1
|
Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. Int J Mol Sci 2022; 23:ijms232415492. [PMID: 36555133 PMCID: PMC9779866 DOI: 10.3390/ijms232415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases are the most common dental diseases. The traditional treatment is root canal therapy, which achieves satisfactory therapeutic outcomes-especially for mature permanent teeth. Apexification, pulpotomy, and pulp revascularization are common techniques used for immature permanent teeth to accelerate the development of the root. However, there are obstacles to achieving functional pulp regeneration. Recently, two methods have been proposed based on tissue engineering: stem cell transplantation, and cell homing. One of the goals of functional pulp regeneration is to achieve innervation. Nerves play a vital role in dentin formation, nutrition, sensation, and defense in the pulp. Successful neural regeneration faces tough challenges in both animal studies and clinical trials. Investigation of the regeneration and repair of the nerves in the pulp has become a serious undertaking. In this review, we summarize the current understanding of the key stem cells, signaling molecules, and biomaterials that could promote neural regeneration as part of pulp regeneration. We also discuss the challenges in preclinical or clinical neural regeneration applications to guide deep research in the future.
Collapse
|
2
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
3
|
Garcia-Pelagio KP, Bloch RJ. Biomechanical Properties of the Sarcolemma and Costameres of Skeletal Muscle Lacking Desmin. Front Physiol 2021; 12:706806. [PMID: 34489727 PMCID: PMC8416993 DOI: 10.3389/fphys.2021.706806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 01/23/2023] Open
Abstract
Intermediate filaments (IFs), composed primarily by desmin and keratins, link the myofibrils to each other, to intracellular organelles, and to the sarcolemma. There they may play an important role in transfer of contractile force from the Z-disks and M-lines of neighboring myofibrils to costameres at the membrane, across the membrane to the extracellular matrix, and ultimately to the tendon (“lateral force transmission”). We measured the elasticity of the sarcolemma and the connections it makes at costameres with the underlying contractile apparatus of individual fast twitch muscle fibers of desmin-null mice. By positioning a suction pipet to the surface of the sarcolemma and applying increasing pressure, we determined the pressure at which the sarcolemma separated from nearby sarcomeres, Pseparation, and the pressure at which the isolated sarcolemma burst, Pbursting. We also examined the time required for the intact sarcolemma-costamere-sarcomere complex to reach equilibrium at lower pressures. All measurements showed the desmin-null fibers to have slower equilibrium times and lower Pseparation and Pbursting than controls, suggesting that the sarcolemma and its costameric links to nearby contractile structures were weaker in the absence of desmin. Comparisons to earlier values determined for muscles lacking dystrophin or synemin suggest that the desmin-null phenotype is more stable than the former and less stable than the latter. Our results are consistent with the moderate myopathy seen in desmin-null muscles and support the idea that desmin contributes significantly to sarcolemmal stability and lateral force transmission.
Collapse
Affiliation(s)
- Karla P Garcia-Pelagio
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone 2021; 149:115971. [PMID: 33892173 PMCID: PMC8217329 DOI: 10.1016/j.bone.2021.115971] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
Bone is a mechano-responsive tissue that adapts to changes in its mechanical environment. Increases in strain lead to increased bone mass acquisition, whereas decreases in strain lead to a loss of bone mass. Given that mechanical stress is a regulator of bone mass and quality, it is important to understand how bone cells sense and transduce these mechanical cues into biological changes to identify druggable targets that can be exploited to restore bone cell mechano-sensitivity or to mimic mechanical load. Many studies have identified individual cytoskeletal components - microtubules, actin, and intermediate filaments - as mechano-sensors in bone. However, given the high interconnectedness and interaction between individual cytoskeletal components, and that they can assemble into multiple discreet cellular structures, it is likely that the cytoskeleton as a whole, rather than one specific component, is necessary for proper bone cell mechano-transduction. This review will examine the role of each cytoskeletal element in bone cell mechano-transduction and will present a unified view of how these elements interact and work together to create a mechano-sensor that is necessary to control bone formation following mechanical stress.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA..
| |
Collapse
|
5
|
Ayala-Ham A, López-Gutierrez J, Bermúdez M, Aguilar-Medina M, Sarmiento-Sánchez JI, López-Camarillo C, Sanchez-Schmitz G, Ramos-Payan R. Hydrogel-Based Scaffolds in Oral Tissue Engineering. FRONTIERS IN MATERIALS 2021; 8. [DOI: 10.3389/fmats.2021.708945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Regenerative therapy in dentistry has gained interest given the complexity to restore dental and periodontal tissues with inert materials. The best approach for regeneration requires three elements for restoring functions of affected or diseased organ tissues: cells, bioactive molecules, and scaffolds. This triad is capable of modulating the processes to replace lost or damaged tissues and restore function, as it has an impact on diverse cellular processes, influencing cell behavior positively to induce the complete restoration of function and morphology of such complex tissues. Hydrogels (HG) have shown advantages as scaffolds as they are soft and elastic three-dimensional (3D) networks formed from hydrophilic homopolymers, copolymers, or macromers. Besides simple or hybrid, HG show chemical, mechanical and biological activities such as the incorporation of cells in their structures, the retention of high-water content which enhances the transportation of cell nutrients and waste, and elastic and flexible characteristics that emulate the native extracellular matrix (ECM). HG can induce changes in cellular processes such as chemotaxis, proliferation, angiogenesis, biomineralization, and expression of specific tissue biomarkers, enhancing the regeneration process. Besides some of them have anti-inflammatory and anti-bacterial effects. This review aims to show an extensive overview of the most used hydrogels in tissue engineering, emphasizing those that are studied for the regeneration of oral tissues, their biological effects, and their clinical implications. Even though most of the HG are still under investigation, some of them have been studied in vitro and in vivo with outstanding results that may lead to preclinical studies. Besides there are HG that have shown their efficacy in patients such as hyaluronan HG that enhances the healing of gingival tissue.
Collapse
|
6
|
Lai HY, Setyawati MI, Ferhan AR, Divakarla SK, Chua HM, Cho NJ, Chrzanowski W, Ng KW. Self-Assembly of Solubilized Human Hair Keratins. ACS Biomater Sci Eng 2021; 7:83-89. [PMID: 33356132 DOI: 10.1021/acsbiomaterials.0c01507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human hair keratins have proven to be a viable biomaterial for diverse regenerative applications. However, the most significant characteristic of this material, the ability to self-assemble into nanoscale intermediate filaments, has not been exploited. Herein, we successfully demonstrated the induction of hair-extracted keratin self-assembly in vitro to form dense, homogeneous, and continuous nanofibrous networks. These networks remain hydrolytically stable in vitro for up to 5 days in complete cell culture media and are compatible with primary human dermal fibroblasts and keratinocytes. These results enhance the versatility of human hair keratins for applications where structured assembly is of benefit.
Collapse
Affiliation(s)
- Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.,Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shiva Kamini Divakarla
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.,Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate Program, Nanyang Technological University, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore 138648, Singapore.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
Wang Y, Wang Y, Li L, Zhang Y, Ren X. Preparation of antibacterial biocompatible polycaprolactone/keratin nanofibrous mats by electrospinning. J Appl Polym Sci 2020. [DOI: 10.1002/app.49862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yang Wang
- Key Laboratory of Eco‐textiles of Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi Jiangsu China
| | - Yingfeng Wang
- Key Laboratory of Eco‐textiles of Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi Jiangsu China
| | - Lin Li
- Key Laboratory of Eco‐textiles of Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi Jiangsu China
| | - Yan Zhang
- Key Laboratory of Eco‐textiles of Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi Jiangsu China
| | - Xuehong Ren
- Key Laboratory of Eco‐textiles of Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi Jiangsu China
| |
Collapse
|
9
|
Donato RK, Mija A. Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers (Basel) 2019; 12:E32. [PMID: 31878054 PMCID: PMC7023547 DOI: 10.3390/polym12010032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Among the biopolymers from animal sources, keratin is one the most abundant, with a major contribution from side stream products from cattle, ovine and poultry industry, offering many opportunities to produce cost-effective and sustainable advanced materials. Although many reviews have discussed the application of keratin in polymer-based biomaterials, little attention has been paid to its potential in association with other polymer matrices. Thus, herein, we present an extensive literature review summarizing keratin's compatibility with other synthetic, biosynthetic and natural polymers, and its effect on the materials' final properties in a myriad of applications. First, we revise the historical context of keratin use, describe its structure, chemical toolset and methods of extraction, overview and differentiate keratins obtained from different sources, highlight the main areas where keratin associations have been applied, and describe the possibilities offered by its chemical toolset. Finally, we contextualize keratin's potential for addressing current issues in materials sciences, focusing on the effect of keratin when associated to other polymers' matrices from biomedical to engineering applications, and beyond.
Collapse
Affiliation(s)
- Ricardo K. Donato
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| | - Alice Mija
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| |
Collapse
|
10
|
Aufderhorst-Roberts A, Koenderink GH. Stiffening and inelastic fluidization in vimentin intermediate filament networks. SOFT MATTER 2019; 15:7127-7136. [PMID: 31334536 DOI: 10.1039/c9sm00590k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intermediate filaments are cytoskeletal proteins that are key regulators of cell mechanics, a role which is intrinsically tied to their hierarchical structure and their unique ability to accommodate large axial strains. However, how the single-filament response to applied strains translates to networks remains unclear, particularly with regards to the crosslinking role played by the filaments' disordered "tail" domains. Here we test the role of these noncovalent crosslinks in the nonlinear rheology of reconstituted networks of the intermediate filament protein vimentin, probing their stress- and rate-dependent mechanics. Similarly to previous studies we observe elastic stress-stiffening but unlike previous work we identify a characteristic yield stress σ*, above which the networks exhibit rate-dependent softening of the network, referred to as inelastic fluidization. By investigating networks formed from tail-truncated vimentin, in which noncovalent crosslinking is suppressed, and glutaraldehyde-treated vimentin, in which crosslinking is made permanent, we show that rate-dependent inelastic fluidization is a direct consequence of vimentin's transient crosslinking. Surprisingly, although the tail-tail crosslinks are individually weak, the effective timescale for stress relaxation of the network exceeds 1000 s at σ*. Vimentin networks can therefore maintain their integrity over a large range of strains (up to ∼1000%) and loading rates (10-3 to 10-1 s-1). Our results provide insight into how the hierarchical structure of vimentin networks contributes to the cell's ability to be deformable yet strong.
Collapse
|
11
|
Lalor L, Titeux M, Palisson F, Fuentes I, Yubero MJ, Tasanen K, Huilaja L, Has C, Tadini G, Haggstrom AN, Hovnanian A, Lucky AW. Epidermolysis bullosa simplex-generalized severe type due to keratin 5 p.Glu477Lys mutation: Genotype-phenotype correlation and in silico modeling analysis. Pediatr Dermatol 2019; 36:132-138. [PMID: 30515866 DOI: 10.1111/pde.13722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/OBJECTIVES Epidermolysis bullosa is a group of diseases caused by mutations in skin structural proteins. Availability of genetic sequencing makes identification of causative mutations easier, and genotype-phenotype description and correlation are important. We describe six patients with a keratin 5 mutation resulting in a glutamic acid to lysine substitution at position 477 (p.Glu477Lys) who have a distinctive, severe and sometimes fatal phenotype. We also perform in silico modeling to show protein structural changes resulting in instability. METHODS In this case series, we collected clinical data from six patients with this mutation identified from their national or local epidermolysis bullosa databases. We performed in silico modeling of the keratin 5-keratin 14 coil 2B complex using CCBuilder and rendered with Pymol (Schrodinger, LLC, New York, NY). RESULTS Features include aplasia cutis congenita, generalized blistering, palmoplantar keratoderma, onychodystrophy, airway and developmental abnormalities, and a distinctive reticulated skin pattern. Our in silico model of the keratin 5 p.Glu477Lys mutation predicts conformational change and modification of the surface charge of the keratin heterodimer, severely impairing filament stability. CONCLUSIONS Early recognition of the features of this genotype will improve care. In silico analysis of mutated keratin structures provides useful insights into structural instability.
Collapse
Affiliation(s)
- Leah Lalor
- Division of Pediatric Dermatology, MCW Department of Dermatology, Milwaukee, Wisconsin
| | - Matthias Titeux
- Laboratory of Genetic Skin Diseases, Inserm UMR1163, Imagine Institute, Paris, France.,University Paris Descartes - Sorbonne Paris Cite, Paris, France
| | - Francis Palisson
- Fundacion DEBRA Chile, Santiago, Chile.,Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Ignacia Fuentes
- Fundacion DEBRA Chile, Santiago, Chile.,Centro de Genetica y Genomica, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - María J Yubero
- Fundacion DEBRA Chile, Santiago, Chile.,Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Kaisa Tasanen
- Department of Dermatology, Pedego Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Laura Huilaja
- Department of Dermatology, Pedego Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Gianluca Tadini
- Pediatric Dermatology, Fondazione IRCC Ca'Granda - Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Anita N Haggstrom
- Department of Dermatology and Pediatrics, Indiana University, Indianapolis, Indiana
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Inserm UMR1163, Imagine Institute, Paris, France.,University Paris Descartes - Sorbonne Paris Cite, Paris, France
| | - Anne W Lucky
- Epidermolysis Bullosa Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
12
|
Wang S, Ji D, Yang Q, Li M, Ma Z, Zhang S, Li H. NEFLb impairs early nervous system development via regulation of neuron apoptosis in zebrafish. J Cell Physiol 2018; 234:11208-11218. [PMID: 30569449 DOI: 10.1002/jcp.27771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Neurofilament light chain (NEFL), a subunit of neurofilament, has been shown to play an important role in pathogenic neurodegenerative disease and in radial axonal growth. However, information remains largely lacking regarding the function of NEFL in early development to date. In this study, we demonstrated the presence of two nefl genes, nefla and neflb, in zebrafish, generated by fish-specific third round genome duplication. These duplicated nefl genes were predominantly expressed in the nervous system with an overlapping and distinct expression pattern. Both gene knockdown and rescue experiments show that it was neflb rather than nefla that played an indispensable role in nervous system development. It was also found that neflb knockdown resulted in striking apoptosis of the neurons in the brain and spinal cord, leading to morphological defects such as brain structure disorder and trunk bending. Thus, we report a previously uncharacterized role of NEFL that NEFLb impairs the early development of zebrafish nervous system via regulation of the neuron apoptosis in the brain and spinal cord.
Collapse
Affiliation(s)
- Su Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao, China
| | - Dongrui Ji
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao, China
| | - Qingyun Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao, China
| | - Mingyue Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao, China
| | - Zengyu Ma
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao, China
| | - Hongyan Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Jiu Y. Vimentin intermediate filaments function as a physical barrier during intracellular trafficking of caveolin-1. Biochem Biophys Res Commun 2018; 507:161-167. [PMID: 30415776 DOI: 10.1016/j.bbrc.2018.10.199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 01/12/2023]
Abstract
Both the cytoskeletal intermediate filaments (IFs) and cytoplasmic caveolae contribute to active processes such as cell migration, morphogenesis and vesicular trafficking, but the interplay between these two systems has remained elusive. Here, we find that vimentin and nestin IFs interact with caveolae central component caveolin-1 (CAV-1) and importantly, restrain the intracellular trafficking of CAV-1 positive vesicles by serving as a physical barrier. Consequently, CAV-1 vesicles show less density and mobility in vimentin IFs enriched region, which is a substrate stiffness independent process. Moreover, depletion of vimentin IFs releases the slow movement proportion of CAV-1 positive vesicles and thus increases their cytoplasmic dynamics, whereas the expression of caveolae-associated protein CAV-1, CAV-2 and cavin-1 were unaffected. Collectively, these results reveal a negative role of IFs in regulating the trafficking of intracellular CAV-1 vesicles in live cells.
Collapse
Affiliation(s)
- Yaming Jiu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
15
|
Hong SH, Misek DE, Wang H, Puravs E, Hinderer R, Giordano TJ, Greenson JK, Brenner DE, Simeone DM, Logsdon CD, Hanash SM. Identification of a Specific Vimentin isoform that Induces an Antibody Response in Pancreatic Cancer. Biomark Insights 2017. [DOI: 10.1177/117727190600100006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer has a poor prognosis, in part due to lack of early detection. The identification of circulating tumor antigens or their related autoantibodies provides a means for early cancer diagnosis. We have used a proteomic approach to identify proteins that commonly induce a humoral response in pancreatic cancer. Proteins from a pancreatic adenocarcinoma cell line (Panc-1) were subjected to two-dimensional PAGE, followed by Western blot analysis in which individual sera were tested for autoantibodies. Sera from 36 newly diagnosed patients with pancreatic cancer, 18 patients with chronic pancreatitis and 15 healthy subjects were analyzed. Autoantibodies were detected against a protein identified by mass spectrometry as vimentin, in sera from 16/36 patients with pancreatic cancer (44.4%). Only one of 18 chronic pancreatitis patients and none of the healthy controls exhibited reactivity against this vimentin isoform. Interestingly, none of several other isoforms of vimentin detectable in 2-D gels exhibited reactivity with patient sera. Vimentin protein expression levels were investigated by comparing the integrated intensity of spots visualized in 2-D PAGE gels of various cancers. Pancreatic tumor tissues showed greater than a 3-fold higher expression of total vimentin protein than did the lung, colon, and ovarian tumors that were analyzed. The specific antigenic isoform was found at 5–10 fold higher levels. The detection of autoantibodies to this specific isoform of vimentin may have utility for the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Su-Hyung Hong
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - David E. Misek
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - Hong Wang
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - Eric Puravs
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - Robert Hinderer
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - Thomas J. Giordano
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - Joel K. Greenson
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - Dean E. Brenner
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - Diane M. Simeone
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - Craig D. Logsdon
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| | - Samir M. Hanash
- Departments of Pediatrics (SHH, DEM, HW, EP, RH, SMH), Pathology (TJG and JKG), Physiology (CDL), Surgery (DMS) and Internal Medicine (DEB), University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109 and the Department of Dental Microbiology (SHH), School of Dentistry, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu, 700-422, South Korea
| |
Collapse
|
16
|
Sahoo DK, Thatoi HN, Mitra B, Mondal KC, Das Mohapatra PK. Advances in Microbial Keratinase and Its Potential Applications. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Moorer MC, Buo AM, Garcia-Pelagio KP, Stains JP, Bloch RJ. Deficiency of the intermediate filament synemin reduces bone mass in vivo. Am J Physiol Cell Physiol 2016; 311:C839-C845. [PMID: 27605453 DOI: 10.1152/ajpcell.00218.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
Abstract
While the type IV intermediate filament protein, synemin, has been shown to play a role in striated muscle and neuronal tissue, its presence and function have not been described in skeletal tissue. Here, we report that genetic ablation of synemin in 14-wk-old male mice results in osteopenia that includes a more than 2-fold reduction in the trabecular bone fraction in the distal femur and a reduction in the cross-sectional area at the femoral middiaphysis due to an attendant reduction in both the periosteal and endosteal perimeter. Analysis of serum markers of bone formation and static histomorphometry revealed a statistically significant defect in osteoblast activity and osteoblast number in vivo. Interestingly, primary osteoblasts isolated from synemin-null mice demonstrate markedly enhanced osteogenic capacity with a concomitant reduction in cyclin D1 mRNA expression, which may explain the loss of osteoblast number observed in vivo. In total, these data suggest an important, previously unknown role for synemin in bone physiology.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Karla P Garcia-Pelagio
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Martin I, Moch M, Neckernuss T, Paschke S, Herrmann H, Marti O. Both monovalent cations and plectin are potent modulators of mechanical properties of keratin K8/K18 networks. SOFT MATTER 2016; 12:6964-6974. [PMID: 27489177 DOI: 10.1039/c6sm00977h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Intermediate filament (IF) networks are a major contributor to cell rigidity and thus serve as vital elements to preserve the integrity of entire cell layers. Keratin K8 and K18 IFs are the basic constituents of the cytoskeleton of epithelial cells. The mechanical properties of K8/K18 networks depend on the structural arrangements of individual filaments within the network. This paper investigates the architecture of these networks in vitro under the influence of the monovalent cation potassium and that of the cytolinker protein plectin. Whereas increasing amounts of potassium ions lead to filament bundling, plectin interlinks filaments at filament intersection points but does not lead to bundle formation. The mechanics of the resulting networks are investigated by microrheology with assembled K8/K18 networks. It is shown that bundling induced by potassium ions significantly stiffens the network. Furthermore, our measurements reveal an increase in plectin-mediated keratin network rigidity as soon as an amount corresponding to more than 20% of the plectin present in cells is added to the keratin IF networks. In parallel, we investigated the influence of plectin on cell rigidity in detergent-extracted epithelial vulva carcinoma derived A431 cells in situ. These cytoskeletons, containing mostly IFs, actin filaments and associated proteins, exhibit a significantly decreased stiffness, when plectin is downregulated to ≈10% of the normal value. Therefore, we assume that plectin, via the formation of IF-IF connections and crosslinking of IFs to actin filaments, is an important contributor to cell stiffness.
Collapse
Affiliation(s)
- I Martin
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany.
| | - M Moch
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany and Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany
| | - T Neckernuss
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany.
| | - S Paschke
- Department of General and Visceral Surgery, Ulm University, 89081 Ulm, Germany
| | - H Herrmann
- Division Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany and Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - O Marti
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
19
|
Yu YTC, Chien SC, Chen IY, Lai CT, Tsay YG, Chang SC, Chang MF. Surface vimentin is critical for the cell entry of SARS-CoV. J Biomed Sci 2016; 23:14. [PMID: 26801988 PMCID: PMC4724099 DOI: 10.1186/s12929-016-0234-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/12/2016] [Indexed: 01/19/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus (SARS-CoV) caused a global panic due to its high morbidity and mortality during 2002 and 2003. Soon after the deadly disease outbreak, the angiotensin-converting enzyme 2 (ACE2) was identified as a functional cellular receptor in vitro and in vivo for SARS-CoV spike protein. However, ACE2 solely is not sufficient to allow host cells to become susceptible to SARS-CoV infection, and other host factors may be involved in SARS-CoV spike protein-ACE2 complex. Results A host intracellular filamentous cytoskeletal protein vimentin was identified by immunoprecipitation and LC-MS/MS analysis following chemical cross-linking on Vero E6 cells that were pre-incubated with the SARS-CoV spike protein. Moreover, flow cytometry data demonstrated an increase of the cell surface vimentin level by 16.5 % after SARS-CoV permissive Vero E6 cells were treated with SARS-CoV virus-like particles (VLPs). A direct interaction between SARS-CoV spike protein and host surface vimentin was further confirmed by far-Western blotting. In addition, antibody neutralization assay and shRNA knockdown experiments indicated a vital role of vimentin in cell binding and uptake of SARS-CoV VLPs and the viral spike protein. Conclusions A direct interaction between vimentin and SARS-CoV spike protein during viral entry was observed. Vimentin is a putative anti-viral drug target for preventing/reducing the susceptibility to SARS-CoV infection.
Collapse
Affiliation(s)
- Yvonne Ting-Chun Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan.
| | - Ssu-Chia Chien
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan.
| | - I-Yin Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan. .,Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan.
| | - Chia-Tsen Lai
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan.
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Shin C Chang
- Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan.
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, First Section, Taipei, 100, Taiwan.
| |
Collapse
|
20
|
Sperandio FF, Simões A, Corrêa L, Aranha ACC, Giudice FS, Hamblin MR, Sousa SCOM. Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. JOURNAL OF BIOPHOTONICS 2015; 8:795-803. [PMID: 25411997 PMCID: PMC4583360 DOI: 10.1002/jbio.201400064] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/29/2014] [Accepted: 10/10/2014] [Indexed: 05/21/2023]
Abstract
Low-level laser therapy (LLLT) has been extensively employed to improve epithelial wound healing, though the exact response of epithelium maturation and stratification after LLLT is unknown. Thus, this study aimed to assess the in vitro growth and differentiation of keratinocytes (KCs) and in vivo wound healing response when treated with LLLT. Human KCs (HaCaT cells) showed an enhanced proliferation with all the employed laser energy densities (3, 6 and 12 J/cm(2) , 660 nm, 100 mW), together with an increased expression of Cyclin D1. Moreover, the immunoexpression of proteins related to epithelial proliferation and maturation (p63, CK10, CK14) all indicated a faster maturation of the migrating KCs in the LLLT-treated wounds. In that way, an improved epithelial healing was promoted by LLLT with the employed parameters; this improvement was confirmed by changes in the expression of several proteins related to epithelial proliferation and maturation. Immunofluorescent expression of cytokeratin 10 (red) and Cyclin D1 (green) in (A) Control keratinocytes and (B) Low-level laser irradiated cells. Blue color illustrates the nuclei of the cells (DAPI staining).
Collapse
Affiliation(s)
- Felipe F Sperandio
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-000, MG, Brazil. ,
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. ,
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA. ,
| | - Alyne Simões
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Luciana Corrêa
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Ana Cecília C Aranha
- Department of Restorative Dentistry, Special Laboratory of Lasers in Dentistry (LELO), School of Dentistry, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Fernanda S Giudice
- A. C. Camargo Cancer Center, National Institute of Oncogenomics and National Institute of Translational Neurosciences, São Paulo, 01508010, SP, Brazil
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Suzana C O M Sousa
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| |
Collapse
|
21
|
Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly. PLoS One 2015; 10:e0132706. [PMID: 26181054 PMCID: PMC4504709 DOI: 10.1371/journal.pone.0132706] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/17/2015] [Indexed: 01/05/2023] Open
Abstract
Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.
Collapse
|
22
|
Fu J, Guerette PA, Miserez A. Self-Assembly of Recombinant Hagfish Thread Keratins Amenable to a Strain-Induced α-Helix to β-Sheet Transition. Biomacromolecules 2015; 16:2327-39. [PMID: 26102237 DOI: 10.1021/acs.biomac.5b00552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hagfish slime threads are assembled from protein-based bundles of intermediate filaments (IFs) that undergo a strain-induced α-helical coiled-coil to β-sheet transition. Draw processing of native fibers enables the creation of mechanically tuned materials, and under optimized conditions this process results in mechanical properties similar to spider dragline silk. In this study, we develop the foundation for the engineering of biomimetic recombinant hagfish thread keratin (TK)-based materials. The two protein constituents from the hagfish Eptatretus stoutii thread, named EsTKα and EsTKγ, were expressed in Escherichia coli and purified. Individual (rec)EsTKs and mixtures thereof were subjected to stepwise dialysis to evaluate their protein solubility, folding, and self-assembly propensities. Conditions were identified that resulted in the self-assembly of coiled-coil rich IF-like filaments, as determined by circular dichroism (CD) and transmission electron microscopy (TEM). Rheology experiments indicated that the concentrated filaments assembled into gel-like networks exhibiting a rheological response reminiscent to that of IFs. Notably, the self-assembled filaments underwent an α-helical coiled-coil to β-sheet transition when subjected to oscillatory shear, thus mimicking the critical characteristic responsible for mechanical strengthening of native hagfish threads. We propose that our data establish the foundation to create robust and tunable recombinant TK-based materials whose mechanical properties are controlled by a strain-induced α-helical coiled-coil to β-sheet transition.
Collapse
Affiliation(s)
- Jing Fu
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Paul A Guerette
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,‡Energy Research Institute at Nanyang Technological University (ERI@N), 50 Nanyang Drive, Singapore, 637553
| | - Ali Miserez
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,§School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive Singapore 637551
| |
Collapse
|
23
|
Wang H, Wu M, Zhan C, Ma E, Yang M, Yang X, Li Y. Neurofilament proteins in axonal regeneration and neurodegenerative diseases. Neural Regen Res 2015; 7:620-6. [PMID: 25745454 PMCID: PMC4346988 DOI: 10.3969/j.issn.1673-5374.2012.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/05/2012] [Indexed: 12/21/2022] Open
Abstract
Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Minfei Wu
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chuanjun Zhan
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Enyuan Ma
- Department of Orthopedic Surgery, Beihua University Affiliated Hospital, Jilin 132000, Jilin Province, China
| | - Maoguang Yang
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Yingpu Li
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
24
|
Huber F, Boire A, López MP, Koenderink GH. Cytoskeletal crosstalk: when three different personalities team up. Curr Opin Cell Biol 2015; 32:39-47. [DOI: 10.1016/j.ceb.2014.10.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
|
25
|
García-Pelagio KP, Muriel J, O'Neill A, Desmond PF, Lovering RM, Lund L, Bond M, Bloch RJ. Myopathic changes in murine skeletal muscle lacking synemin. Am J Physiol Cell Physiol 2015; 308:C448-62. [PMID: 25567810 DOI: 10.1152/ajpcell.00331.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle phenotype. Tibialis anterior (TA) muscles show a significant decrease in mean fiber diameter, a decrease in twitch and tetanic force, and an increase in susceptibility to injury caused by lengthening contractions. Organization of proteins associated with the contractile apparatus and costameres is not significantly altered in the synm-null. Elastimetry of the sarcolemma and associated contractile apparatus in extensor digitorum longus myofibers reveals a reduction in tension consistent with an increase in sarcolemmal deformability. Although fatigue after repeated isometric contractions is more marked in TA muscles of synm-null mice, the ability of the mice to run uphill on a treadmill is similar to controls. Our results suggest that synemin contributes to linkage between costameres and the contractile apparatus and that the absence of synemin results in decreased fiber size and increased sarcolemmal deformability and susceptibility to injury. Thus synemin plays a moderate but distinct role in fast twitch skeletal muscle.
Collapse
Affiliation(s)
- Karla P García-Pelagio
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Joaquin Muriel
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Andrea O'Neill
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Patrick F Desmond
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Linda Lund
- Merrick School of Business, University of Baltimore, Baltimore, Maryland; and
| | - Meredith Bond
- College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland;
| |
Collapse
|
26
|
Kakkar P, Madhan B, Shanmugam G. Extraction and characterization of keratin from bovine hoof: A potential material for biomedical applications. SPRINGERPLUS 2014; 3:596. [PMID: 25332892 PMCID: PMC4201659 DOI: 10.1186/2193-1801-3-596] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/30/2014] [Indexed: 11/10/2022]
Abstract
Keratin from the hoof is a less explored source for making valuable products. In this paper we present the extraction of pure keratin from bovine hooves and characterized them to better address the possible exploitation of this bio-resource as an alternative material for tissue engineering applications. The keratin protein from the pulverized hooves was extracted by reduction, which was observed to be pure, and two polypeptide chains of molecular weight in the range of 45–50 and 55–60 KDa were determined using SDS-PAGE assay. FTIR analysis complementing circular dichroism (CD) data, established that hoof keratin predominantly adopted α-helical conformation with admixture of β-sheet. The keratin was shown to have appreciably high denaturation temperature (215°C) as indicated by differential scanning calorimetric (DSC) analysis. Thermogravimetric analysis (TGA) also showed the retention of 50% of the original weight of the sample even at a temperature of 346°C. The keratin from the hoof had been observed to be biocompatible when analyzed with MTT assay using fibroblast cells, showing more than 90% cell viability. Hence, hoof keratin would be useful for high value biomedical applications.
Collapse
Affiliation(s)
- Prachi Kakkar
- Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai, 600020 India
| | - Balaraman Madhan
- Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai, 600020 India
| | - Ganesh Shanmugam
- Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai, 600020 India
| |
Collapse
|
27
|
Ling S, Li C, Adamcik J, Shao Z, Chen X, Mezzenga R. Modulating materials by orthogonally oriented β-strands: composites of amyloid and silk fibroin fibrils. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4569-74. [PMID: 24845975 DOI: 10.1002/adma.201400730] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/07/2014] [Indexed: 05/02/2023]
Abstract
Amyloid fibrils and silk fibroin (SF) fibrils are proteinaceous aggregates occurring either naturally or as artificially reconstituted fibrous systems, in which the constituent β-strands are aligned either orthogonally or parallel to the fibril main axis, conferring complementary physical properties. Here, it is shown how the combination of these two classes of protein fibrils with orthogonally oriented β-strands results in composite materials with controllable physical properties at the molecular, mesoscopic, and continuum length scales.
Collapse
Affiliation(s)
- Shengjie Ling
- Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zürich, LFO23 Schmelzbergstrasse 9, 8092, Zürich, Switzerland; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The dynamics of oral mucosa is known by its inherent defensive nature. Certain areas demand tough shield when subjected to mechanical insults. This is met by structural scaffolding material referred as cytoskeleton comprised of intracellular protein filaments called cytokeratins in the surface squames of oral epithelia. They also equally contribute towards the architecture of odontogenic apparatus and salivary gland. Differentiation of epithelial cells within stratified epithelia regulates the expression of specific keratin gene. Any mutation in, or autoantibodies to keratins, desmosomal and cornified envelope proteins is translated into genetic and acquired human disorders. Sound knowledge of structural proteins, their expression, distribution and function plays a vital role in acquainting with these disorders and their application as differentiation markers. Thus, they form an integral aid in diagnostic pathology and may be instrumental in the future interventions by gene therapy. This review focuses on basics to current updates on oral cytokeratins with an emphasis on the genetic and acquired disorders of cytokeratins with oral implications.
Collapse
Affiliation(s)
- Roopa S Rao
- Professor and Head, Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences MSRIT Post, MSR Nagar, Bangalore, Karnataka, India
| | - Shankargouda Patil
- Associate Professor, Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences MSRIT Post, MSR Nagar, Bangalore, Karnataka, India
| | - B S Ganavi
- Postgraduate Student, Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences MSRIT Post, MSR Nagar, Bangalore, Karnataka, India
| |
Collapse
|
29
|
Goodall MH, Ward CW, Pratt SJP, Bloch RJ, Lovering RM. Structural and functional evaluation of branched myofibers lacking intermediate filaments. Am J Physiol Cell Physiol 2012; 303:C224-32. [PMID: 22592402 DOI: 10.1152/ajpcell.00136.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermediate filaments (IFs), composed of desmin and keratins, link myofibrils to each other and to the sarcolemma in skeletal muscle. Fast-twitch muscle of mice lacking the IF proteins, desmin and keratin 19 (K19), showed reduced specific force and increased susceptibility to injury in earlier studies. Here we tested the hypothesis that the number of malformed myofibers in mice lacking desmin (Des(-/-)), keratin 19 (K19(-/-)), or both IF proteins (double knockout, DKO) is increased and is coincident with altered excitation-contraction (EC) coupling Ca(2+) kinetics, as reported for mdx mice. We quantified the number of branched myofibers, characterized their organization with confocal and electron microscopy (EM), and compared the Ca(2+) kinetics of EC coupling in flexor digitorum brevis myofibers from adult Des(-/-), K19(-/-), or DKO mice and compared them to age-matched wild type (WT) and mdx myofibers. Consistent with our previous findings, 9.9% of mdx myofibers had visible malformations. Des(-/-) myofibers had more malformations (4.7%) than K19(-/-) (0.9%) or DKO (1.3%) myofibers. Confocal and EM imaging revealed no obvious changes in sarcomere misalignment at the branch points, and the neuromuscular junctions in the mutant mice, while more variably located, were limited to one per myofiber. Global, electrically evoked Ca(2+) signals showed a decrease in the rate of Ca(2+) uptake (decay rate) into the sarcoplasmic reticulum after Ca(2+) release, with the most profound effect in branched DKO myofibers (44% increase in uptake relative to WT). Although branched DKO myofibers showed significantly faster rates of Ca(2+) clearance, the milder branching phenotype observed in DKO muscle suggests that the absence of K19 corrects the defect created by the absence of desmin alone. Thus, there are complex roles for desmin-based and K19-based IFs in skeletal muscle, with the null and DKO mutations having different effects on Ca(2+) reuptake and myofiber branching.
Collapse
Affiliation(s)
- Mariah H Goodall
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, 21201, USA
| | | | | | | | | |
Collapse
|
30
|
Morioka K, Arai M, Ihara S. Steady and temporary expressions of smooth muscle actin in hair, vibrissa, arrector pili muscle, and other hair appendages of developing rats. Acta Histochem Cytochem 2011; 44:141-53. [PMID: 21753860 PMCID: PMC3130146 DOI: 10.1267/ahc.11013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/24/2011] [Indexed: 11/22/2022] Open
Abstract
The hair erection muscle, arrector pili, is a kind of smooth muscle located in the mammalian dermis. The immunohistochemical study using an antibody against smooth muscle alpha actin (SMA) showed that the arrector pili muscle develops approximately 1–2 weeks after birth in dorsal and ventral skin, but thereafter they degenerate. The arrector pili muscle was not detected in the mystacial pad during any stage of development, even in the neighboring pelage-type hair follicle. A strong signal of SMA in the skin was located in the dermal sheath as well as in some outer root sheath cells in the hair and vibrissal follicles. Positive areas in the dermal and outer root sheaths were restricted to a lower moiety, particularly areas of similar height, where keratinization of the hair shaft occurs. This rule is valid for both pelage hair follicles and vibrissal follicles. At medium heights of the follicle, SMA staining in the dermal sheath was patchy and distant from the boundary between dermis and epidermis. In contrast to SMA, vimentin was expressed over the entire height of the dermal sheath. Unlike the arrector pili muscle, the expression of SMA in the dermal sheath was observed during fetal, neonatal, and adult stages. The presence of actin-myosin and vimentin fibers in supporting cells is thought to be beneficial for the hair follicle to cope with the movement of the hair shaft, which may be caused by physical contacts with outside materials or by the contraction of internal muscles.
Collapse
Affiliation(s)
- Kiyokazu Morioka
- Laboratory of Electron Microscopy, The Tokyo Metropolitan Institute of Medical Science
- Department of Bioengineering, School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Mary Arai
- Division of Resources Life Science, The United Graduate School of Agricultural Sciences, Tottori University
| | - Setsunosuke Ihara
- Division of Resources Life Science, The United Graduate School of Agricultural Sciences, Tottori University
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University
| |
Collapse
|
31
|
Deconstructing the late phase of vimentin assembly by total internal reflection fluorescence microscopy (TIRFM). PLoS One 2011; 6:e19202. [PMID: 21544245 PMCID: PMC3081349 DOI: 10.1371/journal.pone.0019202] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/23/2011] [Indexed: 11/23/2022] Open
Abstract
Quantitative imaging of intermediate filaments (IF) during the advanced phase of the assembly process is technically difficult, since the structures are several µm long and therefore they exceed the field of view of many electron (EM) or atomic force microscopy (AFM) techniques. Thereby quantitative studies become extremely laborious and time-consuming. To overcome these difficulties, we prepared fluorescently labeled vimentin for visualization by total internal reflection fluorescence microscopy (TIRFM). In order to investigate if the labeling influences the assembly properties of the protein, we first determined the association state of unlabeled vimentin mixed with increasing amounts of labeled vimentin under low ionic conditions by analytical ultracentrifugation. We found that bona fide tetrameric complexes were formed even when half of the vimentin was labeled. Moreover, we demonstrate by quantitative atomic force microscopy and electron microscopy that the morphology and the assembly properties of filaments were not affected when the fraction of labeled vimentin was below 10%. Using fast frame rates we observed the rapid deposition of fluorescently labeled IFs on glass supports by TIRFM in real time. By tracing their contours, we have calculated the persistence length of long immobilized vimentin IFs to 1 µm, a value that is identical to those determined for shorter unlabeled vimentin. These results indicate that the structural properties of the filaments were not affected significantly by the dye. Furthermore, in order to analyze the late elongation phase, we mixed long filaments containing either Alexa 488- or Alexa 647-labeled vimentin. The ‘patchy’ structure of the filaments obtained unambiguously showed the elongation of long IFs through direct end-to-end annealing of individual filaments.
Collapse
|
32
|
Kim JS, Lee CH, Coulombe PA. Modeling the self-organization property of keratin intermediate filaments. Biophys J 2011; 99:2748-56. [PMID: 21044571 DOI: 10.1016/j.bpj.2010.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/10/2010] [Accepted: 09/15/2010] [Indexed: 11/18/2022] Open
Abstract
Keratin intermediate filaments (IFs) fulfill an important function of structural support in epithelial cells. The necessary mechanical attributes require that IFs be organized into a crosslinked network and accordingly, keratin IFs are typically organized into large bundles in surface epithelia. For IFs comprised of keratins 5 and 14 (K5, K14), found in basal keratinocytes of epidermis, bundling can be self-driven through interactions between K14's carboxy-terminal tail domain and two regions in the central α-helical rod domain of K5. Here, we exploit theoretical principles and computational modeling to investigate how such cis-acting determinants best promote IF crosslinking. We develop a simple model where keratin IFs are treated as rigid rods to apply Brownian dynamics simulation. Our findings suggest that long-range interactions between IFs are required to initiate the formation of bundlelike configurations, while tail domain-mediated binding events act to stabilize them. Our model explains the differences observed in the mechanical properties of wild-type versus disease-causing, defective IF networks. This effort extends the notion that the structural support function of keratin IFs necessitates a combination of intrinsic and extrinsic determinants, and makes specific predictions about the mechanisms involved in the formation of crosslinked keratin networks in vivo.
Collapse
Affiliation(s)
- Jin Seob Kim
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | |
Collapse
|
33
|
Lovering RM, O'Neill A, Muriel JM, Prosser BL, Strong J, Bloch RJ. Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments. Am J Physiol Cell Physiol 2011; 300:C803-13. [PMID: 21209367 DOI: 10.1152/ajpcell.00394.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. Our previous results show that the tibialis anterior (TA) muscles of mice lacking keratin 19 (K19) lose costameres, accumulate mitochondria under the sarcolemma, and generate lower specific tension than controls. Here we compare the physiology and morphology of TA muscles of mice lacking K19 with muscles lacking desmin or both proteins [double knockout (DKO)]. K19-/- mice and DKO mice showed a threefold increase in the levels of creatine kinase (CK) in the serum. The absence of desmin caused a larger change in specific tension (-40%) than the absence of K19 (-19%) and played the predominant role in contractile function (-40%) and decreased tolerance to exercise in the DKO muscle. By contrast, the absence of both proteins was required to obtain a significantly greater loss of contractile torque after injury (-48%) compared with wild type (-39%), as well as near-complete disruption of costameres. The DKO muscle also showed a significantly greater misalignment of myofibrils than either mutant alone. In contrast, large subsarcolemmal gaps and extensive accumulation of mitochondria were only seen in K19-null TA muscles, and the absence of both K19 and desmin yielded milder phenotypes. Our results suggest that keratin filaments containing K19- and desmin-based intermediate filaments can play independent, complementary, or antagonistic roles in the physiology and morphology of fast-twitch skeletal muscle.
Collapse
Affiliation(s)
- Richard M Lovering
- Department of Physiology, University of Maryland, Baltimore, 21201, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Bär H, Schopferer M, Sharma S, Hochstein B, Mücke N, Herrmann H, Willenbacher N. Mutations in desmin's carboxy-terminal "tail" domain severely modify filament and network mechanics. J Mol Biol 2010; 397:1188-98. [PMID: 20171226 DOI: 10.1016/j.jmb.2010.02.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/25/2010] [Accepted: 02/12/2010] [Indexed: 11/29/2022]
Abstract
Inherited mutations in the gene coding for the intermediate filament protein desmin have been demonstrated to cause severe skeletal and cardiac myopathies. Unexpectedly, some of the mutated desmins, in particular those carrying single amino acid alterations in the non-alpha-helical carboxy-terminal domain ("tail"), have been demonstrated to form apparently normal filaments both in vitro and in transfected cells. Thus, it is not clear if filament properties are affected by these mutations at all. For this reason, we performed oscillatory shear experiments with six different desmin "tail" mutants in order to characterize the mesh size of filament networks and their strain stiffening properties. Moreover, we have carried out high-frequency oscillatory squeeze flow measurements to determine the bending stiffness of the respective filaments, characterized by the persistence length l(p). Interestingly, mesh size was not altered for the mutant filament networks, except for the mutant DesR454W, which apparently did not form proper filament networks. Also, the values for bending stiffness were in the same range for both the "tail" mutants (l(p)=1.0-2.0 microm) and the wild-type desmin (l(p)=1.1+/-0.5 microm). However, most investigated desmin mutants exhibited a distinct reduction in strain stiffening compared to wild-type desmin and promoted nonaffine network deformation. Therefore, we conclude that the mutated amino acids affect intrafilamentous architecture and colloidal interactions along the filament in such a way that the response to applied strain is significantly altered. In order to explore the importance of the "tail" domain as such for filament network properties, we employed a "tail"-truncated desmin. Under standard conditions, it formed extended regular filaments, but failed to generate strain stiffening. Hence, these data strongly indicate that the "tail" domain is responsible for attractive filament-filament interactions. Moreover, these types of interactions may also be relevant to the network properties of the desmin cytoskeleton in patient muscle.
Collapse
Affiliation(s)
- Harald Bär
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Rouse JG, Van Dyke ME. A Review of Keratin-Based Biomaterials for Biomedical Applications. MATERIALS 2010. [PMCID: PMC5513517 DOI: 10.3390/ma3020999] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in the extraction, purification, and characterization of keratin proteins from hair and wool fibers over the past century have led to the development of a keratin-based biomaterials platform. Like many naturally-derived biomolecules, keratins have intrinsic biological activity and biocompatibility. In addition, extracted keratins are capable of forming self-assembled structures that regulate cellular recognition and behavior. These qualities have led to the development of keratin biomaterials with applications in wound healing, drug delivery, tissue engineering, trauma and medical devices. This review discusses the history of keratin research and the advancement of keratin biomaterials for biomedical applications.
Collapse
Affiliation(s)
| | - Mark E. Van Dyke
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-336-713-7266; Fax: +1-336-713-7290
| |
Collapse
|
36
|
Esue O, Rupprecht L, Sun SX, Wirtz D. Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo. PLoS One 2010; 5:e8855. [PMID: 20140233 PMCID: PMC2816638 DOI: 10.1371/journal.pone.0008855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/04/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Crescentin, the recently discovered bacterial intermediate filament protein, organizes into an extended filamentous structure that spans the length of the bacterium Caulobacter crescentus and plays a critical role in defining its curvature. The mechanism by which crescentin mediates cell curvature and whether crescentin filamentous structures are dynamic and/or polar are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS Using light microscopy, electron microscopy and quantitative rheology, we investigated the mechanics and dynamics of crescentin structures. Live-cell microscopy reveals that crescentin forms structures in vivo that undergo slow remodeling. The exchange of subunits between these structures and a pool of unassembled subunits is slow during the life cycle of the cell however; in vitro assembly and gelation of C. crescentus crescentin structures are rapid. Moreover, crescentin forms filamentous structures that are elastic, solid-like, and, like other intermediate filaments, can recover a significant portion of their network elasticity after shear. The assembly efficiency of crescentin is largely unaffected by monovalent cations (K(+), Na(+)), but is enhanced by divalent cations (Mg(2+), Ca(2+)), suggesting that the assembly kinetics and micromechanics of crescentin depend on the valence of the ions present in solution. CONCLUSIONS/SIGNIFICANCE These results indicate that crescentin forms filamentous structures that are elastic, labile, and stiff, and that their low dissociation rate from established structures controls the slow remodeling of crescentin in C. crescentus.
Collapse
Affiliation(s)
- Osigwe Esue
- Department of Pharmaceutical Development, Genentech, South San Francisco, California, United States of America.
| | | | | | | |
Collapse
|
37
|
Szaro BG, Strong MJ. Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends Neurosci 2010; 33:27-37. [DOI: 10.1016/j.tins.2009.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 09/21/2009] [Accepted: 10/06/2009] [Indexed: 12/17/2022]
|
38
|
Davidson L, von Dassow M, Zhou J. Multi-scale mechanics from molecules to morphogenesis. Int J Biochem Cell Biol 2009; 41:2147-62. [PMID: 19394436 PMCID: PMC2753763 DOI: 10.1016/j.biocel.2009.04.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/31/2009] [Accepted: 04/15/2009] [Indexed: 01/02/2023]
Abstract
Dynamic mechanical processes shape the embryo and organs during development. Little is understood about the basic physics of these processes, what forces are generated, or how tissues resist or guide those forces during morphogenesis. This review offers an outline of some of the basic principles of biomechanics, provides working examples of biomechanical analyses of developing embryos, and reviews the role of structural proteins in establishing and maintaining the mechanical properties of embryonic tissues. Drawing on examples we highlight the importance of investigating mechanics at multiple scales from milliseconds to hours and from individual molecules to whole embryos. Lastly, we pose a series of questions that will need to be addressed if we are to understand the larger integration of molecular and physical mechanical processes during morphogenesis and organogenesis.
Collapse
Affiliation(s)
- Lance Davidson
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
39
|
Esue O, Kanai S, Liu J, Patapoff TW, Shire SJ. Carboxylate-Dependent Gelation of a Monoclonal Antibody. Pharm Res 2009; 26:2478-85. [DOI: 10.1007/s11095-009-9963-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Lee CH, Coulombe PA. Self-organization of keratin intermediate filaments into cross-linked networks. ACTA ACUST UNITED AC 2009; 186:409-21. [PMID: 19651890 PMCID: PMC2728393 DOI: 10.1083/jcb.200810196] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Keratins, the largest subgroup of intermediate filament (IF) proteins, form a network of 10-nm filaments built from type I/II heterodimers in epithelial cells. A major function of keratin IFs is to protect epithelial cells from mechanical stress. Like filamentous actin, keratin IFs must be cross-linked in vitro to achieve the high level of mechanical resilience characteristic of live cells. Keratins 5 and 14 (K5 and K14), the main pairing occurring in the basal progenitor layer of epidermis and related epithelia, can readily self-organize into large filament bundles in vitro and in vivo. Here, we show that filament self-organization is mediated by multivalent interactions involving distinct regions in K5 and K14 proteins. Self-organization is determined independently of polymerization into 10-nm filaments, but involves specific type I–type II keratin complementarity. We propose that self-organization is a key determinant of the structural support function of keratin IFs in vivo.
Collapse
Affiliation(s)
- Chang-Hun Lee
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
41
|
Desmin and vimentin intermediate filament networks: their viscoelastic properties investigated by mechanical rheometry. J Mol Biol 2009; 388:133-43. [PMID: 19281820 DOI: 10.1016/j.jmb.2009.03.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 02/01/2023]
Abstract
We have investigated the viscoelastic properties of the cytoplasmic intermediate filament (IF) proteins desmin and vimentin. Mechanical measurements were supported by time-dependent electron microscopy studies of the assembly process under similar conditions. Network formation starts within 2 min, but it takes more than 30 min until equilibrium mechanical network strength is reached. Filament bundling is more pronounced for desmin than for vimentin. Desmin filaments (persistence length l(p) approximately 900 nm) are stiffer than vimentin filaments (l(p) approximately 400 nm), but both IFs are much more flexible than microfilaments. The concentration dependence of the plateau modulus G(0) approximately c(alpha) is much weaker than predicted theoretically for networks of semiflexible filaments. This is more pronounced for vimentin (alpha=0.47) than for desmin (alpha=0.70). Both networks exhibit strain stiffening at large shear deformations. At the transition from linear to nonlinear viscoelastic response, only desmin shows characteristics of nonaffine network deformation. Strain stiffening and the maximum modulus occur at strain amplitudes about an order of magnitude larger than those for microfilaments. This is probably attributable to axial slippage within the tetramer building blocks of the IFs. Network deformation beyond a critical strain gamma(max) results in irreversible damage. Strain stiffening sets in at lower concentrations, is more pronounced, and is less sensitive to ionic strength for desmin than for vimentin. Hence, desmin exhibits strain stiffening even at low-salt concentrations, which is not observed for vimentin, and we conclude that the strength of electrostatic repulsion compared to the strength of attractive interactions forming the network junctions is significantly weaker for desmin than for vimentin filaments. These findings indicate that both IFs exhibit distinct mechanical properties that are adapted to their respective cellular surroundings [i.e., myocytes (desmin) and fibroblasts (vimentin)].
Collapse
|
42
|
Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet 2008; 9:359-86. [PMID: 18544035 DOI: 10.1146/annurev.genom.9.081307.164303] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lysosome-related organelles (LROs) are a heterogeneous group of vesicles that share various features with lysosomes, but are distinct in function, morphology, and composition. The biogenesis of LROs employs a common machinery, and genetic defects in this machinery can affect all LROs or only an individual LRO, resulting in a variety of clinical features. In this review, we discuss the main components of LRO biogenesis. We also summarize the function, composition, and resident cell types of the major LROs. Finally, we describe the clinical characteristics of the major human LRO disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Cell Biology of Metabolic Disorders Unit, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
43
|
Veranic P, Lokar M, Schütz GJ, Weghuber J, Wieser S, Hägerstrand H, Kralj-Iglic V, Iglic A. Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 2008; 95:4416-25. [PMID: 18658210 PMCID: PMC2567924 DOI: 10.1529/biophysj.108.131375] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 07/15/2008] [Indexed: 12/13/2022] Open
Abstract
Communication between cells is crucial for proper functioning of multicellular organisms. The recently discovered membranous tubes, named tunneling nanotubes, that directly bridge neighboring cells may offer a very specific and effective way of intercellular communication. Our experiments on RT4 and T24 urothelial cell lines show that nanotubes that bridge neighboring cells can be divided into two types. The nanotubes of type I are shorter and more dynamic than those of type II, and they contain actin filaments. They are formed when cells explore their surroundings to make contact with another cell. The nanotubes of type II are longer and more stable than type I, and they have cytokeratin filaments. They are formed when two already connected cells start to move apart. On the nanotubes of both types, small vesicles were found as an integral part of the nanotubes (that is, dilatations of the nanotubes). The dilatations of type II nanotubes do not move along the nanotubes, whereas the nanotubes of type I frequently have dilatations (gondolas) that move along the nanotubes in both directions. A possible model of formation and mechanical stability of nanotubes that bridge two neighboring cells is discussed.
Collapse
Affiliation(s)
- Peter Veranic
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Desai KV, Bishop TG, Vicci L, O'Brien ET, Taylor RM, Superfine R. Agnostic particle tracking for three-dimensional motion of cellular granules and membrane-tethered bead dynamics. Biophys J 2008; 94:2374-84. [PMID: 18055538 PMCID: PMC2257905 DOI: 10.1529/biophysj.107.114140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Accepted: 10/05/2007] [Indexed: 11/18/2022] Open
Abstract
The ability to detect biological events at the single-molecule level provides unique biophysical insights. Back-focal-plane laser interferometry is a promising technique for nanoscale three-dimensional position measurements at rates far beyond the capability of standard video. We report an in situ calibration technique for back-focal-plane, low-power (nontrapping) laser interferometry. The technique does not rely on any a priori model or calibration knowledge, hence the name "agnostic". We apply the technique to track long-range (up to 100 microm) motion of a variety of particles, including magnetic beads, in three-dimensions with high spatiotemporal resolution ( approximately 2 nm, 100 micros). Our tracking of individual unlabeled vesicles revealed a previously unreported grouping of mean-squared displacement curves at short timescales (<10 ms). Also, tracking functionalized magnetic beads attached to a live cell membrane revealed an anchorage-dependent nonlinear response of the membrane. The software-based technique involves injecting small perturbations into the probe position by driving a precalibrated specimen-mounting stage while recording the quadrant photodetector signals. The perturbations and corresponding quadrant photodetector signals are analyzed to extract the calibration parameters. The technique is sufficiently fast and noninvasive that the calibration can be performed on-the-fly without interrupting or compromising high-bandwidth, long-range tracking of a particle.
Collapse
Affiliation(s)
- Kalpit V Desai
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A. Fra-1 regulates vimentin during Ha-RAS-induced epithelial mesenchymal transition in human colon carcinoma cells. Int J Cancer 2008; 122:1745-56. [PMID: 18098284 DOI: 10.1002/ijc.23309] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The process of epithelial mesenchymal transition, whereby cells acquire molecular alterations and fibroblastic features, is a fundamental process of embryogenesis and cancer invasion/metastasis. The mechanisms responsible for epithelial mesenchymal transition remain elusive. Human tumors frequently establish constitutively activated RAS signaling, which contributes to the malignant phenotype. In an effort to dissect distinct RAS isoform specific functions, we previously established human colon cell lines stably overexpressing activated Harvey-RAS (Ha-RAS) and Kirsten-RAS (Ki-RAS). Using these, we observed that only oncogenic Ha-RAS overexpression resulted in morphologic and molecular changes suggestive of epithelial to mesenchymal transition. We showed that vimentin, a key molecule of epithelial mesenchymal transition, was differentially regulated between Ha-RAS and Ki-RAS leading to a Ha-RAS specific induction of a migratory phenotype and eventually epithelial to mesenchymal transition. We demonstrated that the AP-1 sites in vimentin promoter could be involved in this regulation. A potential role of FRA-1 was suggested in the regulation of vimentin during the Ha-RAS-induced epithelial to mesenchymal transition, in association with colon cell migration. Our results therefore propose that in colon cells, the induction of epithelial mesenchymal transition by oncogenic Ha-RAS could occur through the overexpression of proteins like FRA-1 and vimentin.
Collapse
Affiliation(s)
- Chrysovalantis Andreolas
- Laboratory of Signal Mediated Gene Expression, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | | | | |
Collapse
|
46
|
Pittenger JT, Hess JF, Fitzgerald PG. Identifying the role of specific motifs in the lens fiber cell specific intermediate filament phakosin. Invest Ophthalmol Vis Sci 2007; 48:5132-41. [PMID: 17962466 PMCID: PMC2909742 DOI: 10.1167/iovs.07-0647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Phakosin and filensin are lens fiber cell-specific intermediate filament (IF) proteins. Unlike every other cytoplasmic IF protein, they assemble into a beaded filament (BF) rather than an IF. Why the lens fiber cell requires two unique IF proteins and why and how they assemble into a structure other than an IF are unknown. In this report we test specific motifs/domains in phakosin to identify changes that that have adapted phakosin to lens-specific structure and function. METHODS Phakosin shows the highest level of sequence identity to K18, whose natural assembly partner is K8. We therefore exchanged conserved keratin motifs between phakosin and K18 to determine whether phakosin's divergent motifs could redirect the assembly of chimeric K18 and K8. Modified proteins were bacterially expressed and purified. Assembly competence was assessed by electron microscopy. RESULTS Substitution of the phakosin helix initiation motif (HIM) into K18 does not alter assembly with K8, establishing that the radical divergence in phakosin HIM is not by itself the mechanism by which IF assembly is redirected to BF assembly. Unexpectedly, K18 bearing phakosin HIM resulted in normal IF assembly, despite the presence of an otherwise disease-causing R-C substitution, and two helix-disrupting glycines. This disproves the widely held belief that mutation of the R is catastrophic to IF assembly. Additional data are presented that suggest normal IF assembly is dependent on sequence-specific interactions between the IF head domain and the HIM. CONCLUSIONS In the lens fiber cell, two members of the IF family have evolved to produce BFs instead of IFs, a change that presumably adapts the IF to a fiber cell-specific function. The authors establish here that the most striking divergence seen in phakosin is not, as hypothesized, the cause of this altered assembly outcome. The authors further establish that the HIM of IFs is far more tolerant of mutations, such as those that cause some corneal dystrophies and Alexander disease, than previously hypothesized and that normal assembly involves sequence-specific interactions between the head domain and the HIM.
Collapse
Affiliation(s)
- Joshua T Pittenger
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
47
|
Panorchan P, Lee JSH, Daniels BR, Kole TP, Tseng Y, Wirtz D. Probing cellular mechanical responses to stimuli using ballistic intracellular nanorheology. Methods Cell Biol 2007; 83:115-40. [PMID: 17613307 DOI: 10.1016/s0091-679x(07)83006-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a new method to measure the local and global micromechanical properties of the cytoplasm of single living cells in their physiological milieu and subjected to external stimuli. By tracking spontaneous, Brownian movements of individual nanoparticles of diameter>or=100 nm distributed within the cell with high spatial and temporal resolutions, the local viscoelastic properties of the intracellular milieu can be measured in different locations within the cell. The amplitude and the time-dependence of the mean-squared displacement of each nanoparticle directly reflect the elasticity and the viscosity of the cytoplasm in the vicinity of the nanoparticle. In our previous versions of particle tracking, we delivered nanoparticles via microinjection, which limited the number of cells amenable to measurement, rendering our technique incompatible with high-throughput experiments. Here we introduce ballistic injection to effectively deliver a large number of nanoparticles to a large number of cells simultaneously. When coupled with multiple particle tracking, this new method-ballistic intracellular nanorheology (BIN)-makes it now possible to probe the viscoelastic properties of cells in high-throughput experiments, which require large quantities of injected cells for seeding in various conditions. For instance, BIN allows us to probe an ensemble of cells embedded deeply inside a three-dimensional extracellular matrix or as a monolayer of cells subjected to shear flows.
Collapse
Affiliation(s)
- Porntula Panorchan
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
48
|
Marceau N, Schutte B, Gilbert S, Loranger A, Henfling MER, Broers JLV, Mathew J, Ramaekers FCS. Dual roles of intermediate filaments in apoptosis. Exp Cell Res 2007; 313:2265-81. [PMID: 17498695 DOI: 10.1016/j.yexcr.2007.03.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 02/06/2023]
Abstract
New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress. In the same way, we examine IF involvement, along with cytolinker participation, in sequential caspase-mediated protein cleavages that are part of the overall cell death execution, particularly those that generate new functional IF protein fragments and uncover neoantigen markers. Finally, we report on the usefulness of these markers as diagnostic tools for disease-related aspects of apoptosis in humans. Clearly, the data accumulated in recent years provide new and significant insights into the multiple functions of IFs, particularly their dual roles in cell response to apoptotic insults.
Collapse
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie de l'Université Laval and L'Hôtel-Dieu de Québec (CHUQ), Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hess JF, Budamagunta MS, Shipman RL, FitzGerald PG, Voss JC. Characterization of the linker 2 region in human vimentin using site-directed spin labeling and electron paramagnetic resonance. Biochemistry 2006; 45:11737-43. [PMID: 17002274 PMCID: PMC2902999 DOI: 10.1021/bi060741y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Site-directed spin labeling and electron paramagnetic resonance were used to probe residues 281-304 of human vimentin, a region that has been predicted to be a non-alpha-helical linker and the beginning of coiled-coil domain 2B. Though no direct test of linker structure has ever been made, this region has been hypothesized to be flexible with the polypeptide chains looping away from one another. EPR analysis of spin-labeled mutants indicates that (a) several residues reside in close proximity, suggesting that adjacent linker regions in a dimer run in parallel, and that (b) the polypeptide backbone is relatively rigid and inflexible in this region. However, this region does not show the characteristics of a coiled-coil as has been identified elsewhere in the molecule. Within this region, spectra from positions 283 and 291 are unique from all others thus far examined. These positions, predicted to be in a noncoiled-coil structure, display a significantly stronger interaction than the a-d contact positions of coiled-coil regions. Analysis of the early stages of assembly by dialysis from 8 M urea and progressive thermal denaturation shows the close apposition and structural rigidity at residues 283 and 291 occurs very early in assembly and with a relatively sudden onset, well before coiled-coil formation in other parts of the molecule. These features are inconsistent with hypotheses that envision the linkers as flexible regions, or as looping away from one another, and raise the possibility that the linker may be the site at which dimer alignment and/or formation is initiated. Spin labels placed further downstream yield spectra suggesting that the first regular heptad of rod domain 2 begins at position 302. In conjunction with our previous characterization of region 305-336 and the solved structure of rod 2B from 328-405, the full extent of coiled-coil domain in rod 2B is now known, spanning from vimentin positions 302-405.
Collapse
Affiliation(s)
- John F. Hess
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95616
| | - Madhu S. Budamagunta
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, California 95616
| | - Rebecca L. Shipman
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, California 95616
| | - Paul G. FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95616
- To whom correspondence should be addressd. Tel: 530-752-7130. Fax: 530-752-8520.
| | - John C. Voss
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, California 95616
| |
Collapse
|
50
|
Loranger A, Gilbert S, Brouard JS, Magin TM, Marceau N. Keratin 8 modulation of desmoplakin deposition at desmosomes in hepatocytes. Exp Cell Res 2006; 312:4108-19. [PMID: 17126832 DOI: 10.1016/j.yexcr.2006.09.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 01/15/2023]
Abstract
Keratins, the intermediate filament proteins of epithelial cells, connect to desmosomes, the cell-cell adhesion structures at the surface membrane. The building elements of desmosomes include desmoglein and desmocollin, which provide the actual cell adhesive properties, and desmoplakins, which anchor the keratin intermediate filaments to desmosomes. In the work reported here, we address the role of keratin 8 in modulating desmoplakin deposition at surface membrane in mouse hepatocytes. The experimental approach is based on the use of keratin 8- and keratin 18-null mouse hepatocytes as cell models. In wild-type mouse hepatocytes, desmoplakin is aligned with desmoglein and keratin 8 at the surface membrane. In keratin 8-null hepatocytes, the intermediate filament loss leads to alterations in desmoplakin distribution at the surface membrane, but not of desmoglein. Intriguingly, a significant proportion of keratin 18-null hepatocytes express keratin 8 at the surface membrane, associated with a proper desmoplakin alignment with desmoglein at desmosomes. A Triton treatment of the monolayer reveals that most of the desmoplakin present in either wild-type, keratin 8- or keratin 18-null hepatocytes is insoluble. Deletion analysis of keratin 8 further suggests that the recovery of desmoplakin alignment requires the keratin 8 rod domain. In addition, similarly to other works revealing a key role of desmoplakin phosphorylation on its interaction with intermediate filaments, we find that the phosphorylation status of the keratin 8 head domain affects desmoplakin distribution at desmosomes. Together, the data indicate that a proper alignment/deposition of desmoplakin with keratins and desmoglein in hepatocytes requires keratin 8, through a reciprocal phosphoserine-dependent process.
Collapse
Affiliation(s)
- Anne Loranger
- Centre de recherche en cancérologie, QC, Canada G1R 2J6
| | | | | | | | | |
Collapse
|