Matsuhashi S, Lefcort F. Restricted neural epidermal growth factor-like like 2 (NELL2) expression during muscle and neuronal differentiation. Mech Dev 2016; 119 Suppl 1:S11-9. [PMID: 14516654 DOI: 10.1016/s0925-4773(03)00084-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a screen designed to isolate molecules regulating sensory neuron genesis and differentiation in the dorsal root ganglia (DRG). In investigating NELL2 expression during embryogenesis, we demonstrate here that NELL2 is highly regulated spatially and temporally, being only transiently expressed in discrete regions of the central (CNS) and peripheral nervous systems (PNS) and in a subset of mesoderm derived structures during their peak periods of development. In the CNS and PNS, NELL2 is maximally expressed as motor and sensory neurons differentiate. Interestingly, its expression is restricted to sublineages of the neural crest, being strongly expressed throughout the immature DRG, but excluded from sympathetic ganglia. Similarly during muscle development, NELL2 is specifically expressed by hypaxial muscle precursor cells in the differentiating somite and derivatives in the forelimbs and body wall, but not by epaxial muscle precursors. Furthermore, NELL2 is differentially regulated in the CNS and PNS; in the CNS, NELL2 is only expressed by nascent, post-mitotic neurons as they commence their differentiation, yet in the PNS, NELL2 is expressed by subsets of progenitor cells in addition to nascent neurons. Based on this restricted spatial and temporal expression pattern, functional studies are in progress to determine NELL2's role during neuronal differentiation in both the PNS and CNS.
Collapse
Affiliation(s)
- Branden R Nelson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
13
|
Ohtsu N, Nakatani Y, Yamashita D, Ohue S, Ohnishi T, Kondo T. Eva1 Maintains the Stem-like Character of Glioblastoma-Initiating Cells by Activating the Noncanonical NF-κB Signaling Pathway. Cancer Res 2015; 76:171-81. [PMID: 26677976 DOI: 10.1158/0008-5472.can-15-0884] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/02/2015] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM)-initiating cells (GIC) are a tumorigenic subpopulation that are resistant to radio- and chemotherapies and are the source of disease recurrence. Therefore, the identification and characterization of GIC-specific factors is critical toward the generation of effective GBM therapeutics. In this study, we investigated the role of epithelial V-like antigen 1 (Eva1, also known as myelin protein zero-like 2) in stemness and GBM tumorigenesis. Eva1 was prominently expressed in GICs in vitro and in stem cell marker (Sox2, CD15, CD49f)-expressing cells derived from human GBM tissues. Eva1 knockdown in GICs reduced their self-renewal and tumor-forming capabilities, whereas Eva1 overexpression enhanced these properties. Eva1 deficiency was also associated with decreased expression of stemness-related genes, indicating a requirement for Eva1 in maintaining GIC pluripotency. We further demonstrate that Eva1 induced GIC proliferation through the activation of the RelB-dependent noncanonical NF-κB pathway by recruiting TRAF2 to the cytoplasmic tail. Taken together, our findings highlight Eva1 as a novel regulator of GIC function and also provide new mechanistic insight into the role of noncanonical NF-κB activation in GIC, thus offering multiple potential therapeutic targets for preclinical investigation in GBM.
Collapse
Affiliation(s)
- Naoki Ohtsu
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuka Nakatani
- Laboratory for Cell Lineage Modulation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Shiro Ohue
- Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. Laboratory for Cell Lineage Modulation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| |
Collapse
|
14
|
Marlier Q, Verteneuil S, Vandenbosch R, Malgrange B. Mechanisms and Functional Significance of Stroke-Induced Neurogenesis. Front Neurosci 2015; 9:458. [PMID: 26696816 PMCID: PMC4672088 DOI: 10.3389/fnins.2015.00458] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023] Open
Abstract
Stroke affects one in every six people worldwide, and is the leading cause of adult disability. After stroke, some limited spontaneous recovery occurs, the mechanisms of which remain largely unknown. Multiple, parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. For years, clinical studies have tried to use exogenous cell therapy as a means of brain repair, with varying success. Since the rediscovery of adult neurogenesis and the identification of adult neural stem cells in the late nineties, one promising field of investigation is focused upon triggering and stimulating this self-repair system to replace the neurons lost following brain injury. For instance, it is has been demonstrated that the adult brain has the capacity to produce large numbers of new neurons in response to stroke. The purpose of this review is to provide an updated overview of stroke-induced adult neurogenesis, from a cellular and molecular perspective, to its impact on brain repair and functional recovery.
Collapse
Affiliation(s)
- Quentin Marlier
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| | | | - Renaud Vandenbosch
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| |
Collapse
|
15
|
Jacob C. Transcriptional control of neural crest specification into peripheral glia. Glia 2015; 63:1883-1896. [PMID: 25752517 DOI: 10.1002/glia.22816] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The neural crest is a transient migratory multipotent cell population that originates from the neural plate border and is formed at the end of gastrulation and during neurulation in vertebrate embryos. These cells give rise to many different cell types of the body such as chondrocytes, smooth muscle cells, endocrine cells, melanocytes, and cells of the peripheral nervous system including different subtypes of neurons and peripheral glia. Acquisition of lineage-specific markers occurs before or during migration and/or at final destination. What are the mechanisms that direct specification of neural crest cells into a specific lineage and how do neural crest cells decide on a specific migration route? Those are fascinating and complex questions that have existed for decades and are still in the research focus of developmental biologists. This review discusses transcriptional events and regulations occurring in neural crest cells and derived lineages, which control specification of peripheral glia, namely Schwann cell precursors that interact with peripheral axons and further differentiate into myelinating or nonmyelinating Schwann cells, satellite cells that remain tightly associated with neuronal cell bodies in sensory and autonomous ganglia, and olfactory ensheathing cells that wrap olfactory axons, both at the periphery in the olfactory mucosa and in the central nervous system in the olfactory bulb. Markers of the different peripheral glia lineages including intermediate multipotent cells such as boundary cap cells, as well as the functions of these specific markers, are also reviewed. Enteric ganglia, another type of peripheral glia, will not be discussed in this review. GLIA 2015;63:1883-1896.
Collapse
Affiliation(s)
- Claire Jacob
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Le Grand JN, Gonzalez-Cano L, Pavlou MA, Schwamborn JC. Neural stem cells in Parkinson's disease: a role for neurogenesis defects in onset and progression. Cell Mol Life Sci 2015; 72:773-97. [PMID: 25403878 PMCID: PMC11113294 DOI: 10.1007/s00018-014-1774-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/09/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, leading to a variety of motor and non-motor symptoms. Interestingly, non-motor symptoms often appear a decade or more before the first signs of motor symptoms. Some of these non-motor symptoms are remarkably similar to those observed in cases of impaired neurogenesis and several PD-related genes have been shown to play a role in embryonic or adult neurogenesis. Indeed, animal models deficient in Nurr1, Pitx3, SNCA and PINK1 display deregulated embryonic neurogenesis and LRRK2 and VPS35 have been implicated in neuronal development-related processes such as Wnt/β-catenin signaling and neurite outgrowth. Moreover, adult neurogenesis is affected in both PD patients and PD animal models and is regulated by dopamine and dopaminergic (DA) receptors, by chronic neuroinflammation, such as that observed in PD, and by differential expression of wild-type or mutant forms of PD-related genes. Indeed, an increasing number of in vivo studies demonstrate a role for SNCA and LRRK2 in adult neurogenesis and in the generation and maintenance of DA neurons. Finally, the roles of PD-related genes, SNCA, LRRK2, VPS35, Parkin, PINK1 and DJ-1 have been studied in NSCs, progenitor cells and induced pluripotent stem cells, demonstrating a role for some of these genes in stem/progenitor cell proliferation and maintenance. Together, these studies strongly suggest a link between deregulated neurogenesis and the onset and progression of PD and present strong evidence that, in addition to a neurodegenerative disorder, PD can also be regarded as a developmental disorder.
Collapse
Affiliation(s)
- Jaclyn Nicole Le Grand
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Maria Angeliki Pavlou
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
17
|
Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells. Mol Neurobiol 2014; 51:1089-102. [PMID: 24986006 DOI: 10.1007/s12035-014-8773-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/01/2014] [Indexed: 12/12/2022]
Abstract
We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.
Collapse
|
18
|
Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells. Sci Rep 2014; 4:5103. [PMID: 24869783 PMCID: PMC4037711 DOI: 10.1038/srep05103] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/09/2014] [Indexed: 01/31/2023] Open
Abstract
A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development.
Collapse
|
19
|
Quadrato G, Di Giovanni S. Waking up the sleepers: shared transcriptional pathways in axonal regeneration and neurogenesis. Cell Mol Life Sci 2013; 70:993-1007. [PMID: 22899311 PMCID: PMC11113138 DOI: 10.1007/s00018-012-1099-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/13/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
In the last several years, relevant progress has been made in our understanding of the transcriptional machinery regulating CNS repair after acute injury, such as following trauma or stroke. In order to survive and functionally reconnect to the synaptic network, injured neurons activate an intrinsic rescue program aimed to increase their plasticity. Perhaps, in the attempt to switch back to a plastic and growth-competent state, post-mitotic neurons wake up and re-express a set of transcription factors that are also critical for the regulation of their younger brothers, the neural stem cells. Here, we review and discuss the transcriptional pathways regulating both axonal regeneration and neurogenesis highlighting the connection between the two. Clarification of their common molecular substrate may help simultaneous targeting of both neurogenesis and axonal regeneration with the hope to enhance functional recovery following CNS injury.
Collapse
Affiliation(s)
- Giorgia Quadrato
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| |
Collapse
|
20
|
Neurogenic differentiation of human adipose-derived stem cells: relevance of different signaling molecules, transcription factors, and key marker genes. Gene 2012; 511:427-36. [PMID: 23000064 DOI: 10.1016/j.gene.2012.09.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/16/2012] [Accepted: 09/12/2012] [Indexed: 01/13/2023]
Abstract
Since numerous diseases affect the central nervous system and it has limited self-repair capability, a great interest in using stem cells as an alternative cell source is generated. Previous reports have shown the differentiation of adipose-derived stem cells in neuron-like cells and it has also been proved that the expression pattern of patterning, proneural, and neural factors, such as Pax6, Mash1, Ngn2, NeuroD1, Tbr2 and Tbr1, regulates and defines adult neurogenesis. Regarding this, we hypothesize that a functional parallelism between adult neurogenesis and neuronal differentiation of human adipose-derived stem cells exists. In this study we differentiate human adipose-derived stem cells into neuron-like cells and analyze the expression pattern of different patterning, proneural, neural and neurotransmitter genes, before and after neuronal differentiation. The neuron-like cells expressed neuronal markers, patterning and proneural factors characteristics of intermediate stages of neuronal differentiation. Thus we demonstrated that it is possible to differentiate adipose-derived stem cells in vitro into immature neuron-like cells and that this process is regulated in a similar way to adult neurogenesis. This may contribute to elucidate molecular mechanisms involved in neuronal differentiation of adult human non-neural cells, in aid of the development of potential therapeutic tools for diseases of the nervous system.
Collapse
|
21
|
Li J, Tang Y, Cai D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 2012; 14:999-1012. [PMID: 22940906 PMCID: PMC3463771 DOI: 10.1038/ncb2562] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/19/2012] [Indexed: 02/08/2023]
Abstract
Adult neural stem cells (NSCs) are known to exist in a few regions of the brain; however, the entity and physiological/disease relevance of adult hypothalamic NSCs (htNSCs) remain unclear. This work shows that adult htNSCs are multipotent and predominantly present in the mediobasal hypothalamus of adult mice. Chronic high-fat-diet feeding led to not only depletion but also neurogenic impairment of htNSCs associated with IKKβ/NF-κB activation. In vitro htNSC models demonstrated that their survival and neurogenesis markedly decreased on IKKβ/NF-κB activation but increased on IKKβ/NF-κB inhibition, mechanistically mediated by IKKβ/NF-κB-controlled apoptosis and Notch signalling. Mouse studies revealed that htNSC-specific IKKβ/NF-κB activation led to depletion and impaired neuronal differentiation of htNSCs, and ultimately the development of obesity and pre-diabetes. In conclusion, adult htNSCs are important for the central regulation of metabolic physiology, and IKKβ/NF-κB-mediated impairment of adult htNSCs is a critical neurodegenerative mechanism for obesity and related diabetes.
Collapse
Affiliation(s)
- Juxue Li
- Department of Molecular Pharmacology, Bronx, New York 10461, USA
| | | | | |
Collapse
|
22
|
Li S, Sun Y, Zhao X, Pu XP. Expression of the Parkinson's disease protein DJ-1 during the differentiation of neural stem cells. Brain Res 2012; 1468:84-93. [PMID: 22613231 DOI: 10.1016/j.brainres.2012.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/26/2012] [Accepted: 05/11/2012] [Indexed: 12/17/2022]
Abstract
DJ-1 is a key neuroprotective factor and its loss-of-function mutations cause an autosomal recessive, early-onset form of familial Parkinson's disease at the chromosomal PARK7 locus. However, the expression of DJ-1 during the differentiation of neural stem cells has not been fully elucidated. In this study, we investigated the expression of DJ-1 quantitatively using fluorescence immunocytochemistry and flow cytometry for differentiated neural stem cells from the cortex of the 14-day mouse embryos. We found that DJ-1 was co-expressed with the neuron-specific enolase and glial fibrillary acidic proteins, and also its expression was significantly increased in neurons and astrocytes with a prolonged differentiation period. These findings strongly suggest that DJ-1 is closely associated with the differentiation of neural stem cells.
Collapse
Affiliation(s)
- Shen Li
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | | | | | | |
Collapse
|
23
|
Kennedy KAM, Sandiford SDE, Skerjanc IS, Li SSC. Reactive oxygen species and the neuronal fate. Cell Mol Life Sci 2012; 69:215-21. [PMID: 21947442 PMCID: PMC11114775 DOI: 10.1007/s00018-011-0807-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/29/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
Abstract
Aberrant or elevated levels of reactive oxygen species (ROS) can mediate deleterious cellular effects, including neuronal toxicity and degeneration observed in the etiology of a number of pathological conditions, including Alzheimer's and Parkinson's diseases. Nevertheless, ROS can be generated in a controlled manner and can regulate redox sensitive transcription factors such as NFκB, AP-1 and NFAT. Moreover, ROS can modulate the redox state of tyrosine phosphorylated proteins, thereby having an impact on many transcriptional networks and signaling cascades important for neurogenesis. A large body of literature links the controlled generation of ROS at low-to-moderate levels with the stimulation of differentiation in certain developmental programs such as neurogenesis. In this regard, ROS are involved in governing the acquisition of the neural fate-from neural induction to the elaboration of axons. Here, we summarize and discuss the growing body of literature that describe a role for ROS signaling in neuronal development.
Collapse
Affiliation(s)
- Karen A. M. Kennedy
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1 Canada
| | - Shelley D. E. Sandiford
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1 Canada
| | - Ilona S. Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Shawn S.-C. Li
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1 Canada
| |
Collapse
|
24
|
CARNEY BJ, SHAH K. Migration and fate of therapeutic stem cells in different brain disease models. Neuroscience 2011; 197:37-47. [PMID: 21946010 PMCID: PMC3589128 DOI: 10.1016/j.neuroscience.2011.08.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 01/14/2023]
Abstract
Stem cells have a number of properties, which make them excellent candidates for the treatment of various neurologic disorders, the most important of which being their ability to migrate to and differentiate predictably at sites of pathology in the brain. The disease-directed migration and well-characterized differentiation patterns of stem cells may eventually provide a powerful tool for the treatment of both localized and diffuse disease processes within the human brain. A thorough understanding of the molecular mechanisms governing their migratory properties and their choice between different differentiation programs is essential if these cells are to be used therapeutically in humans. This review focuses on summarizing the migration and differentiation of therapeutic neural and mesenchymal stem cells in different disease models in the brain and also discusses the promise of these cells to eventually treat various forms of neurologic disease.
Collapse
Affiliation(s)
- B. J. CARNEY
- Molecular Neurotherapy and Imaging Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - K. SHAH
- Molecular Neurotherapy and Imaging Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Stem cells for GI motility disorders. Curr Opin Pharmacol 2011; 11:617-23. [PMID: 22056114 DOI: 10.1016/j.coph.2011.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/23/2011] [Indexed: 12/23/2022]
Abstract
Currently available therapies for gastrointestinal motility conditions are often inadequate. Recent scientific advances, however, have facilitated the identification of neural stem cells as novel tools for cellular replenishment. Such cells can be generated from a number of tissue sources including the gut itself. Neural stem cells can readily be harvested from postnatal human gut including by conventional endoscopy, and in experimental transplantation studies appear capable of generating a neo-Enteric Nervous System. Current initiatives are addressing pre-clinical proof of concept studies in vivo utilising animal models of disease. Although definitive cell replenishment therapies for gut motility disorders appear to be an exciting and realistic prospect, even in the short-term, a number of challenges remain to be addressed before definitive clinical application.
Collapse
|
26
|
Abstract
Quantitative approaches are essential for the advancement of strategies to manipulate stem cells or their derivatives for therapeutic applications. Predictive models of stem cell systems would provide the means to pose and validate non-intuitive hypotheses and could thus serve as an important tool for discerning underlying regulatory mechanisms governing stem cell fate decisions. In this paper we review the development of computational models that attempt to describe mammalian adult and embryonic stem (ES) cell responses. Early stochastic models that relied exclusively on statistical distributions to describe the in vitro or in vivo output of stem cells are being revised to incorporate the contributions of exogenous and endogenous parameters on specific stem cell fate processes. Recent models utilize cell specific data (for example, cell-surface receptor distributions, transcription factor half-lives, cell-cycle status, etc.) to provide mechanistic descriptions that are consistent with biologically observed phenomena. Ultimately, the goal of these computational models is to, a priori, predict stem cell output given an initial set of conditions. Our efforts to develop a predictive model of ES cell fate are discussed. The quantitative studies presented in this review represent an important step in developing bioengineering approaches to characterize and predict stem cell behavior. Ongoing efforts to incorporate genetic and signaling network data into computational models should accelerate our understanding of fundamental principles governing stem cell fate decisions.
Collapse
Affiliation(s)
- Sowmya Viswanathan
- Institute of Biomaterials and Biomedical Engineering and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
27
|
Wnt5a is a transcriptional target of Dlx homeogenes and promotes differentiation of interneuron progenitors in vitro and in vivo. J Neurosci 2011; 31:2675-87. [PMID: 21325536 DOI: 10.1523/jneurosci.3110-10.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During brain development, neurogenesis, migration, and differentiation of neural progenitor cells are regulated by an interplay between intrinsic genetic programs and extrinsic cues. The Dlx homeogene transcription factors have been proposed to directly control the genesis and maturation of GABAergic interneurons of the olfactory bulb (OB), subpallium, and cortex. Here we provide evidence that Dlx genes promote differentiation of olfactory interneurons via the signaling molecule Wnt5a. Dlx2 and Dlx5 interact with homeodomain binding sequences within the Wnt5a locus and activate its transcription. Exogenously provided Wnt5a promotes GABAergic differentiation in dissociated OB neurons and in organ-type brain cultures. Finally, we show that the Dlx-mutant environment is unfavorable for GABA differentiation, in vivo and in vitro. We conclude that Dlx genes favor interneuron differentiation also in a non-cell-autonomous fashion, via expression of Wnt5a.
Collapse
|
28
|
Sato T, Shimazaki T, Naka H, Fukami SI, Satoh Y, Okano H, Lax I, Schlessinger J, Gotoh N. FRS2α regulates Erk levels to control a self-renewal target Hes1 and proliferation of FGF-responsive neural stem/progenitor cells. Stem Cells 2010; 28:1661-73. [PMID: 20652960 PMCID: PMC2996081 DOI: 10.1002/stem.488] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor (FGF) is among the most common growth factors used in cultures to maintain self-renewal and proliferative capabilities of a variety of stem cells, including neural stem cells (NSCs). However, the molecular mechanisms underlying the control by FGF have remained elusive. Studies on mutant mice of FGF receptor substrate 2α (FRS2α), a central mediator for FGF signaling, combined with FRS2α knockdown or gain-of-function experiments, allowed us to dissect the role of FGF signaling for the self-renewal and proliferation of NSCs and to provide novel molecular mechanisms for them. We identified Hes1 as a novel self-renewal target of FGF-signaling. Quantitatively different levels of Erk activation mediated by FRS2α may regulate self-renewal of NSCs and proliferation of neural stem/progenitor cells (NSPCs); low levels of Erk activation are sufficient for the former, however, higher levels are required for maximum activity of the latter. Thus, FRS2α fine-tunes the FGF-signaling to control qualitatively different biological activities, self-renewal at least partly through Hes1 versus proliferation of NSPCs. Stem Cells 2010; 28:1661–1673.
Collapse
Affiliation(s)
- Takuya Sato
- Division of Systems Biomedical Technology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sotthibundhu A, Li QX, Thangnipon W, Coulson EJ. Abeta(1-42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiol Aging 2009; 30:1975-85. [PMID: 18374455 DOI: 10.1016/j.neurobiolaging.2008.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/06/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
Abstract
The generation of amyloid-beta peptide (Abeta) and its accumulation in amyloid plaques are generally recognized as key characteristics of Alzheimer's disease. A number of reports have indicated that Abeta can regulate the proliferation of neural precursor cells and adult neurogenesis, suggesting that this may underpin the cognitive decline and compromised olfaction also associated with the condition. Here we report that Abeta(1-42) treatment both in vitro and in vivo, as well as endogenous generation of Abeta in C100 and APP/PS1 transgenic models of Alzheimer's disease, stimulate neurogenesis of young adult subventricular zone precursors. The neurogenic effect of Abeta(1-42) was found to require expression of the p75 neurotrophin receptor (p75(NTR)) by the precursor cells, and activation of p75(NTR) by metalloprotease cleavage. However, precursors from 12-month-old APP/PS1 mice failed to respond to Abeta(1-42). Our results suggest that overstimulation of p75(NTR)-positive progenitors during early life might result in depletion of the stem cell pool and thus a more rapid decline in basal neurogenesis. This, in turn, could lead to impaired neurogenic function in later life.
Collapse
Affiliation(s)
- Areechun Sotthibundhu
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
30
|
Hotta R, Natarajan D, Thapar N. Potential of cell therapy to treat pediatric motility disorders. Semin Pediatr Surg 2009; 18:263-73. [PMID: 19782309 DOI: 10.1053/j.sempedsurg.2009.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gut motility disorders represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with stem cells to restore missing or defective elements of the gut neuromusculature offers new hope for potential cure. Focusing on enteric neuropathies such as Hirschsprung's disease, the review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. It also explores the practical challenges that must be overcome before stem cell-based therapies can be applied in the clinical arena. Although many obstacles remain, the speed of advancement of the enteric stem cell field suggests that such therapies are on the horizon.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Anatomy & Cell Biology, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
31
|
Schaarschmidt G, Schewtschik S, Kraft R, Wegner F, Eilers J, Schwarz J, Schmidt H. A new culturing strategy improves functional neuronal development of human neural progenitor cells. J Neurochem 2009; 109:238-47. [DOI: 10.1111/j.1471-4159.2009.05954.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Hattiangady B, Shetty AK. Implications of decreased hippocampal neurogenesis in chronic temporal lobe epilepsy. Epilepsia 2008; 49 Suppl 5:26-41. [PMID: 18522598 DOI: 10.1111/j.1528-1167.2008.01635.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Temporal lobe epilepsy (TLE), characterized by spontaneous recurrent motor seizures (SRMS), learning and memory impairments, and depression, is associated with neurodegeneration, abnormal reorganization of the circuitry, and loss of functional inhibition in the hippocampal and extrahippocampal regions. Over the last decade, abnormal neurogenesis in the dentate gyrus (DG) has emerged as another hallmark of TLE. Increased DG neurogenesis and recruitment of newly born neurons into the epileptogenic hippocampal circuitry is a characteristic phenomenon occurring during the early phase after the initial precipitating injury such as status epilepticus. However, the chronic phase of the disease displays substantially declined DG neurogenesis, which is associated with SRMS, learning and memory impairments, and depression. This review focuses on DG neurogenesis in the chronic phase of TLE and first confers the extent and mechanisms of declined DG neurogenesis in chronic TLE. The available data on production, survival and neuronal fate choice decision of newly born cells, stability of hippocampal stem cell numbers, and changes in the hippocampal microenvironment in chronic TLE are considered. The next section discusses the possible contribution of declined DG neurogenesis to the pathophysiology of chronic TLE, which includes its potential effects on spontaneous recurrent seizures, cognitive dysfunction, and depression. The subsequent section considers strategies that may be useful for augmenting DG neurogenesis in chronic TLE, which encompass stem cell grafting, administration of distinct neurotrophic factors, physical exercise, exposure to enriched environment, and antidepressant therapy. The final section suggests possible ramifications of increasing the DG neurogenesis in chronic epilepsy.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
33
|
Abstract
New fundamental results on stem cell biology have been obtained in the past 15 years. These results allow us to reinterpret the functioning of the cerebral tissue in health and disease. Proliferating stem cells have been found in the adult brain, which can be involved in postinjury repair and can replace dead cells under specific conditions. Numerous genomic mechanisms controlling stem cell proliferation and differentiation have been identified. The involvement of stem cells in the genesis of malignant tumors has been demonstrated. Neural stem cell tropism toward tumors has been shown. These findings suggest new lines of research on brain functioning and development. Stem cells can be used to develop radically new treatments of neurodegenerative and cancer diseases of the brain.
Collapse
|
34
|
Pavlova GV, Okhotin VE, Korochkin LI, Revishchin AV. Genomic regulation of neural stem cells in mammals. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Murdoch B, Roskams AJ. Olfactory epithelium progenitors: insights from transgenic mice and in vitro biology. J Mol Histol 2007; 38:581-99. [PMID: 17851769 DOI: 10.1007/s10735-007-9141-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
The rodent olfactory epithelium (OE) is capable of prolonged neurogenesis, beginning at E10 in the embryo and continuing throughout adulthood. Significant progress has been made over the last 10 years in revealing the signals that drive induction, differentiation and survival of its Olfactory Receptor Neurons (ORNs). Our understanding of the identity of specific progenitors or precursors that respond to these signals is, however, less well developed, and the search is still on for the elusive, definitive multipotent neuro-glial OE "Stem cell". Here, we review several lines of evidence that support the existence of a heterogeneous population of neural and glial progenitors in the olfactory mucosa, and highlight the differences in the identity and activity of progenitors found in the embryonic and adult OE. In particular, we show how recent advances in mouse transgenesis, and in the development of in vitro assays of progenitor activity, have helped to demonstrate the existence of multiple classes of olfactory mucosa-based progenitors.
Collapse
Affiliation(s)
- Barbara Murdoch
- Departments of Zoology and Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
36
|
Skalnikova H, Halada P, Vodicka P, Motlik J, Rehulka P, Hørning O, Chmelik J, Nørregaard Jensen O, Kovarova H. A proteomic approach to studying the differentiation of neural stem cells. Proteomics 2007; 7:1825-38. [PMID: 17474145 DOI: 10.1002/pmic.200600867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms that regulate the maintenance of stem cell self-renewal versus differentiation are complex and remain mostly unknown. Understanding neurogenesis and neural cell differentiation presents a unique challenge for the treatment of nervous system disorders. To gain more insight into molecular mechanisms of the differentiation of neural cells, we combined the advantage of porcine fetal neural stem cells (NSCs) in vitro differentiation model and proteomic analysis. Using 2-DE followed by MS, we profiled constituent proteins of NSCs and their differentiated progenies at first and then indicated protein species that were significantly up- or down-regulated during the differentiation. The largest identified group of constituent proteins was related to RNA and protein metabolism and processing, including chaperones, and the second largest consisted of proteins involved in cell organization (cytoskeleton and annexins). Differentiation of neural cells was found to be accompanied by changes in the expression of proteins involved in DNA and RNA binding, mRNA processing and transport, stress responses, iron storage, and redox regulation. Additional immunoblot analysis verified the induction of alpha-B crystallin and heterogeneous nuclear ribonucleoproteins (hnRNPs) A1 and A2/B1. Furthermore, immunocytochemistry demonstrated specific localization of alpha-B crystallin in the cytoplasm or nucleus of glial cells and confirmed cellular expression patterns of hnRNPs A1 and A2/B1. These findings represent a significant step towards understanding neural cell differentiation and identification of the regulatory proteins associated with this process.
Collapse
Affiliation(s)
- Helena Skalnikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vawda R, Woodbury J, Covey M, Levison SW, Mehmet H. Stem cell therapies for perinatal brain injuries. Semin Fetal Neonatal Med 2007; 12:259-72. [PMID: 17553762 DOI: 10.1016/j.siny.2007.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This chapter reviews four groups of paediatric brain injury. The pathophysiology of these injuries is discussed to establish which cells are damaged and therefore which cells represent targets for cell replacement. Next, we review potential sources of cellular replacements, including embryonic stem cells, fetal and neonatal neural stem cells and a variety of mesenchymal stem cells. The advantages and disadvantages of each source are discussed. We review published studies to illustrate where stem cell therapies have been evaluated for therapeutic gain and discuss the hurdles that will need to be overcome to achieve therapeutic benefit. Overall, we conclude that children with paediatric brain injuries or inherited genetic disorders that affect the brain are worthy candidates for stem cell therapeutics.
Collapse
Affiliation(s)
- Reaz Vawda
- RY80Y-215, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | |
Collapse
|
38
|
Bani-Yaghoub M, Kubu CJ, Cowling R, Rochira J, Nikopoulos GN, Bellum S, Verdi JM. A switch in numb isoforms is a critical step in cortical development. Dev Dyn 2007; 236:696-705. [PMID: 17253625 DOI: 10.1002/dvdy.21072] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loss of numb function suggests that numb maintains progenitors in an undifferentiated state. Herein, we demonstrate that numb1 and numb3 are expressed in undifferentiated cortical progenitors, whereas numb2 and numb4 become prominent throughout differentiation. To further assess the role of different numb isoforms in cortical neural development, we first created a Numb-null state with antisense morpholino, followed by the re-expression of specific numb isoforms. The re-expression of numb1 or numb3 resulted in a significant reduction of neural differentiation, correlating with an expansion of the cortical progenitor pool. In contrast, the expression of numb2 or numb4 resulted in a reduction of proliferating progenitors and a corresponding increase in mammalian achete-scute homologue (MASH1) expression, concurrent with the appearance of the microtubule[corrected]-associated [corrected] protein-2-positive neurons. Of interest, the effect of numb isoforms on neural differentiation could not be directly related to Notch, because classic canonical Notch signaling assays failed to uncover any differences in the four isoforms to inhibit the Notch downstream events. This finding suggests that numb may have other signaling properties during neuronal differentiation in addition to augmenting notch signal strength.
Collapse
Affiliation(s)
- Mahmud Bani-Yaghoub
- Laboratory of Neural Stem Cell Biology, Robarts Research Institute, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Nieder C, Andratschke N, Astner ST. Experimental concepts for toxicity prevention and tissue restoration after central nervous system irradiation. Radiat Oncol 2007; 2:23. [PMID: 17603905 PMCID: PMC1933540 DOI: 10.1186/1748-717x-2-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/30/2007] [Indexed: 01/04/2023] Open
Abstract
Several experimental strategies of radiation-induced central nervous system toxicity prevention have recently resulted in encouraging data. The present review summarizes the background for this research and the treatment results. It extends to the perspectives of tissue regeneration strategies, based for example on stem and progenitor cells. Preliminary data suggest a scenario with individually tailored strategies where patients with certain types of comorbidity, resulting in impaired regeneration reserve capacity, might be considered for toxicity prevention, while others might be "salvaged" by delayed interventions that circumvent the problem of normal tissue specificity. Given the complexity of radiation-induced changes, single target interventions might not suffice. Future interventions might vary with patient age, elapsed time from radiotherapy and toxicity type. Potential components include several drugs that interact with neurodegeneration, cell transplantation (into the CNS itself, the blood stream, or both) and creation of reparative signals and a permissive microenvironment, e.g., for cell homing. Without manipulation of the stem cell niche either by cell transfection or addition of appropriate chemokines and growth factors and by providing normal perfusion of the affected region, durable success of such cell-based approaches is hard to imagine.
Collapse
Affiliation(s)
- Carsten Nieder
- Radiation Oncology Unit, Nordlandssykehuset HF, 8092 Bodø, Norway
| | - Nicolaus Andratschke
- Department of Radiation Oncology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Sabrina T Astner
- Department of Radiation Oncology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
40
|
Taylor MK, Kelly Y, Morrison SJ. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 2007; 134:2435-47. [PMID: 17537790 PMCID: PMC2653864 DOI: 10.1242/dev.005520] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Constitutive activation of the Notch pathway can promote gliogenesis by peripheral (PNS) and central (CNS) nervous system progenitors. This raises the question of whether physiological Notch signaling regulates gliogenesis in vivo. To test this, we conditionally deleted Rbpsuh (Rbpj) from mouse PNS or CNS progenitors using Wnt1-Cre or Nestin-Cre. Rbpsuh encodes a DNA-binding protein (RBP/J) that is required for canonical signaling by all Notch receptors. In most regions of the developing PNS and spinal cord, Rbpsuh deletion caused only mild defects in neurogenesis, but severe defects in gliogenesis. These resulted from defects in glial specification or differentiation, not premature depletion of neural progenitors, because we were able to culture undifferentiated progenitors from the PNS and spinal cord despite their failure to form glia in vivo. In spinal cord progenitors, Rbpsuh was required to maintain Sox9 expression during gliogenesis, demonstrating that Notch signaling promotes the expression of a glial-specification gene. These results demonstrate that physiological Notch signaling is required for gliogenesis in vivo, independent of the role of Notch in the maintenance of undifferentiated neural progenitors.
Collapse
|
41
|
Micci MA, Pasricha PJ. Neural stem cells for the treatment of disorders of the enteric nervous system: strategies and challenges. Dev Dyn 2007; 236:33-43. [PMID: 17029286 DOI: 10.1002/dvdy.20975] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The main goal of this review is to summarize the status of the research in the field of stem cells transplantation, as it is applicable to the treatment of gastrointestinal motility. This field of research has advanced tremendously in the past 10 years, and recent data produced in our laboratories as well as others is contributing to the excitement on the use of neural stem cells (NSC) as a valuable therapeutic approach for disorders of the enteric nervous system characterized by a loss of critical neuronal subpopulations. There are several sources of NSC, and here we describe therapeutic strategies for NSC transplantation in the gut. These include using NSC as a relatively nonspecific cellular replacement strategy in conditions where large populations of neurons or their subsets are missing or destroyed. As with many other recent "breakthroughs" stem cell therapy may eventually prove to be overrated. However, at the present time, it does appear to provide the hope for a true cure for many currently intractable diseases of both the central and the peripheral nervous system. Certainly more extensive research is needed in this field. We hope that our review will encourage new investigators in entering this field of research ad contribute to our knowledge of the potentials of NSC and other cells for the treatment of gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Maria-Adelaide Micci
- Enteric Neuromuscular Disorders and Pain Laboratory, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, Texas 77555-0764, USA
| | | |
Collapse
|
42
|
Eberhart CG. In search of the medulloblast: neural stem cells and embryonal brain tumors. Neurosurg Clin N Am 2007; 18:59-69, viii-ix. [PMID: 17244554 DOI: 10.1016/j.nec.2006.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Medulloblastomas have a cellular and molecular phenotype similar in many ways to that of neural stem cells. Indeed, it has long been believed that a medulloblastoma can arise from transformed neural stem cells. Recent analyses of murine transgenic lines has confirmed that cells of the external germinal layer (EGL) can be transformed into a medulloblastoma, generally in association with activation of the Hedgehog signaling pathway. Stem or progenitor cell populations outside the EGL, however, are also likely the cells of origin for a subset of medulloblastomas. Many nonnodular tumors, for example, express markers suggesting that they derive from the ventricular zone germinal layer and show evidence of Wnt pathway activation. Understanding the role of developmental signaling pathways, such as Hedgehog and Wnt, in the initiation and growth of embryonal brain tumors may lead to novel therapies for these highly malignant lesions. In addition, because such pathways are required in neural stem cells, their blockade may prove particularly effective in ablating the stem-like cells within medulloblastomas that are critical for tumor propagation. In support of this concept, inhibition of a third pathway important in stem cells, Notch, seems to deplete the stem-like tumor fraction and block formation of xenografts.
Collapse
Affiliation(s)
- Charles G Eberhart
- Division of Neuropathology, Department of Pathology, Ross Building 558, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
SHAH KHALID. NEURAL STEM CELLS AND ARMED DERIVATIVES: FATE AND THERAPEUTIC POTENTIAL IN THE BRAIN. ACTA ACUST UNITED AC 2007. [DOI: 10.1142/s1568558607000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Fukumitsu H, Ohtsuka M, Murai R, Nakamura H, Itoh K, Furukawa S. Brain-derived neurotrophic factor participates in determination of neuronal laminar fate in the developing mouse cerebral cortex. J Neurosci 2007; 26:13218-30. [PMID: 17182772 PMCID: PMC6675008 DOI: 10.1523/jneurosci.4251-06.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lamina formation in the developing cerebral cortex requires precisely regulated generation and migration of the cortical progenitor cells. To test the possible involvement of brain-derived neurotrophic factor (BDNF) in the formation of the cortical lamina, we investigated the effects of BDNF protein and anti-BDNF antibody separately administered into the telencephalic ventricular space of 13.5-d-old mouse embryos. BDNF altered the position, gene-expression properties, and projections of neurons otherwise destined for layer IV to those of neurons for the deeper layers, V and VI, of the cerebral cortex, whereas anti-BDNF antibody changed some of those of neurons of upper layers II/III. Additional analysis revealed that BDNF altered the laminar fate of neurons only if their parent progenitor cells were exposed to it at approximately S-phase and that it hastened the timing of the withdrawal of their daughter neurons from the ventricular proliferating pool by accelerating the completion of S-phase, downregulation of the Pax6 (paired box gene 6) expression, an essential transcription factor for generation of the upper layer neurons, and interkinetic nuclear migration of cortical progenitors in the ventricular zone. These observations suggest that BDNF participates in the processes forming the neuronal laminas in the developing cerebral cortex. BDNF can therefore be counted as one of the key extrinsic factors that regulate the laminar fate of cortical neurons.
Collapse
Affiliation(s)
- Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan, and
| | - Masanari Ohtsuka
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan, and
| | - Rina Murai
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan, and
| | - Hiroyuki Nakamura
- Department of Morphological Neuroscience, Gifu University Graduate School of Medical Science, Gifu 501-1194, Japan
| | - Kazuo Itoh
- Department of Morphological Neuroscience, Gifu University Graduate School of Medical Science, Gifu 501-1194, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan, and
| |
Collapse
|
45
|
Clark PA, Treisman DM, Ebben J, Kuo JS. Developmental signaling pathways in brain tumor-derived stem-like cells. Dev Dyn 2007; 236:3297-308. [DOI: 10.1002/dvdy.21381] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
46
|
Seta Y, Stoick-Cooper CL, Toyono T, Kataoka S, Toyoshima K, Barlow LA. The bHLH transcription factors, Hes6 and Mash1, are expressed in distinct subsets of cells within adult mouse taste buds. ACTA ACUST UNITED AC 2006; 69:189-98. [PMID: 17031025 DOI: 10.1679/aohc.69.189] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Taste buds are multicellular receptor organs embedded in the lingual epithelium of vertebrates. Taste cells within these buds are modified epithelial cells as they lack axons and turnover rapidly throughout life, yet have neuronal properties enabling them to transduce taste stimuli and transmit this information to the nervous system. Taste cells are heterogeneous, comprising types I, II, III and basal cells, and are continually replaced during adult life, raising the question of how these different cells are generated. The molecular mechanisms governing taste cell differentiation are unknown, but the Notch signaling system has been implicated in this process based upon recent gene expression data. Here we investigate the expression in mature taste buds of Notch related transcription factors, Hes6 and Mash1, which are among the first genes expressed in embryonic taste buds. We further compare these patterns with those of immunocytochemical markers of discrete taste cell types. We find that Hes6 is expressed in a subset of basally located, possibly progenitor cells, yet is rarely coexpressed with taste cell markers. In contrast, Mash1 is detected in some basal cells and in the majority of differentiated type III taste cells, but never in type II cells. These data suggest a role for Notch signaling in taste cell differentiation in adult taste buds.
Collapse
Affiliation(s)
- Yuji Seta
- Division of Oral Histology and Neurobiology, Department of Bioscience, Kyushu Dental College, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Guentchev M, McKay RDG. Notch controls proliferation and differentiation of stem cells in a dose-dependent manner. Eur J Neurosci 2006; 23:2289-96. [PMID: 16706837 DOI: 10.1111/j.1460-9568.2006.04766.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Self-renewal and differentiation of CNS stem cells are regulated by still poorly understood cell-cell interactions. Notch is a well-known cell surface protein that can promote both cell cycle progression and mitotic arrest but the molecular mechanism controlling these opposite effects is unknown. Here we demonstrate that, in CNS stem cells, the level of active Notch1 determines the cellular response. Specifically, low levels of the active form of Notch1 promote proliferation whereas high levels lead to growth arrest. Here we provide the first evidence that Notch effects on proliferation and differentiation are a function of dose, and propose a hypothesis on how oncogenes may also act as tumor suppressors.
Collapse
Affiliation(s)
- Marin Guentchev
- Laboratory of Molecular Biology, NINDS Porter Neuroscience Research Center, Bethesda, MD, USA.
| | | |
Collapse
|
48
|
Xin H, Li Y, Chen X, Chopp M. Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells. J Neurosci Res 2006; 83:1485-93. [PMID: 16528751 PMCID: PMC3106272 DOI: 10.1002/jnr.20834] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone morphogenetic proteins (BMPs) affect cell proliferation and differentiation. Astrocytes in ischemic brain are highly responsive to bone marrow stromal cell (BMSC) treatment. We investigated the effects of BMSCs on astrocytes cultured under oxygen- and glucose-deprived conditions, which in part simulate in vivo stroke conditions, to test the hypothesis that BMSCs alter astrocytic expression of BMPs which may contribute to neurological functional recovery of stroke. Quantitative real-time RT-PCR showed that the expression of BMP2/4 mRNAs decreased within ischemic astrocytes, In contrast, BMP2/4 mRNA was significantly increased after cocultured with BMSCs. Western blotting also confirmed this increase at the protein level in the medium of ischemic astrocytes after coculture with BMSCs. As a source of neural stem and progenitor cells, cultured subventricular zone (SVZ) neurospheres exposed to medium obtained from ischemic astrocytes cocultured with BMSCs were significantly enriched in cells expressing the astrocytic marker glial fibrillary acidic protein (GFAP), but not at the expense of beta-III-tubulin-positive SVZ neuroblasts. The expression of BMP2/4 subsequently increased the phosphorylation of downstream effector Smad1 and the expression of notch signal pathway-induced protein Hes1 in cultured SVZ neurospheres. BMP antagonist Noggin blocked the elevation of phosphorylated Smad1 and the expression of Hes1 as well as reducing the percentage of astrocytic SVZ progenitor cells. Our results indicate that BMSCs increase BMP2/4 expression in ischemic astrocytes. These changes enhance subventricular progenitor cell gliogenesis by activating relevant signaling pathways. BMSC-stimulated signaling of endogenous astrocytes may alter the ischemic environment, promoting remodeling of brain and hence, improve functional recovery after stroke.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Li
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan
| | - Xiaoguang Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, People’s Republic of China
| | - Michael Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan
- Department of Physics, Oakland University, Rochester, Michigan
- Correspondence to: Michael Chopp, PhD, Department of Neurology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202.,
| |
Collapse
|
49
|
Nern C, Momma S. The realized niche of adult neural stem cells. ACTA ACUST UNITED AC 2006; 2:233-40. [PMID: 17625259 DOI: 10.1007/s12015-006-0051-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/18/2023]
Abstract
This review gives an overview of current issues concerning the application of the concept of the stem cell niche to the adult mammalian brain. It describes how the niche manifests itself at different structural levels as well as the main applications that are influenced by this concept. Finally, special regard is given to what is known for the adult human brain and how far the findings from lower animals can be applied in harnessing the regenerative potential of stem cells for therapy.
Collapse
Affiliation(s)
- Christian Nern
- Institute of Neurology (Edinger Institute), University of Frankfurt, D-60528 Frankfurt am Main, Germany
| | | |
Collapse
|
50
|
Diks SH, Bink RJ, van de Water S, Joore J, van Rooijen C, Verbeek FJ, den Hertog J, Peppelenbosch MP, Zivkovic D. The novel gene asb11: a regulator of the size of the neural progenitor compartment. ACTA ACUST UNITED AC 2006; 174:581-92. [PMID: 16893969 PMCID: PMC2064263 DOI: 10.1083/jcb.200601081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
From a differential display designed to isolate genes that are down-regulated upon differentiation of the central nervous system in Danio rerio embryos, we isolated d-asb11 (ankyrin repeat and suppressor of cytokine signaling box–containing protein 11). Knockdown of the d-Asb11 protein altered the expression of neural precursor genes sox2 and sox3 and resulted in an initial relative increase in proneural cell numbers. This was reflected by neurogenin1 expansion followed by premature neuronal differentiation, as demonstrated by HuC labeling and resulting in reduced size of the definitive neuronal compartment. Forced misexpression of d-asb11 was capable of ectopically inducing sox2 while it diminished or entirely abolished neurogenesis. Overexpression of d-Asb11 in both a pluripotent and a neural-committed progenitor cell line resulted in the stimulus-induced inhibition of terminal neuronal differentiation and enhanced proliferation. We conclude that d-Asb11 is a novel regulator of the neuronal progenitor compartment size by maintaining the neural precursors in the proliferating undifferentiated state possibly through the control of SoxB1 transcription factors.
Collapse
Affiliation(s)
- Sander H Diks
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, NL-9713 AV Groningen, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|