1
|
Gao Y, Ang YS, Yung LYL. CRISPR-Cas12a-Assisted DNA Circuit for Nonmicroscopic Detection of Cell Surface Receptor Clustering. ACS Sens 2025; 10:977-985. [PMID: 39924908 DOI: 10.1021/acssensors.4c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Protein-protein interactions (PPIs) on the cell surface have been of great interest due to their high clinical relevance and significance; however, the methods for detecting PPIs heavily rely on microscopic instruments. In this work, we designed a Cas12a-assisted DNA circuit for detecting cell surface receptor clustering events without a dependence on microscopy. This nonmicroscopic approach is based on the proximity principle, where localized protein-protein interactions such as receptor clustering are converted into DNA barcodes. These barcodes can then be identified by Cas12a for signal generation in the bulk. The compatibility of the circuit with Cas12a was first experimentally verified. Several leak reactions were identified and minimized. Lastly, we implemented this design in human breast cancer cell line models to distinguish the different levels of human epidermal growth factor receptor 2 (HER2) homodimers and heterodimers with HER1 and HER3 semiquantitatively without the use of a microscope. Overall, our proposed Cas12a-assisted DNA circuit for detecting cell surface receptor clustering shows the potential for fast screening in diagnostic applications and drug discovery, demonstrating the promising use of enzymatic DNA circuits in biological applications.
Collapse
Affiliation(s)
- Yahui Gao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
2
|
Bartoš L, Lund M, Vácha R. Enhanced diffusion through multivalency. SOFT MATTER 2025; 21:179-185. [PMID: 39628400 PMCID: PMC11615653 DOI: 10.1039/d4sm00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024]
Abstract
The diffusion of macromolecules, nanoparticles, viruses, and bacteria is essential for targeting hosts or cellular destinations. While these entities can bind to receptors and ligands on host surfaces, the impact of multiple binding sites-referred to as multivalency-on diffusion along strands or surfaces is poorly understood. Through numerical simulations, we have discovered a significant acceleration in diffusion for particles with increasing valency, while maintaining the same overall affinity to the host surface. This acceleration arises from the redistribution of the binding affinity of the particle across multiple binding ligands. As a result, particles that are immobilized when monovalent can achieve near-unrestricted diffusion upon becoming multivalent. Additionally, we demonstrate that the diffusion of multivalent particles with a rigid ligand distribution can be modulated by patterned host receptors. These findings provide insights into the complex diffusion mechanisms of multivalent particles and biological entities, and offer new strategies for designing advanced nanoparticle systems with tailored diffusion properties, thereby enhancing their effectiveness in applications such as drug delivery and diagnostics.
Collapse
Affiliation(s)
- Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Mikael Lund
- Division of Computational Chemistry, Lund University, Sweden.
- LINXS Institute of Advanced Neutron and X-ray Science, Lund University, Sweden
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
3
|
Armbruster A, Hörner M, Weber W. Optogenetic Clustering and Stimulation of the T Cell Receptor in Nongenetically Modified Human T Cells. Methods Mol Biol 2025; 2840:149-162. [PMID: 39724350 DOI: 10.1007/978-1-0716-4047-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Methods for the precise temporal control of cell surface receptor activation are indispensable for the investigation of signaling processes in mammalian cells. Optogenetics enables such precise control, but its application in primary cells is limited by the imperative for genetic manipulation of target cells. We here describe a method that overcomes this obstacle and enables the precise activation of the T cell receptor in nongenetically engineered human T cells by light. Our optogenetic receptor activation system OptoREACT employs a TCR-specific scFv fused to PIF6 that interacts with tetramerized PhyB in a light-dependent manner and thereby clusters and activates the T cell receptor in response to red light. OptoREACT not only omits genetic manipulation of the target cell but, because of its modular nature, is likely applicable to a broad range of oligomerization-activated cell surface receptors.
Collapse
Affiliation(s)
- Anja Armbruster
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Prolific Machines, CA, Emeryville, USA.
| | - Wilfried Weber
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
4
|
Armbruster A, Ehret AK, Russ M, Idstein V, Klenzendorf M, Gaspar D, Juraske C, Yousefi OS, Schamel WW, Weber W, Hörner M. OptoREACT: Optogenetic Receptor Activation on Nonengineered Human T Cells. ACS Synth Biol 2024; 13:752-762. [PMID: 38335541 DOI: 10.1021/acssynbio.3c00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Optogenetics is a versatile and powerful tool for the control and analysis of cellular signaling processes. The activation of cellular receptors by light using optogenetic switches usually requires genetic manipulation of cells. However, this considerably limits the application in primary, nonengineered cells, which is crucial for the study of physiological signaling processes and for controlling cell fate and function for therapeutic purposes. To overcome this limitation, we developed a system for the light-dependent extracellular activation of cell surface receptors of nonengineered cells termed OptoREACT (Optogenetic Receptor Activation) based on the light-dependent protein interaction of A. thaliana phytochrome B (PhyB) with PIF6. In the OptoREACT system, a PIF6-coupled antibody fragment binds the T cell receptor (TCR) of Jurkat or primary human T cells, which upon illumination is bound by clustered phytochrome B to induce receptor oligomerization and activation. For clustering of PhyB, we either used tetramerization by streptavidin or immobilized PhyB on the surface of cells to emulate the interaction of a T cell with an antigen-presenting cell. We anticipate that this extracellular optogenetic approach will be applicable for the light-controlled activation of further cell surface receptors in primary, nonengineered cells for versatile applications in fundamental and applied research.
Collapse
Affiliation(s)
- Anja Armbruster
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Anna K Ehret
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, Freiburg 79106, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, Freiburg 79104, Germany
| | - Marissa Russ
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, Freiburg 79106, Germany
| | - Vincent Idstein
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, Freiburg 79106, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, Freiburg 79104, Germany
| | - Melissa Klenzendorf
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Denise Gaspar
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Claudia Juraske
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, Freiburg 79106, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, Freiburg 79104, Germany
| | - O Sascha Yousefi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, Freiburg 79106, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, Freiburg 79106, Germany
| | - Wilfried Weber
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken 66123, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| |
Collapse
|
5
|
Acuto O. T-cell virtuosity in ''knowing thyself". Front Immunol 2024; 15:1343575. [PMID: 38415261 PMCID: PMC10896960 DOI: 10.3389/fimmu.2024.1343575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Major Histocompatibility Complex (MHC) I and II and the αβ T-cell antigen receptor (TCRαβ) govern fundamental traits of adaptive immunity. They form a membrane-borne ligand-receptor system weighing host proteome integrity to detect contamination by nonself proteins. MHC-I and -II exhibit the "MHC-fold", which is able to bind a large assortment of short peptides as proxies for self and nonself proteins. The ensuing varying surfaces are mandatory ligands for Ig-like TCRαβ highly mutable binding sites. Conserved molecular signatures guide TCRαβ ligand binding sites to focus on the MHC-fold (MHC-restriction) while leaving many opportunities for its most hypervariable determinants to contact the peptide. This riveting molecular strategy affords many options for binding energy compatible with specific recognition and signalling aimed to eradicated microbial pathogens and cancer cells. While the molecular foundations of αβ T-cell adaptive immunity are largely understood, uncertainty persists on how peptide-MHC binding induces the TCRαβ signals that instruct cell-fate decisions. Solving this mystery is another milestone for understanding αβ T-cells' self/nonself discrimination. Recent developments revealing the innermost links between TCRαβ structural dynamics and signalling modality should help dissipate this long-sought-after enigma.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Kang JJ, Ohoka A, Sarkar CA. Designing Multivalent and Multispecific Biologics. Annu Rev Chem Biomol Eng 2023; 15:293-314. [PMID: 38064501 DOI: 10.1146/annurev-chembioeng-100722-112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design-domain affinities, valency, and spatial presentation-must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer J Kang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
- Present affiliation: AbbVie Inc., North Chicago, Illinois, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| |
Collapse
|
7
|
Dam TK, Hohman O, Sheppard L, Brewer CF, Bandyopadhyay P. Mechanism of multivalent glycoconjugate-lectin interaction: An update. Adv Carbohydr Chem Biochem 2023; 84:1-21. [PMID: 37979977 DOI: 10.1016/bs.accb.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Lectins are predominantly oligomeric proteins with several binding sites per molecule. Glycoconjugates are their natural ligands, which often possess multiple binding epitopes. Thus, lectin-glycoconjugate interactions are mostly multivalent in nature. The mechanism of multivalent binding is fundamentally different from those described for monovalent interactions in textbooks and research papers. Over the years, binding studies that make use of different lectins and a variety of multivalent glycoconjugate ligands were conducted in order to understand the underlying principles of multivalency. Starting with seemingly simple synthetic multivalent analogs, systematic studies were carried out using natural glycoconjugate ligands with increasing valency and complexity. Those ligands included multivalent glycoproteins, polyvalent polysaccharides, including glycosaminoglycans, as well as supra-valent mucins and proteoglycans. Models and mechanisms of multivalent binding derived from quantitative data are summarized in the present updated review.
Collapse
Affiliation(s)
- Tarun K Dam
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, MI, United States; Health Research Institute, Michigan Technological University, Houghton, MI, United States.
| | - Olivia Hohman
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, MI, United States
| | - Lucas Sheppard
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, MI, United States
| | - C Fred Brewer
- Department of Molecular Pharmacology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Purnima Bandyopadhyay
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
8
|
Thomas C, Tampé R. Structure and mechanism of immunoreceptors: New horizons in T cell and B cell receptor biology and beyond. Curr Opin Struct Biol 2023; 80:102570. [PMID: 36940642 DOI: 10.1016/j.sbi.2023.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
Immunoreceptors, also named non-catalytic tyrosine-phosphorylated receptors, are a large class of leukocyte cell-surface proteins critically involved in innate and adaptive immune responses. Their most characteristic defining feature is a shared signal transduction machinery where binding events of cell surface-anchored ligands to the small extracellular receptor domains are translated into phosphorylation of conserved tyrosine-containing cytosolic sequence motifs initiating downstream signal transduction cascades. Despite their central importance to immunology, the molecular mechanism of how ligand binding activates the receptors and results in robust intracellular signaling has remained enigmatic. Recent breakthroughs in our understanding of the architecture and triggering mechanism of immunoreceptors come from cryogenic electron microscopy studies of the B cell and T cell antigen receptors.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
9
|
Wan S, Liu S, Sun M, Zhang J, Wei X, Song T, Li Y, Liu X, Chen H, Yang CJ, Song Y. Spatial- and Valence-Matched Neutralizing DNA Nanostructure Blocks Wild-Type SARS-CoV-2 and Omicron Variant Infection. ACS NANO 2022; 16:15310-15317. [PMID: 36073793 PMCID: PMC9469956 DOI: 10.1021/acsnano.2c06803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/06/2022] [Indexed: 06/02/2023]
Abstract
Natural ligand-receptor interactions that play pivotal roles in biological events are ideal models for design and assembly of artificial recognition molecules. Herein, aiming at the structural characteristics of the spike trimer and infection mechanism of SARS-CoV-2, we have designed a DNA framework-guided spatial-patterned neutralizing aptamer trimer for SARS-CoV-2 neutralization. The ∼5.8 nm tetrahedral DNA framework affords precise spatial organization and matched valence as four neutralizing aptamers (MATCH-4), which matches with nanometer precision the topmost surface of SARS-CoV-2 spike trimer, enhancing the interaction between MATCH-4 and spike trimer. Moreover, the DNA framework provides a dimensionally complementary nanoscale barrier to prevent the spike trimer-ACE2 interaction and the conformational transition, thereby inhibiting SARS-CoV-2-host cell fusion and infection. As a result, the spatial- and valence-matched MATCH-4 ensures improved binding affinity and neutralizing activity against SARS-CoV-2 and its varied mutant strains, particularly the current Omicron variant, that are evasive of the majority of existing neutralizing antibodies. In addition, because neutralizing aptamers specific to other targets can be evolved and assembled, the present design has the potential to inhibit other wide-range and emerging pathogens.
Collapse
Affiliation(s)
- Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xinyang Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chaoyong James Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Critical parameters for design and development of multivalent nanoconstructs: recent trends. Drug Deliv Transl Res 2022; 12:2335-2358. [PMID: 35013982 PMCID: PMC8747862 DOI: 10.1007/s13346-021-01103-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
A century ago, the groundbreaking concept of the magic bullet was given by Paul Ehrlich. Since then, this concept has been extensively explored in various forms to date. The concept of multivalency is among such advancements of the magic bullet concept. Biologically, the concept of multivalency plays a critical role in significantly huge numbers of biochemical interactions. This concept is the sole reason behind the higher affinity of biological molecules like viruses to more selectively target the host cell surface receptors. Multivalent nanoconstructs are a promising approach for drug delivery by the active targeting principle. Designing and developing effective and target-specific multivalent drug delivery nanoconstructs, on the other hand, remain a challenge. The underlying reason for this is a lack of understanding of the crucial interactions between ligands and cell surface receptors, as well as the design of nanoconstructs. This review highlights the need for a better theoretical understanding of the multivalent effect of what happens to the receptor-ligand complex after it has been established. Furthermore, the critical parameters for designing and developing robust multivalent systems have been emphasized. We have also discussed current advances in the design and development of multivalent nanoconstructs for drug delivery. We believe that a thorough knowledge of theoretical concepts and experimental methodologies may transform a brilliant idea into clinical translation.
Collapse
|
11
|
De Silva D, Ferguson L, Chin GH, Smith BE, Apathy RA, Roth TL, Blaeschke F, Kudla M, Marson A, Ingolia NT, Cate JHD. Robust T cell activation requires an eIF3-driven burst in T cell receptor translation. eLife 2021; 10:e74272. [PMID: 34970966 PMCID: PMC8758144 DOI: 10.7554/elife.74272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Activation of T cells requires a rapid surge in cellular protein synthesis. However, the role of translation initiation in the early induction of specific genes remains unclear. Here, we show human translation initiation factor eIF3 interacts with select immune system related mRNAs including those encoding the T cell receptor (TCR) subunits TCRA and TCRB. Binding of eIF3 to the TCRA and TCRB mRNA 3'-untranslated regions (3'-UTRs) depends on CD28 coreceptor signaling and regulates a burst in TCR translation required for robust T cell activation. Use of the TCRA or TCRB 3'-UTRs to control expression of an anti-CD19 chimeric antigen receptor (CAR) improves the ability of CAR-T cells to kill tumor cells in vitro. These results identify a new mechanism of eIF3-mediated translation control that can aid T cell engineering for immunotherapy applications.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- Department of Molecular and Cell Biology, University of California-BerkeleyBerkeleyUnited States
- The J. David Gladstone InstitutesSan FranciscoUnited States
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California-BerkeleyBerkeleyUnited States
| | - Grant H Chin
- Department of Molecular and Cell Biology, University of California-BerkeleyBerkeleyUnited States
| | - Benjamin E Smith
- School of Optometry, University of California, BerkeleyBerkeleyUnited States
| | - Ryan A Apathy
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
| | - Theodore L Roth
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
| | | | - Marek Kudla
- Department of Molecular and Cell Biology, University of California-BerkeleyBerkeleyUnited States
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
- Parker Institute for Cancer ImmunotherapySan FranciscoUnited States
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California-BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
| | - Jamie HD Cate
- Department of Molecular and Cell Biology, University of California-BerkeleyBerkeleyUnited States
- The J. David Gladstone InstitutesSan FranciscoUnited States
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California-BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
12
|
Lanz AL, Masi G, Porciello N, Cohnen A, Cipria D, Prakaash D, Bálint Š, Raggiaschi R, Galgano D, Cole DK, Lepore M, Dushek O, Dustin ML, Sansom MSP, Kalli AC, Acuto O. Allosteric activation of T cell antigen receptor signaling by quaternary structure relaxation. Cell Rep 2021; 36:109375. [PMID: 34260912 PMCID: PMC8293630 DOI: 10.1016/j.celrep.2021.109375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023] Open
Abstract
The mechanism of T cell antigen receptor (TCR-CD3) signaling remains elusive. Here, we identify mutations in the transmembrane region of TCRβ or CD3ζ that augment peptide T cell antigen receptor (pMHC)-induced signaling not explicable by enhanced ligand binding, lateral diffusion, clustering, or co-receptor function. Using a biochemical assay and molecular dynamics simulation, we demonstrate that the gain-of-function mutations loosen the interaction between TCRαβ and CD3ζ. Similar to the activating mutations, pMHC binding reduces TCRαβ cohesion with CD3ζ. This event occurs prior to CD3ζ phosphorylation and at 0°C. Moreover, we demonstrate that soluble monovalent pMHC alone induces signaling and reduces TCRαβ cohesion with CD3ζ in membrane-bound or solubilised TCR-CD3. Our data provide compelling evidence that pMHC binding suffices to activate allosteric changes propagating from TCRαβ to the CD3 subunits, reconfiguring interchain transmembrane region interactions. These dynamic modifications could change the arrangement of TCR-CD3 boundary lipids to license CD3ζ phosphorylation and initiate signal propagation. Mutations in TCRβ and CD3ζ TMRs that reduce their interaction augment signaling pMHC and anti-CD3 binding to TCR-CD3 induce similar quaternary structure relaxation Soluble monovalent pMHC alone signals and reduces TCRαβ cohesion with CD3ζ Allosteric changes in TCR-CD3 dynamics instigate T cell activation
Collapse
Affiliation(s)
- Anna-Lisa Lanz
- T-cell signalling laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Giulia Masi
- T-cell signalling laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Nicla Porciello
- T-cell signalling laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - André Cohnen
- T-cell signalling laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Deborah Cipria
- T-cell signalling laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dheeraj Prakaash
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Štefan Bálint
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Roberto Raggiaschi
- T-cell signalling laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Donatella Galgano
- T-cell signalling laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David K Cole
- Division Infection & Immunity, Cardiff University, Cardiff CF14 4XN, UK; Immunocore Ltd., Abingdon OX14 4RY, UK
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Antreas C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Oreste Acuto
- T-cell signalling laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
13
|
Di Iorio D, Lu Y, Meulman J, Huskens J. Recruitment of receptors at supported lipid bilayers promoted by the multivalent binding of ligand-modified unilamellar vesicles. Chem Sci 2020; 11:3307-3315. [PMID: 34122838 PMCID: PMC8152591 DOI: 10.1039/d0sc00518e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a better understanding of biomolecular processes, such as the recruitment of receptors at interfaces, at the molecular level. Here we report a model system based on supported lipid bilayers (SLBs) for the investigation of the clustering of receptors at their interface. Biotinylated SLBs, used as cell membrane mimics, were functionalized with streptavidin (SAv), used here as receptor. Subsequently, biotinylated small (SUVs) and giant (GUVs) unilamellar vesicles were bound to the SAv-functionalized SLBs by multivalent interactions and found to induce the recruitment of both SAv on the SLB surface and the biotin moieties in the vesicles. The recruitment of receptors was investigated with quartz crystal microbalance with dissipation monitoring (QCM-D), which allowed the identification of the biotin and SAv densities necessary to obtain receptor recruitment. At approx. 0.6% of biotin in the vesicles, a transition between dense and low vesicle packing was observed, which coincided with the transitions between recruitment in the vesicles vs. recruitment in the SLB and between full and partial use of the biotin moieties in the vesicle. Direct optical visualization of the clustering at the interface of individual GUVs with the SLB platform was achieved with fluorescence microscopy, showing recruitment of SAv at the contact area as well as the deformation of the vesicles upon binding. Different vesicle binding regimes were observed for lower and higher biotin densities in the vesicles and at the SLBs. A more quantitative analysis of the molecular parameters implied in the interaction, indicated that approx. 10% of the vesicle area constitutes the contact area. Moreover, the SUV binding and recruitment appeared to be fast on the analysis time scale, whereas the binding of GUVs is slower due to the larger SLB area over which SAv recruitment needs to occur. The mechanisms revealed in this study may provide insight in biological processes in which recruitment occurs. The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a molecular understanding of biomolecular processes, such as the recruitment of receptors at interfaces.![]()
Collapse
Affiliation(s)
- Daniele Di Iorio
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| | - Yao Lu
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| | - Joris Meulman
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| |
Collapse
|
14
|
Schamel WW, Alarcon B, Minguet S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol Rev 2020; 291:8-25. [PMID: 31402501 DOI: 10.1111/imr.12788] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
The αβ T-cell receptor (TCR) is a multiprotein complex controlling the activation of T cells. Although the structure of the complete TCR is not known, cumulative evidence supports that the TCR cycles between different conformational states that are promoted either by thermal motion or by force. These structural transitions determine whether the TCR engages intracellular effectors or not, regulating TCR phosphorylation and signaling. As for other membrane receptors, ligand binding selects and stabilizes the TCR in active conformations, and/or switches the TCR to activating states that were not visited before ligand engagement. Here we review the main models of TCR allostery, that is, ligand binding at TCRαβ changes the structure at CD3 and ζ. (a) The ITAM and proline-rich sequence exposure model, in which the TCR's cytoplasmic tails shield each other and ligand binding exposes them for phosphorylation. (b) The membrane-ITAM model, in which the CD3ε and ζ tails are sequestered inside the membrane and again ligand binding exposes them. (c) The mechanosensor model in which ligand binding exerts force on the TCR, inducing structural changes that allow signaling. Since these models are complementary rather than competing, we propose a unified model that aims to incorporate all existing data.
Collapse
Affiliation(s)
- Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| |
Collapse
|
15
|
Li M, Ding H, Lin M, Yin F, Song L, Mao X, Li F, Ge Z, Wang L, Zuo X, Ma Y, Fan C. DNA Framework-Programmed Cell Capture via Topology-Engineered Receptor-Ligand Interactions. J Am Chem Soc 2019; 141:18910-18915. [PMID: 31691568 DOI: 10.1021/jacs.9b11015] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Receptor-ligand interactions (RLIs) that play pivotal roles in living organisms are often depicted with the classic keys-and-locks model. Nevertheless, RLIs on the cell surface are generally highly complex and nonlinear, partially due to the noncontinuous and dynamic distribution of receptors on extracellular membranes. Here, we develop a tetrahedral DNA framework (TDF)-programmed approach to topologically engineer RLIs on the cell membrane, which enables active recruitment-binding of clustered receptors for high-affinity capture of circulating tumor cells (CTCs). The four vertices of a TDF afford orthogonal anchoring of ligands with spatial organization, based on which we synthesized n-simplexes harboring 1-3 aptamers targeting epithelial cell adhesion molecule (EpCAM) that are overexpressed on the membrane of tumor cells. The 2-simplex with three aptamers not only shows increased binding affinity (∼19-fold) but prevents endocytosis by cells. By using 2-simplex as the capture probe, we demonstrate the high-efficiency CTC capture, which is challenged in real clinical breast cancer patient samples. This TDF-programmed platform thus provides a powerful means for studying RLIs in physiological settings and for cancer diagnosis.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Hongming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , China
| | - Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Fangfei Yin
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China.,Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
| | - Lu Song
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China.,Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
| | - Xiuhai Mao
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Fan Li
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Zhilei Ge
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Chunhai Fan
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| |
Collapse
|
16
|
Poupot R, Goursat C, Fruchon S. Multivalent nanosystems: targeting monocytes/macrophages. Int J Nanomedicine 2018; 13:5511-5521. [PMID: 30271144 PMCID: PMC6154704 DOI: 10.2147/ijn.s146192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Among all the cellular partners involved in inflammatory processes, monocytes and macrophages are the master regulators of inflammation. They are found in almost all the tissues and are nearly the only cells capable of performing each step of inflammation. Consequently, they stand as major relevant therapeutic targets to treat inflammatory disorders and diseases. The physiological phagocytic activity of macrophages prompts them to detect, to recognize, and eventually to engulf any nanosystem cruising in their neighborhood. Interestingly, nanosystems can be rationally engineered to afford multivalent, and multifunctional if needed, entities with multiplexed and/or reinforced biological activities. Indeed, engineered nanosystems bearing moieties specifically targeting macrophages, and loaded with or bound to drugs are promising candidates to modulate, or even eradicate, deleterious macrophages in vivo. In this review we highlight recent articles and concepts of multivalent nanosystems targeting monocytes and macrophages to treat inflammatory disorders.
Collapse
Affiliation(s)
- Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France,
| | - Cécile Goursat
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France,
| | - Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France,
| |
Collapse
|
17
|
Ang YS, Li JJ, Chua PJ, Ng CT, Bay BH, Yung LYL. Localized Visualization and Autonomous Detection of Cell Surface Receptor Clusters Using DNA Proximity Circuit. Anal Chem 2018; 90:6193-6198. [PMID: 29608843 DOI: 10.1021/acs.analchem.8b00722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell surface receptors play an important role in mediating cell communication and are used as disease biomarkers and therapeutic targets. We present a one-pot molecular toolbox, which we term the split proximity circuit (SPC), for the autonomous detection and visualization of cell surface receptor clusters. Detection was powered by antibody recognition and a series of autonomous DNA hybridization to achieve localized, enzyme-free signal amplification. The system under study was the human epidermal growth factor receptor (HER) family, that is, HER2:HER2 homodimer and HER2:HER3 heterodimer, both in cell lysate and in situ on fixed whole cells. The detection and imaging of receptors were carried out using standard microplate scans and confocal microscopy, respectively. The circuit operated specifically with minimal leakages and successfully captured the receptor expression profiles on three cell types without any intermediate washing steps.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585 , Singapore
| | - Jia'En Jasmine Li
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585 , Singapore
| | - Pei-Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117594 , Singapore
| | - Cheng-Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117594 , Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117594 , Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585 , Singapore
| |
Collapse
|
18
|
Bernal-Estévez DA, García O, Sánchez R, Parra-López CA. Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy. BMC Cancer 2018; 18:77. [PMID: 29334915 PMCID: PMC5769526 DOI: 10.1186/s12885-017-3982-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 12/26/2017] [Indexed: 12/25/2022] Open
Abstract
Background Vaccination of mice with tumors treated with Doxorubicin promotes a T cell immunity that relies on dendritic cell (DC) activation and is responsible for tumor control in vaccinated animals. Despite Doxorubicin in combination with Cyclophosphamide (A/C) is widely used to treat breast cancer patients, the stimulating effect of A/C on T and APC compartments and its correlation with patient’s clinical response remains to be proved. Methods In this prospective study, we designed an in vitro system to monitor various immunological readouts in PBMCs obtained from a total of 17 breast cancer patients before, and after neoadjuvant anti-tumor therapy with A/C. Results The results show that before treatment, T cells and DCs, exhibit a marked unresponsiveness to in vitro stimulus: whereas T cells exhibit poor TCR internalization and limited expression of CD154 in response to anti-CD3/CD28/CD2 stimulation, DCs secrete low levels of IL-12p70 and limited CD83 expression in response to pro-inflammatory cytokines. Notably, after treatment the responsiveness of T and APC compartments was recovered, and furthermore, this recovery correlated with patients’ residual cancer burden stage. Conclusions Our results let us to argue that the model used here to monitor the T and APC compartments is suitable to survey the recovery of immune surveillance and to predict tumor response during A/C chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12885-017-3982-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David A Bernal-Estévez
- Department of Microbiology, Graduated School in Biomedical Sciences, Universidad Nacional de Colombia, Bogotá, Colombia.,Immunology and Clinical Oncology Research Group (GIIOC), Fundación Salud de los Andes, Bogotá, Colombia
| | - Oscar García
- Servicio de seno y tejidos blandos, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Ramiro Sánchez
- Department of Microbiology, Graduated School in Biomedical Sciences, Universidad Nacional de Colombia, Bogotá, Colombia.,Clínica del Seno, Bogotá, Colombia
| | - Carlos A Parra-López
- Department of Microbiology, Graduated School in Biomedical Sciences, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
19
|
Sun HM, Chen XL, Chen XJ, Liu J, Ma L, Wu HY, Huang QH, Xi XD, Yin T, Zhu J, Chen Z, Chen SJ. PALLD Regulates Phagocytosis by Enabling Timely Actin Polymerization and Depolymerization. THE JOURNAL OF IMMUNOLOGY 2017; 199:1817-1826. [PMID: 28739877 DOI: 10.4049/jimmunol.1602018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
PALLD is an actin cross-linker supporting cellular mechanical tension. However, its involvement in the regulation of phagocytosis, a cellular activity essential for innate immunity and physiological tissue turnover, is unclear. We report that PALLD is highly induced along with all-trans-retinoic acid-induced maturation of myeloid leukemia cells, to promote Ig- or complement-opsonized phagocytosis. PALLD mechanistically facilitates phagocytic receptor clustering by regulating actin polymerization and c-Src dynamic activation during particle binding and early phagosome formation. PALLD is also required at the nascent phagosome to recruit phosphatase oculocerebrorenal syndrome of Lowe, which regulates phosphatidylinositol-4,5-bisphosphate hydrolysis and actin depolymerization to complete phagosome closure. Collectively, our results show a new function for PALLD as a crucial regulator of the early phase of phagocytosis by elaborating dynamic actin polymerization and depolymerization.
Collapse
Affiliation(s)
- Hai-Min Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Lei Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Jie Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lie Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai-Yan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiu-Hua Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Dong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Yin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
20
|
Kumar A, Sýkorová P, Demo G, Dobeš P, Hyršl P, Wimmerová M. A Novel Fucose-binding Lectin from Photorhabdus luminescens (PLL) with an Unusual Heptabladed β-Propeller Tetrameric Structure. J Biol Chem 2016; 291:25032-25049. [PMID: 27758853 DOI: 10.1074/jbc.m115.693473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 09/18/2016] [Indexed: 01/08/2023] Open
Abstract
Photorhabdus luminescens is known for its symbiosis with the entomopathogenic nematode Heterorhabditis bacteriophora and its pathogenicity toward insect larvae. A hypothetical protein from P. luminescens was identified, purified from the native source, and characterized as an l-fucose-binding lectin, named P. luminescens lectin (PLL). Glycan array and biochemical characterization data revealed PLL to be specific toward l-fucose and the disaccharide glycan 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 PLL was discovered to be a homotetramer with an intersubunit disulfide bridge. The crystal structures of native and recombinant PLL revealed a seven-bladed β-propeller fold creating seven putative fucose-binding sites per monomer. The crystal structure of the recombinant PLL·l-fucose complex confirmed that at least three sites were fucose-binding. Moreover, the crystal structures indicated that some of the other sites are masked either by the tetrameric nature of the lectin or by incorporation of the C terminus of the lectin into one of these sites. PLL exhibited an ability to bind to insect hemocytes and the cuticular surface of a nematode, H. bacteriophora.
Collapse
Affiliation(s)
- Atul Kumar
- From the Central European Institute of Technology (CEITEC)
| | - Petra Sýkorová
- From the Central European Institute of Technology (CEITEC).,the Department of Biochemistry, Faculty of Science
| | - Gabriel Demo
- From the Central European Institute of Technology (CEITEC).,the National Centre for Biomolecular Research, Faculty of Science, and
| | - Pavel Dobeš
- the Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Brno 625 00, Czech Republic
| | - Pavel Hyršl
- the Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Brno 625 00, Czech Republic
| | - Michaela Wimmerová
- From the Central European Institute of Technology (CEITEC), .,the Department of Biochemistry, Faculty of Science.,the National Centre for Biomolecular Research, Faculty of Science, and
| |
Collapse
|
21
|
Liu HY, Yu X, Liu H, Wu D, She JX. Co-targeting EGFR and survivin with a bivalent aptamer-dual siRNA chimera effectively suppresses prostate cancer. Sci Rep 2016; 6:30346. [PMID: 27456457 PMCID: PMC4960556 DOI: 10.1038/srep30346] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/04/2016] [Indexed: 12/25/2022] Open
Abstract
Current targeted therapies using small kinase inhibitors and antibodies have limited efficacy in treating prostate cancer (PCa), a leading cause of cancer death in American men. We have developed a novel strategy by engineering an RNA-based aptamer-siRNA chimera, in which a bivalent aptamer specifically binds prostate-specific membrane antigen (PSMA) via an antibody-like structure to promote siRNA internalization in PCa cells, and two siRNAs specific to EGFR and survivin are fused between two aptamers. The chimera is able to inhibit EGFR and survivin simultaneously and induce apoptosis effectively in vitro and in vivo. In the C4-2 PCa xenograft model, the treatment with the chimera significantly suppresses tumor growth and angiogenesis. The inhibition of angiogenesis is mediated by an EGFR-HIF1α-VEGF-dependent mechanism. Our results support that the bivalent aptamer-driven delivery of two siRNAs could be a new combination therapeutic strategy to effectively inhibit multiple and conventionally "undruggable" targets.
Collapse
Affiliation(s)
- Hong Yan Liu
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA,
| | - Xiaolin Yu
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Haitao Liu
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Daqing Wu
- Georgia Cancer Center at Augusta University, and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
22
|
One-pot system for synthesis, assembly, and display of functional single-span membrane proteins on oil-water interfaces. Proc Natl Acad Sci U S A 2015; 113:608-13. [PMID: 26721399 DOI: 10.1073/pnas.1504992113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-span membrane proteins (ssMPs) represent approximately one-half of all membrane proteins and play important roles in cellular communications. However, like all membrane proteins, ssMPs are prone to misfolding and aggregation because of the hydrophobicity of transmembrane helices, making them difficult to study using common aqueous solution-based approaches. Detergents and membrane mimetics can solubilize membrane proteins but do not always result in proper folding and functionality. Here, we use cell-free protein synthesis in the presence of oil drops to create a one-pot system for the synthesis, assembly, and display of functional ssMPs. Our studies suggest that oil drops prevent aggregation of some in vitro-synthesized ssMPs by allowing these ssMPs to localize on oil surfaces. We speculate that oil drops may provide a hydrophobic interior for cotranslational insertion of the transmembrane helices and a fluidic surface for proper assembly and display of the ectodomains. These functionalized oil drop surfaces could mimic cell surfaces and allow ssMPs to interact with cell surface receptors under an environment closest to cell-cell communication. Using this approach, we showed that apoptosis-inducing human transmembrane proteins, FasL and TRAIL, synthesized and displayed on oil drops induce apoptosis of cultured tumor cells. In addition, we take advantage of hydrophobic interactions of transmembrane helices to manipulate the assembly of ssMPs and create artificial clusters on oil drop surfaces. Thus, by coupling protein synthesis with self-assembly at the water-oil interface, we create a platform that can use recombinant ssMPs to communicate with cells.
Collapse
|
23
|
Limited density of an antigen presented by RMA-S cells requires B7-1/CD28 signaling to enhance T-cell immunity at the effector phase. PLoS One 2014; 9:e108192. [PMID: 25383875 PMCID: PMC4226464 DOI: 10.1371/journal.pone.0108192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
The association of B7-1/CD28 between antigen presenting cells (APCs) and T-cells provides a second signal to proliferate and activate T-cell immunity at the induction phase. Many reports indicate that tumor cells transfected with B7-1 induced augmented antitumor immunity at the induction phase by mimicking APC function; however, the function of B7-1 on antitumor immunity at the effector phase is unknown. Here, we report direct evidence of enhanced T-cell antitumor immunity at the effector phase by the B7-1 molecule. Our experiments in vivo and in vitro indicated that reactivity of antigen-specific monoclonal and polyclonal T-cell effectors against a Lass5 epitope presented by RMA-S cells is increased when the cells expressed B7-1. Use of either anti-B7-1 or anti-CD28 antibodies to block the B7-1/CD28 association reduced reactivity of the T effectors against B7-1 positive RMA-S cells. Transfection of Lass5 cDNA into or pulse of Lass5 peptide onto B7-1 positive RMA-S cells overcomes the requirement of the B7-1/CD28 signal for T effector response. To our knowledge, the data offers, for the first time, strong evidence that supports the requirement of B7-1/CD28 secondary signal at the effector phase of antitumor T-cell immunity being dependent on the density of an antigenic peptide.
Collapse
|
24
|
Talaga ML, Fan N, Fueri AL, Brown RK, Chabre YM, Bandyopadhyay P, Roy R, Dam TK. Significant Other Half of a Glycoconjugate: Contributions of Scaffolds to Lectin–Glycoconjugate Interactions. Biochemistry 2014; 53:4445-54. [DOI: 10.1021/bi5001307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | - Yoann M. Chabre
- Department
of Chemistry, Université du Québec à Montréal, Montréal, QC, Canada H3C 3P8
| | | | - René Roy
- Department
of Chemistry, Université du Québec à Montréal, Montréal, QC, Canada H3C 3P8
| | | |
Collapse
|
25
|
Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, Inglés-Prieto Á, Janovjak H. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J 2014; 33:1713-26. [PMID: 24986882 DOI: 10.15252/embj.201387695] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low-intensity blue light. We screened light-oxygen-voltage (LOV)-sensing domains for their ability to activate RTKs by light-activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto-RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour.
Collapse
Affiliation(s)
- Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Karin Schelch
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Robert Riedler
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Eva Reichhart
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Christopher Differ
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Álvaro Inglés-Prieto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Harald Janovjak
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
26
|
Reverse signaling from LIGHT promotes pro-inflammatory responses in the human monocytic leukemia cell line, THP-1. Cell Immunol 2013; 285:10-7. [PMID: 24044961 DOI: 10.1016/j.cellimm.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 12/23/2022]
Abstract
LIGHT is a type II transmembrane protein belonging to the TNF superfamily which is involved in co-stimulation of T cells or apoptosis in tumors. In this study, the possibility of LIGHT-mediated reverse signaling was tested in the human monocytic leukemia cell line, THP-1. For stimulation of LIGHT, cells were stimulated with specific monoclonal antibody and changes in macrophage-related functions such as phagocytosis, adhesion, migration, cytokine secretion, and production of pro-inflammatory mediators were tested. Triggering of LIGHT induced production of pro-inflammatory mediators such as interleukin (IL)-8 and matrix metalloproteinase (MMP)-9 while suppressing the phagocytic activity. Utilization of signaling inhibitors and Western blot demonstrated that LIGHT activated ERK MAPK and PI3K and the major inflammatory transcription factor NF-κB. These data indicate that LIGHT-mediated signaling could modulate the macrophage activities and that successful regulation of its activity could be beneficial to the treatment of chronic inflammatory conditions where macrophages play an important role.
Collapse
|
27
|
Gou Y, Geng J, Richards SJ, Burns J, Remzi Becer C, Haddleton DM. A Detailed Study on Understanding Glycopolymer Library and Con A Interactions. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2013; 51:2588-2597. [PMID: 23761950 PMCID: PMC3677416 DOI: 10.1002/pola.26646] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/12/2013] [Indexed: 01/16/2023]
Abstract
Synthetic glycopolymers are important natural oligosaccharides mimics for many biological applications. To develop glycopolymeric drugs and therapeutic agents, factors that control the receptor-ligand interaction need to be investigated. A library of well-defined glycopolymers has been prepared by the combination of copper mediated living radical polymerization and CuAAC click reaction via post-functionalization of alkyne-containing precursor polymers with different sugar azides. Employing Concanavalin A as the model receptor, we explored the influence of the nature and densities of different sugars residues (mannose, galactose, and glucose) on the stoichiometry of the cluster, the rate of the cluster formation, the inhibitory potency of the glycopolymers, and the stability of the turbidity through quantitative precipitation assays, turbidimetry assays, inhibitory potency assays, and reversal aggregation assays. The diversities of binding properties contributed by different clustering parameters will make it possible to define the structures of the multivalent ligands and densities of binding epitopes tailor-made for specific functions in the lectin-ligand interaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2588-2597.
Collapse
Affiliation(s)
- Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology Changsha, 410073, China
| | | | | | | | | | | |
Collapse
|
28
|
Kim T, Lee H, Kim Y, Nam JM, Lee M. Protein-coated nanofibers for promotion of T cell activity. Chem Commun (Camb) 2013; 49:3949-51. [DOI: 10.1039/c3cc41215f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Jaqaman K, Grinstein S. Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol 2012; 22:515-26. [PMID: 22917551 DOI: 10.1016/j.tcb.2012.07.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022]
Abstract
There is mounting evidence that the plasma membrane is highly dynamic and organized in a complex manner. The cortical cytoskeleton is proving to be a particularly important regulator of plasmalemmal organization, modulating the mobility of proteins and lipids in the membrane, facilitating their segregation, and influencing their clustering. This organization plays a critical role in receptor-mediated signaling, especially in the case of immunoreceptors, which require lateral clustering for their activation. Based on recent developments, we discuss the structures and mechanisms whereby the cortical cytoskeleton regulates membrane dynamics and organization, and how the nonuniform distribution of immunoreceptors and their self-association may affect activation and signaling.
Collapse
Affiliation(s)
- Khuloud Jaqaman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
30
|
Damjanovich L, Volkó J, Forgács A, Hohenberger W, Bene L. Crohn's disease alters MHC-rafts in CD4+ T-cells. Cytometry A 2011; 81:149-64. [PMID: 22128034 DOI: 10.1002/cyto.a.21173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 11/09/2022]
Abstract
Clusters of MHCI, ICAM-1, CD44, CD59, IL-2R, and IL-15R molecules have been studied on the surface of CD4(+) T-cells from peripheral blood and lymph nodes of patients in Crohn's disease and healthy individuals as controls by using a dual-laser flow cytometric fluorescence resonance energy transfer (FRET) technique and fluorescently stained Fabs. When cells from patients in Crohn's disease are compared to those of controls, the surface expression level for the MHCI reduced by ∼45%, for CD44 enhanced by ∼100%, and for IL-2Rα, IL-15Rα, and common γ(c) enhanced by ∼50%, ∼70%, and ∼130%, respectively. Efficiencies of FRET monitoring homoassociation for the MHCI and CD44 reduced, that for IL-2Rα enhanced. While efficiencies of FRET monitoring the association of γ(c) and ICAM-1 with the MHCI reduced, those monitoring association of IL-2/15Rα, CD44, and CD59 with MHCI enhanced. Efficiencies of FRET measured between the MHCI and IL-2Rα, IL-15Rα differently enhanced to the advantage of IL-15Rα, the one measured between γ(c) and IL-2Rα reduced, suggesting modulations in the strength of interaction of MHCI with IL-2R, IL-15R, and γ(c). The increases in density of surface bound cTx and in the associations of the receptors with the G(M1)-ganglioside lipid molecules suggest stronger lipid raft interactions of the receptors. The observed alterations of MHC-rafts in Crohn's disease--summarized in models of receptor patterns of diseased and control cells--may have functional consequences regarding signaling by the raft components.
Collapse
Affiliation(s)
- László Damjanovich
- Department of Surgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
31
|
Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, Brasch J, Wu Y, Vendome J, Felsovalyi K, Hampton CM, Troyanovsky RB, Ben-Shaul A, Frank J, Troyanovsky SM, Shapiro L, Honig B. The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 2011; 19:244-56. [PMID: 21300292 DOI: 10.1016/j.str.2010.11.016] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/24/2022]
Abstract
Adherens junctions, which play a central role in intercellular adhesion, comprise clusters of type I classical cadherins that bind via extracellular domains extended from opposing cell surfaces. We show that a molecular layer seen in crystal structures of E- and N-cadherin ectodomains reported here and in a previous C-cadherin structure corresponds to the extracellular architecture of adherens junctions. In all three ectodomain crystals, cadherins dimerize through a trans adhesive interface and are connected by a second, cis, interface. Assemblies formed by E-cadherin ectodomains coated on liposomes also appear to adopt this structure. Fluorescent imaging of junctions formed from wild-type and mutant E-cadherins in cultured cells confirm conclusions derived from structural evidence. Mutations that interfere with the trans interface ablate adhesion, whereas cis interface mutations disrupt stable junction formation. Our observations are consistent with a model for junction assembly involving strong trans and weak cis interactions localized in the ectodomain.
Collapse
Affiliation(s)
- Oliver J Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen TT, Luque A, Lee S, Anderson SM, Segura T, Iruela-Arispe ML. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. ACTA ACUST UNITED AC 2010; 188:595-609. [PMID: 20176926 PMCID: PMC2828913 DOI: 10.1083/jcb.200906044] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Matrix-bound VEGF elicits more distinct vascular effects than soluble VEGF, including prolonged VEGFR2 activation with altered patterns of tyrosine activation and downstream enhancement of the p38/MAPK pathway. VEGF can be secreted in multiple isoforms with variable affinity for extracellular proteins and different abilities to induce vascular morphogenesis, but the molecular mechanisms behind these effects remain unclear. Here, we show molecular distinctions between signaling initiated from soluble versus matrix-bound VEGF, which mediates a sustained level of VEGFR2 internalization and clustering. Exposure of endothelial cells to matrix-bound VEGF elicits prolonged activation of VEGFR2 with differential phosphorylation of Y1214, and extended activation kinetics of p38. These events require association of VEGFR2 with β1 integrins. Matrix-bound VEGF also promotes reciprocal responses on β1 integrin by inducing its association with focal adhesions; a response that is absent upon exposure to soluble VEGF. Inactivation of β1 integrin blocks the prolonged phosphorylation of Y1214 and consequent activation of p38. Combined, these results indicate that when in the context of extracellular matrix, activation of VEGFR2 is distinct from that of soluble VEGF in terms of recruitment of receptor partners, phosphorylation kinetics, and activation of downstream effectors.
Collapse
Affiliation(s)
- Tom T Chen
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
33
|
McCoy R, Ward S, Hoare M. Sub-population analysis of human cancer vaccine cells-ultra scale-down characterization of response to shear. Biotechnol Bioeng 2010; 106:584-97. [DOI: 10.1002/bit.22716] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Essential role of the Ly49A stalk region for immunological synapse formation and signaling. Proc Natl Acad Sci U S A 2009; 106:11264-9. [PMID: 19549850 DOI: 10.1073/pnas.0900664106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NK cells use surface NK receptors to discriminate self from non-self. The NK receptor ligand-binding domain (NKD) has been considered the sole regulator of ligand binding. Using a prototypic murine NK receptor, Ly49A, we show that the membrane proximal nonligand binding ecto-domain (the stalk region) is critical to ligand binding and signaling. The stalk region is required for receptor binding to ligand on target cells (trans interaction), but is dispensable for receptor binding to ligand on the same cell (cis interaction). Also, signaling in a trans manner depends on the stalk region mediating the formation of the immunological synapse. Thus, our data modeling receptor function at the cellular level reveal an essential role for the stalk region as a specific mediator of receptor signal integration, by which NKD-ligand interactions at the interface initiate and deliver information to the spatially separated cytoplasmic domain.
Collapse
|
35
|
|
36
|
Cooper JA, Qian H. A mechanism for SRC kinase-dependent signaling by noncatalytic receptors. Biochemistry 2008; 47:5681-5688. [PMID: 18444664 DOI: 10.1021/bi8003044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fundamental issue in cell biology is how signals are transmitted across membranes. A variety of transmembrane receptors, including multichain immune recognition receptors, lack catalytic activity and require Src family kinases (SFKs) for signal transduction. However, many receptors only bind and activate SFKs after ligand-induced receptor dimerization. This presents a conundrum: How do SFKs sense the dimerization of receptors to which they are not already bound? Most proposals for resolving this enigma invoke additional players, such as lipid rafts or receptor conformational changes. Here we used simple thermodynamics to show that SFK activation is a natural outcome of clustering of receptors with SFK phosphorylation sites, provided that there is phosphorylation-dependent receptor-SFK association and an SFK bound to one receptor can phosphorylate the second receptor or its associated SFK in a dimer. A simple system of receptor, SFK, and an unregulated protein tyrosine phosphatase (PTP) can account for ligand-induced changes in phosphorylation observed in cells. We suggest that a core signaling system comprising a receptor with SFK phosphorylation sites, an SFK, and an unregulated PTP provides a robust mechanism for transmembrane signal transduction. Other events that regulate signaling in specific cases may have evolved for fine-tuning of this basic mechanism.
Collapse
Affiliation(s)
- Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
37
|
A permissive geometry model for TCR–CD3 activation. Trends Biochem Sci 2008; 33:51-7. [DOI: 10.1016/j.tibs.2007.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/09/2007] [Accepted: 10/19/2007] [Indexed: 01/23/2023]
|
38
|
Park JY, Yoon SH, Kim EK, Yun SO, Park MY, Sohn HJ, Kim TG. A membrane-bound form of IL-4 enhances proliferation and antigen presentation of CD40-activated human B cells. Immunol Lett 2007; 116:33-40. [PMID: 18096249 DOI: 10.1016/j.imlet.2007.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/23/2007] [Accepted: 11/08/2007] [Indexed: 11/17/2022]
Abstract
CD40-activated B (CD40-B) cells might be an attractive source of autologous antigen-presenting cells (APCs) for immunotherapy due to the ability to obtain them from peripheral blood and expand them in vitro. However, soluble IL-4 (sIL-4) in B-cell culture may not represent the "immunological synapse" between B and CD4+ T cells. In this study, the K562 cell line, which expresses CD40L and membrane-bound IL-4 (mbIL-4), could induce higher B-cell proliferation and antigen-presenting surface molecules, including adhesion, costimulatory and HLA molecules, compared with sIL-4. The differentiation to plasmablasts was decreased in CD40-B cells treated with mbIL-4 (CD40-B/mbIL-4) based on flow cytometry analysis. Furthermore, CD40-B/mbIL-4 cells were as potent as mature dendritic cells in the allogeneic lymphocyte reaction and the ability to generate cytotoxic T lymphocytes specific for cytomegalovirus pp65 antigen in vitro. Our results suggest that mbIL-4 could be used to generate CD40-B cells as potent APCs for cellular vaccines and adoptive immunotherapy.
Collapse
Affiliation(s)
- Jung-Yong Park
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Rubin B, Knibiehler M, Gairin JE. Allosteric Changes in the TCR/CD3 Structure Upon Interaction With Extra- or Intra-cellular Ligands. Scand J Immunol 2007; 66:228-37. [PMID: 17635800 DOI: 10.1111/j.1365-3083.2007.01979.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T lymphocytes are activated by the interaction between the T-cell antigen receptor (TCR) and peptides presented by major histocompatibility complex (MHC) molecules. The avidity of this TCR-pMHC interaction is very low. Therefore, several hypotheses have been put forward to explain how T cells become specifically activated despite this handicap: conformational change model, aggregation model, kinetic segregation model, sequential interaction model and permissive geometry model. In the present paper, we conducted experiments to distinguish between the TCR-aggregation model and the TCR-conformational change model. The results obtained using a TCR capture ELISA with Brij 98-solubilized TCR molecules from normal or activated T cells showed that the ligand-TCR interaction causes structural changes in the CD3 epsilon cytoplasmic tail as well as in the extracellular TCR beta FG loop region. Size-fractionation experiments with Brij 98-solubilized TCR/CD3/co-receptor complexes from naïve or activated CD4(+) or CD8(+) T cells demonstrated that such complexes are found as either dimers or tetramers. No monomers or multimers were detected. We propose that: (1) ligand-TCR interaction results in conformational changes in the CD3 epsilon cytoplasmic tail leading to T-cell activation; (2) CD3 epsilon cytoplasmic tail interaction with intracellular proteins may dissociate pMHC and co-receptors (CD4 or CD8) from TCR/CD3 complexes, thus leading to the arrest of T-cell activation; and (3) T-cell activation appears to occur among dimers or tetramers of TCR/CD3/co-receptor complexes interacting with self and non-self (foreign) peptide-MHC complexes.
Collapse
MESH Headings
- Allosteric Regulation/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/metabolism
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- Extracellular Fluid/metabolism
- Intracellular Fluid/metabolism
- Ligands
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- B Rubin
- Institut de Sciences et Technologies du Médicament de Toulouse (ISTMT), Toulouse, France.
| | | | | |
Collapse
|
40
|
Duchardt E, Sigalov AB, Aivazian D, Stern LJ, Schwalbe H. Structure induction of the T-cell receptor zeta-chain upon lipid binding investigated by NMR spectroscopy. Chembiochem 2007; 8:820-7. [PMID: 17410622 DOI: 10.1002/cbic.200600413] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The conformation of the cytoplasmic part of the zeta-chain of the T-cell receptor (TCR) in its free form and bound to detergent micelles has been investigated by heteronuclear NMR spectroscopy. The zeta-chain is considered to be a mediator between the extracellular antigen and the intracellular signal-transduction cascade leading to T-cell activation. Earlier studies suggested a T-cell activation mechanism that involved a TCR-state-dependent lipid incorporation propensity of the zeta-chain accompanied by a helical folding transition. In order to support this proposed mechanism, standard protein NMR assignment and secondary-structure-elucidation techniques have been applied to the free TCR zeta-chain and to the zeta-chain bound to the detergent LMPG, which forms a micelle, in order to obtain the structural characteristics of this folding transition in a residue-resolved manner. We could assign the resonances of the free zeta-chain at 278 K, and this formed the basis for chemical-shift-perturbation studies to identify lipid binding sites. Our NMR results show that the free TCR zeta-chain is indeed intrinsically unstructured. Regions around the ITAM2 and ITAM3 sequences are involved in a highly dynamic binding of the free zeta-chain to a detergent micelle formed by the acidic lipid LMPG.
Collapse
Affiliation(s)
- Elke Duchardt
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University Frankfurt, 60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
41
|
Van Walle I, Gansemans Y, Parren PWHI, Stas P, Lasters I. Immunogenicity screening in protein drug development. Expert Opin Biol Ther 2007; 7:405-18. [PMID: 17309332 DOI: 10.1517/14712598.7.3.405] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Most therapeutic proteins in clinical trials or on the market are, to a variable extent, immunogenic. Formation of antidrug antibodies poses a risk that should be assessed during drug development, as it possibly compromises drug safety and alters pharmacokinetics. The generation of these antibodies is critically dependent on the presence of T helper cell epitopes, which have classically been identified by in vitro methods using blood cells from human donors. As a novel development, in silico methods that identify T cell epitopes have been coming on line. These methods are relatively inexpensive and allow the mapping of epitopes from virtually all human leukocyte antigen molecules derived from a wide genetic background. In vitro assays remain important, but guided by in silico data they can focus on selected peptides and human leukocyte antigen haplotypes, thereby significantly reducing time and cost.
Collapse
Affiliation(s)
- Ivo Van Walle
- Algonomics NV, Technologiepark 4, 9052 Gent-Zwijnaarde, Belgium.
| | | | | | | | | |
Collapse
|
42
|
Minguet S, Swamy M, Alarcón B, Luescher IF, Schamel WWA. Full Activation of the T Cell Receptor Requires Both Clustering and Conformational Changes at CD3. Immunity 2007; 26:43-54. [PMID: 17188005 DOI: 10.1016/j.immuni.2006.10.019] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 10/10/2006] [Accepted: 10/27/2006] [Indexed: 11/26/2022]
Abstract
T cell receptor (TCR-CD3) triggering involves both receptor clustering and conformational changes at the cytoplasmic tails of the CD3 subunits. The mechanism by which TCRalphabeta ligand binding confers conformational changes to CD3 is unknown. By using well-defined ligands, we showed that induction of the conformational change requires both multivalent engagement and the mobility restriction of the TCR-CD3 imposed by the plasma membrane. The conformational change is elicited by cooperative rearrangements of two TCR-CD3 complexes and does not require accompanying changes in the structure of the TCRalphabeta ectodomains. This conformational change at CD3 reverts upon ligand dissociation and is required for T cell activation. Thus, our permissive geometry model provides a molecular mechanism that rationalizes how the information of ligand binding to TCRalphabeta is transmitted to the CD3 subunits and to the intracellular signaling machinery.
Collapse
Affiliation(s)
- Susana Minguet
- Max Planck-Institut für Immunbiologie and Faculty of Biology, University of Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Kiessling LL, Gestwicki JE, Strong LE. Synthetische multivalente Liganden als Sonden für die Signaltransduktion. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502794] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed Engl 2006; 45:2348-68. [PMID: 16557636 PMCID: PMC2842921 DOI: 10.1002/anie.200502794] [Citation(s) in RCA: 696] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell-surface receptors acquire information from the extracellular environment and coordinate intracellular responses. Many receptors do not operate as individual entities, but rather as part of dimeric or oligomeric complexes. Coupling the functions of multiple receptors may endow signaling pathways with the sensitivity and malleability required to govern cellular responses. Moreover, multireceptor signaling complexes may provide a means of spatially segregating otherwise degenerate signaling cascades. Understanding the mechanisms, extent, and consequences of receptor co-localization and interreceptor communication is critical; chemical synthesis can provide compounds to address the role of receptor assembly in signal transduction. Multivalent ligands can be generated that possess a variety of sizes, shapes, valencies, orientations, and densities of binding elements. This Review focuses on the use of synthetic multivalent ligands to characterize receptor function.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin--Madison, 1101 University Ave., Madison, WI 53706, USA.
| | | | | |
Collapse
|
45
|
Hayward RD, Leong JM, Koronakis V, Campellone KG. Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nat Rev Microbiol 2006; 4:358-70. [PMID: 16582930 DOI: 10.1038/nrmicro1391] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many microbial pathogens manipulate the actin cytoskeleton of eukaryotic target cells to promote their internalization, intracellular motility and dissemination. Enteropathogenic and enterohaemorrhagic Escherichia coli, which both cause severe diarrhoeal disease, can adhere to mammalian intestinal cells and induce reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. As pedestal assembly is triggered by E. coli virulence factors that mimic several host cell-signalling components, such as transmembrane receptors, their cognate ligands and cytoplasmic adaptor proteins, it can serve as a powerful model system to study eukaryotic transmembrane signalling. Here, we consider the impact of recent data on our understanding of both E. coli pathogenesis and cell biology, and the rich prospects for exploiting these bacterial factors as versatile tools to probe cellular signalling pathways.
Collapse
Affiliation(s)
- Richard D Hayward
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
46
|
Schmidt O, Schreiber A. Integration of cell adhesion reactions—a balance of forces? J Theor Biol 2006; 238:608-15. [PMID: 16098540 DOI: 10.1016/j.jtbi.2005.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 05/29/2005] [Accepted: 06/15/2005] [Indexed: 11/26/2022]
Abstract
The rearrangement of receptors by oligomeric adhesion molecules constitutes a configurational mechanism able to sculpture membranes and dislocate receptors from cytoplasmic anchorage. This provides a conceptual framework for complex cellular processes in mechanical terms, as a dynamic balance between extracellular and intracellular driving forces.
Collapse
Affiliation(s)
- Otto Schmidt
- University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| | | |
Collapse
|
47
|
Schamel WWA, Arechaga I, Risueño RM, van Santen HM, Cabezas P, Risco C, Valpuesta JM, Alarcón B. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. ACTA ACUST UNITED AC 2005; 202:493-503. [PMID: 16087711 PMCID: PMC2212847 DOI: 10.1084/jem.20042155] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A long-standing paradox in the study of T cell antigen recognition is that of the high specificity–low affinity T cell receptor (TCR)–major histocompatibility complex peptide (MHCp) interaction. The existence of multivalent TCRs could resolve this paradox because they can simultaneously improve the avidity observed for monovalent interactions and allow for cooperative effects. We have studied the stoichiometry of the TCR by Blue Native–polyacrylamide gel electrophoresis and found that the TCR exists as a mixture of monovalent (αβγɛδɛζζ) and multivalent complexes with two or more ligand-binding TCRα/β subunits. The coexistence of monovalent and multivalent complexes was confirmed by electron microscopy after label fracture of intact T cells, thus ruling out any possible artifact caused by detergent solubilization. We found that although only the multivalent complexes become phosphorylated at low antigen doses, both multivalent and monovalent TCRs are phosphorylated at higher doses. Thus, the multivalent TCRs could be responsible for sensing low concentrations of antigen, whereas the monovalent TCRs could be responsible for dose-response effects at high concentrations, conditions in which the multivalent TCRs are saturated. Thus, besides resolving TCR stoichiometry, these data can explain how T cells respond to a wide range of MHCp concentrations while maintaining high sensitivity.
Collapse
Affiliation(s)
- Wolfgang W A Schamel
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The mechanism by which the ligand occupancy state of the T cell receptor complex is converted into intracellular signaling information has been a controversial topic. Although the majority of structural studies argue against a conformational change, recent studies support the possibility for such a change within the CD3 components of the TCR complex. In this commentary, the evidence for TCR conformational change is reviewed and potential mechanisms for its initiation are explored.
Collapse
Affiliation(s)
- Susan E Levin
- Rosalind Russell Medical Research Center for Arthritis, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
49
|
Glatz R, Roberts HLS, Li D, Sarjan M, Theopold UH, Asgari S, Schmidt O. Lectin-induced haemocyte inactivation in insects. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:955-963. [PMID: 15518663 DOI: 10.1016/j.jinsphys.2004.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 06/30/2004] [Accepted: 07/06/2004] [Indexed: 05/24/2023]
Abstract
Most multimeric lectins are adhesion molecules, promoting attachment and spreading on surface glycodeterminants. In addition, some lectins have counter-adhesion properties, detaching already spread cells which then acquire round or spindle-formed cell shapes. Since lectin-mediated adhesion and detachment is observed in haemocyte-like Drosophila cells, which have haemomucin as the major lectin-binding glycoprotein, the two opposite cell behaviours may be the result of lectin-mediated receptor rearrangements on the cell surface. To investigate oligomeric lectins as a possible extracellular driving force affecting cell shape changes, we examined lectin-mediated reactions in lepidopteran haemocytes after cytochalasin D-treatment and observed that while cell-spreading was dependent on F-actin, lectin-uptake was less dependent on F-actin. We propose a model of cell shape changes involving a dynamic balance between adhesion and uptake reactions.
Collapse
Affiliation(s)
- Richard Glatz
- Insect Molecular Biology, School of Agriculture, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Szewczuk Z, Biernat M, Dyba M, Zimecki M. Dimerization of the immunosuppressive peptide fragment of HLA-DR molecule enhances its potency. Peptides 2004; 25:207-15. [PMID: 15063002 DOI: 10.1016/j.peptides.2003.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 12/18/2003] [Accepted: 12/18/2003] [Indexed: 11/17/2022]
Abstract
Our previous studies revealed that the nonapeptide fragment of HLA-DR molecule, located in the beta chain 164-172 with the VPRSGEVYT sequence, suppresses the immune responses. The sequence is located on the exposed molecule loop, therefore it may be involved in the interactions with other proteins. We suggested that the loop may serve as a functional epitope on the HLA class II surface for intermolecular binding, and that possible mechanism of biological action of the synthesized peptides is associated with interfering of adhesion of HLA class II molecules to their coreceptors. It has been postulated that oligomerization of the coreceptors is required for stable binding to class II HLA. Based on the crystal dimeric structure of HLA-DR molecules, we designed, and synthesized molecules able to induce the putative coreceptors dimerization. The synthesized series of compounds consisted of two VPRSGEVYT sequences linked through their C-termini by spacers of different length: (VPRSGEVYTGn)2K-NH2 ( n = 4-6). The results demonstrate that the dimerization of the nonapeptide fragment of HLA-DR results in enhanced immunosuppressory properties.
Collapse
|