1
|
Okada A, Yumura S. Cleavage furrow positioning in dividing Dictyostelium cells. Cytoskeleton (Hoboken) 2023; 80:448-460. [PMID: 37650534 DOI: 10.1002/cm.21784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
Accurate placement of the cleavage furrow is crucial for successful cell division. Recent advancements have revealed that diverse mechanisms have evolved across different branches of the phylogenetic tree. Here, we employed Dictyostelium cells to validate previous models. We observed that during metaphase and early anaphase, mitotic spindles exhibited random rotary movements which ceased when the spindle elongated by approximately 7 μm. At this point, astral microtubules reached the polar cell cortex and fixed the spindle axis, causing cells to elongate by extending polar pseudopods and divide along the spindle axis. Therefore, the position of the furrow is determined when the spindle orientation is fixed. The distal ends of astral microtubules stimulate the extension of pseudopods at the polar cortex. One signal for pseudopod extension may be phosphatidylinositol trisphosphate in the cell membrane, but there appears to be another unknown signal. At the onset of polar pseudopod extension, cortical flow began from both poles toward the equator. We suggest that polar stimulation by astral microtubules determines the furrow position, induces polar pseudopod extension and cortical flow, and accumulates the elements necessary for the construction of the contractile ring.
Collapse
Affiliation(s)
- Akiko Okada
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Zhou CJ, Wang DH, Kong XW, Han Z, Hao X, Wang XY, Wen X, Liang CG. Protein regulator of cytokinesis 1 regulates chromosome dynamics and cytoplasmic division during mouse oocyte meiotic maturation and early embryonic development. FEBS J 2021; 287:5130-5147. [PMID: 32562308 DOI: 10.1111/febs.15458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
In contrast to the homeokinesis of mitosis, asymmetric division of cytoplasm is the conspicuous feature of meiosis in mammalian oocytes. Protein regulator of cytokinesis 1 (PRC1) is an important regulator during mitotic spindle assembly and cytoplasmic division, but its functions in oocyte meiosis and early embryo development have not been fully elucidated. In this study, we detected PRC1 expression and localization and revealed a nuclear, spindle midzone-related dynamic pattern throughout meiotic and mitotic progressions. Treatment of oocytes with the reagents taxol or nocodazole disturbed the distribution of PRC1 in metaphase II oocytes. Further, PRC1 depletion led to failure of first polar body (PB1) extrusion and spindle migration, aneuploidy and defective kinetochore-microtubule attachment and spindle assembly. Overexpression of PRC1 resulted in PB1 extrusion failure, aneuploidy and serious defects of spindle assembly. To investigate PRC1 function in early embryos, we injected Prc1 morpholino into zygotes and 2-cell stage embryos. Depletion of PRC1 in zygotes impaired 4-cell, morula and blastocyst formation. Loss of PRC1 in single or double blastomeres in 2-cell stage embryos significantly impaired cell division, indicating its indispensable role in early embryo development. Co-immunoprecipitation showed that PRC1 interacts with polo-like kinase 1 (PLK1), and functional knockdown and rescue experiments demonstrated that PRC1 recruits PLK1 to the spindle midzone to regulate cytoplasmic division during meiosis. Finally, kinesin family member 4 knockdown downregulates PRC1 expression and leads to PRC1 localization failure. Taken together, our data suggest PRC1 plays an important role during oocyte maturation and early embryonic development by regulating chromosome dynamics and cytoplasmic division.
Collapse
Affiliation(s)
- Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Dong-Hui Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China.,Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, Sichuan Province, China
| | - Xiang-Wei Kong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Wen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Zhang KS, Blauch LR, Huang W, Marshall WF, Tang SKY. Microfluidic guillotine reveals multiple timescales and mechanical modes of wound response in Stentor coeruleus. BMC Biol 2021; 19:63. [PMID: 33810789 PMCID: PMC8017755 DOI: 10.1186/s12915-021-00970-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/31/2021] [Indexed: 11/11/2022] Open
Abstract
Background Wound healing is one of the defining features of life and is seen not only in tissues but also within individual cells. Understanding wound response at the single-cell level is critical for determining fundamental cellular functions needed for cell repair and survival. This understanding could also enable the engineering of single-cell wound repair strategies in emerging synthetic cell research. One approach is to examine and adapt self-repair mechanisms from a living system that already demonstrates robust capacity to heal from large wounds. Towards this end, Stentor coeruleus, a single-celled free-living ciliate protozoan, is a unique model because of its robust wound healing capacity. This capacity allows one to perturb the wounding conditions and measure their effect on the repair process without immediately causing cell death, thereby providing a robust platform for probing the self-repair mechanism. Results Here we used a microfluidic guillotine and a fluorescence-based assay to probe the timescales of wound repair and of mechanical modes of wound response in Stentor. We found that Stentor requires ~ 100–1000 s to close bisection wounds, depending on the severity of the wound. This corresponds to a healing rate of ~ 8–80 μm2/s, faster than most other single cells reported in the literature. Further, we characterized three distinct mechanical modes of wound response in Stentor: contraction, cytoplasm retrieval, and twisting/pulling. Using chemical perturbations, active cilia were found to be important for only the twisting/pulling mode. Contraction of myonemes, a major contractile fiber in Stentor, was surprisingly not important for the contraction mode and was of low importance for the others. Conclusions While events local to the wound site have been the focus of many single-cell wound repair studies, our results suggest that large-scale mechanical behaviors may be of greater importance to single-cell wound repair than previously thought. The work here advances our understanding of the wound response in Stentor and will lay the foundation for further investigations into the underlying components and molecular mechanisms involved. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00970-0.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lucas R Blauch
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Wesley Huang
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Pimpale LG, Middelkoop TC, Mietke A, Grill SW. Cell lineage-dependent chiral actomyosin flows drive cellular rearrangements in early Caenorhabditis elegans development. eLife 2020; 9:54930. [PMID: 32644039 PMCID: PMC7394549 DOI: 10.7554/elife.54930] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/05/2020] [Indexed: 12/15/2022] Open
Abstract
Proper positioning of cells is essential for many aspects of development. Daughter cell positions can be specified via orienting the cell division axis during cytokinesis. Rotatory actomyosin flows during division have been implied in specifying and reorienting the cell division axis, but how general such reorientation events are, and how they are controlled, remains unclear. We followed the first nine divisions of Caenorhabditis elegans embryo development and demonstrate that chiral counter-rotating flows arise systematically in early AB lineage, but not in early P/EMS lineage cell divisions. Combining our experiments with thin film active chiral fluid theory we identify a mechanism by which chiral counter-rotating actomyosin flows arise in the AB lineage only, and show that they drive lineage-specific spindle skew and cell reorientation events. In conclusion, our work sheds light on the physical processes that underlie chiral morphogenesis in early development.
Collapse
Affiliation(s)
- Lokesh G Pimpale
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Teije C Middelkoop
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Alexander Mietke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Yao S, Zhou R, Jin Y, Huang J, Wu C. Effect of co-culture with Tetragenococcus halophilus on the physiological characterization and transcription profiling of Zygosaccharomyces rouxii. Food Res Int 2019; 121:348-358. [PMID: 31108757 DOI: 10.1016/j.foodres.2019.03.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Zygosaccharomyces rouxii and Tetragenococcus halophilus are widely existed and play vital roles during the manufacture of fermented foods such as soy sauce. The aim of this study was to elucidate the effect of T. halophilus CGMCC 3792 on the physiological characterizations and transcription profiling of Z. rouxii CGMCC 3791. Salt tolerance analysis revealed that co-culture with T. halophilus enhanced the salt tolerance of Z. rouxii during salt stress. Analysis of the volatile compounds revealed that co-culture reduced the level of 1-butanol, improved the level of octanoic acid which all were produced by T. halophilus and reduced the level of phenylethyl alcohol produced by Z. rouxii. The presence of Z. rouxii decreased the contents of 3,4-dimethylbenzaldehyde and acetic acid produced by T. halophilus. In addition, co-culture improved the content of benzyl alcohol significantly. Analysis of membrane fatty acid showed that co-culture improved the content of palmitic (C16:0) and stearic (C18:0) acids in cells of Z. rouxii, and reduced the contents of myristic (C14:0), palmitoleic acid (C16:1) and oleic acid (C18:1). In order to further explore the interactions between the two strains, RNA-seq technology was used to investigate the effect of co-culture with T. halophilus on the transcription profiling of Z. rouxii. By comparing cells incubated in co-culture group with cells incubated in single-culture group, a total of 967 genes were considered as differentially expressed genes (DEGs). Among the DEGs, 72 genes were up-regulated, while 895 genes were down-regulated. These DEGs took party in various activities in cells of Z. rouxii, and the result showed co-culture with T. halophilus had a positive effect on proteolysis, the attachment of a cell to another cell, extracellular protein accumulation, energy metabolism, and a negative effect on oxidative phosphorylation, small molecular substances metabolism, DNA replication and repair, and transcription in cells of Z. rouxii. Results presented in this study may contribute to further understand the interactions between Zygosaccharomyces rouxii and Tetragenococcus halophilus.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Li J, Dallmayer M, Kirchner T, Musa J, Grünewald TGP. PRC1: Linking Cytokinesis, Chromosomal Instability, and Cancer Evolution. Trends Cancer 2017; 4:59-73. [PMID: 29413422 DOI: 10.1016/j.trecan.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
Cytokinesis is the final event of the cell cycle dividing one cell into two daughter cells. The protein regulator of cytokinesis (PRC)1 is essential for cytokinesis and normal cell cleavage. Deregulation of PRC1 causes cytokinesis defects that promote chromosomal instability (CIN) and thus tumor heterogeneity and cancer evolution. Consistently, abnormal PRC1 expression correlates with poor patient outcome in various malignancies, which may be caused by PRC1-mediated CIN and aneuploidy. Here, we review the physiological functions of PRC1 in cell cycle regulation and its contribution to tumorigenesis and intratumoral heterogeneity. We discuss targeting PRC1 within the complementary approaches of either normalizing CIN in aneuploid cancers or creating chromosomal chaos in genomically stable cancers to induce apoptosis.
Collapse
Affiliation(s)
- Jing Li
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marlene Dallmayer
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Musa
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Arakaki Y, Fujiwara T, Kawai-Toyooka H, Kawafune K, Featherston J, Durand PM, Miyagishima SY, Nozaki H. Evolution of cytokinesis-related protein localization during the emergence of multicellularity in volvocine green algae. BMC Evol Biol 2017; 17:243. [PMID: 29212441 PMCID: PMC5717801 DOI: 10.1186/s12862-017-1091-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/24/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The volvocine lineage, containing unicellular Chlamydomonas reinhardtii and differentiated multicellular Volvox carteri, is a powerful model for comparative studies aiming at understanding emergence of multicellularity. Tetrabaena socialis is the simplest multicellular volvocine alga and belongs to the family Tetrabaenaceae that is sister to more complex multicellular volvocine families, Goniaceae and Volvocaceae. Thus, T. socialis is a key species to elucidate the initial steps in the evolution of multicellularity. In the asexual life cycle of C. reinhardtii and multicellular volvocine species, reproductive cells form daughter cells/colonies by multiple fission. In embryogenesis of the multicellular species, daughter protoplasts are connected to one another by cytoplasmic bridges formed by incomplete cytokinesis during multiple fission. These bridges are important for arranging the daughter protoplasts in appropriate positions such that species-specific integrated multicellular individuals are shaped. Detailed comparative studies of cytokinesis between unicellular and simple multicellular volvocine species will help to elucidate the emergence of multicellularity from the unicellular ancestor. However, the cytokinesis-related genes between closely related unicellular and multicellular species have not been subjected to a comparative analysis. RESULTS Here we focused on dynamin-related protein 1 (DRP1), which is known for its role in cytokinesis in land plants. Immunofluorescence microscopy using an antibody against T. socialis DRP1 revealed that volvocine DRP1 was localized to division planes during cytokinesis in unicellular C. reinhardtii and two simple multicellular volvocine species T. socialis and Gonium pectorale. DRP1 signals were mainly observed in the newly formed division planes of unicellular C. reinhardtii during multiple fission, whereas in multicellular T. socialis and G. pectorale, DRP1 signals were observed in all division planes during embryogenesis. CONCLUSIONS These results indicate that the molecular mechanisms of cytokinesis may be different in unicellular and multicellular volvocine algae. The localization of DRP1 during multiple fission might have been modified in the common ancestor of multicellular volvocine algae. This modification may have been essential for the re-orientation of cells and shaping colonies during the emergence of multicellularity in this lineage.
Collapse
Affiliation(s)
- Yoko Arakaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayuki Fujiwara
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kaoru Kawafune
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Jonathan Featherston
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Agricultural Research Council, Biotechnology Platform, Pretoria, 0040, South Africa
| | - Pierre M Durand
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
Lee M, Ahn JI, Lee AR, Ko DW, Yang WS, Lee G, Ahn JY, Lim JM. Adverse Effect of Superovulation Treatment on Maturation, Function and Ultrastructural Integrity of Murine Oocytes. Mol Cells 2017; 40:558-566. [PMID: 28756654 PMCID: PMC5582302 DOI: 10.14348/molcells.2017.0058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/04/2022] Open
Abstract
Regular monitoring on experimental animal management found the fluctuation of ART outcome, which showed a necessity to explore whether superovulation treatment is responsible for such unexpected outcome. This study was subsequently conducted to examine whether superovulation treatment can preserve ultrastructural integrity and developmental competence of oocytes following oocyte activation and embryo culture. A randomized study using mouse model was designed and in vitro development (experiment 1), ultrastructural morphology (experiment 2) and functional integrity of the oocytes (experiment 3) retrieved after PMSG/hCG injection (superovulation group) or not (natural ovulation; control group) were evaluated. In experiment 1, more oocytes were retrieved following superovulation than following natural ovulation, but natural ovulation yielded higher (p < 0.0563) maturation rate than superovulation. The capacity of mature oocytes to form pronucleus and to develop into blastocysts in vitro was similar. In experiment 2, a notable (p < 0.0186) increase in mitochondrial deformity, characterized by the formation of vacuolated mitochondria, was detected in the superovulation group. Multivesicular body formation was also increased, whereas early endosome formation was significantly decreased. No obvious changes in other microorganelles, however, were detected, which included the formation and distribution of mitochondria, cortical granules, microvilli, and smooth and rough endoplasmic reticulum. In experiment 3, significant decreases in mitochondrial activity, ATP production and dextran uptake were detected in the superovulation group. In conclusion, superovulation treatment may change both maturational status and functional and ultrastuctural integrity of oocytes. Superovulation effect on preimplantation development can be discussed.
Collapse
Affiliation(s)
- Myungook Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Jong Il Ahn
- Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Ah Ran Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Dong Woo Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Woo Sub Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Gene Lee
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Ji Yeon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
- Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
9
|
Beltrán-Heredia E, Almendro-Vedia VG, Monroy F, Cao FJ. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure. Front Physiol 2017; 8:312. [PMID: 28579960 PMCID: PMC5437162 DOI: 10.3389/fphys.2017.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/30/2017] [Indexed: 11/13/2022] Open
Abstract
Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force). We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive spontaneous curvatures, low or negative membrane tension and hypertonic media. Conditions for spontaneous constriction at a given constriction force are also determined. The implications of these results for biological cell division are discussed. This work contributes to a better quantitative understanding of the mechanical pathway of cellular division, and could assist the design of artificial divisomes in vesicle-based self-actuated microsystems obtained from synthetic biology approaches.
Collapse
Affiliation(s)
- Elena Beltrán-Heredia
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de MadridMadrid, Spain.,Departamento de Química Física I, Universidad Complutense de MadridMadrid, Spain
| | - Víctor G Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de MadridMadrid, Spain.,Departamento de Química Física I, Universidad Complutense de MadridMadrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense de MadridMadrid, Spain.,Translational Biophysics, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)Madrid, Spain
| | - Francisco J Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de MadridMadrid, Spain
| |
Collapse
|
10
|
Busch A, Hess S. The Cytoskeleton Architecture of Algivorous Protoplast Feeders (Viridiraptoridae, Rhizaria) Indicates Actin-Guided Perforation of Prey Cell Walls. Protist 2017; 168:12-31. [DOI: 10.1016/j.protis.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 01/11/2023]
|
11
|
Watson JR, Owen D, Mott HR. Cdc42 in actin dynamics: An ordered pathway governed by complex equilibria and directional effector handover. Small GTPases 2016; 8:237-244. [PMID: 27715449 DOI: 10.1080/21541248.2016.1215657] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The small GTPase, Cdc42, is a key regulator of actin dynamics, functioning to connect multiple signals to actin polymerization through effector proteins of the Wiskott-Aldrich syndrome protein (WASP) and Transducer of Cdc42-dependent actin assembly (TOCA) families. WASP family members serve to couple Cdc42 with the actin nucleator, the Arp2/3 complex, via direct interactions. The regulation of these proteins in the context of actin dynamics has been extensively studied. Studies on the TOCA family, however, are more limited and relatively little is known about their roles and regulation. In this commentary we highlight new structural and biophysical insight into the involvement of TOCA proteins in the pathway of Cdc42-dependent actin dynamics. We discuss the biological implications of the low affinity interactions between the TOCA family and Cdc42, as well as probing the sequential binding of TOCA1 and the WASP homolog, N-WASP, to Cdc42. We place our current research in the context of the wealth of biophysical, structural and functional data from earlier studies pertaining to the Cdc42/N-WASP/Arp2/3 pathway of actin polymerization. Finally, we describe the molecular basis for a sequential G protein-effector handover from TOCA1 to N-WASP.
Collapse
Affiliation(s)
- Joanna R Watson
- a Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Darerca Owen
- a Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Helen R Mott
- a Department of Biochemistry , University of Cambridge , Cambridge , UK
| |
Collapse
|
12
|
Comparative biology of cell division in the fission yeast clade. Curr Opin Microbiol 2015; 28:18-25. [PMID: 26263485 DOI: 10.1016/j.mib.2015.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 11/21/2022]
Abstract
Cytokinesis must be regulated in time and space in order to preserve genome integrity during cell proliferation and to allow daughter cells to adopt distinct fates and geometries during differentiation. The fission yeast Schizosaccharomyces pombe has been a popular model organism for understanding spatiotemporal regulation of cytokinesis in a symmetrically dividing cell. Recent work on another member of the same genus, Schisozaccharomyces japonicus, suggests that S. pombe may have evolved an unusual division site placement mechanism based on a recently duplicated anillin paralog. Here we discuss an extraordinary evolutionary plasticity of cytokinesis within the fission yeast clade and argue that the comparative cell biology approach may provide functional insights beyond those afforded by scrutinizing individual model species.
Collapse
|
13
|
Kita A, Higa M, Doi A, Satoh R, Sugiura R. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast. Biochem Biophys Res Commun 2015; 457:273-9. [PMID: 25580011 DOI: 10.1016/j.bbrc.2014.12.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022]
Abstract
Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2(+) gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity.
Collapse
Affiliation(s)
- Ayako Kita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Mari Higa
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Akira Doi
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan; Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
14
|
Almendro-Vedia VG, Monroy F, Cao FJ. Analytical results for cell constriction dominated by bending energy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012713. [PMID: 25679648 DOI: 10.1103/physreve.91.012713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 06/04/2023]
Abstract
Analytical expressions are obtained for the main magnitudes of a symmetrically constricted vesicle. These equations provide an easy and compact way to predict minimal requirements for successful constriction and its main magnitudes. Thus, they can be useful for the design of synthetic divisomes and give good predictions for magnitudes including constriction energy, length of the constriction zone, volume and area of the vesicle, and the stability coefficient for symmetric constriction. The analytical expressions are derived combining a perturbative expansion in the Lagrangian for small deformations with a cosine ansatz in the constriction region. Already the simple fourth-order (or sixth-order) approximation provides a good approximation to the values of the main physical magnitudes during constriction, as we show through comparison with numerical results. Results are for vesicles with negligible effects from spontaneous curvature, surface tension, and pressure differences. This is the case when membrane components generating spontaneous curvature are scarce, membrane trafficking is present with low energetic cost, and the external medium is isotonic.
Collapse
Affiliation(s)
- Victor G Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco J Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
15
|
Mun H, Lee MR, Jeon TJ. RapGAP9 regulation of the morphogenesis and development in Dictyostelium. Biochem Biophys Res Commun 2014; 446:428-33. [PMID: 24513283 DOI: 10.1016/j.bbrc.2014.01.196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 01/13/2023]
Abstract
Recent reports have demonstrated that the importance of Rap1-specific GTPase-activating proteins (GAPs) in the spatial and temporal regulation of Rap1 activity during cell migration and development in Dictyostelium. Here, we identified another putative Rap1 GAP-domain containing protein, showing high sequence homologies with those of human Rap1GAP and Dictyotelium RapGAP3, by bioinformatic search. Loss of RapGAP9 resulted in some defects in morphogenesis and development in Dicytostelium. rapGAP9 null cells were more flattened and spread, and highly multinucleated. Compared to wild-type cells, cells lacking RapGAP9 exhibited increased levels of F-actin and more filopodia. These results suggest that RapGAP9 is involved in the regulation of cytoskeleton reorganization and cytokinesis. rapGAP9 null cells showed a small increase of cell-substratum attachment and slightly lower moving speed and directionality compared to wild-type cells. In addition, the loss of RapGAP9 resulted in an altered morphology of fruiting body with a shorter length of stalk and spore. Identification and characterization of RapGAP9 in this study will provide further insights into the molecular mechanism by which Rap1 regulates cytoskeleton reorganization and morphogenesis in Dictyostelium.
Collapse
Affiliation(s)
- Hyemin Mun
- Department of Biology & BK21 - Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 501-759, Republic of Korea
| | - Mi-Rae Lee
- Department of Biology & BK21 - Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 501-759, Republic of Korea
| | - Taeck J Jeon
- Department of Biology & BK21 - Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 501-759, Republic of Korea.
| |
Collapse
|
16
|
Almendro-Vedia VG, Monroy F, Cao FJ. Mechanics of constriction during cell division: a variational approach. PLoS One 2013; 8:e69750. [PMID: 23990888 PMCID: PMC3749217 DOI: 10.1371/journal.pone.0069750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of [Formula: see text], we calculate constriction forces in the range [Formula: see text]. The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of [Formula: see text], thus evidencing that cells need a robust mechanism to stabilize constriction at midcell.
Collapse
Affiliation(s)
- Victor G. Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear and Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco J. Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| |
Collapse
|
17
|
Stockstill KE, Park J, Wille R, Bay G, Joseph A, Shannon KB. Mutation of Hof1 PEST motif phosphorylation sites leads to retention of Hof1 at the bud neck and a decrease in the rate of myosin contraction. Cell Biol Int 2013; 37:314-25. [PMID: 23359466 DOI: 10.1002/cbin.10042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/31/2012] [Indexed: 11/07/2022]
Abstract
Regulation of actomyosin ring contraction is important for the coordination of cytokinesis with mitosis. Hof1, a member of the Pombe Cdc15 homology (PCH) family of proteins, is required for efficient cytokinesis in budding yeast. Phosphorylation of Hof1 depends on the mitotic exit network (MEN), and its degradation at the end of mitosis depends on its PEST motif and interaction with the E3 ligase Grr1. To test the hypothesis that targeted destruction of Hof1 temporally couples mitotic exit with contraction of the actomyosin ring, we mutated the Hof1 PEST motif to prevent phosphorylation and subsequent degradation. These mutations increased the amount of Hof1 at the bud neck during cytokinesis, resulted in smaller bud neck diameter, and slowed the rate of myosin contraction. However, Hof1 PEST motif phosphorylation site mutants did not have cytokinesis defects, indicating that regulation of Hof1 levels does not control the onset of actomyosin ring contraction as predicted.
Collapse
Affiliation(s)
- Katherine E Stockstill
- Department of Biological Sciences, Missouri University of Science and Technology, 105 Schrenk Hall, 400 W. 11th St., Rolla, Missouri, 65401, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis. Dev Cell 2012; 22:1247-60. [PMID: 22698284 DOI: 10.1016/j.devcel.2012.04.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/27/2012] [Accepted: 04/19/2012] [Indexed: 01/21/2023]
Abstract
Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin II motor activity. Model simulations based on experimental measurements support the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time regardless of the initial ring size, as originally reported for C. elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to different ploidies.
Collapse
|
19
|
Ridzuan MAM, Moon RW, Knuepfer E, Black S, Holder AA, Green JL. Subcellular location, phosphorylation and assembly into the motor complex of GAP45 during Plasmodium falciparum schizont development. PLoS One 2012; 7:e33845. [PMID: 22479457 PMCID: PMC3316498 DOI: 10.1371/journal.pone.0033845] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/19/2012] [Indexed: 01/23/2023] Open
Abstract
An actomyosin motor complex assembled below the parasite's plasma membrane drives erythrocyte invasion by Plasmodium falciparum merozoites. The complex is comprised of several proteins including myosin (MyoA), myosin tail domain interacting protein (MTIP) and glideosome associated proteins (GAP) 45 and 50, and is anchored on the inner membrane complex (IMC), which underlies the plasmalemma. A ternary complex of MyoA, MTIP and GAP45 is formed that then associates with GAP50. We show that full length GAP45 labelled internally with GFP is assembled into the motor complex and transported to the developing IMC in early schizogony, where it accumulates during intracellular development until merozoite release. We show that GAP45 is phosphorylated by calcium dependent protein kinase 1 (CDPK1), and identify the modified serine residues. Replacing these serine residues with alanine or aspartate has no apparent effect on GAP45 assembly into the motor protein complex or its subcellular location in the parasite. The early assembly of the motor complex suggests that it has functions in addition to its role in erythrocyte invasion.
Collapse
Affiliation(s)
- Mohd A. Mohd Ridzuan
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
- Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Robert W. Moon
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Sally Black
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Judith L. Green
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Rannou Y, Salaun P, Benaud C, Khan J, Dutertre S, Giet R, Prigent C. MNK1 kinase activity is required for abscission. J Cell Sci 2012; 125:2844-52. [PMID: 22454512 DOI: 10.1242/jcs.058081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MNK1 is a serine/threonine kinase identified as a target for MAP kinase pathways. Using chemical drug, kinase-dead expression or knockdown by RNA interference, we show that inhibition of MNK1 induces the formation of multinucleated cells, which can be rescued by expressing a form of MNK1 that is resistant to RNA interference. We found that the active human form of MNK1 localises to centrosomes, spindle microtubules and the midbody. Time-lapse recording of MNK1-depleted cells displays cytokinesis defects, as daughter cells fuse back together. When MNK1 activity was inhibited, no microtubule defect at the midbody was detected, however, anchorage of the membrane vesicle at the midbody was impaired as lumenal GFP-positive vesicles did not accumulate at the midbody. At the molecular level, we found that centriolin localisation was impaired at the midbody in MNK1-depleted cells. As a consequence, endobrevin - a v-SNARE protein implicated in the abscission step - was not properly localised to the midbody. Altogether, our data show that MNK1 activity is required for abscission.
Collapse
Affiliation(s)
- Yoann Rannou
- CNRS UMR 6290, IGDR, Rennes, CS34317, 35043 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Cytoskeleton responses in wound repair. Cell Mol Life Sci 2012; 69:2469-83. [PMID: 22349211 DOI: 10.1007/s00018-012-0928-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/21/2011] [Accepted: 01/17/2012] [Indexed: 12/15/2022]
Abstract
Wound repair on the cellular and multicellular levels is essential to the survival of complex organisms. In order to avoid further damage, prevent infection, and restore normal function, cells and tissues must rapidly seal and remodel the wounded area. The cytoskeleton is an important component of wound repair in that it is needed for actomyosin contraction, recruitment of repair machineries, and cell migration. Recent use of model systems and high-resolution microscopy has provided new insight into molecular aspects of the cytoskeletal response during wound repair. Here we discuss the role of the cytoskeleton in single-cell, embryonic, and adult repair, as well as the striking resemblance of these processes to normal developmental events and many diseases.
Collapse
|
22
|
Shrestha S, Wilmeth LJ, Eyer J, Shuster CB. PRC1 controls spindle polarization and recruitment of cytokinetic factors during monopolar cytokinesis. Mol Biol Cell 2012; 23:1196-207. [PMID: 22323288 PMCID: PMC3315816 DOI: 10.1091/mbc.e11-12-1008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PRC1 and KIF4A are believed to play a critical role in organizing antiparallel microtubules of the central spindle. Separable and nonredundant roles for these proteins were uncovered using cells with compromised spindle bipolarity, in which cytokinesis can be induced by bypassing the spindle assembly checkpoint. The central spindle is a postanaphase array of microtubules that plays an essential role in organizing the signaling machinery for cytokinesis. The model by which the central spindle organizes the cytokinetic apparatus is premised on an antiparallel arrangement of microtubules, yet cells lacking spindle bipolarity are capable of generating a distal domain of ectopic furrowing when forced into mitotic exit. Because protein regulator of cytokinesis (PRC1) and kinesin family member 4A (KIF4A) are believed to play a principal role in organizing the antiparallel midzone array, we sought to clarify their roles in monopolar cytokinesis. Although both factors localized to the distal ends of microtubules during monopolar cytokinesis, depletion of PRC1 and KIF4A displayed different phenotypes. Cells depleted of PRC1 failed to form a polarized microtubule array or ectopic furrows following mitotic exit, and recruitment of Aurora B kinase, male germ cell Rac GTPase-activating protein, and RhoA to the cortex was impaired. In contrast, KIF4A depletion impaired neither polarization nor ectopic furrowing, but it did result in elongated spindles with a diffuse distribution of cytokinetic factors. Thus, even in the absence of spindle bipolarity, PRC1 appears to be essential for polarizing parallel microtubules and concentrating the factors responsible for contractile ring assembly, whereas KIF4A is required for limiting the length of anaphase microtubules.
Collapse
Affiliation(s)
- Sanjay Shrestha
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
23
|
Merlini L, Piatti S. The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast. Biol Chem 2012; 392:805-12. [PMID: 21824008 DOI: 10.1515/bc.2011.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.
Collapse
Affiliation(s)
- Laura Merlini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
24
|
A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat Cell Biol 2010; 12:1186-93. [DOI: 10.1038/ncb2129] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022]
|
25
|
Cytokinesis of the binucleate zoosporangia of Allomyces macrogynus. Fungal Genet Biol 2010; 47:713-20. [PMID: 20452449 DOI: 10.1016/j.fgb.2010.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 11/21/2022]
Abstract
Allomyces macrogynus, a true fungus, produces zoosporangia which discharge uninucleate zoospores after cytoplasmic cleavage. Binucleate zoosporangia of A. macrogynus were induced and examined to understand the basic principles of cytokinesis associated with the multinucleate zoosporangia. Development of cleavage membranes was visualized by constructing three dimensional models based on electron micrographs and confocal images. Cleavage membranes on the cleavage plane showed asymmetric ingression from the cortex, but cleavage of cytoplasm was completed by the fusion of cleavage membranes with plasma membrane. Also, the position of the cleavage plane was continuously rotated until settled at the last stage. These studies suggest that the positions of the numerous cleavage planes within a multinucleate zoosporangium are continuously adjusted during development of cleavage membranes. The final settlement of cleavage planes would define the exact boundary of cleavage planes and the expansion of cleavage membranes toward the boundary could complete the cleavage of cytoplasm.
Collapse
|
26
|
Affiliation(s)
- Jennifer L Rohn
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
27
|
Characterization of the ubinuclein protein as a new member of the nuclear and adhesion complex components (NACos). Biol Cell 2009; 101:319-34. [PMID: 18823282 DOI: 10.1042/bc20080072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND INFORMATION We characterized previously a cellular protein through its interaction with cellular and viral transcription factors from the bZip family. The corresponding mRNA was detected in a wide range of cell types and the protein was highly expressed in the nucleus of human keratinocytes. On the basis of these observations, we named this protein ubinuclein. RESULTS Using a specific monoclonal antibody, we have shown in the present study that, although endogenous ubinuclein was mainly nuclear in sparse MDCK (Madin-Darby canine kidney) cells, it was exclusively present in the cell-cell junctions in confluent MDCK cultures or in polarized HT29 cells, where it co-localized with the tight junction marker ZO-1 (zonula occludens 1). In accordance with this, we have shown that ubinuclein interacted with ZO-1 in vitro and in vivo. In cultures of undifferentiated human keratinocytes, ubinuclein was essentially nuclear, but in differentiated cells, in which involucrin and periplakin reside at the apical cell membrane and at the cell-cell junctions, ubinuclein staining was observed at the lateral cell-cell borders. In human skin, ubinuclein appeared as a thread-like pattern between the upper granular cell layer and the cornified cell layer. In mouse epithelia, including bile canaliculi, bronchioli, salivary gland ducts, and oral and olfactory epithelium, ubinuclein co-localized with tight junction markers. Ubinuclein was, however, not present in endothelial cell-cell junctions. In addition, when overexpressed, ubinuclein localized to the nucleus and prevented MDCK cells from entering cytokinesis, resulting in multinucleated giant cells after several cycles of endoreplication. CONCLUSIONS Ubinuclein mRNA and its corresponding protein are expressed in almost all cell types. Analyses have revealed that in most cells ubinuclein occurred in the nucleoplasm, but in cells forming tight junctions it is recruited to the plaque structure of the zonula occludens. This recruitment appeared to be dependent on cell density. Therefore ubinuclein is a new NACos (nuclear and adhesion complex component) protein.
Collapse
|
28
|
A complex cell division machinery was present in the last common ancestor of eukaryotes. PLoS One 2009; 4:e5021. [PMID: 19352429 PMCID: PMC2661371 DOI: 10.1371/journal.pone.0005021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/02/2009] [Indexed: 12/22/2022] Open
Abstract
Background The midbody is a transient complex structure containing proteins involved in cytokinesis. Up to now, it has been described only in Metazoa. Other eukaryotes present a variety of structures implied in the last steps of cell division, such as the septum in fungi or the phragmoplast in plants. However, it is unclear whether these structures are homologous (derive from a common ancestral structure) or analogous (have distinct evolutionary origins). Recently, the proteome of the hamster midbody has been characterized and 160 proteins identified. Methodology/Principal Findings Using phylogenomic approaches, we show here that nearly all of these 160 proteins (95%) are conserved across metazoan lineages. More surprisingly, we show that a large part of the mammalian midbody components (91 proteins) were already present in the last common ancestor of all eukaryotes (LECA) and were most likely involved in the construction of a complex multi-protein assemblage acting in cell division. Conclusions/Significance Our results indicate that the midbodies of non-mammalian metazoa are likely very similar to the mammalian one and that the ancestor of Metazoa possessed a nearly modern midbody. Moreover, our analyses support the hypothesis that the midbody and the structures involved in cytokinesis in other eukaryotes derive from a large and complex structure present in LECA, likely involved in cytokinesis. This is an additional argument in favour of the idea of a complex ancestor for all contemporary eukaryotes.
Collapse
|
29
|
Rivero F, Cvrcková F. Origins and evolution of the actin cytoskeleton. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:97-110. [PMID: 17977462 DOI: 10.1007/978-0-387-74021-8_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Francisco Rivero
- Center for Biochemistry and Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany.
| | | |
Collapse
|
30
|
|
31
|
Webb SE, Li WM, Miller AL. Calcium signalling during the cleavage period of zebrafish development. Philos Trans R Soc Lond B Biol Sci 2008; 363:1363-9. [PMID: 18198156 PMCID: PMC2610124 DOI: 10.1098/rstb.2007.2253] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Imaging studies, using both luminescent and fluorescent Ca(2+)-sensitive reporters, have revealed that during the first few meroblastic cleavages of the large embryos of teleosts, localized elevations of intracellular Ca(2+) accompany positioning, propagation, deepening and apposition of the cleavage furrows. Here, we will review the Ca(2+) transients reported during the cleavage period in these embryos, with reference mainly to that of the zebrafish (Danio rerio). We will also present the latest findings that support the proposal that Ca(2+) transients are an essential feature of embryonic cytokinesis. In addition, the potential upstream triggers and downstream targets of the different cytokinetic Ca(2+) transients will be discussed. Finally, we will present a hypothetical model that summarizes what has been suggested to be the various roles of Ca(2+) signalling during cytokinesis in teleost embryos.
Collapse
Affiliation(s)
| | | | - Andrew L Miller
- Department of Biology, The Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
32
|
Abstract
Chemical reactions in cells are subject to intense stochastic fluctuations. An important question is how the fundamental physiological behavior of the cell is kept stable against those noisy perturbations. In this study, a stochastic model of the cell cycle of budding yeast was constructed to analyze the effects of noise on the cell-cycle oscillation. The model predicts intense noise in levels of mRNAs and proteins, and the simulated protein levels explain the observed statistical tendency of noise in populations of synchronous and asynchronous cells. Despite intense noise in levels of proteins and mRNAs, the cell cycle is stable enough to bring the largely perturbed cells back to the physiological cyclic oscillation. The model shows that consecutively appearing fixed points are the origin of this stability of the cell cycle.
Collapse
Affiliation(s)
- Yurie Okabe
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | | |
Collapse
|
33
|
Yu Y, Wang HY, Liu LN, Chen ZL, Xia GX. Functional identification of cytokinesis-related genes from tobacco BY-2 cells. PLANT CELL REPORTS 2007; 26:889-94. [PMID: 17245598 DOI: 10.1007/s00299-006-0303-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/21/2006] [Accepted: 12/31/2006] [Indexed: 05/13/2023]
Abstract
The molecular mechanisms controlling cytokinesis in plant cell division cycle remains largely unknown. In this study, a functional approach was taken to identify genes that may play roles in cytokinesis in tobacco BY-2 cells, using fission yeast as the host organism. A total of 22 BY-2 genes that perturbed the terminal stage of cell division when ectopically expressed in yeast cells were isolated, among which, several encode for uncharacterized genes. Additionally, RT-PCR analysis indicated that four of the isolated genes were expressed in a cell cycle-dependent manner. Our results demonstrate that fission yeast system can be efficiently used to identify the genes that may function, either positively or negatively, in the regulation of cytokinesis. More importantly, the candidate genes we have isolated in this work can provide useful information for unraveling the regulators controlling cell separation at the late stage of BY-2 cell division.
Collapse
Affiliation(s)
- Yi Yu
- National Center for Plant Gene Research, National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
34
|
Gasnereau I, Ganier O, Bourgain F, de Gramont A, Gendron MC, Sobczak-Thépot J. Flow cytometry to sort mammalian cells in cytokinesis. Cytometry A 2007; 71:1-7. [PMID: 17211879 DOI: 10.1002/cyto.a.20352] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cell division or cytokinesis, which results from a series of events starting in metaphase, is the mechanism by which the mother cell cytoplasm is divided between the two daughter cells. Hence it is the final step of the cell division cycle. The aim of the present study was to demonstrate that mammalian cells undergoing cytokinesis can be sorted selectively by flow cytometry. MATERIALS AND METHODS Cultures of HeLa cells were arrested in prometaphase by nocodazole, collected by mitotic shake-off and released for 90 min into fresh medium to enrich for cells undergoing cytokinesis. After ethanol fixation and DNA staining, cells were sorted based on DNA content and DNA fluorescence signal height. RESULTS We define a cell population that transiently accumulates when synchronized cells exit mitosis before their entry into G1. We show that this population is highly enriched in cells undergoing cytokinesis. In addition, this population of cells can be sorted and analyzed by immunofluorescence and western blotting. CONCLUSIONS This method of cell synchronization and sorting provides a simple means to isolate and biochemically analyze cells in cytokinesis, a period of the cell cycle that has been difficult to study by cell fractionation.
Collapse
Affiliation(s)
- Isabelle Gasnereau
- Université Pierre et Marie Curie - Paris 6, CNRS UMR 7098, Paris F-75005, France
| | | | | | | | | | | |
Collapse
|
35
|
Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, Suzuki K, Müller I, Voss U, Jürgens G, Ito M. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 2007; 134:1101-10. [PMID: 17287251 DOI: 10.1242/dev.02801] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
G2/M phase-specific gene transcription in tobacco cells is mediated by R1R2R3-Myb transcriptional activators, NtmybA1 and NtmybA2, which bind to mitosis-specific activator (MSA) elements. We show here that two structurally related genes, MYB3R1 and MYB3R4, which encode homologs of NtmybA1 and NtmybA2, play a partially redundant role in positively regulating cytokinesis in Arabidopsis thaliana. The myb3r1 myb3r4 double mutant often fails to complete cytokinesis, resulting in multinucleate cells with gapped walls and cell wall stubs in diverse tissues. These defects correlate with the selective reduction of transcript levels of several G2/M phase-specific genes, which include B2-type cyclin (CYCB2), CDC20.1 and KNOLLE (KN). These genes contain MSA-like motifs in their promoters and were activated by MYB3R4 in transient expression assays in tobacco cells. The KN gene encodes a cytokinesis-specific syntaxin that is essential for cell plate formation. The cytokinesis defects of myb3r1 myb3r4 double mutants were partially rescued by KN gene expression from heterologous promoters. In addition, a kn heterozygous mutation enhanced cytokinesis defects resulting from heterozygous or homozygous mutations in the MYB3R1 and MYB3R4 genes. Our results suggest that a pair of structurally related R1R2R3-Myb transcription factors may positively regulate cytokinesis mainly through transcriptional activation of the KN gene.
Collapse
Affiliation(s)
- Nozomi Haga
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Williams MJ, Habayeb MS, Hultmark D. Reciprocal regulation of Rac1 and Rho1 inDrosophilacirculating immune surveillance cells. J Cell Sci 2007; 120:502-11. [PMID: 17227793 DOI: 10.1242/jcs.03341] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many cell types it is evident that the small GTPases Rac and Rho regulate each other's activities. What is unclear is exactly how this regulation occurs. To further elucidate this interaction we examined the activities of Rac1 and Rho1 in Drosophila cellular immune surveillance cells. In larvae the cellular immune response involves circulating cells (hemocytes) that can be recruited from a hematopoietic organ located behind the brain, as well as a sessile population found just underneath the larval cuticle. We demonstrate for the first time that Rho-kinase activation requires both Rho1 and the Drosophila c-Jun N-terminal kinase (Basket). We also show that Rac1, via Basket, regulates Rho1 activity, possibly by inhibiting RhoGAPp190. In the reciprocal pathway, co-expression of dominant negative Rho-kinase and constitutive active Rho1 induces a Rac1-like phenotype. This induction requires the formin Diaphanous. Co-expression of dominant negative Rho-kinase and constitutive active Rho1 also induces filopodia formation, with Diaphanous enriched at the tips. The Rac1-like phenotypes, and filopodia formation, could be blocked by co-expression of dominant negative Rac1. Finally, though dominant negative Rac1 is able to block filopodia formation in the overexpression experiments, only Rac2 is necessary for filopodia formed by hemocytes after parasitization.
Collapse
Affiliation(s)
- Michael J Williams
- Umeå Centre for Molecular Pathogenesis (UCMP), Umeå University, S-901 87, Umeå, Sweden.
| | | | | |
Collapse
|
37
|
Ren H, Xiang Y. The function of actin-binding proteins in pollen tube growth. PROTOPLASMA 2007; 230:171-82. [PMID: 17458632 DOI: 10.1007/s00709-006-0231-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/29/2006] [Indexed: 05/03/2023]
Abstract
Pollen tube growth is a key step in sexual reproduction of higher plants. The pollen tube is a typical example of tip-growing cells and shows a polarized cytoplasm. To develop and maintain polarized growth, pollen tubes need a carefully regulated actin cytoskeleton. It is well known that actin-binding proteins are responsible for the direct control of dynamic actin filaments and serve as a link between signal transduction pathways and dynamic actin changes in determining cellular architecture. Several of these classes have been identified in pollen tubes and their detailed characterisation is progressing rapidly. Here, we aim to survey what is known about the major actin-binding proteins that affect actin assembly and dynamics, and their higher-order organisation in pollen tube growth.
Collapse
Affiliation(s)
- Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing, People's Republic of China.
| | | |
Collapse
|
38
|
Ca2+ signaling during embryonic cytokinesis in animal systems. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 2006; 70:605-45. [PMID: 16959963 PMCID: PMC1594590 DOI: 10.1128/mmbr.00013-06] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action.
Collapse
Affiliation(s)
- James B Moseley
- Department of Biology and The Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
40
|
Misty R, Martinez R, Ali H, Steimle PA. Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration. Biochem Biophys Res Commun 2006; 345:516-22. [PMID: 16682000 DOI: 10.1016/j.bbrc.2006.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 04/15/2006] [Indexed: 11/17/2022]
Abstract
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC(50) approximately 20 microM). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositol 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.
Collapse
Affiliation(s)
- Russ Misty
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | | | | | | |
Collapse
|
41
|
Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y. Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 2006; 20:1004-14. [PMID: 16598040 PMCID: PMC1472297 DOI: 10.1101/gad.1408106] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 02/21/2006] [Indexed: 01/15/2023]
Abstract
The tobacco mitogen-activated protein kinase (MAPK) cascade, which includes MAPK NRK1/NTF6, positively regulates expansion of the cytokinetic machinery known as the phragmoplast, which is followed by the synthesis of cell plates for completion of cell division. However, molecular events lying between the MAPK and phragmoplast expansion were not known. Here, we show that NRK1/NTF6 phosphorylates the threonine residue at position 579 in NtMAP65-1a, a microtubule-associated (MT-associated) protein. Levels of phosphorylated NtMAP65-1 increase during late M phase of the cell cycle, when NRK1/NTF6 is activated. Phosphorylated NtMAP65-1 is concentrated at the equator of phragmoplast, as is NRK1/NTF6. Overexpression of mutant forms of NtMAP65-1a that cannot be phosphorylated by NRK1 delays progression of the M phase and phragmoplast expansion, also rendering phragmoplast structures resistant to an MT-depolymerizing drug. Phosphorylation of NtMAP65-1 by NRK1/NTF6 down-regulates its MT-bundling activity in vitro. These results suggest that phosphorylation of NtMAP65-1 by NRK1/NTF6 also reduces its MT-bundling activity in vivo, which enhances destabilization and turnover of MTs at the phragmoplast equator, perhaps facilitating phragmoplast expansion.
Collapse
Affiliation(s)
- Michiko Sasabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Piatti S, Venturetti M, Chiroli E, Fraschini R. The spindle position checkpoint in budding yeast: the motherly care of MEN. Cell Div 2006; 1:2. [PMID: 16759408 PMCID: PMC1459270 DOI: 10.1186/1747-1028-1-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
Mitotic exit and cytokinesis must be tightly coupled to nuclear division both in time and space in order to preserve genome stability and to ensure that daughter cells inherit the right set of chromosomes after cell division. This is achieved in budding yeast through control over a signal transduction cascade, the mitotic exit network (MEN), which is required for mitotic CDK inactivation in telophase and for cytokinesis. Current models of MEN activation emphasize on the bud as the place where most control is exerted. This review focuses on recent data that instead point to the mother cell as being the residence of key regulators of late mitotic events.
Collapse
Affiliation(s)
- Simonetta Piatti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marianna Venturetti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elena Chiroli
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
43
|
Darenfed H, Mandato CA. Wound-induced contractile ring: a model for cytokinesis. Biochem Cell Biol 2006; 83:711-20. [PMID: 16333322 DOI: 10.1139/o05-164] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The actomyosin-based contractile ring is required for several biological processes, such as wound healing and cytokinesis of animal cells. Despite progress in defining the roles of this structure in both wound closure and cell division, we still do not fully understand how an actomyosin ring is spatially and temporally assembled, nor do we understand the molecular mechanism of its contraction. Recent results have demonstrated that microtubule-dependent local assembly of F-actin and myosin-II is present in wound closure and is similar to that in cytokinesis in animal cells. Furthermore, signalling factors such as small Rho GTPases have been shown to be involved in the regulation of actin dynamics during both processes. In this review we address recent findings in an attempt to better understand the dynamics of actomyosin contractile rings during wound healing as compared with the final step of animal cell division.
Collapse
Affiliation(s)
- Hassina Darenfed
- Department of Anatomy and Cell Biology, Mc Gill University, Montreal, QC, Canada
| | | |
Collapse
|
44
|
Rasmussen CG, Glass NL. A Rho-type GTPase, rho-4, is required for septation in Neurospora crassa. EUKARYOTIC CELL 2006; 4:1913-25. [PMID: 16278458 PMCID: PMC1287859 DOI: 10.1128/ec.4.11.1913-1925.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins in the Rho family are small monomeric GTPases primarily involved in polarization, control of cell division, and reorganization of cytoskeletal elements. Phylogenetic analysis of predicted fungal Rho proteins suggests that a new Rho-type GTPase family, whose founding member is Rho4 from the archiascomycete Schizosaccharomyces pombe, is involved in septation. S. pombe rho4Delta mutants have multiple, abnormal septa. In contrast to S. pombe rho4Delta mutants, we show that strains containing rho-4 loss-of-function mutations in the filamentous fungus Neurospora crassa lead to a loss of septation. Epitope-tagged RHO-4 localized to septa and to the plasma membrane. In other fungi, the steps required for septation include formin, septin, and actin localization followed by cell wall synthesis and the completion of septation. rho-4 mutants were unable to form actin rings, showing that RHO-4 is required for actin ring formation. Characterization of strains containing activated alleles of rho-4 showed that RHO-4-GTP is likely to initiate new septum formation in N. crassa.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|
45
|
Sumi T, Hashigasako A, Matsumoto K, Nakamura T. Different activity regulation and subcellular localization of LIMK1 and LIMK2 during cell cycle transition. Exp Cell Res 2006; 312:1021-30. [PMID: 16455074 DOI: 10.1016/j.yexcr.2005.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Revised: 11/25/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Abstract
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through phosphorylating and inactivating cofilin, an actin-depolymerizing factor of actin filaments. Here, we describe a detailed analysis of the cell-cycle-dependent activity of LIMK2, and a subcellular localization of LIMK1 and LIMK2. The activity of LIMK2, distinct from LIMK1, toward cofilin phosphorylation did not change in the normal cell division cycle. In contrast, LIMK2 was hyperphosphorylated and its activity was markedly increased when HeLa cells were synchronized at mitosis with nocodazole treatment. Immunofluorescence analysis showed that LIMK1 was localized at cell-cell adhesion sites in interphase and prophase, redistributed to the spindle poles during prometaphase to anaphase, and accumulated at the cleavage furrow in telophase. In contrast, LIMK2 was diffusely localized in the cytoplasm during interphase, redistributed to the mitotic spindle, and finally to the spindle midzone during anaphase to telophase. These findings suggest that LIMK2 is activated in response to microtubule disruption, and that LIMK1 and LIMK2 may play different roles in regulating for the mitotic spindle organization, chromosome segregation, and cytokinesis during the cell division cycle.
Collapse
Affiliation(s)
- Tomoyuki Sumi
- Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, 2-2-B7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
46
|
Frank D, Kuhn C, Katus HA, Frey N. The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med (Berl) 2006; 84:446-68. [PMID: 16416311 DOI: 10.1007/s00109-005-0033-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/23/2005] [Indexed: 12/11/2022]
Abstract
The perception of the Z-disc in striated muscle has undergone significant changes in the past decade. Traditionally, the Z-disc has been viewed as a passive constituent of the sarcomere, which is important only for the cross-linking of thin filaments and transmission of force generated by the myofilaments. The recent discovery of multiple novel molecular components, however, has shed light on an emerging role for the Z-disc in signal transduction in both cardiac and skeletal muscles. Strikingly, mutations in several Z-disc proteins have been shown to cause cardiomyopathies and/or muscular dystrophies. In addition, the elusive cardiac stretch receptor appears to localize to the Z-disc. Various signalling molecules have been shown to interact with Z-disc proteins, several of which shuttle between the Z-disc and other cellular compartments such as the nucleus, underlining the dynamic nature of Z-disc-dependent signalling. In this review, we provide a systematic view on the currently known Z-disc components and the functional significance of the Z-disc as an interface between biomechanical sensing and signalling in cardiac and skeletal muscle functions and diseases.
Collapse
Affiliation(s)
- Derk Frank
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
47
|
Lee ST, Han HJ, Oh SJ, Lee EJ, Han JY, Lim JM. Influence of ovarian hyperstimulation and ovulation induction on the cytoskeletal dynamics and developmental competence of oocytes. Mol Reprod Dev 2006; 73:1022-33. [PMID: 16705709 DOI: 10.1002/mrd.20500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study was undertaken to determine the effects of gonadotrophin on cytoskeletal dynamics and embryo development and its role in improving the retrieval of developmentally competent oocytes. Female golden hamsters were injected with human chorionic gonadotrophin (hCG; 5-, 7.5- or 15-IU) on the day 4 of estrus, pregnant mare serum gonadotrophin (PMSG; 5-, 7.5- or 15-IU) on the day 1 of estrus, or 15-IU hCG at 56 hr post-15-IU PMSG injection in any cycle except estrus. Increasing the hCG dose decreased not only retrieval rate of 2-cell embryo but development to blastocyst after subsequent in vitro culture. Whereas, although increasing the PMSG dose induced increasing the number of 2-cell embryo and blastocyst, 15-IU PMSG injection caused retardation of development to blastocyst. No 2-cell embryos were retrieved by injecting both PMSG and hCG. The injections of 15-IU hCG and 7.5- or 15-IU PMSG inhibited the proliferation of trophectodermal and inner cell mass cells, respectively. Gonadotrophin injection didn't influence microtubular spindle formation, but 5- or 15-IU hCG, 15-IU PMSG, or PMSG and hCG injections induced aberrant cortical granule (CG) and microfilament distribution. After 15-IU hCG or PMSG and hCG injections, fewer oocytes had enriched cortical actin domains, and the expression of alpha-, beta- and gamma-actin genes was greatly increased. In conclusion, a high dose of gonadotrophins alters the microfilament and CG distribution, which in turn reduces the developmental competence of oocytes. Injecting a reduced dose of PMSG to initiate ovarian hyperstimulation without triggering ovulation contributes to the efficient retrieval of developmentally competent oocytes.
Collapse
Affiliation(s)
- Seung Tae Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
A crucial facet of mammalian cell division is the separation of two daughter cells by a process known as cytokinesis. An early event in cytokinesis is the formation of an actomyosis contractile ring, which functions like a purse string in the constriction of the forming furrow between the cells. Far less well characterized are the membrane-trafficking steps which deliver new membrane to the cell surface during the plasma membrane expansion known to accompany furrow formation. It is now clearly established that the plasma membrane at the cleavage furrow of mammalian cells has a distinct lipid and protein composition from the rest of the plasma membrane. This may reflect a requirement for both increased surface area during furrowing and for the co-ordinated delivery of intracellular signalling or membrane re-modelling activities to the correct spatial coordinates during cleavage. In this review, we discuss recent work within the area of membrane traffic and cytokinesis.
Collapse
|
49
|
Sigala B, Edwards M, Puri T, Tsaneva IR. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis. Exp Cell Res 2005; 310:357-69. [PMID: 16157330 DOI: 10.1016/j.yexcr.2005.07.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/23/2005] [Accepted: 07/29/2005] [Indexed: 11/19/2022]
Abstract
TIP48 is a highly conserved eukaryotic AAA+ protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.
Collapse
Affiliation(s)
- Barbara Sigala
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
50
|
Yu YY, Dai G, Pan FY, Chen J, Li CJ. Calmodulin regulates the post-anaphase reposition of centrioles during cytokinesis. Cell Res 2005; 15:548-52. [PMID: 16045818 DOI: 10.1038/sj.cr.7290324] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A transient postanaphase repositioning of the centriole is found to control the completion of cytokinesis. Using a green fluorescent protein-calmodulin fusion protein as a living cell probe, we have previously found that calmodulin is associated with the initiation and progression of cytokinesis. In this study, we further studied the effect of calmodulin on the repositioning of the centriole and subsequent cell cycle progression. When activity of calmodulin is inhibited, the regression of the centriole from the intercellular bridge to the cell center is blocked, and thus the completion of cell division is repressed and two daughter cells are linked by longer cell bridge in perturbed cells. W7 treatment during cytokinesis also results in unfinished cytokinesis and stopped G1 phase. These results suggest that calmodulin activity is required for centriole repositioning and can affect the completion of cytokinesis and cell cycle progression.
Collapse
Affiliation(s)
- Yue Yue Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University. Nanjing 210097, China
| | | | | | | | | |
Collapse
|