1
|
Oliveri LM, Buzaleh AM, Gerez EN. An increase in O-GlcNAcylation of Sp1 down-regulates the gene expression of pi class glutathione S-transferase in diabetic mice. Biochem Biophys Rep 2021; 27:101049. [PMID: 34195388 PMCID: PMC8220555 DOI: 10.1016/j.bbrep.2021.101049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice.
Collapse
Affiliation(s)
- Leda María Oliveri
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Universidad de, Buenos Aires, Argentina
| | - Ana María Buzaleh
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Universidad de, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de, Buenos Aires, Argentina
| | - Esther Noemí Gerez
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Universidad de, Buenos Aires, Argentina
- Cátedra Bioquímica General Celular y Molecular, Facultad de Ciencias Médicas, Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| |
Collapse
|
2
|
Li Z, Fei T, Zhang J, Zhu G, Wang L, Lu D, Chi X, Teng Y, Hou N, Yang X, Zhang H, Han JDJ, Chen YG. BMP4 Signaling Acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. Cell Stem Cell 2012; 10:171-82. [PMID: 22305567 DOI: 10.1016/j.stem.2011.12.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 11/14/2011] [Accepted: 12/09/2011] [Indexed: 12/26/2022]
Abstract
Extrinsic BMP and LIF signaling collaboratively maintain mouse embryonic stem cell (ESC) pluripotency, whereas appropriate ERK activity is essential for ESC fate commitment. However, how the extrinsic signals restrain appropriate ERK activity remains elusive. Here, we show that, whereas LIF sustains relatively high ERK activity, BMP4 can steadily attenuate ERK activity by upregulating ERK-specific dual-specificity phosphatase 9 (DUSP9). This upregulation requires Smad1/5 and Smad4 and specifically occurs to DUSP9, but not other DUSPs, and only in ESCs. Through DUSP9-mediated inhibition of ERK activity, BMP signaling reinforces the self-renewal status of mouse ESCs together with LIF. Upon LIF withdrawal, ESCs spontaneously undergo neural differentiation, during which process DUSP9 can partially mediate BMP inhibition on neural commitment. Collectively, our findings identify DUSP9 as a critical mediator of BMP signaling to control appropriate ERK activity critical for ESC fate determination.
Collapse
Affiliation(s)
- Zhongwei Li
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Stevense M, Chubb JR, Muramoto T. Nuclear organization and transcriptional dynamics in Dictyostelium. Dev Growth Differ 2011; 53:576-86. [PMID: 21585360 DOI: 10.1111/j.1440-169x.2011.01271.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Dictyostelium model has a set of features uniquely well-suited to developing our understanding of transcriptional control. The complete Dictyostelium discoideum genome sequence has revealed that many of the molecular components regulating transcription in larger eukaryotes are conserved in Dictyostelium, from transcription factors and chromatin components to the enzymes and signals that regulate them. In addition, the system permits visualization of single gene firing events in living cells, which provides a more detailed view of transcription and its relationships to cell and developmental processes. This review will bring together the available knowledge of the structure and dynamics of the Dictyostelium nucleus and discuss recent transcription imaging studies and their implications for stability and accuracy of cell decisions.
Collapse
Affiliation(s)
- Michelle Stevense
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
4
|
Abstract
Populations of cells are almost always heterogeneous in function and fate. To understand the plasticity of cells, it is vital to measure quantitatively and dynamically the molecular processes that underlie cell-fate decisions in single cells. Early events in cell signalling often occur within seconds of the stimulus, whereas intracellular signalling processes and transcriptional changes can take minutes or hours. By contrast, cell-fate decisions, such as whether a cell divides, differentiates or dies, can take many hours or days. Multiparameter experimental and computational methods that integrate quantitative measurement and mathematical simulation of these noisy and complex processes are required to understand the highly dynamic mechanisms that control cell plasticity and fate.
Collapse
Affiliation(s)
- David G Spiller
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
5
|
Rutter GA, Leclerc I, Tsuboi T, Xavier GDS, Diraison F, Qian Q. Imaging glucose-regulated insulin secretion and gene expression in single islet beta-cells: control by AMP-activated protein kinase. Cell Biochem Biophys 2009; 40:179-90. [PMID: 15289653 DOI: 10.1385/cbb:40:3:179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanisms by which changes in glucose concentration regulate gene expression and insulin secretion in pancreatic islet beta-cells are only partly understood. Here we describe the development of new technologies for examining these processes at the level of single living beta-cells. We also present recent findings, made using these and other techniques, which implicate a role for adenosine 5'-monophosphate-activated protein kinase in glucose signaling in these cells.
Collapse
Affiliation(s)
- Guy A Rutter
- Henry Wellcome Laboratories of Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, United Kingdom.
| | | | | | | | | | | |
Collapse
|
6
|
Sundararaj KP, Samuvel DJ, Li Y, Sanders JJ, Lopes-Virella MF, Huang Y. Interleukin-6 released from fibroblasts is essential for up-regulation of matrix metalloproteinase-1 expression by U937 macrophages in coculture: cross-talking between fibroblasts and U937 macrophages exposed to high glucose. J Biol Chem 2009; 284:13714-13724. [PMID: 19307187 PMCID: PMC2679473 DOI: 10.1074/jbc.m806573200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play a key role in periodontal disease.
Although it is known that macrophages and fibroblasts are co-localized and
express MMPs in the diseased periodontal tissue, the effect of interaction
between these two cell types on MMP expression has not been well elucidated.
Furthermore although it is known that diabetes is associated with accelerated
periodontal tissue destruction, it remains unknown whether hyperglycemia, a
major metabolic abnormality in diabetes, regulates MMP expression by affecting
the cross-talking between fibroblasts and macrophages. In this study, human
gingival fibroblasts and U937 macrophages were cocultured in a two-compartment
transwell culture system, and the cells were treated with normal or high
glucose. We found that coculture of fibroblasts and U937 macrophages led to an
augmentation of MMP-1 expression by U937 macrophages, and high glucose further
enhanced this augmentation. Similar observations were also made in the
coculture of fibroblasts and human primary monocytes. We also found that
interleukin 6 (IL-6) released by fibroblasts was essential for the
augmentation of MMP-1 expression by U937 macrophages. Furthermore our results
showed that high glucose, IL-6, and lipopolysaccharide had a synergistic
effect on MMP-1 expression. Finally our study indicated that MAPK pathways and
activator protein-1 transcription factor were involved in the coculture- and
high glucose-augmented MMP-1 expression. In conclusion, this study
demonstrates that IL-6 derived from fibroblasts is essential for MMP-1
up-regulation by cross-talking between fibroblasts and U937 macrophages
exposed to high glucose, revealing an IL-6-dependent mechanism in MMP-1
up-regulation.
Collapse
Affiliation(s)
- Kamala P Sundararaj
- Ralph H. Johnson Veterans Affairs Medical Center Medical University of South Carolina, Charleston, South Carolina 29425
| | - Devadoss J Samuvel
- Ralph H. Johnson Veterans Affairs Medical Center Medical University of South Carolina, Charleston, South Carolina 29425
| | - Yanchun Li
- Division of Endocrinology, Diabetes, and Medical Genetics, Department of Medicine Medical University of South Carolina, Charleston, South Carolina 29425
| | - John J Sanders
- Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center Medical University of South Carolina, Charleston, South Carolina 29425; Division of Endocrinology, Diabetes, and Medical Genetics, Department of Medicine Medical University of South Carolina, Charleston, South Carolina 29425
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center Medical University of South Carolina, Charleston, South Carolina 29425; Division of Endocrinology, Diabetes, and Medical Genetics, Department of Medicine Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
7
|
Bell CJ, Manfredi G, Griffiths EJ, Rutter GA. Luciferase expression for ATP imaging: application to cardiac myocytes. Methods Cell Biol 2007; 80:341-52. [PMID: 17445703 DOI: 10.1016/s0091-679x(06)80017-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Christopher J Bell
- Department of Biochemistry, Henry Wellcome Signalling Laboratories, School of Medical Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
8
|
Sáez-Cirión A, Nicola MA, Pancino G, Shorte SL. Quantitative real-time analysis of HIV-1 gene expression dynamics in single living primary cells. Biotechnol J 2006; 1:682-9. [PMID: 16892317 DOI: 10.1002/biot.200600045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies on the regulation of viral transcription upon infection of the target cells have provided important information on the viral and host factors that influence pathogenesis. However, these studies have been limited so far to steady-state analysis of gene expression. Here we report an image based photon-counting method that allows real-time quantitative imaging of viral gene expression in infected single cells. Employing an HIV-1 vector bearing the firefly luciferase reporter gene, we exploited a single cell photon imaging methodology (a customized and highly sensitive imaging microscope) to measure viral gene expression following integration into a host genome in situ. Our approach reveals real-time dynamics of viral gene expression in living HIV natural target cells (primary human CD4 T cells and macrophages), and promises itself as a powerful tool for quantitative studies on a wide variety of virus-host cell interactions.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
9
|
Lam E, Tredget EE, Marcoux Y, Li Y, Ghahary A. Insulin suppresses collagenase stimulatory effect of stratifin in dermal fibroblasts. Mol Cell Biochem 2005; 266:167-74. [PMID: 15646039 DOI: 10.1023/b:mcbi.0000049156.82563.2d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A delicate balance between synthesis and degradation of extracellular matrix (ECM) by matrix metalloproteinases (MMPs) is an essential feature of tissue remodeling. We have recently demonstrated that keratinocyte releasable stratifin, also known as 14-3-3 sigma protein, plays a critical role in modulating collagenase (MMP-1) mRNA expression in human dermal fibroblasts. In this study, we further characterized the collagenase stimulatory effect of stratifin in dermal fibroblasts and evaluated its effect in the presence and absence of insulin. Our data indicate that stratifin increases the expression of collagenase mRNA more than 20-fold in dermal fibroblasts, grown in either Dulbecco's modified Eagle's medium (DMEM) plus 2% or 10% fetal bovine serum (FBS). Collagenase stimulatory effect of stratifin was completely blocked, when fibroblasts were cultured in test medium consisting of 50% keratinocyte serum-free medium (KSFM) and 50% DMEM. The collagenase suppressive effect of test medium was directly proportional to the volume of KSFM used. As this medium contained insulin, we then evaluated the collagenase stimulatory effect of stratifin in dermal fibroblasts in the presence and absence of insulin. The results revealed that stratifin significantly increased the expression of collagenase mRNA/18S (*p < 0.05, n = 3) ratio, while insulin significantly decreased the expression of collagenase mRNA/18S (*p < 0.05, n = 3) ratio. The insulin inhibitory effect on collagenase mRNA expression was time and dose dependent. The maximal inhibitory effect of insulin was seen at 36 h post treatment. In conclusion, stratifin stimulates the expression of collagenase mRNA expression in dermal fibroblasts and this effect is suppressed by insulin treatment.
Collapse
Affiliation(s)
- Eugene Lam
- Department of Surgery, Wound Healing Research Group, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
10
|
Ignowski JM, Schaffer DV. Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol Bioeng 2005; 86:827-34. [PMID: 15162459 DOI: 10.1002/bit.20059] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Firefly luciferase has proven to be a highly sensitive and quantitative reporter gene for studying gene delivery and regulation, and its recent use in live cells and organisms promises to further expand its utility. However, the intracellular behavior and properties of the enzyme are not well characterized. Specifically, information on the intracellular kinetics and stability of luciferase activity is necessary for real-time luminescence counts from live cells to be quantitatively meaningful. Here, we report a dynamic analysis of luciferase activity in the context of living mammalian cells. We have determined the relative light units measured in living cells to be proportional to that found in cell lysate. We have also calculated the K(m) of luciferase in living cells to be approximately 1 mM, a value much higher than the 10 microM found for pure enzyme in vitro. In addition, a 2-hour half-life of luciferase activity in live cells was measured in real time. Finally, we have modeled luciferase activity in live cells for the purposes of understanding and translating the luciferase signal into a more effective metric of gene expression and cell behavior.
Collapse
Affiliation(s)
- Jolene M Ignowski
- Department of Chemical Engineering and The Helen Wills Neuroscience Institute, MC 1462, University of California-Berkeley, Berkeley, CA 94720-1462, USA
| | | |
Collapse
|
11
|
Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 2004; 253:269-85. [PMID: 14619979 DOI: 10.1023/a:1026028303196] [Citation(s) in RCA: 850] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are a major group of enzymes that regulate cell-matrix composition. MMP genes show a highly conserved modular structure. Ample evidence exists on the role of MMPs in normal and pathological processes, including embryogenesis, wound healing, inflammation, arthritis, cardiovascular diseases, pulmonary diseases and cancer. The expression patterns of MMPs have interesting implications for the use of MMP inhibitors as therapeutic agents. Insights might be gained as to the preference for a general MMP inhibitor as opposed to an inhibitor designed to be specific for certain MMP family members as it relates to a defined disease state, and may give clues to potential side effects. The signalling pathways that lead to induction of expression of MMPs are still incompletely understood, but certain patterns are beginning to emerge. Regarding inhibition of MMP expression at the level of kinase pathways, it is possible that selective chemical inhibitors for distinct signalling pathways (e.g. MAPK, PKC) will hopefully, soon be available for initial clinical trials. Overexpression of selective dual specificity MAPK phosphatases have been shown to prevent MMP promoter activation which could also be used as a novel strategy to prevent activation of AP-1 and ETS transcription factors and MMP promoters in vivo. Interactions between members of different transcription factors provide fine-tuning of the transcriptional regulation of MMP promoter activity. MMPs play a crucial role in tumor invasion. Although the expression of MMPs in malignancies has been studied widely, the specific role of distinct MMPs in the progression of cancer may be more complex than has been assumed. For example, it has recently been shown that MMP-3, MMP-7, MMP-9 and MMP-12 can generate angiostatin from plasminogen, indicating that their expression in peritumoral area may in fact serve to limit angiogenesis and thereby inhibit tumor growth and invasion. The recent view about the role of stromal cells in the progression of cancer cell growth and metastasis is particularly interesting, and additional studies about the regulation of MMP gene expression and activity in malignancies are needed to understand the role and regulation of MMPs in tumor cell invasion.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India.
| | | | | | | | | |
Collapse
|
12
|
Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 2004. [PMID: 14619979 DOI: 10.1023/a: 1026028303196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a major group of enzymes that regulate cell-matrix composition. MMP genes show a highly conserved modular structure. Ample evidence exists on the role of MMPs in normal and pathological processes, including embryogenesis, wound healing, inflammation, arthritis, cardiovascular diseases, pulmonary diseases and cancer. The expression patterns of MMPs have interesting implications for the use of MMP inhibitors as therapeutic agents. Insights might be gained as to the preference for a general MMP inhibitor as opposed to an inhibitor designed to be specific for certain MMP family members as it relates to a defined disease state, and may give clues to potential side effects. The signalling pathways that lead to induction of expression of MMPs are still incompletely understood, but certain patterns are beginning to emerge. Regarding inhibition of MMP expression at the level of kinase pathways, it is possible that selective chemical inhibitors for distinct signalling pathways (e.g. MAPK, PKC) will hopefully, soon be available for initial clinical trials. Overexpression of selective dual specificity MAPK phosphatases have been shown to prevent MMP promoter activation which could also be used as a novel strategy to prevent activation of AP-1 and ETS transcription factors and MMP promoters in vivo. Interactions between members of different transcription factors provide fine-tuning of the transcriptional regulation of MMP promoter activity. MMPs play a crucial role in tumor invasion. Although the expression of MMPs in malignancies has been studied widely, the specific role of distinct MMPs in the progression of cancer may be more complex than has been assumed. For example, it has recently been shown that MMP-3, MMP-7, MMP-9 and MMP-12 can generate angiostatin from plasminogen, indicating that their expression in peritumoral area may in fact serve to limit angiogenesis and thereby inhibit tumor growth and invasion. The recent view about the role of stromal cells in the progression of cancer cell growth and metastasis is particularly interesting, and additional studies about the regulation of MMP gene expression and activity in malignancies are needed to understand the role and regulation of MMPs in tumor cell invasion.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India.
| | | | | | | | | |
Collapse
|
13
|
Guillemain G, Da Silva Xavier G, Rafiq I, Leturque A, Rutter GA. Importin beta1 mediates the glucose-stimulated nuclear import of pancreatic and duodenal homeobox-1 in pancreatic islet beta-cells (MIN6). Biochem J 2004; 378:219-27. [PMID: 14632628 PMCID: PMC1223942 DOI: 10.1042/bj20031549] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 11/14/2003] [Accepted: 11/24/2003] [Indexed: 11/17/2022]
Abstract
The transcription factor PDX-1 (pancreatic and duodenal homeobox-1) is essential for pancreatic development and the maintainence of expression of islet beta-cell-specific genes. In an previous study [Rafiq, Kennedy and Rutter (1998) J. Biol. Chem. 273, 23241-23247] we demonstrated that PDX-1 may be activated at elevated glucose concentrations by translocation from undefined binding sites in the cytosol and nuclear membrane into the nucleoplasm. In the present study, we show that PDX-1 interacts directly and specifically in vitro with the nuclear import receptor family member, importin beta1, and that this interaction is mediated by the PDX-1 homeodomain (amino acids 146-206). Demonstrating the functional importance of the PDX-1-importin beta1 interaction, microinjection of MIN6 beta-cells with anti-(importin beta1) antibodies blocked both the nuclear translocation of PDX-1, and the activation by glucose (30 mM versus 3 mM) of the pre-proinsulin promoter. However, treatment with extracts from pancreatic islets incubated at either low or high glucose concentrations had no impact on the ability of PDX-1 to interact with importin beta1 in vitro. Furthermore, importin beta1 also interacted with SREBP1c (sterol-regulatory-element-binding protein 1c) in vitro, and microinjection of importin beta1 antibodies blocked the activation by glucose of SREBP1c target genes. Since the subcellular distribution of SREBP1c is unaffected by glucose, these findings suggest that a redistribution of importin beta1 is unlikely to explain the glucose-stimulated nuclear uptake of PDX-1. Instead, we conclude that the uptake of PDX-1 into the nucleoplasm, as glucose concentrations increase, may be mediated by release of the factor both from sites of retention in the cytosol and from non-productive complexes with importin beta1 at the nuclear membrane.
Collapse
Affiliation(s)
- Ghislaine Guillemain
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
14
|
Da Silva Xavier G, Qian Q, Cullen PJ, Rutter GA. Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic beta-cell glucose sensing revealed by RNA silencing. Biochem J 2004; 377:149-58. [PMID: 14563207 PMCID: PMC1223855 DOI: 10.1042/bj20031260] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 10/15/2003] [Accepted: 10/17/2003] [Indexed: 01/03/2023]
Abstract
The importance of the insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF-1R) for glucose-regulated insulin secretion and gene expression in pancreatic islet beta-cells is at present unresolved. Here, we have used small interfering RNAs (siRNAs) to silence the expression of each receptor selectively in clonal MIN6 beta-cells. Reduction of IR levels by >90% completely inhibited glucose (30 mM compared with 3 mM)-induced insulin secretion, but had no effect on depolarization-stimulated secretion. IR depletion also blocked the accumulation of preproinsulin (PPI), pancreatic duodenum homoeobox-1 (PDX-1) and glucokinase (GK) mRNAs at elevated glucose concentrations, as assessed by quantitative real-time PCR analysis (TaqMan). Similarly, depletion of IGF-1R inhibited glucose-induced insulin secretion but, in contrast with the effects of IR silencing, had little impact on the regulation of gene expression by glucose. Moreover, loss of IGF-1R, but not IR, markedly inhibited glucose-stimulated increases in cytosolic and mitochondrial ATP, suggesting a role for IGF-1R in the maintenance of oxidative metabolism and in the generation of mitochondrial coupling factors. RNA silencing thus represents a useful tool for the efficient and selective inactivation of receptor tyrosine kinases in isolated beta-cells. By inhibiting glucose-stimulated insulin secretion through the inactivation of IGF-1R, this approach also demonstrates the existence of insulin-independent mechanisms whereby elevated glucose concentrations regulate PPI, PDX-1 and GK gene expression in beta-cells.
Collapse
Affiliation(s)
- Gabriela Da Silva Xavier
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
15
|
Imaging glucose-regulated insulin secretion and gene expression in single islet β-cells. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Collaco AM, Geusz ME. Monitoring immediate-early gene expression through firefly luciferase imaging of HRS/J hairless mice. BMC PHYSIOLOGY 2003; 3:8. [PMID: 12927048 PMCID: PMC194750 DOI: 10.1186/1472-6793-3-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 08/19/2003] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gene promoters fused to the firefly luciferase gene (luc) are useful for examining gene regulation in live transgenic mice and they provide unique views of functioning organs. The dynamics of gene expression in cells and tissues expressing luciferase can be observed by imaging this enzyme's bioluminescent oxidation of luciferin. Neural pathways involved in specific behaviors have been identified by localizing expression of immediate-early genes such as c-fos. A transgenic mouse line with luc controlled by the human c-fos promoter (fos::luc) has enabled gene expression imaging in brain slice cultures. To optimize imaging of immediate-early gene expression throughout intact mice, the present study examined fos::luc mice and a second transgenic mouse containing luc controlled by the human cytomegalovirus immediate-early gene 1 promoter and enhancer (CMV::luc). Because skin pigments and hair can significantly scatter light from underlying structures, the two transgenic lines were crossed with a hairless albino mouse (HRS/J) to explore which deep structures could be imaged. Furthermore, live anesthetized mice were compared with overdosed mice. RESULTS Bioluminescence imaging of anesthetized mice over several weeks corresponded with expression patterns in mice imaged rapidly after a lethal overdose. Both fos::luc and CMV::luc mice showed quantifiable bright bioluminescence in ear, nose, paws, and tail whether they were anesthetized or overdosed. CMV::luc and fos::luc neonates had bioluminescence patterns similar to those of adults, although intensity was significantly higher in neonates. CMV::luc mice crossed with HRS/J mice had high expression in bone, claws, head, pancreas, and skeletal muscle, but less in extremities than haired CMV::luc mice. Imaging of brain bioluminescence through the neonatal skull was also practical. By imaging luciferin autofluorescence it was clear that substrate distribution did not restrict bioluminescence imaging to capillaries after injection. Luciferin treatment and anesthesia during imaging did not adversely affect circadian rhythms in locomotor activity. CONCLUSIONS Imaging of gene expression patterns with luciferase can be extended from studies of live animals to rapid imaging of mice following a pentobarbital overdose before significant effects from postmortem changes occurs. Bioluminescent transgenic mice crossed with HRS/J mice are valuable for examining gene expression in deep tissues.
Collapse
Affiliation(s)
- Anne M Collaco
- Department of Biological Sciences and J. P. Scott Center for Neuroscience, Behavior and Mind, 217 Life Science Building, Bowling Green State University, Bowling Green, OH 43403-0212, USA
| | - Michael E Geusz
- Department of Biological Sciences and J. P. Scott Center for Neuroscience, Behavior and Mind, 217 Life Science Building, Bowling Green State University, Bowling Green, OH 43403-0212, USA
| |
Collapse
|
17
|
Pawelczyk T, Sakowicz M, Podgorska M, Szczepanska-Konkel M. Insulin induces expression of adenosine kinase gene in rat lymphocytes by signaling through the mitogen-activated protein kinase pathway. Exp Cell Res 2003; 286:152-63. [PMID: 12729803 DOI: 10.1016/s0014-4827(03)00090-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The activity of adenosine kinase (AK) was significantly impaired in splenocytes isolated from diabetic rats. Administration of insulin to diabetic animals restored AK activity, protein, and mRNA levels in diabetic splenocytes. Experiments performed on cultured rat lymphocytes demonstrated that insulin did not change the stability of AK mRNA. Insulin induced AK gene expression in a dose- and time-dependent manner. Maximal increases in AK mRNA (3.9-fold) and activity level (3.7-fold) were observed at the fourth and fifth hours of cell incubation with 10 nM insulin, respectively. The insulin effect on AK expression was not influenced by dibutyryl cAMP (dcAMP). On the other hand dcAMP weakly increased (1.7-fold) basal expression of AK. Exposure of rat lymphocytes to wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), or rapamycin, an inhibitor of mTOR, did not affect the ability of insulin to stimulate expression of AK. Prior treatment of the cells with 10 microM PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase (MEK) completely blocked insulin-stimulated expression of AK gene. Insulin produced a significant transient increase in the tyrosine phosphorylation of ERK1/2, and PD98059 inhibited this phosphorylation. Furthermore exposure of cells to insulin has resulted in transient phosphorylation of Elk-1 on Ser-383 and sustained elevation of c-Jun and c-Fos protein. The maximal phosphorylation of Elk-1 was observed at 15 min, and was blocked by PD98059. We concluded that insulin stimulates AK gene expression through a series of events occurring sequentially. This includes activation of the MAPK cascade and subsequent phosphorylation of Elk-1 followed by increased expression of c-fos and c-jun genes.
Collapse
Affiliation(s)
- Tadeusz Pawelczyk
- Department of Molecular Medicine, Medical University of Gdansk, ul. Debinki 7, paw. 29, 80-211 Gdansk, Poland.
| | | | | | | |
Collapse
|
18
|
Mitchell KJ, Lai FA, Rutter GA. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J Biol Chem 2003; 278:11057-64. [PMID: 12538591 DOI: 10.1074/jbc.m210257200] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated recently (Mitchell, K. J., Pinton, P., Varadi, A., Tacchetti, C., Ainscow, E. K., Pozzan, T., Rizzuto, R., and Rutter, G. A. (2001) J. Cell Biol. 155, 41-51) that ryanodine receptors (RyR) are present on insulin-containing secretory vesicles. Here we show that pancreatic islets and derived beta-cell lines express type I and II, but not type III, RyRs. Purified by subcellular fractionation and membrane immuno-isolation, dense core secretory vesicles were found to possess a similar level of type I RyR immunoreactivity as Golgi/endoplasmic reticulum (ER) membranes but substantially less RyR II than the latter. Monitored in cells expressing appropriately targeted aequorins, dantrolene, an inhibitor of RyR I channels, elevated free Ca(2+) concentrations in the secretory vesicle compartment from 40.1 +/- 6.7 to 90.4 +/- 14.8 microm (n = 4, p < 0.01), while having no effect on ER Ca(2+) concentrations. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP), a novel Ca(2+)-mobilizing agent, decreased dense core secretory vesicle but not ER free Ca(2+) concentrations in permeabilized MIN6 beta-cells, and flash photolysis of caged NAADP released Ca(2+) from a thapsigargin-insensitive Ca(2+) store in single MIN6 cells. Because dantrolene strongly inhibited glucose-stimulated insulin secretion (from 3.07 +/- 0.51-fold stimulation to no significant glucose effect; n = 3, p < 0.01), we conclude that RyR I-mediated Ca(2+)-induced Ca(2+) release from secretory vesicles, possibly potentiated by NAADP, is essential for the activation of insulin secretion.
Collapse
Affiliation(s)
- Kathryn J Mitchell
- Henry Wellcome Laboratories of Integrated Cell Signaling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
19
|
Hurd TW, Culbert AA, Webster KJ, Tavaré JM. Dual role for mitogen-activated protein kinase (Erk) in insulin-dependent regulation of Fra-1 (fos-related antigen-1) transcription and phosphorylation. Biochem J 2002; 368:573-80. [PMID: 12197835 PMCID: PMC1223008 DOI: 10.1042/bj20020579] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Revised: 08/08/2002] [Accepted: 08/28/2002] [Indexed: 02/07/2023]
Abstract
Insulin regulates the activity of the AP-1 (activator protein-1) transcriptional complex in several cell types. One component of the AP-1 complex is the transcription factor Fra-1 (fos-related antigen-1), and we have demonstrated previously that insulin stimulates the expression of Fra-1 mRNA in CHO.T cells [Griffiths, Black, Culbert, Dickens, Shaw, Gillespie and Tavaré (1998) Biochem. J. 335, 19-26]. Here we demonstrate that insulin stimulates the activity of a fra-1 promoter linked to a luciferase reporter gene, indicating that the ability of insulin to induce expression of Fra-1 mRNA is due, at least in part, to an increase in gene transcription. Furthermore, we found that insulin induces the serine phosphorylation of Fra-1 and reduces its mobility during SDS/PAGE as a result of phosphorylation. The ability of insulin to induce the accumulation of Fra-1 mRNA, stimulate the fra-1 promoter and stimulate phosphorylation of Fra-1 all require the mitogen-activated protein (MAP) kinase cascade, which leads to the activation of extracellular-signal-regulated kinase (Erk) 1/2. Consequently, our results demonstrate that the Erk cascade plays a dual role in the co-ordinated regulation of the transcription and the phosphorylation of Fra-1 by insulin.
Collapse
Affiliation(s)
- Toby W Hurd
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, U.K
| | | | | | | |
Collapse
|
20
|
Abstract
To advance our understanding of biological processes as they occur in living animals, imaging strategies have been developed and refined that reveal cellular and molecular features of biology and disease in real time. One rapid and accessible technology for in vivo analysis employs internal biological sources of light emitted from luminescent enzymes, luciferases, to label genes and cells. Combining this reporter system with the new generation of charge coupled device (CCD) cameras that detect the light transmitted through the animal's tissues has opened the door to sensitive in vivo measurements of mammalian gene expression in living animals. Here, we review the development and application of this imaging strategy, in vivo bioluminescence imaging (BLI), together with in vivo fluorescence imaging methods, which has enabled the real-time study of immune cell trafficking, of various genetic regulatory elements in transgenic mice, and of in vivo gene transfer. BLI has been combined with fluorescence methods that together offer access to in vivo measurements that were not previously available. Such studies will greatly facilitate the functional analysis of a wide range of genes for their roles in health and disease.
Collapse
Affiliation(s)
- Christopher H Contag
- Department of Pediatrics, Stanford University School of Medicine, California 94305-5208, USA.
| | | |
Collapse
|
21
|
Maturana A, Van Haasteren G, Piuz I, Castelbou C, Demaurex N, Schlegel W. Spontaneous calcium oscillations control c-fos transcription via the serum response element in neuroendocrine cells. J Biol Chem 2002; 277:39713-21. [PMID: 12121970 DOI: 10.1074/jbc.m200464200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In excitable cells the localization of Ca2+ signals plays a central role in the cellular response, especially in the control of gene transcription. To study the effect of localized Ca2+ signals on the transcriptional activation of the c-fos oncogene, we stably expressed various c-fos beta-lactamase reporter constructs in pituitary AtT20 cells. A significant, but heterogenous expression of c-fos beta-lactamase was observed in unstimulated cells, and a further increase was observed using KCl depolarization, epidermal growth factor (EGF), pituitary adenylate cyclase-activating polypeptide (PACAP), and serum. The KCl response was almost abolished by a nuclear Ca2+ clamp, indicating that a rise in nuclear Ca2+ is required. In contrast, the basal expression was not affected by the nuclear Ca2+ clamp, but it was strongly reduced by nifedipine, a specific antagonist of l-type Ca2+ channels. Spontaneous Ca2+ oscillations, blocked by nifedipine, were observed in the cytosol but did not propagate to the nucleus, suggesting that a rise in cytosolic Ca2+ is sufficient for basal c-fos expression. Inactivation of the c-fos promoter cAMP/Ca2+ response element (CRE) had no effect on basal or stimulated expression, whereas inactivation of the serum response element (SRE) had the same marked inhibitory effect as nifedipine. These experiments suggest that in AtT20 cells spontaneous Ca2+ oscillations maintain a basal c-fos transcription through the serum response element. Further induction of c-fos expression by depolarization requires a nuclear Ca2+ increase.
Collapse
Affiliation(s)
- Andres Maturana
- Fondation pour Recherches Médicales, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Culbert AA, Tavaré JM. Multiple signalling pathways mediate insulin-stimulated gene expression in 3T3-L1 adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:43-50. [PMID: 12393186 DOI: 10.1016/s0167-4781(02)00481-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In differentiated 3T3-L1 adipocytes, insulin stimulated the expression of the mRNA for the genes encoding Fra-1 (>100-fold), which is a component of the AP-1 transcriptional complex, beta-actin (6.0-fold) and hexokinase II (2.4-fold). We have examined the signalling pathways involved in these effects of insulin. Rapamycin, which binds to FRAP/mTOR and completely suppressed the activation of p70S6 kinase by insulin, almost completely blocked the induction of the hexokinase II gene, and caused an approximately 50% inhibition of the induction of the Fra-1 gene. PD98059, which completely blocks MAP kinase activation by insulin, inhibited insulin-induced Fra-1 and beta-actin gene expression by approximately 70% and 40%, respectively. These findings suggest that a FRAP/mTOR-dependent pathway is responsible for the induction of hexokinase II expression, and that MAP kinase is required, at least in part, for the stimulation of beta-actin gene expression. However, the induction of Fra-1 gene expression by insulin requires both the FRAP/mTOR and MAP kinase pathways.
Collapse
Affiliation(s)
- Ainsley A Culbert
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
23
|
Ayala JE, Streeper RS, Svitek CA, Goldman JK, Oeser JK, O'Brien RM. Accessory elements, flanking DNA sequence, and promoter context play key roles in determining the efficacy of insulin and phorbol ester signaling through the malic enzyme and collagenase-1 AP-1 motifs. J Biol Chem 2002; 277:27935-44. [PMID: 12032154 DOI: 10.1074/jbc.m203682200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Insulin stimulates malic enzyme (ME)-chloramphenicol acetyltransferase (CAT) and collagenase-1-CAT fusion gene expression in H4IIE cells through identical activator protein-1 (AP-1) motifs. In contrast, insulin and phorbol esters only stimulate collagenase-1-CAT and not ME-CAT fusion gene expression in HeLa cells. The experiments in this article were designed to explore the molecular basis for this differential cell type- and gene-specific regulation. The results highlight the influence of three variables, namely promoter context, AP-1 flanking sequence, and accessory elements that modulate insulin and phorbol ester signaling through the AP-1 motif. Thus, fusion gene transfection and proteolytic clipping gel retardation assays suggest that the AP-1 flanking sequence affects the conformation of AP-1 binding to the collagenase-1 and ME AP-1 motifs such that it selectively binds the latter in a fully activated state. However, this influence of ME AP-1 flanking sequence is dependent on promoter context. Thus, the ME AP-1 motif will mediate both an insulin and phorbol ester response in HeLa cells when introduced into either the collagenase-1 promoter or a specific heterologous promoter. But even in the context of the collagenase-1 promoter, the effects of both insulin and phorbol esters, mediated through the ME AP-1 motif are dependent on accessory factors.
Collapse
Affiliation(s)
- Julio E Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
24
|
Palmer DG, Rutter GA, Tavaré JM. Insulin-stimulated fatty acid synthase gene expression does not require increased sterol response element binding protein 1 transcription in primary adipocytes. Biochem Biophys Res Commun 2002; 291:439-43. [PMID: 11855808 DOI: 10.1006/bbrc.2002.6467] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sterol response element binding protein 1c (SREBP-1c) is a transcription factor that has been implicated in the regulation of expression of key lipogenic genes in hepatocytes, including fatty acid synthase (FAS) and glucokinase. In hepatocytes, insulin stimulates a rapid increase in transcription of SREBP-1c and the appearance of the SREBP-1c protein in the nucleus. SREBP-1 has also been proposed to play an important role in the induction of expression of lipogenic enzymes in adipose tissue in vivo in response to nutritional status. In this paper we have investigated the regulation of the SREBP-1 and FAS genes in adipocytes and find that while an overexpressed constitutively active SREBP-1 mutant is capable of substantially stimulating the FAS promoter, insulin appears to stimulate FAS gene expression in primary adipocytes in the absence of any apparent effect on SREBP-1 transcription. Taken together, our data suggest that insulin does not stimulate FAS gene expression through increasing SREBP-1c transcription in adipose cells.
Collapse
Affiliation(s)
- D Gail Palmer
- Department of Biochemistry, University Walk, Bristol, BS8 1TD, United Kingdom
| | | | | |
Collapse
|
25
|
Porcelli AM, Pinton P, Ainscow EK, Chiesa A, Rugolo M, Rutter GA, Rizzuto R. Targeting of reporter molecules to mitochondria to measure calcium, ATP, and pH. Methods Cell Biol 2002; 65:353-80. [PMID: 11381603 DOI: 10.1016/s0091-679x(01)65021-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- A M Porcelli
- Department of Biology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Greer LF, Szalay AA. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. LUMINESCENCE 2002; 17:43-74. [PMID: 11816060 DOI: 10.1002/bio.676] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Luciferases are enzymes that emit light in the presence of oxygen and a substrate (luciferin) and which have been used for real-time, low-light imaging of gene expression in cell cultures, individual cells, whole organisms, and transgenic organisms. Such luciferin-luciferase systems include, among others, the bacterial lux genes of terrestrial Photorhabdus luminescens and marine Vibrio harveyi bacteria, as well as eukaryotic luciferase luc and ruc genes from firefly species (Photinus) and the sea pansy (Renilla reniformis), respectively. In various vectors and in fusion constructs with other gene products such as green fluorescence protein (GFP; from the jellyfish Aequorea), luciferases have served as reporters in a number of promoter search and targeted gene expression experiments over the last two decades. Luciferase imaging has also been used to trace bacterial and viral infection in vivo and to visualize the proliferation of tumour cells in animal models.
Collapse
Affiliation(s)
- Lee F Greer
- Department of Biochemistry, School of Medicine and Department of Natural Sciences-Biology Section, Loma Linda University, Loma Linda, CA 92354, USA
| | | |
Collapse
|
27
|
Westermarck J, Li SP, Kallunki T, Han J, Kähäri VM. p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Mol Cell Biol 2001; 21:2373-83. [PMID: 11259586 PMCID: PMC86870 DOI: 10.1128/mcb.21.7.2373-2383.2001] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Degradation of collagenous extracellular matrix by collagenase 1 (also known as matrix metalloproteinase 1 [MMP-1]) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, chronic ulcers, and tumor invasion and metastasis. Here, we have investigated the role of distinct mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-1 gene expression. The activation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (designated ERK1,2) pathway by oncogenic Ras, constitutively active Raf-1, or phorbol ester resulted in potent stimulation of MMP-1 promoter activity and mRNA expression. In contrast, activation of stress-activated c-Jun N-terminal kinase and p38 pathways by expression of constitutively active mutants of Rac, transforming growth factor beta-activated kinase 1 (TAK1), MAPK kinase 3 (MKK3), or MKK6 or by treatment with arsenite or anisomycin did not alone markedly enhance MMP-1 promoter activity. Constitutively active MKK6 augmented Raf-1-mediated activation of the MMP-1 promoter, whereas active mutants of TAK1 and MKK3b potently inhibited the stimulatory effect of Raf-1. Activation of p38 MAPK by arsenite also potently abrogated stimulation of MMP-1 gene expression by constitutively active Ras and Raf-1 and by phorbol ester. Specific activation of p38alpha by adenovirus-delivered constitutively active MKK3b resulted in potent inhibition of the activity of ERK1,2 and its upstream activator MEK1,2. Furthermore, arsenite prevented phorbol ester-induced phosphorylation of ERK1,2 kinase-MEK1,2, and this effect was dependent on p38-mediated activation of protein phosphatase 1 (PP1) and PP2A. These results provide evidence that activation of signaling cascade MKK3-MKK3b-->p38alpha blocks the ERK1,2 pathway at the level of MEK1,2 via PP1-PP2A and inhibits the activation of MMP-1 gene expression.
Collapse
Affiliation(s)
- J Westermarck
- Turku Centre for Biotechnology, University of Turku, University of Turku, FIN-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
28
|
Robinson CM, Prime SS, Huntley S, Stone AM, Davies M, Eveson JW, Paterson IC. Overexpression of JunB in undifferentiated malignant rat oral keratinocytes enhances the malignant phenotypein vitro without altering cellular differentiation. Int J Cancer 2001. [DOI: 10.1002/1097-0215(200002)9999:9999<::aid-ijc1095>3.0.co;2-j] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Foran PG, Fletcher LM, Oatey PB, Mohammed N, Dolly JO, Tavaré JM. Protein kinase B stimulates the translocation of GLUT4 but not GLUT1 or transferrin receptors in 3T3-L1 adipocytes by a pathway involving SNAP-23, synaptobrevin-2, and/or cellubrevin. J Biol Chem 1999; 274:28087-95. [PMID: 10497159 DOI: 10.1074/jbc.274.40.28087] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An interaction of SNAP-23 and syntaxin 4 on the plasma membrane with vesicle-associated synaptobrevin-2 and/or cellubrevin, known as SNAP (soluble N-ethyl-maleimide-sensitive factor attachment protein) receptors or SNAREs, has been proposed to provide the targeting and/or fusion apparatus for insulin-stimulated translocation of the GLUT4 isoform of glucose transporter to the plasma membrane. By microinjecting 3T3-L1 adipocytes with the Clostridium botulinum toxin B or E, which proteolyzed synaptobrevin-2/cellubrevin and SNAP-23, respectively, we investigated the role of these SNAREs in GLUT4, GLUT1, and transferrin receptor trafficking. As expected, insulin stimulated the translocation of GLUT4, GLUT1, and transferrin receptors to the plasma membrane. By contrast, a constitutively active protein kinase B (PKB-DD) only stimulated a translocation of GLUT4 and not GLUT1 or the transferrin receptor. The GLUT4 response to PKB-DD was abolished by toxins B or E, whereas the insulin-evoked translocation of GLUT4 was inhibited by approximately 65%. These toxins had no significant effect on insulin-stimulated transferrin receptor appearance at the cell surface. Thus, insulin appears to induce GLUT4 translocation via two distinct routes, only one of which involves SNAP-23 and synaptobrevin-2/cellubrevin, and can be mobilized by PKB-DD. The PKB-, SNAP-23-, and synaptobrevin-2/cellubrevin-independent GLUT4 translocation pathway may involve movement through recycling endosomes, together with GLUT1 and transferrin receptors.
Collapse
Affiliation(s)
- P G Foran
- Department of Biochemistry, Imperial College, London SW7 2AY
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Reporter gene technology is widely used to monitor the cellular events associated with signal transduction and gene expression. Based upon the splicing of transcriptional control elements to a variety of reporter genes (with easily measurable phenotypes), it "reports" the effects of a cascade of signalling events on gene expression inside cells. The principal advantage of these assays is their high sensitivity, reliability, convenience, and adaptability to large-scale measurements. This review summarises the current status of reporter gene technology including its role in monitoring gene transfer and expression and its development as a biological screen. With the advances in this technology and in detection methods, it is likely that luciferase and green fluorescent protein will become increasingly popular for the non-invasive monitoring of gene expression in living tissues and cells. Such techniques will be important in defining the molecular events associated with gene transcription, which has implications for our understanding of the molecular basis of disease and will influence our approach to gene therapy and drug development.
Collapse
Affiliation(s)
- L H Naylor
- The Department of Biosciences, The University of Kent, Canterbury, UK.
| |
Collapse
|
31
|
Abstract
Studies using both transgenic mice and transfected mammary epithelial cells have established that composite response elements containing multiple binding sites for several transcription factors mediate the hormonal and developmental regulation of milk protein gene expression. Activation of signal transduction pathways by lactogenic hormones and cell-substratum interactions activate transcription factors and change chromatin structure and milk protein gene expression. The casein promoters have binding sites for signal transducers and activators of transcription 5, Yin Yang 1, CCAAT/enhancer binding protein, and the glucocorticoid receptor. The whey protein gene promoters have binding sites for nuclear factor I, as well as the glucocorticoid receptor and the signal transducers and activators of transcription 5. The functional importance of some of these factors in mammary gland development and milk protein gene expression has been elucidated by studying mice in which some of these factors have been deleted.
Collapse
Affiliation(s)
- J M Rosen
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| | | | | |
Collapse
|
32
|
Chapman SC, Ayala JE, Streeper RS, Culbert AA, Eaton EM, Svitek CA, Goldman JK, Tavar JM, O'Brien RM. Multiple promoter elements are required for the stimulatory effect of insulin on human collagenase-1 gene transcription. Selective effects on activator protein-1 expression may explain the quantitative difference in insulin and phorbol ester action. J Biol Chem 1999; 274:18625-34. [PMID: 10373474 DOI: 10.1074/jbc.274.26.18625] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several of the complications seen in patients with both type I and type II diabetes mellitus are associated with alterations in the expression of matrix metalloproteinases. To identify the cis-acting elements that mediate the stimulatory effect of insulin on collagenase-1 (matrix metalloproteinase-1) gene transcription a series of collagenase-chloramphenicol acetyltransferase (CAT) fusion genes were transiently transfected into HeLa cells. Multiple promoter elements, including an Ets and activator protein-1 (AP-1) motif, were required for the effect of insulin. The AP-1 motif appears to be a target for insulin signaling because it is sufficient to mediate an effect of insulin on the expression of a heterologous fusion gene, whereas the data suggest that the Ets motif acts to enhance the effect of insulin mediated through the AP-1 motif. Multiple promoter elements were also required for the stimulatory effect of phorbol esters on collagenase-CAT gene transcription, and the AP-1 motif was also a target for phorbol ester signaling. However, the cis-acting elements required for the effects of insulin and phorbol esters were not identical. Moreover, phorbol esters were a much more potent inducer of collagenase-CAT gene transcription than insulin, a difference that may be explained by selective effects of insulin and phorbol esters on AP-1 expression.
Collapse
Affiliation(s)
- S C Chapman
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem 1999; 274:13281-91. [PMID: 10224088 DOI: 10.1074/jbc.274.19.13281] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increases in the concentration of free ATP within the islet beta-cell may couple elevations in blood glucose to insulin release by closing ATP-sensitive K+ (KATP) channels and activating Ca2+ influx. Here, we use recombinant targeted luciferases and photon counting imaging to monitor changes in free [ATP] in subdomains of single living MIN6 and primary beta-cells. Resting [ATP] in the cytosol ([ATP]c), in the mitochondrial matrix ([ATP]m), and beneath the plasma membrane ([ATP]pm) were similar ( approximately 1 mM). Elevations in extracellular glucose concentration (3-30 mM) increased free [ATP] in each domain with distinct kinetics. Thus, sustained increases in [ATP]m and [ATP]pm were observed, but only a transient increase in [ATP]c. However, detectable increases in [ATP]c and [ATP]pm, but not [ATP]m, required extracellular Ca2+. Enhancement of glucose-induced Ca2+ influx with high [K+] had little effect on the apparent [ATP]c and [ATP]m increases but augmented the [ATP]pm increase. Underlying these changes, glucose increased the mitochondrial proton motive force, an effect mimicked by high [K+]. These data support a model in which glucose increases [ATP]m both through enhanced substrate supply and by progressive Ca2+-dependent activation of mitochondrial enzymes. This may then lead to a privileged elevation of [ATP]pm, which may be essential for the sustained closure of KATP channels. Luciferase imaging would appear to be a useful new tool for dynamic in vivo imaging of free ATP concentration.
Collapse
Affiliation(s)
- H J Kennedy
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Jukka Westermarck
- MediCity Research LaboratoryDepartment of Medical BiochemistryUniversity of Turku FIN-20520 Turku Finland
| | - Veli‐Matti Kähäri
- Department of DermatologyTurku University Central Hospital FIN-20520 Turku Finland
| |
Collapse
|
35
|
Abstract
New optical assay methods promise to accelerate the use of living cells in screens for drug discovery. Most of these methods employ either fluorescent or luminescent read-outs and allow cell-based assays for most targets, including receptors, ion channels and intracellular enzymes. Furthermore, genetically encoded probes offer the possibility of custom-engineered biosensors for intracellular biochemistry, specifically localized targets, and protein-protein interactions.
Collapse
Affiliation(s)
- J E González
- Aurora Biosciences Corp 11010 Torreyana Road San Diego CA 92121 USA
| | | |
Collapse
|
36
|
Rutter GA, Kennedy HJ, Wood CD, White MR, Tavaré JM. Real-time imaging of gene expression in single living cells. CHEMISTRY & BIOLOGY 1998; 5:R285-90. [PMID: 9831531 DOI: 10.1016/s1074-5521(98)90287-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advances in reporter gene technologies are now allowing us to image gene transcription at the single cell level, using either fluorescence or luminescence microscopy. Here, the basis of these techniques is outlined and their advantages and disadvantages in various biological systems are discussed.
Collapse
Affiliation(s)
- G A Rutter
- Department of Biochemistry School of Medical Sciences University of Bristol Bristol BS8 1TD UK
| | | | | | | | | |
Collapse
|
37
|
Griffiths MR, Black EJ, Culbert AA, Dickens M, Shaw PE, Gillespie DA, Tavaré JM. Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex. Biochem J 1998; 335 ( Pt 1):19-26. [PMID: 9742208 PMCID: PMC1219747 DOI: 10.1042/bj3350019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The activator protein-1 (AP-1) transcriptional complex is made up of members of the Fos (c-Fos, FosB, Fra1, Fra2) and Jun (c-Jun, JunB, JunD) families and is stimulated by insulin in several cell types. The mechanism by which insulin activates this complex is not well understood but it is dependent on the activation of the Erk1 and Erk2 isoforms of mitogen-activated protein kinases. In the current study we show that the AP-1 complex isolated from insulin-stimulated cells contained c-Fos, Fra1, c-Jun and JunB. The activation of the AP-1 complex by insulin was accompanied by (i) a transient increase in c-fos expression, and the transactivation of the ternary complex factors Elk1 and Sap1a, in an Erk1/Erk2-dependent fashion; (ii) a substantial increase in the expression of Fra1 protein and mRNA, which was preceded by a transient decrease in its electrophoretic mobility upon SDS/PAGE, indicative of phosphorylation; and (iii) a sustained increase in c-jun expression without increasing c-Jun phosphorylation on serines 63 and 73 or activation of the stress-activated kinase JNK/SAPK. In conclusion, insulin appears to stimulate the activity of the AP-1 complex primarily through a change in the abundance of the components of this complex, although there may be an additional role for Fra1 phosphorylation.
Collapse
Affiliation(s)
- M R Griffiths
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Rafiq I, Kennedy HJ, Rutter GA. Glucose-dependent translocation of insulin promoter factor-1 (IPF-1) between the nuclear periphery and the nucleoplasm of single MIN6 beta-cells. J Biol Chem 1998; 273:23241-7. [PMID: 9722555 DOI: 10.1074/jbc.273.36.23241] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using laser-scanning confocal microscopy, we have monitored glucose-induced changes in the subcellular localization of insulin promoter factor-1 (IPF-1) labeled with a c-myc epitope tag. This construct trans-activated the insulin promoter in single living MIN6-beta-cells as assessed by luciferase-based promoter analysis. IPF-1.c-myc expression also enhanced the response of the insulin promoter to elevations in extracellular glucose concentration. In the majority (148/235, 63%) of cells maintained at low (3 mM) extracellular glucose concentration, IPF-1.c-myc immunoreactivity was confined to the nuclear periphery. Incubation of cells at stimulatory (30 mM) glucose concentrations caused a rapid redistribution of the chimera to the nucleoplasm (775/958, 81% of cells). By contrast, the irrelevant transcription factor c-Fos, tagged with either c-myc or as a chimera with luciferase, was localized exclusively to the nucleoplasm irrespective of the glucose concentration. Furthermore, IPF-1 extended with the bulky (27 kDa) enhanced green fluorescent protein (EGFP) group was confined largely to the nucleoplasm at all glucose concentrations tested and did not support trans-activation of the insulin promoter by glucose. Movement of endogenous IPF-1 from the nuclear periphery to the nucleoplasm may therefore increase the trans-activational capacity of this factor in native beta-cells exposed to high extracellular glucose concentrations.
Collapse
Affiliation(s)
- I Rafiq
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
39
|
Dickens M, Svitek CA, Culbert AA, O'Brien RM, Tavaré JM. Central role for phosphatidylinositide 3-kinase in the repression of glucose-6-phosphatase gene transcription by insulin. J Biol Chem 1998; 273:20144-9. [PMID: 9685358 DOI: 10.1074/jbc.273.32.20144] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the gene encoding the catalytic subunit of glucose-6-phosphatase (G6Pase) is stimulated by glucocorticoids and strongly repressed by insulin. We have explored the signaling pathways by which insulin mediates the repression of G6Pase transcription in H4IIE cells. Wortmannin, a phosphatidylinositide 3-kinase (PtdIns 3-kinase) inhibitor blocked the repression of G6Pase mRNA expression by insulin. However, both rapamycin, which inhibits p70S6 kinase activation, and PD98059, an inhibitor of mitogen-activated protein kinase activation, were without effect. Insulin inhibited dexamethasone-induced luciferase expression from a transiently transfected plasmid that places the luciferase gene under the control of the G6Pase promoter. This effect of insulin was mimicked by the overexpression of a constitutively active PtdIns 3-kinase but not by a constitutively active protein kinase B. Taken together, these data demonstrate that PtdIns 3-kinase activation is both necessary and at least partly sufficient for the repression of G6Pase expression by insulin, but neither mitogen-activated protein kinase nor p70S6 kinase are involved. In addition, activation of protein kinase B alone is not sufficient for repression of the G6Pase gene. These results imply the existence of a novel signaling pathway downstream of PtdIns 3 kinase that is involved in the regulation of G6Pase expression by insulin.
Collapse
Affiliation(s)
- M Dickens
- Department of Biochemistry, School of Medical Sciences, University of Bristol, BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Yeagley D, Agati JM, Quinn PG. A tripartite array of transcription factor binding sites mediates cAMP induction of phosphoenolpyruvate carboxykinase gene transcription and its inhibition by insulin. J Biol Chem 1998; 273:18743-50. [PMID: 9668047 DOI: 10.1074/jbc.273.30.18743] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the phosphoenolpyruvate carboxykinase (PEPCK) gene is induced upon activation of protein kinase A by cAMP and phosphorylation of Ser-133 in the transcription factor, cAMP-response element binding protein (CREB), and this induction is inhibited by insulin. We show here that insulin does not act by dephosphorylating CREB or by affecting heterologous kinases that phosphorylate Ser-129 or Ser-142 in CREB. In addition, insulin inhibition of minimal PEPCK promoter activity induced by CREB-GAL4 + protein kinase A was equivalent to inhibition of basal transcription, and thus cAMP-independent. On the other hand, nearly complete insulin inhibition is observed with the full PEPCK promoter (-600/+69), indicating that other factors are involved. The additional promoter elements required for induction by protein kinase A lie within -271 nucleotides of the start site and correspond to putative binding sites for activator protein-1 and CAAT/enhancer-binding protein (C/EBP), first identified by Roesler et al. (Roesler, W. J., McFie, P. J., and Puttick, D. M., (1993) J. Biol. Chem. 268, 3791-3796). This tripartite array of binding sites for CREB, C/EBP, and activator protein-1 (AP-1) factors forms a cAMP response unit that, together with the minimal promoter, can mediate both induction by cAMP and inhibition by insulin. Thus, for the PEPCK gene with a single CREB site, the CREB.CBP.RNA polymerase II complex cannot mediate either induction by cAMP or inhibition by insulin.
Collapse
Affiliation(s)
- D Yeagley
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
41
|
Agati JM, Yeagley D, Quinn PG. Assessment of the roles of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase B, and protein kinase C in insulin inhibition of cAMP-induced phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem 1998; 273:18751-9. [PMID: 9668048 DOI: 10.1074/jbc.273.30.18751] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the phosphoenolpyruvate carboxykinase (PEPCK) gene is induced by glucagon, acting through cAMP and protein kinase A, and this induction is inhibited by insulin. Conflicting reports have suggested that insulin inhibits induction by cAMP by activating the Ras/mitogen-activated protein kinase (MAPK) pathway or by activating the phosphatidylinositol 3-kinase (PI3-kinase), but not MAPK, pathway. Insulin activated PI3-kinase phosphorylates lipids that activate protein kinase B (PKB) and Ca2+/diacylglycerol-insensitive forms of protein kinase C (PKC). We have assessed the roles of these pathways in insulin inhibition of cAMP/PKA-induced transcription of PEPCK by using dominant negative and dominant active forms of regulatory enzymes in the Ras/MAPK and PKB pathways and chemical inhibitors of PKC isoforms. Three independently acting inhibitory enzymes of the Ras/MAPK pathway, blocking SOS, Ras, and MAPK, had no effect upon insulin inhibition. However, dominant active Ras prevented induction of PEPCK and also stimulated transcription mediated by Elk, a MAPK target. Insulin did not stimulate Elk-mediated transcription, indicating that insulin did not functionally activate the Ras/MAPK pathway. Inhibitors of PI3-kinase, LY294002 and wortmannin, abolished insulin inhibition of PEPCK gene transcription. However, inhibitors of PKC and mutated forms of PKB, both of which are known downstream targets of PI3-kinase, had no effect upon insulin inhibition. Dominant negative forms of PKB did not interfere with insulin inhibition and a dominant active form of PKB did not prevent induction by PKA. Phorbol ester-mediated inhibition of PEPCK transcription was blocked by bisindole maleimide and by staurosporine, but insulin-mediated inhibition was unaffected. Thus, insulin inhibition of PKA-induced PEPCK expression does not require MAPK activation but does require activation of PI3-kinase, although this signal is not transmitted through the PKB or PKC pathways.
Collapse
Affiliation(s)
- J M Agati
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
42
|
Castaño JP, Faught WJ, Frawley LS. Multiple measurements of gene expression in single, living cells enable molecular analysis of endocrine cell heterogeneity. Ann N Y Acad Sci 1998; 839:336-40. [PMID: 9629171 DOI: 10.1111/j.1749-6632.1998.tb10787.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J P Castaño
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|
43
|
Pouli AE, Kennedy HJ, Schofield JG, Rutter GA. Insulin targeting to the regulated secretory pathway after fusion with green fluorescent protein and firefly luciferase. Biochem J 1998; 331 ( Pt 2):669-75. [PMID: 9531511 PMCID: PMC1219402 DOI: 10.1042/bj3310669] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have prepared recombinant cDNAs encoding chimaeras between human preproinsulin (sp.B.C.A., for B-, Connecting- and A-peptides) and a thermostable mutant of green fluorescent protein (GFPS65T,V163A, GFP*). The subcellular localization of the expressed chimaeras was monitored in living insulin-secreting INS-1 beta-cells by laser scanning confocal microscopy. When GFP* was fused at the immediate N-terminus of the B-chain (sp.[GFP*].B.C.A.myc) two distinct patterns of fluorescence were apparent. In 1530/1740 cells examined, fluorescence was confined to a reticular, exclusively extranuclear structure, and closely co-localized with the endoplasmic reticulum marker, calreticulin. However, 210/1740 (12.1%) of cells displayed punctate fluorescence, which partially co-localized with the trans-Golgi network marker, TGN 38, and with the dense core secretory granule marker, phogrin. Since secretion of GFP* fluorescence into the medium could not readily be measured, we prepared a chimaera in which firefly luciferase was fused at the C-terminus of proinsulin (sp.B.C.A.myc.[Luc]). This chimaera displayed a distribution closely similar to that of sp.[GFP*].B.C.A. myc, but with a lower proportion (15/310, 4.8%) of the cells showing clear punctate distribution. At substimulatory glucose concentrations (3 mM) secretion of sp.B.C.A.myc.[Luc] could not be detected (rate of release into the medium identical with that of the cytosolic Renilla reniformis luciferase), indicating that the chimaera did not enter the constitutive secretory pathway. However, elevated (30 mM) glucose stimulated the release of the sp.B.C.A.myc. [Luc] luciferase chimaera, without a detectable effect on R. reniformis luciferase release. These data suggest that fusion of insulin, and the much larger photoproteins GFP* and luciferase, leads predominantly to misfolding and retention in the endoplasmic reticulum. However, the properly folded chimaeras are apparently still correctly targeted to the regulated, rather than the constitutive, secretory pathway. These chimaeras should therefore be valuable tools to monitor the exocytosis of insulin in real time.
Collapse
Affiliation(s)
- A E Pouli
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, U.K
| | | | | | | |
Collapse
|
44
|
Lee-Kwon W, Park D, Bernier M. Involvement of the Ras/extracellular signal-regulated kinase signalling pathway in the regulation of ERCC-1 mRNA levels by insulin. Biochem J 1998; 331 ( Pt 2):591-7. [PMID: 9531502 PMCID: PMC1219393 DOI: 10.1042/bj3310591] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Expression of DNA repair enzymes, which includes ERCC-1, might be under the control of hormonal and growth factor stimulation. In the present study it was observed that insulin increased ERCC-1 mRNA levels both in Chinese hamster ovary cells overexpressing human insulin receptors (HIRc cells) and in fully differentiated 3T3-L1 adipocytes. To investigate the mechanisms underlying the increase in ERCC-1 gene expression in HIRc cells, we used a variety of pharmacological tools known to inhibit distinct signalling pathways. None of these inhibitors affected the amount of ERCC-1 mRNA in unstimulated cells. The pretreatment of cells with two chemically unrelated phosphatidylinositol 3'-kinase inhibitors, wortmannin and LY294002, failed to block the doubling of ERCC-1 mRNA content by insulin. Similarly, inhibition of pp70 S6 kinase by rapamycin had no apparent effects on this insulin response. In contrast, altering the p21(ras)-dependent pathway with either manumycin, an inhibitor of Ras farnesylation, or PD98059, an inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase, suppressed the induction of ERCC-1 mRNA by insulin (P<0.001). Furthermore inhibition of RNA and protein synthesis negatively regulated the expression of this insulin-regulated gene (P<0.005). These results suggest that insulin enhances ERCC-1 mRNA levels by the activation of the Ras-ERK-dependent pathway without the involvement of the phosphatidylinositol 3'-kinase/pp70 S6 kinase.
Collapse
Affiliation(s)
- W Lee-Kwon
- Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
45
|
Desbois-Mouthon C, Blivet-Van Eggelpoel MJ, Auclair M, Cherqui G, Capeau J, Caron M. Insulin differentially regulates SAPKs/JNKs and ERKs in CHO cells overexpressing human insulin receptors. Biochem Biophys Res Commun 1998; 243:765-70. [PMID: 9501008 DOI: 10.1006/bbrc.1998.8181] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we compared the ability of insulin to regulate SAPKs/JNKs and ERKs in CHO cells overexpressing human insulin receptors. We show that acute insulin treatment induced a time-dependent increase both in SAPK/JNK and ERK activity but with distinct kinetics. PI-3-kinase inhibition by wortmannin completely blocked insulin activation of SAPKs/JNKs, whereas it partially decreased ERK activation. Prolonged exposure to insulin caused a marked inhibition of SAPK/JNK activity while it induced a sustained activation of ERKs. Insulin inhibition of SAPKs/JNKs was partly due to decreased tyrosine phosphorylation of JNK2. These data indicate that insulin differentially regulates SAPKs/JNKs and ERKs. Moreover, they provide the first evidence that insulin exerts opposite effects on SAPK/JNK activity according to the time of cell treatment.
Collapse
|
46
|
Geusz ME, Fletcher C, Block GD, Straume M, Copeland NG, Jenkins NA, Kay SA, Day RN. Long-term monitoring of circadian rhythms in c-fos gene expression from suprachiasmatic nucleus cultures. Curr Biol 1997; 7:758-66. [PMID: 9368758 DOI: 10.1016/s0960-9822(06)00334-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The AP-1 family of transcription factors has been implicated in the control of the expression of many genes in response to environmental signals. Previous studies have provided temporal profiles for c-fos expression by taking measurements from many animals at several points in time, but these studies provide limited information about dynamic changes in expression. Here, we have devised a method of continuously measuring c-fos expression. RESULTS A transgenic mouse line expressing the human c-fos promoter linked to the firefly luciferase reporter gene (fos/luc) was generated to continuously monitor c-fos gene expression. A second transgenic mouse line expressing luciferase under the control of the cytomegalovirus promoter (CMV/luc) served as a control. Luminescence originating from identifiable brain regions was imaged from fos/luc brain slice cultures. Expression of the fos/luc transgene accurately reflected transcriptional responses of the endogenous c-fos gene. Dynamic changes in fos/luc expression in suprachiasmatic nuclei (SCN) explant cultures were monitored continuously, and luminescence showed almost 24 hour rhythms lasting up to five circadian cycles. In contrast, bioluminescence monitored from CMV/luc SCN explant cultures was not rhythmic. CONCLUSION The fos/luc transgenic mouse will be useful for long-term, non-invasive monitoring of c-fos transcriptional responses to the changing cellular environment. Circadian rhythms in c-fos expression can be monitored non-invasively in real time from the SCN, clearly demonstrating that c-fos transcription is regulated by the circadian clock.
Collapse
Affiliation(s)
- M E Geusz
- NSF Center for Biological Timing, University of Virginia, Charlottesville 22903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The use of reporters such as green fluorescent protein (GFP) and firefly luciferase permit highly sensitive and nondestructive monitoring of gene transfer and expression. Modifications in GFP which increase intensity and thermostability, as well as alter its spectral qualities, have facilitated the use of GFP in a variety of gene transfer methods. Improvements in imaging technologies and their increased application in biological research have allowed the expanded use of luciferase-based reporters in gene transformation, particularly in genetic screens and in monitoring temporal changes in gene expression.
Collapse
Affiliation(s)
- S Welsh
- Scripps Research Institute, Department of Cell Biology, La Jolla, CA 92037, USA.
| | | |
Collapse
|
48
|
Kennedy HJ, Viollet B, Rafiq I, Kahn A, Rutter GA. Upstream stimulatory factor-2 (USF2) activity is required for glucose stimulation of L-pyruvate kinase promoter activity in single living islet beta-cells. J Biol Chem 1997; 272:20636-40. [PMID: 9252379 DOI: 10.1074/jbc.272.33.20636] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Elevated glucose concentrations stimulate L-pyruvate kinase (L-PK) gene transcription in liver and islet beta-cells. A glucose response element termed the L4 box (two noncanonical E-boxes located -165 and -154 base pairs upstream of the transcriptional start point) has previously been defined within the proximal promoter region of the gene. However, the identity of the transacting factor(s) which binds to this site remains unclear. We have used photon counting digital imaging of firefly luciferase activity to monitor promoter activity continuously in single living islet beta and derived INS-1 cells, and to analyze the molecular basis of the regulation by glucose. L-PK promoter activity, normalized to cytomegalovirus promoter activity using the distinct Renilla reniformis luciferase, was >/=6-fold higher in cells cultured at 16 mM glucose or above compared with cells cultured at 3 mM glucose. Microinjection of antibodies against the ubiquitous transcription factor USF2 inhibited L-PK promoter activity in beta- and INS-1 cells incubated at 30 mM glucose by 71-87%. Anti-USF2 antibodies had a much smaller effect on promoter activity in INS-1 cells cultured at 3 mM glucose, and on the activity of a modified promoter construct lacking an L4 box. These data support the view that glucose enhances L-PK gene transcription in beta-cells by modifying the transactivational capacity of USF2 bound to the upstream L4 box.
Collapse
Affiliation(s)
- H J Kennedy
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Joyeux A, Balaguer P, Germain P, Boussioux AM, Pons M, Nicolas JC. Engineered cell lines as a tool for monitoring biological activity of hormone analogs. Anal Biochem 1997; 249:119-30. [PMID: 9212863 DOI: 10.1006/abio.1997.2147] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A Joyeux
- INSERM U439, Montpellier, France
| | | | | | | | | | | |
Collapse
|
50
|
Lukas J, Herzinger T, Hansen K, Moroni MC, Resnitzky D, Helin K, Reed SI, Bartek J. Cyclin E-induced S phase without activation of the pRb/E2F pathway. Genes Dev 1997; 11:1479-92. [PMID: 9192874 DOI: 10.1101/gad.11.11.1479] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In cells of higher eukaryotes, cyclin D-dependent kinases Cdk4 and Cdk6 and, possibly, cyclin E-dependent Cdk2 positively regulate the G1- to S-phase transition, by phosphorylating the retinoblastoma protein (pRb), thereby releasing E2F transcription factors that control S-phase genes. Here we performed microinjection and transfection experiments using rat R12 fibroblasts, their derivatives conditionally overexpressing cyclins D1 or E, and human U-2-OS cells, to explore the action of G1 cyclins and the relationship of E2F and cyclin E in S-phase induction. We demonstrate that ectopic expression of cyclin E, but not cyclin D1, can override G1 arrest imposed by either the p16INK4a Cdk inhibitor specific for Cdk4 and Cdk6 or a novel phosphorylation-deficient mutant pRb. Several complementary approaches to assess E2F activation, including quantitative reporter assays in live cells, showed that the cyclin E-induced S phase and completion of the cell division cycle can occur in the absence of E2F-mediated transactivation. Together with the ability of cyclin E to overcome a G1 block induced by expression of dominant-negative mutant DP-1, a heterodimeric partner of E2Fs, these results provide evidence for a cyclin E-controlled S phase-promoting event in somatic cells downstream of or parallel to phosphorylation of pRb and independent of E2F activation. They furthermore indicate that a lack of E2F-mediated transactivation can be compensated by hyperactivation of this cyclin E-controlled event.
Collapse
Affiliation(s)
- J Lukas
- Danish Cancer Society, Division of Cancer Biology, Copenhagen
| | | | | | | | | | | | | | | |
Collapse
|