1
|
Preobraschenski J, Kreutzberger AJB, Ganzella M, Münster-Wandowski A, Kreutzberger MAB, Olsthoorn LHM, Seibert S, Kiessling V, Riedel D, Witkowska A, Ahnert-Hilger G, Tamm LK, Jahn R. Synaptophysin accelerates synaptic vesicle fusion by expanding the membrane upon neurotransmitter loading. SCIENCE ADVANCES 2025; 11:eads4661. [PMID: 40267188 PMCID: PMC12017324 DOI: 10.1126/sciadv.ads4661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
Synaptic transmission is mediated by the exocytotic release of neurotransmitters stored in synaptic vesicles (SVs). SVs filled with neurotransmitters preferentially undergo exocytosis, but it is unclear how this is achieved. Here, we show that during transmitter loading, SVs substantially increase in size, which is reversible and requires synaptophysin, an abundant membrane protein with an unclear function. SVs are larger when synaptophysin is knocked out, and conversely, liposomes are smaller when reconstituted with synaptophysin. Moreover, transmitter loading of SVs accelerates fusion in vitro, which is abolished when synaptophysin is lacking despite near normal transmitter uptake. We conclude that synaptophysin functions as a curvature-promoting entity in the SV membrane, allowing for major lateral expansion of the SV membrane during neurotransmitter filling, thus increasing their propensity for exocytosis.
Collapse
Affiliation(s)
- Julia Preobraschenski
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center, Göttingen 37075, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Goettingen, Göttingen 37075, Germany
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22903, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville 22903, VA, USA
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | | | - Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville 22903, VA 22903, USA
| | - Linda H. M. Olsthoorn
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sascha Seibert
- Institute für Integrative Neuroanatomy, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22903, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville 22903, VA, USA
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Agata Witkowska
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Gudrun Ahnert-Hilger
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute für Integrative Neuroanatomy, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22903, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville 22903, VA, USA
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| |
Collapse
|
2
|
Wang Y, Yang Z, Wang R, Zheng Y, Han Z, Fan J, Yan F, Liu P, Luo Y. Annexin A6 mitigates neurological deficit in ischemia/reperfusion injury by promoting synaptic plasticity. CNS Neurosci Ther 2024; 30:e14639. [PMID: 38380783 PMCID: PMC10880127 DOI: 10.1111/cns.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
AIMS Alleviating neurological dysfunction caused by acute ischemic stroke (AIS) remains intractable. Given Annexin A6 (ANXA6)'s potential in promoting axon branching and repairing cell membranes, the study aimed to explore ANXA6's potential in alleviating AIS-induced neurological dysfunction. METHODS A mouse middle cerebral artery occlusion model was established. Brain and plasma ANXA6 levels were detected at different timepoints post ischemia/reperfusion (I/R). We overexpressed and down-regulated brain ANXA6 and evaluated infarction volume, neurological function, and synaptic plasticity-related proteins post I/R. Plasma ANXA6 levels were measured in patients with AIS and healthy controls, investigating ANXA6 expression's clinical significance. RESULTS Brain ANXA6 levels initially decreased, gradually returning to normal post I/R; plasma ANXA6 levels showed an opposite trend. ANXA6 overexpression significantly decreased the modified neurological severity score (p = 0.0109) 1 day post I/R and the infarction area at 1 day (p = 0.0008) and 7 day (p = 0.0013) post I/R, and vice versa. ANXA6 positively influenced synaptic plasticity, upregulating synaptophysin (p = 0.006), myelin basic protein (p = 0.010), neuroligin (p = 0.078), and tropomyosin-related kinase B (p = 0.150). Plasma ANXA6 levels were higher in patients with AIS (1.969 [1.228-3.086]) compared to healthy controls (1.249 [0.757-2.226]) (p < 0.001), that served as an independent risk factor for poor AIS outcomes (2.120 [1.563-3.023], p < 0.001). CONCLUSIONS This study is the first to suggest that ANXA6 enhances synaptic plasticity and protects against transient cerebral ischemia.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
3
|
Xiao Y, Wu M, Xue C, Wang Y. Recent Advances in the Development of Membrane-derived Vesicles for Cancer Immunotherapy. Curr Drug Deliv 2024; 21:403-420. [PMID: 37143265 DOI: 10.2174/1567201820666230504120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
The surface proteins on cell membranes enable the cells to have different properties, such as high biocompatibility, surface modifiability, and homologous targeting ability. Cell-membrane-derived vesicles have features identical to those of their parental cells, which makes them one of the most promising materials for drug delivery. Recently, as a result of the impressive effects of immunotherapy in cancer treatment, an increasing number of researchers have used cell-membrane-derived vesicles to enhance immune responses. To be more specific, the membrane vesicles derived from immune cells, tumor cells, bacteria, or engineered cells have the antigen presentation capacity and can trigger strong anti-tumor effects of the immune system. In this review, we first indicated a brief description of the vesicles and then introduced the detection technology and drug-loading methods for them. Secondly, we concluded the characteristics and applications of vesicles derived from different sources in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuai Xiao
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
EL Nagar AG, Heddi I, Sosa-Madrid BS, Blasco A, Hernández P, Ibáñez-Escriche N. Genome-Wide Association Study of Maternal Genetic Effects on Intramuscular Fat and Fatty Acid Composition in Rabbits. Animals (Basel) 2023; 13:3071. [PMID: 37835677 PMCID: PMC10571580 DOI: 10.3390/ani13193071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Maternal genetic effects (MGE) could affect meat quality traits such as intramuscular fat (IMF) and its fatty acid composition. However, it has been scarcely studied, especially in rabbits. The objectives of the present study were, first, to assess the importance of MGE on intramuscular fat and fatty acid composition by applying a Bayesian maternal animal model in two rabbit lines divergently selected for IMF. The second objective was to identify genomic regions and candidate genes of MGE that are associated with the traits of these offspring, using Bayesian methods in a Genome Wide Association Study (GWAS). Quantitative analyses were performed using data from 1982 rabbits, and 349 animals from the 9th generation and 76 dams of the 8th generation with 88,512 SNPs were used for the GWAS. The studied traits were IMF, saturated fatty acids (total SFA, C14:0; myristic acid, C16:0; palmitic acid and C18:0; stearic acid), monounsaturated fatty acids (total MUFA, C16:1n-7; palmitoleic acid and C18:1n-9; oleic acid), polyunsaturated fatty acids (total PUFA, C18:2n-6; linoleic acid, C18:3n-3; α-linolenic acid and C20:4n-6; arachidonic acid), MUFA/SFA and PUFA/SFA. The proportion of phenotypic variance explained by the maternal genetic effect ranged from 8 to 22% for IMF, depending on the model. For fatty acid composition, the proportion of phenotypic variance explained by maternal genetic effects varied from 10% (C18:0) to 46% (MUFA) in a model including both direct and additive maternal genetic effects, together with the common litter effect as a random variable. In particular, there were significant direct maternal genetic correlations for C16:0, C18:1n9, C18:2n6, SFA, MUFA, and PUFA with values ranging from -0.53 to -0.89. Relevant associated genomic regions were located on the rabbit chromosomes (OCU) OCU1, OCU5 and OCU19 containing some relevant candidates (TANC2, ACE, MAP3K3, TEX2, PRKCA, SH3GL2, CNTLN, RPGRIP1L and FTO) related to lipid metabolism, binding, and obesity. These regions explained about 1.2 to 13.9% of the total genomic variance of the traits studied. Our results showed an important maternal genetic effect on IMF and its fatty acid composition in rabbits and identified promising candidate genes associated with these traits.
Collapse
Affiliation(s)
- Ayman G. EL Nagar
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
- Department of Animal Production, Faculty of Agriculture at Moshtohor, Benha University, Benha 13736, Egypt
| | - Imen Heddi
- Centro Regional de Selección y Reproducción Animal (CERSYRA), Av. del Vino, 10, 13300 Valdepeñas, Spain
| | - Bolívar Samuel Sosa-Madrid
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
| |
Collapse
|
5
|
Yu T, Flores-Solis D, Eastep GN, Becker S, Zweckstetter M. Phosphatidylserine-dependent structure of synaptogyrin remodels the synaptic vesicle membrane. Nat Struct Mol Biol 2023:10.1038/s41594-023-01004-9. [PMID: 37217654 DOI: 10.1038/s41594-023-01004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
Synaptic vesicles are small membrane-enclosed organelles that store neurotransmitters at presynaptic terminals. The uniform morphology of synaptic vesicles is important for brain function, because it enables the storage of well-defined amounts of neurotransmitters and thus reliable synaptic transmission. Here, we show that the synaptic vesicle membrane protein synaptogyrin cooperates with the lipid phosphatidylserine to remodel the synaptic vesicle membrane. Using NMR spectroscopy, we determine the high-resolution structure of synaptogyrin and identify specific binding sites for phosphatidylserine. We further show that phosphatidylserine binding changes the transmembrane structure of synaptogyrin and is critical for membrane bending and the formation of small vesicles. Cooperative binding of phosphatidylserine to both a cytoplasmic and intravesicular lysine-arginine cluster in synaptogyrin is required for the formation of small vesicles. Together with other synaptic vesicle proteins, synaptogyrin thus can sculpt the membrane of synaptic vesicles.
Collapse
Affiliation(s)
- Taekyung Yu
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Gunnar N Eastep
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
6
|
Lipidomics: An excellent tool for chronic disease detection. Curr Res Transl Med 2022; 70:103346. [PMID: 35487168 DOI: 10.1016/j.retram.2022.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 03/10/2022] [Accepted: 04/04/2022] [Indexed: 01/31/2023]
Abstract
It has been known as almost all the cells consists a lipid molecule which has a considerable impact in various biological processes. Lipids have been investigated with a potential role for the formation of cellular membrane and thereby maintaining the structural integrity. Omics has placed as a combined technologies utilized for an exploaration of mechanistic actions in several kinds of molecules that make up the cells of an organism. Lipidomics has been recognized as a newly emerged branch of omics technology. This technology has the captivating factors to classify and characterize almost all the cellular lipids with the help of various analytical techniques and computational biological plateform. In lipidomics studies, structural display of several lipid biomarkers could also be analyzed and considered for actual disease diagnosis procedures. This could also replace certain traditional diagnostics method at all over the globe. Our review focuses how important this lipidomics particularly in disease diagnosis and also covers various analytical techniques and computational methods or bioinformatics tools in for the diagnosis of disease. In addtion, we also pinponted the possible role of lipids in several kinds of cellular disorders including cancer, neurodegenerative diseases, cardiovascular diseases, diabetes and obesity in human population. .
Collapse
|
7
|
Mandik F, Vos M. Neurodegenerative Disorders: Spotlight on Sphingolipids. Int J Mol Sci 2021; 22:ijms222111998. [PMID: 34769423 PMCID: PMC8584905 DOI: 10.3390/ijms222111998] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are incurable diseases of the nervous system that lead to a progressive loss of brain areas and neuronal subtypes, which is associated with an increase in symptoms that can be linked to the affected brain areas. The key findings that appear in many neurodegenerative diseases are deposits of proteins and the damage of mitochondria, which mainly affect energy production and mitophagy. Several causative gene mutations have been identified in various neurodegenerative diseases; however, a large proportion are considered sporadic. In the last decade, studies linking lipids, and in particular sphingolipids, to neurodegenerative diseases have shown the importance of these sphingolipids in the underlying pathogenesis. Sphingolipids are bioactive lipids consisting of a sphingoid base linked to a fatty acid and a hydrophilic head group. They are involved in various cellular processes, such as cell growth, apoptosis, and autophagy, and are an essential component of the brain. In this review, we will cover key findings that demonstrate the relevance of sphingolipids in neurodegenerative diseases and will focus on neurodegeneration with brain iron accumulation and Parkinson’s disease.
Collapse
|
8
|
Binotti B, Jahn R, Pérez-Lara Á. An overview of the synaptic vesicle lipid composition. Arch Biochem Biophys 2021; 709:108966. [PMID: 34139199 DOI: 10.1016/j.abb.2021.108966] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.
Collapse
Affiliation(s)
- Beyenech Binotti
- Department of Biochemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| | - Ángel Pérez-Lara
- Department of Physical Chemistry, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain.
| |
Collapse
|
9
|
Vos M, Klein C. The Importance of Drosophila melanogaster Research to UnCover Cellular Pathways Underlying Parkinson's Disease. Cells 2021; 10:579. [PMID: 33800736 PMCID: PMC7998316 DOI: 10.3390/cells10030579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder that is currently incurable. As a consequence of an incomplete understanding of the etiology of the disease, therapeutic strategies mainly focus on symptomatic treatment. Even though the majority of PD cases remain idiopathic (~90%), several genes have been identified to be causative for PD, facilitating the generation of animal models that are a good alternative to study disease pathways and to increase our understanding of the underlying mechanisms of PD. Drosophila melanogaster has proven to be an excellent model in these studies. In this review, we will discuss the different PD models in flies and key findings identified in flies in different affected pathways in PD. Several molecular changes have been identified, of which mitochondrial dysfunction and a defective endo-lysosomal pathway emerge to be the most relevant for PD pathogenesis. Studies in flies have significantly contributed to our knowledge of how disease genes affect and interact in these pathways enabling a better understanding of the disease etiology and providing possible therapeutic targets for the treatment of PD, some of which have already resulted in clinical trials.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| |
Collapse
|
10
|
Frangež Ž, Fernández-Marrero Y, Stojkov D, Seyed Jafari SM, Hunger RE, Djonov V, Riether C, Simon HU. BIF-1 inhibits both mitochondrial and glycolytic ATP production: its downregulation promotes melanoma growth. Oncogene 2020; 39:4944-4955. [PMID: 32493957 DOI: 10.1038/s41388-020-1339-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022]
Abstract
Endophilin B1, also known as BAX-interacting protein 1 (BIF-1), is part of the endophilin B protein family, and is a multifunctional protein involved in the regulation of apoptosis, autophagy, and mitochondrial morphology. The role of BIF-1 in cancer is controversial since previous reports indicated to both tumor-promoting and tumor-suppressive roles, perhaps depending on the cancer cell type. In the present study, we report that BIF-1 is significantly downregulated in both primary and metastatic melanomas, and that patients with high levels of BIF-1 expression exhibited a better overall survival. Depleting BIF-1 using CRISPR/Cas9 technology in melanoma cells resulted in higher proliferation rates both in vitro and in vivo, a finding that was associated with increased ATP production, metabolic acidification, and mitochondrial respiration. We also observed mitochondrial hyperpolarization, but no increase in the mitochondrial content of BIF-1-knockout melanoma cells. In contrast, such knockout melanoma cells were equally sensitive to anticancer drug- or UV irradiation-induced cell death, and exhibited similar autophagic activities as compared with control cells. Taken together, it appears that downregulation of BIF-1 contributes to tumorigenesis in cutaneous melanoma by upregulating mitochondrial respiration and metabolism, independent of its effect on apoptosis and autophagy.
Collapse
Affiliation(s)
- Živa Frangež
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - S Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert E Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Carsten Riether
- Tumor Immunology, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland. .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.
| |
Collapse
|
11
|
Yin Y, Cha C, Wu F, Li J, Li S, Zhu X, Zhang J, Guo G. Endophilin 1 knockdown prevents synaptic dysfunction induced by oligomeric amyloid β. Mol Med Rep 2019; 19:4897-4905. [PMID: 31059028 PMCID: PMC6522965 DOI: 10.3892/mmr.2019.10158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Amyloid β (Aβ) has been reported to have an important role in the cognitive deficits of Alzheimer's disease (AD), as oligomeric Aβ promotes synaptic dysfunction and triggers neuronal death. Recent evidence has associated an endocytosis protein, endophilin 1, with AD, as endophilin 1 levels have been reported to be markedly increased in the AD brain. The increase in endophilin 1 levels in neurons is associated with an increase in the activation of the stress kinase JNK, with subsequent neuronal death. In the present study, whole-cell patch-clamp recording demonstrated that oligomeric Aβ caused synaptic dysfunction and western blotting revealed that endophilin 1 was highly expressed prior to neuronal death of cultured hippocampal neurons. Furthermore, RNA interference and electrophysiological recording techniques in cultured hippocampal neurons demonstrated that knockdown of endophilin 1 prevented synaptic dysfunction induced by Aβ. Thus, a potential role for endophilin 1 in Aβ-induced postsynaptic dysfunction has been identified, indicating a possible direction for the prevention of postsynaptic dysfunction in cognitive impairment and suggesting that endophilin may be a potential target for the clinical treatment of AD.
Collapse
Affiliation(s)
- Yichen Yin
- Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Caihui Cha
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fengming Wu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiong Li
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Sumei Li
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaonan Zhu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jifeng Zhang
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
12
|
Mitochondrial Dynamics in Stem Cells and Differentiation. Int J Mol Sci 2018; 19:ijms19123893. [PMID: 30563106 PMCID: PMC6321186 DOI: 10.3390/ijms19123893] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are highly dynamic organelles that continuously change their shape. Their main function is adenosine triphosphate (ATP) production; however, they are additionally involved in a variety of cellular phenomena, such as apoptosis, cell cycle, proliferation, differentiation, reprogramming, and aging. The change in mitochondrial morphology is closely related to the functionality of mitochondria. Normal mitochondrial dynamics are critical for cellular function, embryonic development, and tissue formation. Thus, defects in proteins involved in mitochondrial dynamics that control mitochondrial fusion and fission can affect cellular differentiation, proliferation, cellular reprogramming, and aging. Here, we review the processes and proteins involved in mitochondrial dynamics and their various associated cellular phenomena.
Collapse
|
13
|
Varkey J, Langen R. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:127-139. [PMID: 28579098 PMCID: PMC5461824 DOI: 10.1016/j.jmr.2017.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/18/2017] [Accepted: 02/18/2017] [Indexed: 06/07/2023]
Abstract
The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single protein can generate different type of membrane curvatures using specific conformations for specific membrane structures and how EPR is a versatile tool well-suited to analyze subtle alterations in structures under such modifying conditions which otherwise would have been difficult using other biophysical tools.
Collapse
Affiliation(s)
- Jobin Varkey
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
14
|
Raben DM, Barber CN. Phosphatidic acid and neurotransmission. Adv Biol Regul 2016; 63:15-21. [PMID: 27671966 DOI: 10.1016/j.jbior.2016.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system.
Collapse
Affiliation(s)
- Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Casey N Barber
- The Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, Bronfman FC. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor. Cytoskeleton (Hoboken) 2016; 73:612-628. [PMID: 27223597 DOI: 10.1002/cm.21312] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors TrkB and p75 regulate dendritic and axonal growth during development and maintenance of the mature nervous system; however, the cellular and molecular mechanisms underlying this process are not fully understood. In recent years, several advances have shed new light on the processes behind the regulation of BDNF-mediated structural plasticity including control of neuronal transcription, local translation of proteins, and regulation of cytoskeleton and membrane dynamics. In this review, we summarize recent advances in the field of BDNF signaling in neurons to induce neuronal growth. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andres Gonzalez
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Moya-Alvarado
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Gonzalez-Billaut
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Francisca C Bronfman
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
16
|
High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion. Biophys J 2016. [PMID: 26200867 DOI: 10.1016/j.bpj.2015.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays.
Collapse
|
17
|
Yun Q, Jiang M, Wang J, Cao X, Liu X, Li S, Li B. Overexpression Bax interacting factor-1 protects cortical neurons against cerebral ischemia-reperfusion injury through regulation of ERK1/2 pathway. J Neurol Sci 2015; 357:183-91. [PMID: 26253702 DOI: 10.1016/j.jns.2015.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Bax interacting factor-1 (Bif-1), a multifunctional protein, can regulate cell apoptosis and autophagy. Up-regulation of Bif-1 expression has been associated with neuronal survival. Moreover, several studies have reported that Bif-1 is involved in ischemic stroke. However, the specific function of Bif-1 in cerebral ischemia-reperfusion (I/R) injury is not well understood. The aim of this study is to expose the potential protective effect of Bif-1 against cerebral I/R injury and its related mechanism. In the current study, we showed that adenovirus-mediated Bif-1-overexpression promoted oxygen and glucose deprivation followed by reperfusion (OGD/R)-treated cortical neurons' survival and reduced the cell apoptotic rate. We found that caspase-3 activity was inhibited by Bif-1 overexpression. In addition, we observed that Bif-1 overexpression induces cell autophagy, and the autophagy-specific inhibitor 3-Methyladenine (3-MA) attenuates cell survival. Interestingly, knockdown of Bif-1 resulted in attenuation of neuron survival, promotion of cell apoptosis and suppression of cell autophagy in neurons. In addition, knockdown of Bif-1 inhibited ERK1/2 activation. Our observations implicated Bif-1 as a novel target of cerebral I/R injury and played a neuroprotective effect via promoting cell survival and reducing apoptosis.
Collapse
Affiliation(s)
- Qiang Yun
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China; Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot 010020, China
| | - Mingfang Jiang
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, China
| | - Jun Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiangyu Cao
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinfeng Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Sheng Li
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Baomin Li
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
18
|
Simchon Tenenbaum Y, Weizman A, Rehavi M. The Impact of Chronic Early Administration of Psychostimulants on Brain Expression of BDNF and Other Neuroplasticity-Relevant Proteins. J Mol Neurosci 2015; 57:231-42. [PMID: 26152882 DOI: 10.1007/s12031-015-0611-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 01/08/2023]
Abstract
ABSRACT Frequently, healthy individuals, children, and students are using stimulants to treat attention deficit hyperactivity disorder (ADHD)-like symptoms or to enhance cognitive capacity, attention and concentration. Methylphenidate, the most common treatment for ADHD, similarly to cocaine, blocks the dopamine reuptake, leading to increase in dopamine level in the synaptic cleft. Brain-derived neurotrophic factor (BDNF) and other neuroplasticity-relevant proteins have a major role in cellular plasticity during development and maturation of the brain. Young Sprague Dawley rats (postnatal days (PND) 14) were treated chronically with either cocaine or methylphenidate. The rats were examined behaviorally and biochemically at several time points (PND 35, 56, 70, and 90). We found age-dependent, but stimulant-independent, alterations in the mRNA expression levels of microtubule-associated protein tau, doublecortin, and synaptophysin. The PND 90 rats, treated with methylphenidate at an early age, exhibited increased BDNF protein levels in the prefrontal cortex compared to the saline-treated group. Despite the treatment effects at the biochemical level, cocaine and methylphenidate treatments at an early age had only minor effects on the behavioral parameters measured at older ages. The biochemical alterations may reflect neuroprotective or neuroplastic effects of chronic methylphenidate treatment at an early age.
Collapse
Affiliation(s)
- Yaarit Simchon Tenenbaum
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Abraham Weizman
- Research Unit, Geha Mental Health Center and Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Moshe Rehavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel. .,The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel-Aviv, Israel.
| |
Collapse
|
19
|
Tu-Sekine B, Goldschmidt H, Raben DM. Diacylglycerol, phosphatidic acid, and their metabolic enzymes in synaptic vesicle recycling. Adv Biol Regul 2014; 57:147-52. [PMID: 25446883 DOI: 10.1016/j.jbior.2014.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/10/2023]
Abstract
The synaptic vesicle (SV) cycle includes exocytosis of vesicles loaded with a neurotransmitter such as glutamate, coordinated recovery of SVs by endocytosis, refilling of vesicles, and subsequent release of the refilled vesicles from the presynaptic bouton. SV exocytosis is tightly linked with endocytosis, and variations in the number of vesicles, and/or defects in the refilling of SVs, will affect the amount of neurotransmitter available for release (Sudhof, 2004). There is increasing interest in the roles synaptic vesicle lipids and lipid metabolizing enzymes play in this recycling. Initial emphasis was placed on the role of polyphosphoinositides in SV cycling as outlined in a number of reviews (Lim and Wenk, 2009; Martin, 2012; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Other lipids are now recognized to also play critical roles. For example, PLD1 (Humeau et al., 2001; Rohrbough and Broadie, 2005) and some DGKs (Miller et al., 1999; Nurrish et al., 1999) play roles in neurotransmission which is consistent with the critical roles for phosphatidic acid (PtdOH) and diacylglycerol (DAG) in the regulation of SV exo/endocytosis (Cremona et al., 1999; Exton, 1994; Huttner and Schmidt, 2000; Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). PLD generates phosphatidic acid by catalyzing the hydrolysis of phosphatidylcholine (PtdCho) and in some systems this PtdOH is de-phosphorylated to generate DAG. In contrast, DGK catalyzes the phosphorylation of DAG thereby converting it into PtdOH. While both enzymes are poised to regulate the levels of DAG and PtdOH, therefore, they both lead to the generation of PtdOH and could have opposite effects on DAG levels. This is particularly important for SV cycling as PtdOH and DAG are both needed for evoked exocytosis (Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Two lipids and their involved metabolic enzymes, two sphingolipids have also been implicated in exocytosis: sphingosine (Camoletto et al., 2009; Chan et al., 2012; Chan and Sieburth, 2012; Darios et al., 2009; Kanno et al., 2010; Rohrbough et al., 2004) and sphingosine-1-phosphate (Chan, Hu, 2012; Chan and Sieburth, 2012; Kanno et al., 2010). Finally a number of reports have focused on the somewhat less well studies roles of sphingolipids and cholesterol in SV cycling. In this report, we review the recent understanding of the roles PLDs, DGKs, and DAG lipases, as well as sphingolipids and cholesterol play in synaptic vesicle cycling.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hana Goldschmidt
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Kogelman LJA, Pant SD, Fredholm M, Kadarmideen HN. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses. Front Genet 2014; 5:214. [PMID: 25071839 PMCID: PMC4087325 DOI: 10.3389/fgene.2014.00214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/20/2014] [Indexed: 11/29/2022] Open
Abstract
Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie it.
Collapse
Affiliation(s)
- Lisette J A Kogelman
- Animal Genetics, Bioinformatics and Breeding Section, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Sameer D Pant
- Animal Genetics, Bioinformatics and Breeding Section, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding Section, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Haja N Kadarmideen
- Animal Genetics, Bioinformatics and Breeding Section, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
21
|
Vannier C, Pesty A, San-Roman MJ, Schmidt AA. The Bin/amphiphysin/Rvs (BAR) domain protein endophilin B2 interacts with plectin and controls perinuclear cytoskeletal architecture. J Biol Chem 2013; 288:27619-27637. [PMID: 23921385 DOI: 10.1074/jbc.m113.485482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins of the Bin/amphiphysin/Rvs (BAR) domain superfamily are essential in controlling the shape and dynamics of intracellular membranes. Here, we present evidence for the unconventional function of a member of the endophilin family of BAR and Src homology 3 domain-containing proteins, namely endophilin B2, in the perinuclear organization of intermediate filaments. Using mass spectrometry analysis based on capturing endophilin B2 partners in in situ pre-established complexes in cells, we unravel the interaction of endophilin B2 with plectin 1, a variant of the cytoskeleton linker protein plectin as well as with vimentin. Endophilin B2 directly binds the N-terminal region of plectin 1 via Src homology 3-mediated interaction and vimentin indirectly via plectin-mediated interaction. The relevance of these interactions is strengthened by the selective and drastic reorganization of vimentin around nuclei upon overexpression of endophilin B2 and by the extensive colocalization of both proteins in a meshwork of perinuclear filamentous structures. By generating mutants of the endophilin B2 BAR domain, we show that this phenotype requires the BAR-mediated membrane binding activity of endophilin B2. Plectin 1 or endophilin B2 knockdown using RNA interference disturbed the perinuclear organization of vimentin. Altogether, these data suggest that the endophilin B2-plectin 1 complex functions as a membrane-anchoring device organizing and stabilizing the perinuclear network of vimentin filaments. Finally, we present evidence for the involvement of endophilin B2 and plectin 1 in nuclear positioning in individual cells. This points to the potential importance of the endophilin B2-plectin complex in the biological functions depending on nuclear migration and positioning.
Collapse
Affiliation(s)
- Christian Vannier
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Arlette Pesty
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Mabel Jouve San-Roman
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Anne A Schmidt
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France.
| |
Collapse
|
22
|
Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1256-68. [PMID: 23434681 DOI: 10.1016/j.bbamcr.2013.02.002] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/18/2022]
Abstract
Mitochondrial morphology changes dynamically by coordinated fusion and fission and cytoskeleton-based transport. Cycles of outer and inner membrane fusion and fission are required for the exchange of damaged mitochondrial genome DNA, proteins, and lipids with those of healthy mitochondria to maintain robust mitochondrial structure and function. These dynamics are crucial for cellular life and death, because they are essential for cellular development and homeostasis, as well as apoptosis. Disruption of these functions leads to cellular dysfunction, resulting in neurologic disorders and metabolic diseases. The cytoplasmic dynamin-related GTPase Drp1 plays a key role in mitochondrial fission, while Mfn1, Mfn2 and Opa1 are involved in fusion reaction. Here, we review current knowledge regarding the regulation and physiologic relevance of Drp1-dependent mitochondrial fission: the initial recruitment and assembly of Drp1 on the mitochondrial fission foci, regulation of Drp1 activity by post-translational modifications, and the role of mitochondrial fission in cell pathophysiology.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Molecular Biology, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
23
|
Löw C, Jegerschöld C, Kovermann M, Moberg P, Nordlund P. Optimisation of over-expression in E. coli and biophysical characterisation of human membrane protein synaptogyrin 1. PLoS One 2012; 7:e38244. [PMID: 22675529 PMCID: PMC3365889 DOI: 10.1371/journal.pone.0038244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/02/2012] [Indexed: 11/25/2022] Open
Abstract
Progress in functional and structural studies of integral membrane proteins (IMPs) is lacking behind their soluble counterparts due to the great challenge in producing stable and homogeneous IMPs. Low natural abundance, toxicity when over-expressed and potential lipid requirements of IMPs are only a few reasons for the limited progress. Here, we describe an optimised workflow for the recombinant over-expression of the human tetraspan vesicle protein (TVP) synaptogyrin in Escherichia coli and its biophysical characterisation. TVPs are ubiquitous and abundant components of vesicles. They are believed to be involved in various aspects of the synaptic vesicle cycle, including vesicle biogenesis, exocytosis and endocytotic recycling. Even though TVPs are found in most cell types, high-resolution structural information for this class of membrane proteins is still missing. The optimisation of the N-terminal sequence of the gene together with the usage of the recently developed Lemo21(DE3) strain which allows the balancing of the translation with the membrane insertion rate led to a 50-fold increased expression rate compared to the classical BL21(DE3) strain. The protein was soluble and stable in a variety of mild detergents and multiple biophysical methods confirmed the folded state of the protein. Crosslinking experiments suggest an oligomeric architecture of at least four subunits. The protein stability is significantly improved in the presence of cholesteryl hemisuccinate as judged by differential light scattering. The approach described here can easily be adapted to other eukaryotic IMPs.
Collapse
Affiliation(s)
- Christian Löw
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (CL); (PN)
| | - Caroline Jegerschöld
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michael Kovermann
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg, Saale, Germany
| | - Per Moberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pär Nordlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (CL); (PN)
| |
Collapse
|
24
|
Gortat A, San-Roman MJ, Vannier C, Schmidt AA. Single point mutation in Bin/Amphiphysin/Rvs (BAR) sequence of endophilin impairs dimerization, membrane shaping, and Src homology 3 domain-mediated partnership. J Biol Chem 2011; 287:4232-47. [PMID: 22167186 DOI: 10.1074/jbc.m111.325837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bin/Amphiphysin/Rvs (BAR) domain-containing proteins are essential players in the dynamics of intracellular compartments. The BAR domain is an evolutionarily conserved dimeric module characterized by a crescent-shaped structure whose intrinsic curvature, flexibility, and ability to assemble into highly ordered oligomers contribute to inducing the curvature of target membranes. Endophilins, diverging into A and B subgroups, are BAR and SH3 domain-containing proteins. They exert activities in membrane dynamic processes such as endocytosis, autophagy, mitochondrial dynamics, and permeabilization during apoptosis. Here, we report on the involvement of the third α-helix of the endophilin A BAR sequence in dimerization and identify leucine 215 as a key residue within a network of hydrophobic interactions stabilizing the entire BAR dimer interface. With the combination of N-terminal truncation retaining the high dimerization capacity of the third α-helices of endophilin A and leucine 215 substitution by aspartate (L215D), we demonstrate the essential role of BAR sequence-mediated dimerization on SH3 domain partnership. In comparison with wild type, full-length endophilin A2 heterodimers with one protomer bearing the L215D substitution exhibit very significant changes in membrane binding and shaping activities as well as a dramatic decrease of SH3 domain partnership. This suggests that subtle changes in the conformation and/or rigidity of the BAR domain impact both the control of membrane curvature and downstream binding to effectors. Finally, we show that expression, in mammalian cells, of endophilin A2 bearing the L215D substitution impairs the endocytic recycling of transferrin receptors.
Collapse
Affiliation(s)
- Anna Gortat
- CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | | | | | | |
Collapse
|
25
|
Borroni V, Barrantes FJ. Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem 2011; 286:17122-32. [PMID: 21357688 DOI: 10.1074/jbc.m110.211870] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stability of the nicotinic acetylcholine receptor (AChR) at the cell surface is key to the correct functioning of the cholinergic synapse. Cholesterol (Chol) is necessary for homeostasis of AChR levels at the plasmalemma and for ion translocation. Here we characterize the endocytic pathway followed by muscle-type AChR in Chol-depleted cells (Chol(-)). Under such conditions, the AChR is internalized by a ligand-, clathrin-, and dynamin-independent mechanism. Expression of a dominant negative form of the small GTPase Rac1, Rac1N17, abolishes receptor endocytosis. Unlike the endocytic pathway in control CHO cells (1), accelerated AChR internalization proceeds even upon disruption of the actin cytoskeleton. Under Chol(-) conditions, AChR internalization is furthermore found to require the activity of Arf6 and its effectors Rac1 and phospholipase D. The Arf6-dependent mechanism may constitute the default endocytic pathway followed by the AChR in the absence of external ligands, membrane Chol levels acting as a key homeostatic regulator of cell surface receptor levels.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto Investigaciones Bioquímicas de Bahía Blanca, C Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
| | | |
Collapse
|
26
|
Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE, Kester M, Loughran TP, Wang HG. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 2011; 7:61-73. [PMID: 21068542 DOI: 10.4161/auto.7.1.14015] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Atg9 is a transmembrane protein essential for autophagy which cycles between the Golgi network, late endosomes and LC3-positive autophagosomes in mammalian cells during starvation through a mechanism that is dependent on ULK1 and requires the activity of the class III phosphatidylinositol-3-kinase (PI3KC3). In this study, we demonstrate that the N-BAR-containing protein, Bif-1, is required for Atg9 trafficking and the fission of Golgi membranes during the induction of autophagy. Upon starvation, Atg9-positive membranes undergo continuous tubulation and fragmentation to produce cytoplasmic punctate structures that are positive for Rab5, Atg16L and LC3. Loss of Bif-1 or inhibition of the PI3KC3 complex II suppresses starvation-induced fission of Golgi membranes and peripheral cytoplasmic redistribution of Atg9. Moreover, Bif-1 mutants, which lack the functional regions of the N-BAR domain that are responsible for membrane binding and/or bending activity, fail to restore the fission of Golgi membranes as well as the formation of Atg9 foci and autophagosomes in Bif-1-deficient cells starved of nutrients. Taken together, these findings suggest that Bif-1 acts as a critical regulator of Atg9 puncta formation presumably by mediating Golgi fission for autophagosome biogenesis during starvation.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Nakamura M, Watanabe N. Ubiquitin-like protein MNSFβ/endophilin II complex regulates Dectin-1-mediated phagocytosis and inflammatory responses in macrophages. Biochem Biophys Res Commun 2010; 401:257-61. [DOI: 10.1016/j.bbrc.2010.09.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
|
29
|
Nakamura M, Shimosaki S. The ubiquitin-like protein monoclonal nonspecific suppressor factor beta conjugates to endophilin II and regulates phagocytosis. FEBS J 2009; 276:6355-63. [PMID: 19796172 DOI: 10.1111/j.1742-4658.2009.07348.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Monoclonal nonspecific suppressor factor beta (MNSFbeta) is a ubiquitously expressed member of the ubiquitin-like family that has been implicated in various biological functions. Previous studies have demonstrated that MNSFbeta covalently binds to the intracellular proapoptotic protein Bcl-G in cells of the macrophage cell line Raw264.7, suggesting involvement of this ubiquitin-like protein in apoptosis. In this study, we purified a 62 kDa MNSFbeta adduct from murine liver lysates by sequential chromatography on DEAE and anti-MNSFbeta IgG-conjugated Sepharose. MALDI-TOF MS fingerprinting revealed that this MNSFbeta adduct consists of an 8.5 kDa MNSFbeta and endophilin II, a member of the endophilin A family. MNSFbeta may conjugate to endophilin II with a linkage between the C-terminal Gly74 and Lys294. We confirmed this result by immunoprecipitation/western blot studies. Endophilin II was ubiquitously expressed in various tissues, although a truncated form was observed in liver. The 62 kDa MNSFbeta-endophilin II was specifically expressed in liver and macrophages. Small interfering RNA-mediated knockdown of endophilin II and/or MNSFbeta promoted phagocytosis of zymosan in Raw264.7 cells. Conversely, cotransfection of endophilin II and MNSFbeta cDNAs inhibited the phagocytosis of zymosan. Such inhibition was not observed in cells expressing a mutant of endophilin II in which Lys294 was replaced by arginine. These results suggest that the post-translational modification of endophilin II by MNSFbeta might be implicated in phagocytosis by macrophages.
Collapse
Affiliation(s)
- Morihiko Nakamura
- Department of Cooperative Medical Research, Collaboration Center, Shimane University, Izumo 693-8501, Japan.
| | | |
Collapse
|
30
|
Takahashi Y, Meyerkord CL, Wang HG. Bif-1/endophilin B1: a candidate for crescent driving force in autophagy. Cell Death Differ 2009; 16:947-55. [PMID: 19265852 PMCID: PMC2697278 DOI: 10.1038/cdd.2009.19] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an intracellular bulk degradation system that plays a vital role in maintaining cellular homeostasis. This degradation process involves dynamic membrane rearrangements resulting in the formation of double-membraned autophagosomes. However, the driving force for generating curvature and deformation of isolation membranes remains a mystery. Bax-interacting factor 1 (Bif-1), also known as SH3GLB1 or Endophilin B1, was originally discovered as a Bax-binding protein. Bif-1 contains an amino-terminal N-BAR (Bin-Amphiphysin-Rvs) domain and a carboxy-terminal SH3 (Src-homology 3) domain and shows membrane binding and bending activities. It has been shown that Beclin1 is involved in the nucleation of autophagosomal membranes through an unknown mechanism. It is interesting that, Bif-1 forms a complex with Beclin1 through ultraviolet irradiation resistant-associated gene (UVRAG) and promotes the activation of the class III PI3 kinase, Vps34, in mammalian cells. In response to nutrient starvation, Bif-1 accumulates in punctate foci where it co-localizes with LC3, Atg5, and Atg9. Furthermore, Bif-1-positive, crescent-shaped small vesicles expand by recruiting and fusing with Atg9-positive small membranes to complete autophagosome formation. This review highlights the role of Bif-1 in the regulation of autophagy and discusses the potential involvement of Bif-1 in the biogenesis of membranes for the formation of autophagosomes.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Cheryl L. Meyerkord
- Cancer Biology Ph.D. Program, Moffitt Cancer Center, University of South Florida, Tampa, FL 33612, USA
| | - Hong-Gang Wang
- Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
31
|
|
32
|
Le HY, Zhang Y, Liu H, Ma LH, Jin Y, Huang QH, Chen Y, Deng M, Chen Z, Chen SJ, Liu TX. eena Promotes Myeloid Proliferation through Stimulating ERK1/2 Phosphorylation in Zebrafish. J Biol Chem 2008; 283:17652-61. [DOI: 10.1074/jbc.m710517200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mulé JJ, Pledger WJ, Wang HG. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007; 9:1142-51. [PMID: 17891140 PMCID: PMC2254521 DOI: 10.1038/ncb1634] [Citation(s) in RCA: 703] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/30/2007] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily conserved 'self-eating' process. Although the genes essential for autophagy (named Atg) have been identified in yeast, the molecular mechanism of how Atg proteins control autophagosome formation in mammalian cells remains to be elucidated. Here, we demonstrate that Bif-1 (also known as Endophilin B1) interacts with Beclin 1 through ultraviolet irradiation resistance-associated gene (UVRAG) and functions as a positive mediator of the class III PI(3) kinase (PI(3)KC3). In response to nutrient deprivation, Bif-1 localizes to autophagosomes where it colocalizes with Atg5, as well as microtubule-associated protein light chain 3 (LC3). Furthermore, loss of Bif-1 suppresses autophagosome formation. Although the SH3 domain of Bif-1 is sufficient for binding to UVRAG, both the BAR and SH3 domains are required for Bif-1 to activate PI(3)KC3 and induce autophagosome formation. We also observed that Bif-1 ablation prolongs cell survival under starvation conditions. Moreover, knockout of Bif-1 significantly enhances the development of spontaneous tumours in mice. These findings suggest that Bif-1 joins the UVRAG-Beclin 1 complex as a potential activator of autophagy and tumour suppressor.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive. Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu H, Wang R, Zhang YW, Zhang X. Estrogen, beta-amyloid metabolism/trafficking, and Alzheimer's disease. Ann N Y Acad Sci 2007; 1089:324-42. [PMID: 17261779 DOI: 10.1196/annals.1386.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Estrogen plays key regulatory roles in a variety of biological actions besides its classic function as a sex hormone. Recently, estrogen has been linked to neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). Several lines of evidence support the notion that brain estrogen exerts neuroprotective effects against various types of neurotoxicity in different cellular and animal models. Despite some controversies, estrogen replacement therapy (ERT) at an early stage, especially when given prior to menopause, has been shown to reduce the risk of AD in postmenopausal women. In addition, multiple lines of evidence have proven the neuroprotective effects of estrogen, such as enhancing neurotrophin signaling and synaptic activities pertinent to memory functions and protecting neurons against oxidative injuries and beta-amyloid toxicity; the latter is widely accepted as the prime culprit known to trigger the pathogenesis of AD. Here we will summarize our findings that estrogen decreased generation and secretion of beta-amyloid peptides in cultured cells and primary neurons and that administration of estrogen in estrogen-deprived mice reversed the elevated levels of brain Abeta. We will also discuss the molecular and cellular mechanisms underlying estrogen's effects on Abeta metabolism, which is highlighted by our demonstration that estrogen increases intracellular trafficking of beta-amyloid precursor protein (betaAPP) and hence reduces maximal Abeta generation within the trans-Golgi network (TGN), a subcellular compartment in which APP is known to be cleaved by the secretase enzymes to generate Abeta.
Collapse
Affiliation(s)
- Huaxi Xu
- Center for Neurosciences and Aging, Burnham Institute for Medical Research, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
35
|
Jia JY, Lamer S, Schümann M, Schmidt MR, Krause E, Haucke V. Quantitative Proteomics Analysis of Detergent-resistant Membranes from Chemical Synapses. Mol Cell Proteomics 2006; 5:2060-71. [PMID: 16861260 DOI: 10.1074/mcp.m600161-mcp200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic vesicles (SVs) in the central nervous system upon stimulation undergo rapid calcium-triggered exoendocytic cycling within the nerve terminal that at least in part depends on components of the clathrin- and dynamin-dependent endocytosis machinery. How exocytic SV fusion and endocytic retrieval are temporally and spatially coordinated is still an open question. One possibility is that specialized membrane microdomains characterized by their high content in membrane cholesterol may assist in the spatial coordination of synaptic membrane protein recycling. Quantitative proteomics analysis of detergent-resistant membranes (DRMs) isolated from rat brain synapses or cholesterol-depleted control samples by liquid chromatography-tandem mass spectrometry identified a total of 159 proteins. Among these 122 proteins were classified as cholesterol-dependent DRM or DRM-associated proteins, many of which with proven or hypothesized functions in exoendocytic vesicle cycling including clathrin, the clathrin adaptor complex AP-2, and a variety of SV proteins. In agreement with this, SV membrane and endocytic proteins displayed a partial resistance to extraction with cold Triton X-100 in cultured rat hippocampal neurons where they co-localized with labeled cholera toxin B, a marker for cholesterol-enriched DRMs. Moreover SV proteins formed cholesterol-dependent complexes in CHAPS-extracted synaptic membrane lysates. Our combined data suggest that lipid microdomains may act as spatial coordinators for exoendocytic vesicle cycling at synapses.
Collapse
Affiliation(s)
- Jun-Yong Jia
- Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Bonanomi D, Benfenati F, Valtorta F. Protein sorting in the synaptic vesicle life cycle. Prog Neurobiol 2006; 80:177-217. [PMID: 17074429 DOI: 10.1016/j.pneurobio.2006.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 01/06/2023]
Abstract
At early stages of differentiation neurons already contain many of the components necessary for synaptic transmission. However, in order to establish fully functional synapses, both the pre- and postsynaptic partners must undergo a process of maturation. At the presynaptic level, synaptic vesicles (SVs) must acquire the highly specialized complement of proteins, which make them competent for efficient neurotransmitter release. Although several of these proteins have been characterized and linked to precise functions in the regulation of the SV life cycle, a systematic and unifying view of the mechanisms underlying selective protein sorting during SV biogenesis remains elusive. Since SV components do not share common sorting motifs, their targeting to SVs likely relies on a complex network of protein-protein and protein-lipid interactions, as well as on post-translational modifications. Pleiomorphic carriers containing SV proteins travel and recycle along the axon in developing neurons. Nevertheless, SV components appear to eventually undertake separate trafficking routes including recycling through the neuronal endomembrane system and the plasmalemma. Importantly, SV biogenesis does not appear to be limited to a precise stage during neuronal differentiation, but it rather continues throughout the entire neuronal lifespan and within synapses. At nerve terminals, remodeling of the SV membrane results from the use of alternative exocytotic pathways and possible passage through as yet poorly characterized vacuolar/endosomal compartments. As a result of both processes, SVs with heterogeneous molecular make-up, and hence displaying variable competence for exocytosis, may be generated and coexist within the same nerve terminal.
Collapse
Affiliation(s)
- Dario Bonanomi
- Department of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | |
Collapse
|
37
|
Abstract
A new definition for lipid rafts was coined at the Keystone Symposium of Lipid Rafts and Cell Function based on recent advances in the field. The revised definition lumps all membrane heterogeneities that are not rafts into a single class of "non-raft". In this commentary, we suggest that "non-raft" domains encompass a variety of membrane heterogeneities and are quite diverse in composition and origin. A good starting point for the study of this diversity would be phospholipids with unsaturated acyl chains, which display little affinity for cholesterol; these lipids are abundant in membranes such as the endoplasmic reticulum and that may form their own macro- or microdomains.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Mudd Hall, Baltimore, MD 21218, USA.
| | | |
Collapse
|
38
|
Abstract
The unique lipid composition of the Golgi membranes is critical for maintaining their structural and functional identity, and is regulated by local lipid metabolism, a variety of lipid-binding, -modifying, -sensing and -transfer proteins, and by selective lipid sorting mechanisms. A growing body of evidence suggests that certain lipids, such as phosphoinositides and diacylglycerol, regulate Golgi-mediated transport events. However, their exact role in this process, and the underlying mechanisms that maintain their critical levels in specific membrane domains of the Golgi apparatus, remain poorly understood. Nevertheless, recent advances have revealed key regulators of lipid homoeostasis in the Golgi complex and have demonstrated their role in Golgi secretory function.
Collapse
Affiliation(s)
- S Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
39
|
Gallop JL, Jao CC, Kent HM, Butler PJG, Evans PR, Langen R, McMahon HT. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 2006; 25:2898-910. [PMID: 16763559 PMCID: PMC1500843 DOI: 10.1038/sj.emboj.7601174] [Citation(s) in RCA: 442] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 05/08/2006] [Indexed: 11/09/2022] Open
Abstract
Endophilin-A1 is a BAR domain-containing protein enriched at synapses and is implicated in synaptic vesicle endocytosis. It binds to dynamin and synaptojanin via a C-terminal SH3 domain. We examine the mechanism by which the BAR domain and an N-terminal amphipathic helix, which folds upon membrane binding, work as a functional unit (the N-BAR domain) to promote dimerisation and membrane curvature generation. By electron paramagnetic resonance spectroscopy, we show that this amphipathic helix is peripherally bound in the plane of the membrane, with the midpoint of insertion aligned with the phosphate level of headgroups. This places the helix in an optimal position to effect membrane curvature generation. We solved the crystal structure of rat endophilin-A1 BAR domain and examined a distinctive insert protruding from the membrane interaction face. This insert is predicted to form an additional amphipathic helix and is important for curvature generation. Its presence defines an endophilin/nadrin subclass of BAR domains. We propose that N-BAR domains function as low-affinity dimers regulating binding partner recruitment to areas of high membrane curvature.
Collapse
Affiliation(s)
| | - Christine C Jao
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | - Helen M Kent
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
40
|
Abstract
Alix/AIP1 (ALG-2-interacting protein X/apoptosis-linked-gene-2-interacting protein 1) is an adaptor protein that was first described for its capacity to bind to the calcium-binding protein ALG-2 (apoptosis-linked gene 2), the expression of which seemed necessary for cell death. Over-expression of truncated forms of Alix blocks caspase-dependent and -independent mechanisms of cell death. Numerous observations in yeast and in mammalian cells suggest that Alix controls the making of and trafficking through endosomes called MVBs (multivesicular bodies), which are crucial intermediates within the endolysosomal system. In particular, deletion of Bro1, one of the yeast homologues of Alix, leads to an impairment in the function of MVBs, leading to mis-sorting of proteins normally destined to the vacuole. Mammalian Alix may have a similar function and has been shown to bind to lyso(bis)phosphatidic acid, ESCRT (endosomal sorting complex required for transport) proteins, endophilins and CIN85 (Cbl-interacting protein of 85 kDa), which are all main regulators of the endosomal system. EIAV (equine infectious anaemia virus) and HIV late domains use Alix to recruit the ESCRT machinery in order to bud from the cell surface, underscoring the crucial role of the protein in orchestrating membrane deformation. In this review I develop the hypothesis that the normal function of Alix in the endolysosomal system may be deviated by ALG-2 towards a destructive role during active cell death.
Collapse
Affiliation(s)
- Rémy Sadoul
- Neurodégénérescence et Plasticité, E0108, INSERM/Université Joseph Fourier, Grenoble, France.
| |
Collapse
|
41
|
Vinatier J, Herzog E, Plamont MA, Wojcik SM, Schmidt A, Brose N, Daviet L, El Mestikawy S, Giros B. Interaction between the vesicular glutamate transporter type 1 and endophilin A1, a protein essential for endocytosis. J Neurochem 2006; 97:1111-25. [PMID: 16606361 DOI: 10.1111/j.1471-4159.2006.03821.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the nerve terminal, neurotransmitter is actively packaged into synaptic vesicles before its release by Ca2+-dependent exocytosis. The three vesicular glutamate transporters (VGLUT1, -2 and -3) are highly conserved proteins that display similar bioenergetic and pharmacological properties but are expressed in different brain areas. We used the divergent C-terminus of VGLUT1 as a bait in a yeast two-hybrid screen to identify and map the interaction between a proline-rich domain of VGLUT1 and the Src homology domain 3 (SH3) domain of endophilin. We further confirmed this interaction by using different glutathione-S-transferase-endophilin fusion proteins to pull down VGLUT1 from rat brain extracts. The expression profiles of the two genes and proteins were compared on rat brain sections, showing that endophilin is most highly expressed in regions and cells expressing VGLUT1. Double immunofluorescence in the rat cerebellum shows that most VGLUT1-positive terminals co-express endophilin, whereas VGLUT2-expressing terminals are often devoid of endophilin. However, neither VGLUT1 transport activity, endophilin enzymatic activity nor VGLUT1 synaptic targeting were altered by this interaction. Overall, the discovery of endophilin as a partner for VGLUT1 in nerve terminals strongly suggests the existence of functional differences between VGLUT1 and -2 terminals in their abilities to replenish vesicle pools.
Collapse
Affiliation(s)
- Jacqueline Vinatier
- INSERM U513, Neurobiology and Psychiatry, Faculté de Médecine, Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kamp F, Beyer K. Binding of α-Synuclein Affects the Lipid Packing in Bilayers of Small Vesicles. J Biol Chem 2006; 281:9251-9. [PMID: 16455667 DOI: 10.1074/jbc.m512292200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular deposition of fibrillar aggregates of alpha-synuclein is a characteristic feature of Parkinson disease. Alternatively, as a result of its unusual conformational plasticity, alpha-synuclein may fold into an amphipathic helix upon contact with a lipid-water interface. Using spin label ESR and fluorescence spectroscopy, we show here that alpha-synuclein affects the lipid packing in small unilamellar vesicles. The ESR hyperfine splittings of spin-labeled phospholipid probes revealed that alpha-synuclein induces chain ordering at carbon 14 of the acyl chains below the chain melting phase transition temperature but not in the liquid crystalline state of electroneutral vesicle membranes. Binding of alpha-synuclein leads to an increase in the temperature and cooperativity of the phase transition according to the fluorescence anisotropy of the hydrophobic polyene 1,6-diphenylhexatriene and of the fluorescence emission maxima of the amphiphilic probe 6-dodecanoyl-2-dimethylaminonaphthalene. Binding parameters were obtained from the fluorescence anisotropy measurements in combination with our previous determinations by titration calorimetry (Nuscher, B., Kamp, F., Mehnert, T., Odoy, S., Haass, C., Kahle, P. J., and Beyer, K. (2004) J. Biol. Chem. 279, 21966-21975). We also show that alpha-synuclein interacts with vesicle membranes containing sphingomyelin and cholesterol. We propose that the protein is capable of annealing defects in curved vesicle membranes, which may prevent synaptic vesicles from premature fusion.
Collapse
Affiliation(s)
- Frits Kamp
- Laboratory of Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Ludwig Maximilian University, 80336 Munich, Germany
| | | |
Collapse
|
43
|
Ces O, Mulet X. Physical coupling between lipids and proteins: a paradigm for cellular control. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Mahul-Mellier AL, Hemming FJ, Blot B, Fraboulet S, Sadoul R. Alix, making a link between apoptosis-linked gene-2, the endosomal sorting complexes required for transport, and neuronal death in vivo. J Neurosci 2006; 26:542-9. [PMID: 16407552 PMCID: PMC6674414 DOI: 10.1523/jneurosci.3069-05.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alix/apoptosis-linked gene-2 (ALG-2)-interacting protein X is an adaptor protein involved in the regulation of the endolysosomal system through binding to endophilins and to endosomal sorting complexes required for transport (ESCRT) proteins, TSG101 and CHMP4b. It was first characterized as an interactor of ALG-2, a calcium-binding protein necessary for cell death, and several observations suggest a role for Alix in controlling cell death. We used electroporation in the chick embryo to test whether overexpressed wild-type or mutated Alix proteins influence cell death in vivo. We show that Alix overexpression is sufficient to induce cell death of neuroepithelial cells. This effect is strictly dependent on its capacity to bind to ALG-2. On the other hand, expression of Alix mutants lacking the ALG-2 or the CHMP4b binding sites prevents early programmed cell death in cervical motoneurons at day 4.5 of chick embryo development. This protection afforded by Alix mutants was abolished after deletion of the TSG101, but not of the endophilin, binding sites. Our results suggest that the interaction of the ALG-2/Alix complex with ESCRT proteins is necessary for naturally occurring death of motoneurons. Therefore, Alix represents a molecular link between the endolysosomal system and the cell death machinery.
Collapse
Affiliation(s)
- Anne-Laure Mahul-Mellier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Neurodégénérescence et Plasticité, Equipe Mixte INSERM 0108, Universite Joseph Fourier, Grenoble I, F-38043 Grenoble, France
| | | | | | | | | |
Collapse
|
45
|
Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL. The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 2006; 70:37-120. [PMID: 16524918 PMCID: PMC1393252 DOI: 10.1128/mmbr.70.1.37-120.2006] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.
Collapse
Affiliation(s)
- Gang Ren
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
46
|
Zamir O, Charlton MP. Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions. J Physiol 2005; 571:83-99. [PMID: 16339182 PMCID: PMC1805643 DOI: 10.1113/jphysiol.2005.098319] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During exocytosis of synaptic transmitters, the fusion of highly curved synaptic vesicle membranes with the relatively planar cell membrane requires the coordinated action of several proteins. The role of membrane lipids in the regulation of transmitter release is less well understood. Since it helps to control membrane fluidity, alteration of cholesterol content may alter the fusibility of membranes as well as the function of membrane proteins. We assayed the importance of cholesterol in transmitter release at crayfish neuromuscular junctions where action potentials can be measured in the preterminal axon. Methyl-beta-cyclodextrin (MbetaCD) depleted axons of cholesterol, as shown by reduced filipin labelling, and cholesterol was replenished by cholesterol-MbetaCD complex (Ch-MbetaCD). MbetaCD blocked evoked synaptic transmission. The lack of postsynaptic effects of MbetaCD on the time course and amplitude of spontaneous postsynaptic potentials or on muscle resting potential allowed us to focus on presynaptic mechanisms. Intracellular presynaptic axon recordings and focal extracellular recordings at individual boutons showed that failure of transmitter release was correlated with presynaptic hyperpolarization and failure of action potential propagation. All of these effects were reversed when cholesterol was replenished with Ch-MbetaCD. However, focal depolarization of presynaptic boutons and administration of a Ca2+ ionophore both triggered transmitter release after cholesterol depletion. Therefore, both presynaptic Ca2+ channels and Ca2+-dependent exocytosis functioned after cholesterol depletion. The frequency of spontaneous quantal transmitter release was increased by MbetaCD but recovered when cholesterol was reintroduced. The increase in spontaneous release was not through a calcium-dependent mechanism because it persisted with intense intracellular calcium chelation. In conclusion, cholesterol levels in the presynaptic membrane modulate several key properties of synaptic transmitter release.
Collapse
Affiliation(s)
- Orit Zamir
- Physiology Department, University of Toronto, 1 King's College Circle, Room 3308, Toronto, Ontario, Canada M5S1A8
| | | |
Collapse
|
47
|
Gallop JL, Butler PJG, McMahon HT. Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 2005; 438:675-8. [PMID: 16319893 DOI: 10.1038/nature04136] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 08/15/2005] [Indexed: 11/08/2022]
Abstract
Endophilins have been proposed to have an enzymatic activity (a lysophosphatidic acid acyl transferase or LPAAT activity) that can make phosphatidic acid in membranes. This activity is thought to change the bilayer asymmetry in such a way that negative membrane curvature at the neck of a budding vesicle will be stabilized. An LPAAT activity has also been proposed for CtBP/BARS (carboxy-terminal binding protein/brefeldin A-ribosylated substrate), a transcription co-repressor that is implicated in dynamin-independent endocytosis and fission of the Golgi in mitosis. Here we show that the LPAAT activity associated with endophilin is a contaminant of the purification procedure and can be also found associated with the pleckstrin homology domain of dynamin. Likewise, the LPAAT activity associated with CtBP/BARS is also a co-purification artefact. The proposed locus of activity in endophilins includes the BAR domain, which has no catalytic site but instead senses positive membrane curvature. These data will prompt a re-evaluation of the molecular details of membrane budding.
Collapse
Affiliation(s)
- Jennifer L Gallop
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
48
|
Takahashi Y, Karbowski M, Yamaguchi H, Kazi A, Wu J, Sebti SM, Youle RJ, Wang HG. Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Mol Cell Biol 2005; 25:9369-82. [PMID: 16227588 PMCID: PMC1265816 DOI: 10.1128/mcb.25.21.9369-9382.2005] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/07/2005] [Accepted: 08/02/2005] [Indexed: 11/20/2022] Open
Abstract
Bif-1, a member of the endophilin B protein family, interacts with Bax and promotes interleukin-3 withdrawal-induced Bax conformational change and apoptosis when overexpressed in FL5.12 cells. Here, we provide evidence that Bif-1 plays a regulatory role in apoptotic activation of not only Bax but also Bak and appears to be involved in suppression of tumorigenesis. Inhibition of endogenous Bif-1 expression in HeLa cells by RNA interference abrogated the conformational change of Bax and Bak, cytochrome c release, and caspase 3 activation induced by various intrinsic death signals. Similar results were obtained in Bif-1 knockout mouse embryonic fibroblasts. While Bif-1 did not directly interact with Bak, it heterodimerized with Bax on mitochondria in intact cells, and this interaction was enhanced by apoptosis induction and preceded the Bax conformational change. Moreover, suppression of Bif-1 expression was associated with an enhanced ability of HeLa cells to form colonies in soft agar and tumors in nude mice. Taken together, these findings support the notion that Bif-1 is an important component of the mitochondrial pathway for apoptosis as a novel Bax/Bak activator, and loss of this proapoptotic molecule may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Grabs D, Bergmann M. Differential appearance of dynamin in constitutive and regulated exo-endocytosis: a single-cell multiplex RT-PCR study. Cell Tissue Res 2005; 322:237-44. [PMID: 16028072 DOI: 10.1007/s00441-005-0005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 05/04/2005] [Indexed: 01/19/2023]
Abstract
Neurons in the central nervous system establish, via their axons and dendrites, an extended network that allows synaptic transmission. During developmental maturation and process outgrowth, membrane turnover is necessary for the enlargement and subsequent growth of axons and dendrites from the perikarya to the target cell (constitutive exocytosis/endocytosis). After targeting and synapse formation, small synaptic vesicles are needed for the quantal release of neurotransmitters from the presynaptic terminal with subsequent recycling by regulated exocytosis/endocytosis. An investigation of the onset of the appearance of mRNA and protein in dissociated cultures of neurons from mouse hippocampus or from chick retina has shown an early abundance of proteins involved in exocytosis, such as syntaxin 1, SNAP-25, and synaptotagmin 1, whereas dynamin 1, a protein necessary for clathrin-mediated endocytosis, can be detected only after neurons have established contacts with neighboring cells. The results reveal that constitutive membrane incorporation and regulated synaptic transmitter release is mediated by the same neuronal proteins. Moreover, the data exclude that dynamin 1 takes part in constitutive recycling before synapse formation, but dynamin 2 is present at this stage. Thus, dynamin 2 may be the constitutive counterpart of dynamin 1 in growing neurons. Synapse establishment is linked to an upregulation of dynamin 1 and thereby represents the beginning of the regulated recycling of membranes back into the presynaptic terminal.
Collapse
Affiliation(s)
- Detlev Grabs
- Department of Medicine/Anatomy, University Fribourg, Rte A. Gockel 1, 1700 Fribourg, Switzerland.
| | | |
Collapse
|
50
|
Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 2005; 24:1537-45. [PMID: 15791208 PMCID: PMC1142567 DOI: 10.1038/sj.emboj.7600631] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/25/2005] [Indexed: 11/09/2022] Open
Abstract
We have recently developed a minimal system for generating long tubular nanostructures that resemble tubes observed in vivo with biological membranes. Here, we studied membrane tube pulling in ternary mixtures of sphingomyelin, phosphatidylcholine and cholesterol. Two salient results emerged: the lipid composition is significantly different in the tubes and in the vesicles; tube fission is observed when phase separation is generated in the tubes. This shows that lipid sorting may depend critically on both membrane curvature and phase separation. Phase separation also appears to be important for membrane fission in tubes pulled out of giant liposomes or purified Golgi membranes.
Collapse
Affiliation(s)
- Aurélien Roux
- UMR 144 CNRS/Institut Curie, Paris, France
- UMR 168 CNRS/Institut Curie, Paris, France
| | | | | | - Jacques Prost
- UMR 168 CNRS/Institut Curie, Paris, France
- ESPCI, Paris, France
| | - Patricia Bassereau
- UMR 168 CNRS/Institut Curie, Paris, France
- These authors contributed equally to this work
| | - Bruno Goud
- UMR 144 CNRS/Institut Curie, Paris, France
- These authors contributed equally to this work
- UMR 144 CNRS/Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France. Tel.: +33 1 4234 6398; Fax: +33 1 4234 6382; E-mail:
| |
Collapse
|