1
|
Fu X, Guo M, Liu J, Li C. circRNA432 enhances the coelomocyte phagocytosis via regulating the miR-2008-ELMO1 axis in Vibrio splendidus-challenged Apostichopus japonicus. Commun Biol 2023; 6:115. [PMID: 36709365 PMCID: PMC9884281 DOI: 10.1038/s42003-023-04516-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Circular RNAs (circRNAs) are a kind of extensive and diverse covalently closed circular endogenous RNA, which exert crucial functions in immune regulation in mammals. However, the functions and mechanisms of circRNAs in invertebrates are largely unclarified. In our previous work, 261 differentially expressed circRNAs including circRNA432 (circ432) were identified from skin ulcer syndrome (SUS) diseased sea cucumber Apostichopus japonicus by RNA-seq. To better address the functional role of sea cucumber circRNAs, circ432 was first found to be significantly induced by Vibrio splendidus challenge and LPS exposure in this study. Knock-down circ432 could depress the V. splendidus-induced coelomocytes phagocytosis. Moreover, circ432 is validated to serve as the sponge of miR-2008, a differential expressed miRNA in SUS-diseased sea cucumbers, by Argonaute 2-RNA immunoprecipitation (AGO2-RIP) assay, luciferase reporter assay and RNA fluorescence in situ hybridization (FISH) in vitro. Engulfment and cell motility protein 1 (AjELMO1) is further demonstrated to be the target of miR-2008, and silencing AjELMO1 inhibits the V. splendidus-induced coelomocytes phagocytosis, and this phenomenon could be further suppressed by supplementing with miR-2008 mimics, suggesting that circ432 might regulate coelomocytes phagocytosis via miR-2008-AjELMO1 axis. We further confirm that the depressed coelomocytes' phagocytosis by circ432 silencing is consistent with the decreased abundance of AjELMO1, and could be recovered by miR-2008 inhibitors transfection. All our results provide the evidence that circ432 is involved in regulating pathogen-induced coelomocyte phagocytosis via sponge miR-2008 and promotes the abundance of AjELMO1. These findings will enrich the regulatory mechanism of phagocytosis in echinoderm and provide theoretical data for SUS disease prevention and control in sea cucumbers.
Collapse
Affiliation(s)
- Xianmu Fu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Ming Guo
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Jiqing Liu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Chenghua Li
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266071 Qingdao, P. R. China
| |
Collapse
|
2
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
3
|
Synaptojanin regulates Hedgehog signalling by modulating phosphatidylinositol 4-phosphate levels. J Biosci 2018. [DOI: 10.1007/s12038-018-9799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Brigui A, Hofmann L, Argüelles C, Sanial M, Holmgren RA, Plessis A. Control of the dynamics and homeostasis of the Drosophila Hedgehog receptor Patched by two C2-WW-HECT-E3 Ubiquitin ligases. Open Biol 2016; 5:rsob.150112. [PMID: 26446620 PMCID: PMC4632511 DOI: 10.1098/rsob.150112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The conserved Hedgehog (HH) signals control animal development, adult stem cell maintenance and oncogenesis. In Drosophila, the HH co-receptor Patched (PTC) controls both HH gradient formation and signalling. PTC is post-translationally downregulated by HH, which promotes its endocytosis and destabilization, but the mechanisms of PTC trafficking and its importance in the control of PTC remain to be understood. PTC interacts with E3 Ubiquitin (UB)-ligases of the C2-WW-HECT family; two of them—SMURF and NEDD4—are known to regulate its levels. We demonstrate that mutation of the PTC PY motif, which mediates binding of C2-WW-HECT family members, inhibits its internalization but not its autonomous and non-autonomous signalling activities. In addition, we show that the two related UB-C2-WW-HECT ligases NEDD4 and SU(DX) regulate PTC trafficking and finely tune its accumulation through partially redundant but distinct functions. While both NEDD4 and SU(DX) promote PTC endocytosis, only SU(DX) is able to induce its lysosomal targeting and degradation. In conclusion, PTC trafficking and homeostasis are tightly regulated by a family of UB-ligases.
Collapse
Affiliation(s)
- Amira Brigui
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| | - Line Hofmann
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| | - Camilla Argüelles
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| | - Matthieu Sanial
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| | - Robert A Holmgren
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Anne Plessis
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris 75205, France
| |
Collapse
|
5
|
Shi W, Wang F, Gao M, Yang Y, Du Z, Wang C, Yao Y, He K, Chen X, Hao A. ZDHHC17 promotes axon outgrowth by regulating TrkA-tubulin complex formation. Mol Cell Neurosci 2015; 68:194-202. [PMID: 26232532 DOI: 10.1016/j.mcn.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 12/14/2022] Open
Abstract
Correct axonal growth during nervous system development is critical for synaptic transduction and nervous system function. Proper axon outgrowth relies on a suitable growing environment and the expression of a series of endogenous neuronal factors. However, the mechanisms of these neuronal proteins involved in neuronal development remain unknown. ZDHHC17 is a member of the DHHC (Asp-His-His-Cys)-containing family, a family of highly homologous proteins. Here, we show that loss of function of ZDHHC17 in zebrafish leads to motor dysfunction in 3-day post-fertilization (dpf) larvae. We performed immunolabeling analysis to reveal that mobility dysfunction was due to a significant defect in the axonal outgrowth of spinal motor neurons (SMNs) without affecting neuron generation. In addition, we found a similar phenotype in zdhhc17 siRNA-treated neural stem cells (NSCs) and PC12 cells. Inhibition of zdhhc17 limited neurite outgrowth and branching in both NSCs and PC12. Furthermore, we discovered that the level of phosphorylation of extracellular-regulated kinase (ERK) 1/2, a major downstream effector of tyrosine kinase (TrkA), was largely upregulated in ZDHHC17 overexpressing PC12 cells by a mechanism independent on its palmitoyltransferase (PAT) activity. Specifically, ZDHHC17 is necessary for proper TrkA-tubulin module formation in PC12 cells. These results strongly indicate that ZDHHC17 is essential for correct axon outgrowth in vivo and in vitro. Our findings identify ZDHHC17 as an important upstream factor of ERK1/2 to regulate the interaction between TrkA and tubulin during neuronal development.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Fen Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Ming Gao
- Reproductive Medical Center of Shandong University, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Yang Yang
- Infertility Center, Qilu Hospital, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zhaoxia Du
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Chen Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Yao Yao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Kun He
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xueran Chen
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
6
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
7
|
Yue S, Tang LY, Tang Y, Tang Y, Shen QH, Ding J, Chen Y, Zhang Z, Yu TT, Zhang YE, Cheng SY. Requirement of Smurf-mediated endocytosis of Patched1 in sonic hedgehog signal reception. eLife 2014; 3. [PMID: 24925320 PMCID: PMC4080449 DOI: 10.7554/elife.02555] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/10/2014] [Indexed: 01/17/2023] Open
Abstract
Cell surface reception of Sonic hedgehog (Shh) must ensure that the graded morphogenic signal is interpreted accordingly in neighboring cells to specify tissue patterns during development. Here, we report endocytic sorting signals for the receptor Patched1 (Ptch1), comprising two 'PPXY' motifs, that direct it to degradation in lysosomes. These signals are recognized by two HECT-domain ubiquitin E3 ligases, Smurf1 and Smurf2, which are induced by Shh and become enriched in Caveolin-1 lipid rafts in association with Ptch1. Smurf-mediated endocytic turnover of Ptch1 is essential for its clearance from the primary cilium and pathway activation. Removal of both Smurfs completely abolishes the ability of Shh to sustain the proliferation of postnatal granule cell precursors in the cerebellum. These findings reveal a novel step in the Shh pathway activation as part of the Ptch1 negative feedback loop that precisely controls the signaling output in response to Shh gradient signal.
Collapse
Affiliation(s)
- Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Liu-Ya Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Ying Tang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Qiu-Hong Shen
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zengdi Zhang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ting-Ting Yu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Etxeberria E, Pozueta-Romero J, Gonzalez P. In and out of the plant storage vacuole. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:52-61. [PMID: 22608519 DOI: 10.1016/j.plantsci.2012.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 05/08/2023]
Abstract
The plant storage vacuole is involved in a wide variety of metabolic functions a great many of which necessitate the transport of substances across the tonoplast. Some solutes, depending on the origin, have to cross the plasma membrane as well. The cell is equipped with a complex web of transport systems, cellular routes, and unique intracellular environments that support their transport and accumulation against a concentration gradient. These are capable of processing a diverse nature of substances of distinct sizes, chemical properties, and origins. In this review we describe the various mechanism involved in solute transport into the vacuole of storage cells with special emphasis placed on solutes arriving through the apoplast. Transport of solutes from the cytosol to the vacuole is carried out by tonoplast-bound ABC transporters, solute/H(+) antiporters, and ion channels whereas transport from the apoplast requires additional plasma membrane-bound solute/H(+) symporters and fluid-phase endocytosis. In addition, and based on new evidence accumulated within the last decade, we re-evaluate the current notion of extracellular solute uptake as partially based on facilitated diffusion, and offer an alternative interpretation that involves membrane bound transporters and fluid-phase endocytosis. Finally, we make several assertions in regards to solute export from the vacuole as predicted by the limited available data suggesting that both membrane-bound carriers and vesicle mediated exocytosis are involved during solute mobilization.
Collapse
Affiliation(s)
- Ed Etxeberria
- University of Florida/IFAS, Department of Horticultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.
| | | | | |
Collapse
|
9
|
Li HD, Liu WX, Michalak M. Enhanced clathrin-dependent endocytosis in the absence of calnexin. PLoS One 2011; 6:e21678. [PMID: 21747946 PMCID: PMC3128601 DOI: 10.1371/journal.pone.0021678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 06/08/2011] [Indexed: 12/24/2022] Open
Abstract
Background Calnexin, together with calreticulin, constitute the calnexin/calreticulin cycle. Calnexin is a type I endoplasmic reticulum integral membrane protein and molecular chaperone responsible for the folding and quality control of newly-synthesized (glyco)proteins. The endoplasmic reticulum luminal domain of calnexin is responsible for lectin-like activity and interaction with nascent polypeptide chains. The role of the C-terminal, cytoplasmic portion of calnexin is not clear. Methodology/Principal Findings Using yeast two hybrid screen and immunoprecipitation techniques, we showed that the Src homology 3-domain growth factor receptor-bound 2-like (Endophilin) interacting protein 1 (SGIP1), a neuronal specific regulator of endocytosis, forms complexes with the C-terminal cytoplasmic domain of calnexin. The calnexin cytoplasmic C-tail interacts with SGIP1 C-terminal domains containing the adaptor complexes medium subunit (Adap-Comp-Sub) region. Calnexin-deficient cells have enhanced clathrin-dependent endocytosis in neuronal cells and mouse neuronal system. This is reversed by expression of full length calnexin or calnexin C-tail. Conclusions/Significance We show that the effects of SGIP1 and calnexin C-tail on clathrin-dependent endocytosis are due to modulation of the internalization of the receptor-ligand complexes. Enhanced clathrin-dependent endocytosis in the absence of calnexin may contribute to the neurological phenotype of calnexin-deficient mice.
Collapse
Affiliation(s)
- Hao-Dong Li
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wen-Xin Liu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
10
|
Seirin Lee S, Gaffney EA, Baker RE. The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays. Bull Math Biol 2011; 73:2527-51. [PMID: 21347815 DOI: 10.1007/s11538-011-9634-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 01/27/2011] [Indexed: 11/29/2022]
Abstract
Since its conception in 1952, the Turing paradigm for pattern formation has been the subject of numerous theoretical investigations. Experimentally, this mechanism was first demonstrated in chemical reactions over 20 years ago and, more recently, several examples of biological self-organisation have also been implicated as Turing systems. One criticism of the Turing model is its lack of robustness, not only with respect to fluctuations in the initial conditions, but also with respect to the inclusion of delays in critical feedback processes such as gene expression. In this work we investigate the possibilities for Turing patterns on growing domains where the morphogens additionally regulate domain growth, incorporating delays in the feedback between signalling and domain growth, as well as gene expression. We present results for the proto-typical Schnakenberg and Gierer-Meinhardt systems: exploring the dynamics of these systems suggests a reconsideration of the basic Turing mechanism for pattern formation on morphogen-regulated growing domains as well as highlighting when feedback delays on domain growth are important for pattern formation.
Collapse
Affiliation(s)
- S Seirin Lee
- Graduate School of Mathematical Sciences, The University of Tokyo, Japan.
| | | | | |
Collapse
|
11
|
Rab11 regulates JNK and Raf/MAPK-ERK signalling pathways during Drosophila wing development. Cell Biol Int 2011; 34:1113-8. [PMID: 20642455 DOI: 10.1042/cbi20100155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Developmental signalling pathways are regulated by intracellular vesicle trafficking in multicellular organisms. In our earlier communication, we have shown that mutation in Rab11 (a subfamily of the Ypt/Rab gene family) results in the activation of JNK signalling pathways in Drosophila eye. Here, we report that Rab11 regulates JNK and Raf/MAPK-ERK signalling pathways during Drosophila wing development. Using immunofluorescence and immunohistochemical analyses, we show that overexpression of Rab11 in mutant wing imaginal disc cells triggers the induction of apoptosis and activation of JNK and ERK. Further, using a genetic approach it has been shown that Rab11 interacts with the components of these pathways during Drosophila wing development. In addition to this, in Rab11 mutant wing imaginal discs JNK activity was monitored using puc(E)⁶⁹, a P-lacZ enhancer-trap line inserted in puckered (puc). A strong induction of puc in Rab11 mutant wing imaginal disc cells provided a strong support that Rab11 regulates the JNK signalling pathway during Drosophila wing development.
Collapse
|
12
|
Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2010; 62:632-67. [PMID: 21079039 DOI: 10.1124/pr.110.002931] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The receptor class Frizzled, which has recently been categorized as a separate group of G protein-coupled receptors by the International Union of Basic and Clinical Pharmacology, consists of 10 Frizzleds (FZD(1-10)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Recent years have seen major advances in our knowledge about these seven-transmembrane-spanning proteins, including: receptor function, molecular mechanisms of signal transduction, and the receptor's role in embryonic patterning, physiology, cancer, and other diseases. Despite intense efforts, many question marks and challenges remain in mapping receptor-ligand interaction, signaling routes, mechanisms of specificity and how these molecular details underlie disease and also the receptor's important role in physiology. This review therefore focuses on the molecular aspects of WNT/FZD and HH/SMO signaling discussing receptor structure, mechanisms of signal transduction, accessory proteins, receptor dynamics, and the possibility of targeting these signaling pathways pharmacologically.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Fassier C, Hutt JA, Scholpp S, Lumsden A, Giros B, Nothias F, Schneider-Maunoury S, Houart C, Hazan J. Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci 2010; 13:1380-7. [PMID: 20935645 DOI: 10.1038/nn.2662] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/26/2010] [Indexed: 01/25/2023]
Abstract
To better understand hereditary spastic paraplegia (HSP), we characterized the function of atlastin, a protein that is frequently involved in juvenile forms of HSP, by analyzing loss- and gain-of-function phenotypes in the developing zebrafish. We found that knockdown of the gene for atlastin (atl1) caused a severe decrease in larval mobility that was preceded by abnormal architecture of spinal motor axons and was associated with a substantial upregulation of the bone morphogenetic protein (BMP) signaling pathway. Overexpression analyses confirmed that atlastin inhibits BMP signaling. In primary cultures of zebrafish spinal neurons, Atlastin partially colocalized with type I BMP receptors in late endosomes distributed along neurites, which suggests that atlastin may regulate BMP receptor trafficking. Finally, genetic or pharmacological inhibition of BMP signaling was sufficient to rescue the loss of mobility and spinal motor axon defects of atl1 morphants, emphasizing the importance of fine-tuning the balance of BMP signaling for vertebrate motor axon architecture and stability.
Collapse
Affiliation(s)
- Coralie Fassier
- CNRS UMR 7224, Physiopathologie des Maladies du Système Nerveux Central, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems. Bull Math Biol 2010; 72:2139-60. [PMID: 20309645 DOI: 10.1007/s11538-010-9532-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 03/01/2010] [Indexed: 01/27/2023]
Abstract
There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens.
Collapse
|
16
|
Seirin Lee S, Gaffney EA. Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays. Bull Math Biol 2010; 72:2161-79. [PMID: 20309644 DOI: 10.1007/s11538-010-9533-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/01/2010] [Indexed: 02/08/2023]
Abstract
Turing's pattern formation mechanism exhibits sensitivity to the details of the initial conditions suggesting that, in isolation, it cannot robustly generate pattern within noisy biological environments. Nonetheless, secondary aspects of developmental self-organisation, such as a growing domain, have been shown to ameliorate this aberrant model behaviour. Furthermore, while in-situ hybridisation reveals the presence of gene expression in developmental processes, the influence of such dynamics on Turing's model has received limited attention. Here, we novelly focus on the Gierer-Meinhardt reaction diffusion system considering delays due the time taken for gene expression, while incorporating a number of different domain growth profiles to further explore the influence and interplay of domain growth and gene expression on Turing's mechanism. We find extensive pathological model behaviour, exhibiting one or more of the following: temporal oscillations with no spatial structure, a failure of the Turing instability and an extreme sensitivity to the initial conditions, the growth profile and the duration of gene expression. This deviant behaviour is even more severe than observed in previous studies of Schnakenberg kinetics on exponentially growing domains in the presence of gene expression (Gaffney and Monk in Bull. Math. Biol. 68:99-130, 2006). Our results emphasise that gene expression dynamics induce unrealistic behaviour in Turing's model for multiple choices of kinetics and thus such aberrant modelling predictions are likely to be generic. They also highlight that domain growth can no longer ameliorate the excessive sensitivity of Turing's mechanism in the presence of gene expression time delays. The above, extensive, pathologies suggest that, in the presence of gene expression, Turing's mechanism would generally require a novel and extensive secondary mechanism to control reaction diffusion patterning.
Collapse
Affiliation(s)
- S Seirin Lee
- Graduate School of Environmental Sciences, Okayama University, Okayama 700-8530, Japan.
| | | |
Collapse
|
17
|
Wang Y, Steinbeisser H. Molecular basis of morphogenesis during vertebrate gastrulation. Cell Mol Life Sci 2009; 66:2263-73. [PMID: 19347571 PMCID: PMC11115717 DOI: 10.1007/s00018-009-0018-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/23/2009] [Accepted: 03/06/2009] [Indexed: 10/20/2022]
Abstract
Gastrulation is a crucial step in early embryogenesis. During gastrulation, a set of morphogenetic processes takes place leading to the establishment of the basic body plan and formation of primary germ layers. A rich body of knowledge about these morphogenetic processes has been accumulated over decades. The understanding of the molecular mechanism that controls the complex cell movement and inductive processes during gastrulation remains a challenge. Substantial progress has been made recently to identify and characterize pathways and molecules implicated in the modulation of morphogenesis during vertebrate gastrulation. Here, we summarize recent findings in the analysis of signaling pathways implicated in gastrulation movements, with the aim to generalize the basic molecular principles of vertebrate morphogenesis.
Collapse
Affiliation(s)
- Yingqun Wang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | | |
Collapse
|
18
|
Lee JH, Overstreet E, Fitch E, Fleenor S, Fischer J. Drosophila liquid facets-Related encodes Golgi epsin and is an essential gene required for cell proliferation, growth, and patterning. Dev Biol 2009; 331:1-13. [PMID: 19376106 PMCID: PMC2693448 DOI: 10.1016/j.ydbio.2009.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 12/12/2022]
Abstract
Epsin and epsin-Related (epsinR) are multi-modular proteins that stimulate clathrin-coated vesicle formation. Epsin promotes endocytosis at the plasma membrane, and epsinR functions at the Golgi and early endosomes for trans-Golgi network/endosome vesicle trafficking. In Drosophila, endocytic epsin is known as Liquid facets, and it is essential specifically for Notch signaling. Here, by generating and analyzing loss-of-function mutants in the liquid facets-Related (lqfR) gene of Drosophila, we investigated the function of Golgi epsin in a multicellular context. We found that LqfR is indeed a Golgi protein, and that like liquid facets, lqfR is essential for Drosophila viability. In addition, primarily by analyzing mutant eye discs, we found that lqfR is required for cell proliferation, insulin-independent cell growth, and cell patterning, consistent with a role in one or several signaling pathways. Epsins in all organisms share an ENTH (epsin N-terminal homology) domain, which binds phosphoinositides enriched at the plasma membrane or the Golgi membrane. The epsinR ENTH domain is also the recognition element for particular cargos. By generating wild-type and mutant lqfR transgenes, we found that all apparent LqfR functions are independent of its ENTH domain. These results suggest that LqfR transports specific cargo critical to one or more signaling pathways, and lays the foundation for identifying those proteins.
Collapse
Affiliation(s)
| | | | | | - Stephen Fleenor
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, Texas 78712
| | - Janice Fischer
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, Texas 78712
| |
Collapse
|
19
|
Sivaramakrishna Y, Amancha PK, Siva Kumar N. Reptilian MPR 300 is also the IGF-IIR: Cloning, sequencing and functional characterization of the IGF-II binding domain. Int J Biol Macromol 2009; 44:435-40. [DOI: 10.1016/j.ijbiomac.2009.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
|
20
|
Abstract
Transforming growth factor-beta (TGF-beta) signaling is tightly regulated to ensure its proper physiological functions in different cells and tissues. Like other cell surface receptors, TGF-beta receptors are internalized into the cell, and this process plays an important regulatory role in TGF-beta signaling. It is well documented that TGF-beta receptors are endocytosed via clathrin-coated vesicles as TGF-beta endocytosis can be blocked by potassium depletion and the GTPase-deficient dynamin K44A mutant. TGF-beta receptors may also enter cells via cholesterol-rich membrane microdomain lipid rafts/caveolae and are found in caveolin-1-positive vesicles. Although receptor endocytosis is not essential for TGF-beta signaling, clathrin-mediated endocytosis has been shown to promote TGF-beta-induced Smad activation and transcriptional responses. Lipid rafts/caveolae are widely regarded as signaling centers for G protein-coupled receptors and tyrosine kinase receptors, but they are indicated to facilitate the degradation of TGF-beta receptors and therefore turnoff of TGF-beta signaling. This review summarizes current understanding of TGF-beta receptor endocytosis, the possible mechanisms underlying this process, and the role of endocytosis in modulation of TGF-beta signaling.
Collapse
Affiliation(s)
- Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Abstract
Endocytosis regulates many cellular signaling processes by controlling the number of functional receptors available at the cell surface. Conversely, some signaling processes regulate the endocytic pathway. Furthermore, various cellular signaling events appear to occur on endosome membranes. The endocytic pathway, by providing a set of dynamic and biochemically specialized endomembrane structures that physically communicate with the plasma membrane, is increasingly viewed as a highly flexible scaffold for mediating precise spatiotemporal control and transport of diverse biological signals. General principles of endosome-based signaling are beginning to emerge but, in many cases, the physiological significance of signaling on the endocytic pathway remains poorly understood.
Collapse
Affiliation(s)
- Mark von Zastrow
- Departments of Psychiatry and Cellular & Molecular Pharmacology, University of California at San Francisco, N212E Genentech Hall, Box 2140, UCSF Mission Bay Campus, 600 16th Street, San Francisco, CA 94158, USA.
| | | |
Collapse
|
22
|
Walthall SL, Moses M, Horabin JI. A large complex containing Patched and Smoothened initiates Hedgehog signaling in Drosophila. J Cell Sci 2007; 120:826-37. [PMID: 17284519 DOI: 10.1242/jcs.03382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hedgehog acts as an organizer during development. Its signaling involves the receptor Patched, signal transducer Smoothened and a cytoplasmic complex containing the transcription factor Cubitus interruptus tethered to the Smoothened carboxyl tail. Without Hedgehog, Patched represses Smoothened resulting in proteolysis of Cubitus interruptus to its repressor form. With Hedgehog, Patched repression of Smoothened is relieved and Cubitus interruptus is activated. Sex-lethal, the master switch for sex determination in Drosophila, has been shown to associate with Cubitus interruptus and the cytoplasmic components of the Hedgehog signaling pathway. Additionally, Sex-lethal responds to the presence of Hedgehog in a Patched-dependent manner. The latter prompted us to examine the role of Patched in signaling. We find that Cubitus interruptus, Sex-lethal, Patched and Smoothened co-immunoprecipitate and co-fractionate, suggesting a large complex of both membrane and cytoplasmic components of the Hedgehog pathway. The entire complex is present at the plasma membrane and the association of Patched changes depending on the activation state of the pathway; it also is not female specific. Colocalization analyses suggest that Sex-lethal alters the endocytic cycling of the Hedgehog components and may augment the Hedgehog signal in females by decreasing the proteolytic cleavage of Cubitus interruptus, availing more of it for activation.
Collapse
Affiliation(s)
- Sabrina L Walthall
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
23
|
Li N, Volff JN, Wizenmann A. Rab23 GTPase is expressed asymmetrically in Hensen's node and plays a role in the dorsoventral patterning of the chick neural tube. Dev Dyn 2007; 236:2993-3006. [DOI: 10.1002/dvdy.21331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
24
|
Fischer JA, Eun SH, Doolan BT. Endocytosis, endosome trafficking, and the regulation of Drosophila development. Annu Rev Cell Dev Biol 2006; 22:181-206. [PMID: 16776558 DOI: 10.1146/annurev.cellbio.22.010605.093205] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocytosis and endosome trafficking regulate cell signaling in unexpected ways. Here we review the contribution that Drosophila research has made to this exciting field. In addition to attenuating signaling, endocytosis shapes morphogen gradients, activates ligands, and regulates spatially receptor activation within a single cell. Moreover, some receptors signal from within endosomes, and the ability of a specific type of endosome to form controls the ability of cells to signal. Experiments in Drosophila reveal that through regulation of a variety of cell signaling pathways, endocytosis controls cell patterning and cell fate.
Collapse
Affiliation(s)
- Janice A Fischer
- Institute for Cellular and Molecular Biology, Section of Molecular Cell and Development, University of Texas, Austin, Texas 78712, USA.
| | | | | |
Collapse
|
25
|
Rusten TE, Rodahl LM, Pattni K, Englund C, Samakovlis C, Dove S, Brech A, Stenmark H. Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. Mol Biol Cell 2006; 17:3989-4001. [PMID: 16837550 PMCID: PMC1556381 DOI: 10.1091/mbc.e06-03-0239] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/13/2006] [Accepted: 07/03/2006] [Indexed: 11/11/2022] Open
Abstract
The trafficking of endocytosed receptors through phosphatidylinositol 3-phosphate [PtdIns(3)P]-containing endosomes is thought to attenuate their signaling. Here, we show that the PtdIns(3)P 5-kinase Fab1/PIKfyve controls trafficking but not silencing of endocytosed receptors. Drosophila fab1 mutants contain undetectable phosphatidylinositol 3,5-bisphosphate levels, show profound increases in cell and organ size, and die at the pupal stage. Mutant larvae contain highly enlarged multivesicular bodies and late endosomes that are inefficiently acidified. Clones of fab1 mutant cells accumulate Wingless and Notch, similarly to cells lacking Hrs, Vps25, and Tsg101, components of the endosomal sorting machinery for ubiquitinated membrane proteins. However, whereas hrs, vps25, and tsg101 mutant cell clones accumulate ubiquitinated cargo, this is not the case with fab1 mutants. Even though endocytic receptor trafficking is impaired in fab1 mutants, Notch, Wingless, and Dpp signaling is unaffected. We conclude that Fab1, despite its importance for endosomal functions, is not required for receptor silencing. This is consistent with the possibility that Fab1 functions at a late stage in endocytic receptor trafficking, at a point when signal termination has occurred.
Collapse
Affiliation(s)
- Tor Erik Rusten
- *Department of Biochemistry, The Norwegian Radium Hospital and the University of Oslo, Montebello, N-0310 Oslo, Norway
| | - Lina M.W. Rodahl
- *Department of Biochemistry, The Norwegian Radium Hospital and the University of Oslo, Montebello, N-0310 Oslo, Norway
| | - Krupa Pattni
- *Department of Biochemistry, The Norwegian Radium Hospital and the University of Oslo, Montebello, N-0310 Oslo, Norway
| | - Camilla Englund
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden; and
| | - Christos Samakovlis
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden; and
| | - Stephen Dove
- Department of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andreas Brech
- *Department of Biochemistry, The Norwegian Radium Hospital and the University of Oslo, Montebello, N-0310 Oslo, Norway
| | - Harald Stenmark
- *Department of Biochemistry, The Norwegian Radium Hospital and the University of Oslo, Montebello, N-0310 Oslo, Norway
| |
Collapse
|
26
|
Le Borgne R. Regulation of Notch signalling by endocytosis and endosomal sorting. Curr Opin Cell Biol 2006; 18:213-22. [PMID: 16488590 DOI: 10.1016/j.ceb.2006.02.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 02/08/2006] [Indexed: 01/31/2023]
Abstract
Cell-cell signalling is an essential process in the formation of multicellular organisms. Notch is the receptor of an evolutionarily conserved signalling pathway regulating numerous developmental decisions. Indeed, its misregulation is linked to multiple developmental and physiological disorders. Notch and its ligands are distributed widely throughout development, yet Notch activity is highly controlled and restricted in time and space. Recent advances have highlighted that endocytosis followed by endosomal sorting of both the Notch receptor and its ligands is an essential mechanism by which Notch-mediated signalling is developmentally controlled.
Collapse
Affiliation(s)
- Roland Le Borgne
- CNRS UMR 6061, Faculté de Médecine, 2 avenue du Professeur Léon Bernard, CS 34317, 35043 Rennes Cedex, France.
| |
Collapse
|
27
|
Nolan CM, McCarthy K, Eivers E, Jirtle RL, Byrnes L. Mannose 6-phosphate receptors in an ancient vertebrate, zebrafish. Dev Genes Evol 2006; 216:144-51. [PMID: 16411117 DOI: 10.1007/s00427-005-0046-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/21/2005] [Indexed: 11/25/2022]
Abstract
The endosome/lysosome system plays key roles in embryonic development, but difficulties posed by inaccessible mammalian embryos have hampered detailed studies. The accessible, transparent embryos of Danio rerio, together with the genetic and experimental approaches possible with this organism, provide many advantages over rodents. In mammals, mannose 6-phosphate receptors (MPRs) target acid hydrolases to endosomes and lysosomes, but nothing is known of acid hydrolase targeting in zebrafish. Here, we describe the sequence of the zebrafish cation-dependent MPR (CD-MPR) and cation-independent MPR (CI-MPR), and compare them with their mammalian orthologs. We show that all residues critical for mannose 6-phosphate (M6P) recognition are present in the extracellular domains of the zebrafish receptors, and that trafficking signals in the cytoplasmic tails are also conserved. This suggests that the teleost receptors possess M6P binding sites with properties similar to those of mammalian MPRs, and that targeting of lysosomal enzymes by MPRs represents an ancient pathway in vertebrate cell biology. We also determined the expression patterns of the CD-MPR and CI-MPR during embryonic development in zebrafish. Both genes are expressed from the one-cell stage through to the hatching period. In early embryos, expression is ubiquitous, but in later stages, expression of both receptors is restricted to the anterior region of the embryo, covering the forebrain, midbrain and hindbrain. The expression patterns suggest time- and tissue-specific functions for the receptors, with particular evidence for roles in neural development. Our study establishes zebrafish as a novel, genetically tractable model for in vivo studies of MPR function and lysosome biogenesis.
Collapse
Affiliation(s)
- Catherine M Nolan
- School of Biological and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
28
|
Piddini E, Marshall F, Dubois L, Hirst E, Vincent JP. Arrow (LRP6) and Frizzled2 cooperate to degrade Wingless in Drosophila imaginal discs. Development 2005; 132:5479-89. [PMID: 16291792 DOI: 10.1242/dev.02145] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysosome-mediated ligand degradation is known to shape morphogen gradients and modulate the activity of various signalling pathways. We have investigated the degradation of Wingless, a Drosophila member of the Wnt family of secreted growth factors. We find that one of its signalling receptors, Frizzled2, stimulates Wingless internalization both in wing imaginal discs and cultured cells. However, this is not sufficient for degradation. Indeed, as shown previously, overexpression of Frizzled2 leads to Wingless stabilization in wing imaginal discs. We show that Arrow (the Drosophila homologue of LRP5/6), another receptor involved in signal transduction, abrogates such stabilization. We provide evidence that Arrow stimulates the targeting of Frizzled2-Wingless (but not Dally-like-Wingless) complexes to a degradative compartment. Thus, Frizzled2 alone cannot lead Wingless all the way from the plasma membrane to a degradative compartment. Overall, Frizzled2 achieves ligand capture and internalization, whereas Arrow, and perhaps downstream signalling, are essential for lysosomal targeting.
Collapse
Affiliation(s)
- Eugenia Piddini
- National Institute for Medical Research, The Ridgeway Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
29
|
Emery G, Hutterer A, Berdnik D, Mayer B, Wirtz-Peitz F, Gaitan MG, Knoblich JA. Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell 2005; 122:763-73. [PMID: 16137758 DOI: 10.1016/j.cell.2005.08.017] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/22/2005] [Accepted: 08/16/2005] [Indexed: 01/15/2023]
Abstract
Drosophila sensory organ precursor (SOP) cells are a well-studied model system for asymmetric cell division. During SOP division, the determinants Numb and Neuralized segregate into the pIIb daughter cell and establish a distinct cell fate by regulating Notch/Delta signaling. Here, we describe a Numb- and Neuralized-independent mechanism that acts redundantly in cell-fate specification. We show that trafficking of the Notch ligand Delta is different in the two daughter cells. In pIIb, Delta passes through the recycling endosome which is marked by Rab 11. In pIIa, however, the recycling endosome does not form because the centrosome fails to recruit Nuclear fallout, a Rab 11 binding partner that is essential for recycling endosome formation. Using a mammalian cell culture system, we demonstrate that recycling endosomes are essential for Delta activity. Our results suggest that cells can regulate signaling pathways and influence their developmental fate by inhibiting the formation of individual endocytic compartments.
Collapse
Affiliation(s)
- Gregory Emery
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3-5, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
30
|
Roudier N, Lefebvre C, Legouis R. CeVPS-27 is an endosomal protein required for the molting and the endocytic trafficking of the low-density lipoprotein receptor-related protein 1 in Caenorhabditis elegans. Traffic 2005; 6:695-705. [PMID: 15998324 DOI: 10.1111/j.1600-0854.2005.00309.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Class E vacuolar protein-sorting (Vps) proteins were first described in yeast as being involved in receptor-mediated endocytosis and multivesicular body formation. Inactivation by RNA interference of the class E VPS genes of the nematode Caenorhabditis elegans revealed heterogeneous phenotypes. We have further characterized the role of the essential gene Cevps-27, ortholog of human hepatocyte growth factor-regulated tyrosine kinase substrate, during the development of C. elegans. Use of green fluorescent protein fusion constructs and antibody staining revealed that Cevps-27 localizes to endosomal membranes. It is widely expressed but enriched in epithelial cells. Cevps-27 mutants presented enlarged endosomal structures and an accumulation of autophagic vesicles as revealed by electron microscopy and the analysis of the autophagic marker LGG-1. Cevps-27 animals arrested at L2-L3 molt with an inability to degrade their old cuticle. This molting phenotype was more severe when Cevps-27 worms were grown on suboptimal concentrations of cholesterol. Furthermore, defective endocytic trafficking of the low-density lipoprotein receptor-related protein 1 (LRP-1) was also observed in Cevps-27 mutants. These results indicate that CeVPS-27 is required for endosomal and autophagic pathways in C. elegans and plays a crucial role in the control of molting through LRP-1 internalization and cholesterol traffic.
Collapse
Affiliation(s)
- Nathalie Roudier
- Centre de Génétique Moléculaire, CNRS UPR 2167, Avenue de la terrasse, bâtiment 26, 91198 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
31
|
Manilay JO, Anderson AC, Kang C, Robey EA. Impairment of thymocyte development by dominant-negative Kuzbanian (ADAM-10) is rescued by the Notch ligand, delta-1. THE JOURNAL OF IMMUNOLOGY 2005; 174:6732-41. [PMID: 15905513 DOI: 10.4049/jimmunol.174.11.6732] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although Notch plays a crucial role in T cell development, regulation of Notch signaling in the thymus is not well understood. Kuzbanian, an ADAM protease, has been implicated in the cleavage of both Notch receptors and the Notch ligand, Delta. In this study we show that the expression of a dominant-negative form of Kuzbanian (dnKuz) leads to reduced TCRbeta expression in double-negative thymocytes and to a partial block between the double-negative to double-positive stages of development. These defects were rescued by overexpression of Delta-1 on thymocytes. Mixed chimeras showed a cell-autonomous block by dnKuz, but non-cell-autonomous rescue by Delta-1. This suggests that dnKuz impairs Notch signaling in receiving cells, and increasing Delta-1 on sending cells overcomes this defect. Interestingly, the expression of an activated form of Notch-1 rescued some, but not all, the defects in dnKuz Tg mice. Our data suggest that multiple Notch-dependent steps in early thymocyte development require Kuzbanian, but differ in the involvement of other Notch signaling components.
Collapse
MESH Headings
- ADAM Proteins
- ADAM10 Protein
- Amyloid Precursor Protein Secretases
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Gene Expression Regulation/immunology
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- Humans
- Intracellular Signaling Peptides and Proteins
- Ligands
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Metalloendopeptidases/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Radiation Chimera
- Receptor, Notch1
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/enzymology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thymus Gland/enzymology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Jennifer O Manilay
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | | | | | |
Collapse
|
32
|
Coumailleau F, Babinet C, Cohen-Tannoudji M. [Inhibition of endocytic recycling by Rififylin]. Med Sci (Paris) 2005; 21:235-7. [PMID: 15745692 DOI: 10.1051/medsci/2005213235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Franck Coumailleau
- Unité Biologie du développement, CNRS URA 2578, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
33
|
Dafforn TR, Smith CJI. Natively unfolded domains in endocytosis: hooks, lines and linkers. EMBO Rep 2005; 5:1046-52. [PMID: 15520805 PMCID: PMC1299171 DOI: 10.1038/sj.embor.7400276] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 09/15/2004] [Indexed: 01/08/2023] Open
Abstract
It is commonly assumed that a protein must adopt a tertiary structure to achieve its active native state and that regions of a protein that are devoid of alpha-helix or beta-sheet structures are functionally inert. Although extended proline-rich regions are recognized as presenting binding motifs to, for example, Src homology 2 (SH2) and SH3 domains, the idea persists that natively unfolded regions in functional proteins are simply 'spacers' between the folded domains. Such a view has been challenged in recent years and the importance of natively unfolded proteins in biology is now being recognized. In this review, we highlight the role of natively unfolded domains in the field of endocytosis, and show that some important endocytic proteins lack a traditionally folded structure and harbour important binding motifs in their unstructured linker regions.
Collapse
Affiliation(s)
- Timothy R. Dafforn
- Department of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Corinne J. I. Smith
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
- Tel: +44 24 76 52 2 461; Fax: +44 024 76 52 3 568;
| |
Collapse
|
34
|
Magie CR, Parkhurst SM. Rho1 regulates signaling events required for proper Drosophila embryonic development. Dev Biol 2005; 278:144-54. [PMID: 15649467 PMCID: PMC3125077 DOI: 10.1016/j.ydbio.2004.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/19/2004] [Accepted: 10/28/2004] [Indexed: 12/15/2022]
Abstract
The Rho small GTPase has been implicated in many cellular processes, including actin cytoskeletal regulation and transcriptional activation. The molecular mechanisms underlying Rho function in many of these processes are not yet clear. Here we report that in Drosophila, reduction of maternal Rho1 compromises signaling pathways consistent with defects in membrane trafficking events. These mutants fail to maintain expression of the segment polarity genes engrailed (en), wingless (wg), and hedgehog (hh), contributing to a segmentation phenotype. Formation of the Wg protein gradient involves the internalization of Wg into vesicles. The number of these Wg-containing vesicles is reduced in maternal Rho1 mutants, suggesting a defect in endocytosis. Consistent with this, stripes of cytoplasmic beta-catenin that accumulate in response to Wg signaling are narrower in these mutants relative to wild type. Additionally, the amount of extracellular Wg protein is reduced in maternal Rho1 mutants, indicating a defect in secretion. Signaling pathways downregulated by endocytosis, such as the epidermal growth factor receptor (EGFR) and Torso pathways, are hyperactivated in maternal Rho1 mutants, consistent with a general role for Rho1 in regulating signaling events governing proper patterning during Drosophila development.
Collapse
Affiliation(s)
- Craig R Magie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, PO Box 19024, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
35
|
Abstract
How developmental signaling proteins traverse tissue during animal development, through or around tightly packed cells, remains an incompletely resolved mystery. Signaling protein movement is regulated to create gradients, control amounts, impose barriers, or provide direction. Signaling can be controlled by the rate of signal production, modification, active transport, trapping along the path, or by the properties of the receptor apparatus. Signals may move by diffusion outside cells, attached to migrating cells, attached to carrier molecules, through cells by transcytosis, along cell extensions, or in released membrane packets. Recent findings about the movement of Hedgehog, Wingless (Wnt), and TGF-beta signaling proteins have helped to clarify the molecular mechanisms used to ensure that developmental signals carry only good news.
Collapse
Affiliation(s)
- Alan Jian Zhu
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5439, USA
| | | |
Collapse
|
36
|
Tian X, Hansen D, Schedl T, Skeath JB. Epsin potentiates Notch pathway activity in Drosophila and C. elegans. Development 2005; 131:5807-15. [PMID: 15539484 DOI: 10.1242/dev.01459] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endocytosis and trafficking within the endocytosis pathway are known to modulate the activity of different signaling pathways. Epsins promote endocytosis and are postulated to target specific proteins for regulated endocytosis. Here, we present a functional link between the Notch pathway and epsins. We identify the Drosophila ortholog of epsin, liquid facets (lqf), as an inhibitor of cardioblast development in a genetic screen for mutants that affect heart development. We find that lqf inhibits cardioblast development and promotes the development of fusion-competent myoblasts, suggesting a model in which lqf acts on or in fusion-competent myoblasts to prevent their acquisition of the cardioblast fate. lqf and Notch exhibit essentially identical heart phenotypes, and lqf genetically interacts with the Notch pathway during multiple Notch-dependent events in Drosophila. We extended the link between the Notch pathway and epsin function to C. elegans, where the C. elegans lqf ortholog acts in the signaling cell to promote the glp-1/Notch pathway activity during germline development. Our results suggest that epsins play a specific, evolutionarily conserved role to promote Notch signaling during animal development and support the idea that they do so by targeting ligands of the Notch pathway for endocytosis.
Collapse
Affiliation(s)
- Xiaolin Tian
- Department of Genetics, Washington University in St Louis, School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
37
|
Hahn KL, Johnson J, Beres BJ, Howard S, Wilson-Rawls J. Lunatic fringe null female mice are infertile due to defects in meiotic maturation. Development 2005; 132:817-28. [PMID: 15659488 DOI: 10.1242/dev.01601] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have demonstrated that Notch genes are expressed in developing mammalian ovarian follicles. Lunatic fringe is an important regulator of Notch signaling. In this study, data are presented that demonstrate that radical fringe and lunatic fringe are expressed in the granulosa cells of developing follicles. Lunatic fringe null female mice were found to be infertile. Histological analysis of the lunatic fringe-deficient ovary demonstrated aberrant folliculogenesis. Furthermore, oocytes from these mutants did not complete meiotic maturation. This is a novel observation because this is the first report describing a meiotic defect that results from mutations in genes that are expressed in the somatic granulosa cells and not the oocytes. This represents a new role for the Notch signaling pathway and lunatic fringe in mammalian folliculogenesis.
Collapse
Affiliation(s)
- Katherine L Hahn
- Molecular and Cellular Graduate Program, Arizona State University, Tempe, AZ 85284-4501, USA
| | | | | | | | | |
Collapse
|
38
|
Merdes G, Soba P, Loewer A, Bilic MV, Beyreuther K, Paro R. Interference of human and Drosophila APP and APP-like proteins with PNS development in Drosophila. EMBO J 2004; 23:4082-95. [PMID: 15385958 PMCID: PMC524346 DOI: 10.1038/sj.emboj.7600413] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 08/23/2004] [Indexed: 11/09/2022] Open
Abstract
The view that only the production and deposition of Abeta plays a decisive role in Alzheimer's disease has been challenged by recent evidence from different model systems, which attribute numerous functions to the amyloid precursor protein (APP). To investigate the potential cellular functions of APP and its paralogs, we use transgenic Drosophila as a model. Upon overexpression of the APP-family members, transformations of cell fates during the development of the peripheral nervous system were observed. Genetic analysis showed that APP, APLP1 and APLP2 induce Notch gain-of-function phenotypes, identified Numb as a potential target and provided evidence for a direct involvement of Disabled and Neurotactin in the induction of the phenotypes. The severity of the induced phenotypes not only depended on the dosage and the particular APP-family member but also on particular domains of the molecules. Studies with Drosophila APPL confirmed the results obtained with human proteins and the analysis of flies mutant for the appl gene further supports an involvement of APP-family members in neuronal development and a crosstalk between the APP family and Notch.
Collapse
Affiliation(s)
- Gunter Merdes
- ZMBH, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D. Endocytosis, actin cytoskeleton, and signaling. PLANT PHYSIOLOGY 2004; 135:1150-61. [PMID: 15266049 PMCID: PMC519036 DOI: 10.1104/pp.104.040683] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/21/2004] [Accepted: 04/21/2004] [Indexed: 05/17/2023]
Affiliation(s)
- Jozef Samaj
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Swan LE, Wichmann C, Prange U, Schmid A, Schmidt M, Schwarz T, Ponimaskin E, Madeo F, Vorbrüggen G, Sigrist SJ. A glutamate receptor-interacting protein homolog organizes muscle guidance in Drosophila. Genes Dev 2004; 18:223-37. [PMID: 14729572 PMCID: PMC324427 DOI: 10.1101/gad.287604] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During Drosophila embryogenesis, developing muscles extend growth-cone-like structures to navigate toward specific epidermal attachment sites. Here, we show that the homolog of Glutamate Receptor-Interacting Proteins (DGrip) acts as a key component of proper muscle guidance. Mutations in dgrip impair patterning of ventral longitudinal muscles (VLMs), whereas lateral transverse muscles (LTMs) that attach to intrasegmental attachment sites develop normally. Myoblast fusion, stabilization of muscle contacts, and general muscle function are not impaired in the absence of DGrip. Instead, the proper formation of cellular extensions during guidance fails in dgrip mutant VLMs. DGrip protein concentrates at the ends of VLMs while these muscles guide toward segment border attachment sites. Conversely, LTMs overexpressing DGrip form ectopic cellular extensions that can cause attachment of these muscles to other muscles at segment borders. Our data suggest that DGrip participates in the reception of an attractive signal that emanates from the epidermal attachment sites to direct the motility of developing muscles. This dgrip phenotype should be valuable to study mechanistic principles of Grip function.
Collapse
Affiliation(s)
- Laura E Swan
- European Neuroscience Institute Göttingen, Max-Planck-Society, 37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The ability to internalize macromolecules by endocytosis is a property of all eukaryotic cells. Frontline research on endocytosis has been presented in a successful series of biannual meetings in Europe. This year's meeting on "Membrane Dynamics in Endocytosis" was held September 13-18 in Acquafredda di Maratea, on the coast of southern Italy. Four key questions were addressed: What are the molecular mechanisms of endocytic membrane trafficking? How does endocytosis modulate receptor signaling and vice versa? What is the importance of endocytosis during development? How do endocytic organelles contribute to immunity or susceptibility to pathogens?
Collapse
Affiliation(s)
- Marcos González-Gaitán
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | |
Collapse
|