1
|
Friebus-Kardash J, Christ TC, Dietlein N, Elwy A, Abdelrahman H, Holnsteiner L, Hu Z, Rodewald HR, Lang KS. Usp22 Deficiency Leads to Downregulation of PD-L1 and Pathological Activation of CD8 + T Cells and Causes Immunopathology in Response to Acute LCMV Infection. Vaccines (Basel) 2023; 11:1563. [PMID: 37896966 PMCID: PMC10610587 DOI: 10.3390/vaccines11101563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Ubiquitin-specific peptidase 22 (Usp22) cleaves ubiquitin moieties from numerous proteins, including histone H2B and transcription factors. Recently, it was reported that Usp22 acts as a negative regulator of interferon-dependent responses. In the current study, we investigated the role of Usp22 deficiency in acute viral infection with lymphocytic choriomeningitis virus (LCMV). We found that the lack of Usp22 on bone marrow-derived cells (Usp22fl/fl Vav1-Cre mice) reduced the induction of type I and II interferons. A limited type I interferon response did not influence virus replication. However, restricted expression of PD-L1 led to increased frequencies of functional virus-specific CD8+ T cells and rapid death of Usp22-deficient mice. CD8+ T cell depletion experiments revealed that accelerated CD8+ T cells were responsible for enhanced lethality in Usp22 deficient mice. In conclusion, we found that the lack of Usp22 generated a pathological CD8+ T cell response, which gave rise to severe disease in mice.
Collapse
Affiliation(s)
- Justa Friebus-Kardash
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Theresa Charlotte Christ
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Nikolaus Dietlein
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; (N.D.)
| | - Abdelrahman Elwy
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Hossam Abdelrahman
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Lisa Holnsteiner
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Zhongwen Hu
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; (N.D.)
| | - Karl Sebastian Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| |
Collapse
|
2
|
Ellery A. Are There Biomimetic Lessons from Genetic Regulatory Networks for Developing a Lunar Industrial Ecology? Biomimetics (Basel) 2021; 6:biomimetics6030050. [PMID: 34449537 PMCID: PMC8395472 DOI: 10.3390/biomimetics6030050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
We examine the prospect for employing a bio-inspired architecture for a lunar industrial ecology based on genetic regulatory networks. The lunar industrial ecology resembles a metabolic system in that it comprises multiple chemical processes interlinked through waste recycling. Initially, we examine lessons from factory organisation which have evolved into a bio-inspired concept, the reconfigurable holonic architecture. We then examine genetic regulatory networks and their application in the biological cell cycle. There are numerous subtleties that would be challenging to implement in a lunar industrial ecology but much of the essence of biological circuitry (as implemented in synthetic biology, for example) is captured by traditional electrical engineering design with emphasis on feedforward and feedback loops to implement robustness.
Collapse
Affiliation(s)
- Alex Ellery
- Department of Mechanical & Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
3
|
Wang F, Bach I. Rlim/Rnf12, Rex1, and X Chromosome Inactivation. Front Cell Dev Biol 2019; 7:258. [PMID: 31737626 PMCID: PMC6834644 DOI: 10.3389/fcell.2019.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022] Open
Abstract
RLIM/Rnf12 is an E3 ubiquitin ligase that has originally been identified as a transcriptional cofactor associated with LIM domain transcription factors. Indeed, this protein modulates transcriptional activities and multiprotein complexes recruited by several classes of transcription factors thereby enhancing or repressing transcription. Around 10 years ago, RLIM/Rnf12 has been identified as a major regulator for the process of X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female mice and ESCs. However, the precise roles of RLIM during XCI have been controversial. Here, we discuss the cellular and developmental functions of RLIM as an E3 ubiquitin ligase and its roles during XCI in conjunction with its target protein Rex1.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
4
|
Involvement of E3 Ligases and Deubiquitinases in the Control of HIF-α Subunit Abundance. Cells 2019; 8:cells8060598. [PMID: 31208103 PMCID: PMC6627837 DOI: 10.3390/cells8060598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin and hypoxia-inducible factor (HIF) pathways are cellular processes involved in the regulation of a variety of cellular functions. Enzymes called ubiquitin E3 ligases perform protein ubiquitylation. The action of these enzymes can be counteracted by another group of enzymes called deubiquitinases (DUBs), which remove ubiquitin from target proteins. The balanced action of these enzymes allows cells to adapt their protein content to a variety of cellular and environmental stress factors, including hypoxia. While hypoxia appears to be a powerful regulator of the ubiquitylation process, much less is known about the impact of DUBs on the HIF system and hypoxia-regulated DUBs. Moreover, hypoxia and DUBs play crucial roles in many diseases, such as cancer. Hence, DUBs are considered to be promising targets for cancer cell-specific treatment. Here, we review the current knowledge about the role DUBs play in the control of HIFs, the regulation of DUBs by hypoxia, and their implication in cancer progression.
Collapse
|
5
|
Wang F, McCannell KN, Bošković A, Zhu X, Shin J, Yu J, Gallant J, Byron M, Lawrence JB, Zhu LJ, Jones SN, Rando OJ, Fazzio TG, Bach I. Rlim-Dependent and -Independent Pathways for X Chromosome Inactivation in Female ESCs. Cell Rep 2019; 21:3691-3699. [PMID: 29281819 DOI: 10.1016/j.celrep.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022] Open
Abstract
During female mouse embryogenesis, two forms of X chromosome inactivation (XCI) ensure dosage compensation from sex chromosomes. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X (Xp), and this pattern is maintained in extraembryonic cell types. Epiblast cells, which give rise to the embryo proper, reactivate the Xp (XCR) and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI depend on the long non-coding RNA Xist. The ubiquitin ligase RLIM is required for iXCI in vivo and occupies a central role in current models of rXCI. Here, we demonstrate the existence of Rlim-dependent and Rlim-independent pathways for rXCI in differentiating female ESCs. Upon uncoupling these pathways, we find more efficient Rlim-independent XCI in ESCs cultured under physiological oxygen conditions. Our results revise current models of rXCI and suggest that caution must be taken when comparing XCI studies in ESCs and mice.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kurtis N McCannell
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiaochun Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - JongDae Shin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Judith Gallant
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Meg Byron
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen N Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production. Sci Rep 2016; 6:35115. [PMID: 27725774 PMCID: PMC5057122 DOI: 10.1038/srep35115] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022] Open
Abstract
Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation.
Collapse
|
7
|
Melo-Cardenas J, Zhang Y, Zhang DD, Fang D. Ubiquitin-specific peptidase 22 functions and its involvement in disease. Oncotarget 2016; 7:44848-44856. [PMID: 27057639 PMCID: PMC5190139 DOI: 10.18632/oncotarget.8602] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022] Open
Abstract
Deubiquitylases remove ubiquitin moieties from different substrates to regulate protein activity and cell homeostasis. Since this posttranslational modification plays a role in several different cellular functions, its deregulation has been associated with different pathologies. Aberrant expression of the Ubiquitin-Specific Peptidase 22 (USP22) has been associated with poor cancer prognosis and neurological disorders. However, little is known about USP22 role in these pathologies or in normal physiology. This review summarizes the current knowledge about USP22 function from yeast to human and provides an overview of the possible mechanisms by which USP22 is emerging as a potential oncogene.
Collapse
Affiliation(s)
- Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yusi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Abstract
Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.
Collapse
Affiliation(s)
- John Kenneth Morrow
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hui-Kuan Lin
- Department of Molecular & Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Jiao B, Taniguchi-Ishigaki N, Güngör C, Peters MA, Chen YW, Riethdorf S, Drung A, Ahronian LG, Shin J, Pagnis R, Pantel K, Tachibana T, Lewis BC, Johnsen SA, Bach I. Functional activity of RLIM/Rnf12 is regulated by phosphorylation-dependent nucleocytoplasmic shuttling. Mol Biol Cell 2013; 24:3085-96. [PMID: 23904271 PMCID: PMC3784382 DOI: 10.1091/mbc.e13-05-0239] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In mice, the ubiquitin ligase RLIM/Rnf12 is a critical survival factor for mammary milk-producing alveolar cells, but little is known about how its activity is regulated. It is shown here that RLIM shuttles between the nucleus and cytoplasm in a phosphorylation-dependent manner, and shuttling is important for its alveolar survival function. The X-linked gene Rnf12 encodes the ubiquitin ligase really interesting new gene (RING) finger LIM domain–interacting protein (RLIM)/RING finger protein 12 (Rnf12), which serves as a major sex-specific epigenetic regulator of female mouse nurturing tissues. Early during embryogenesis, RLIM/Rnf12 expressed from the maternal allele is crucial for the development of extraembryonic trophoblast cells. In contrast, in mammary glands of pregnant and lactating adult females RLIM/Rnf12 expressed from the paternal allele functions as a critical survival factor for milk-producing alveolar cells. Although RLIM/Rnf12 is detected mostly in the nucleus, little is known about how and in which cellular compartment(s) RLIM/Rnf12 mediates its biological functions. Here we demonstrate that RLIM/Rnf12 protein shuttles between nucleus and cytoplasm and this is regulated by phosphorylation of serine S214 located within its nuclear localization sequence. We show that shuttling is important for RLIM to exert its biological functions, as alveolar cell survival activity is inhibited in cells expressing shuttling-deficient nuclear or cytoplasmic RLIM/Rnf12. Thus regulated nucleocytoplasmic shuttling of RLIM/Rnf12 coordinates cellular compartments during mammary alveolar cell survival.
Collapse
Affiliation(s)
- Baowei Jiao
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2324 Centre for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhuang H, Gan Z, Jiang W, Zhang X, Hua ZC. Comparative proteomics analysis reveals roles for FADD in the regulation of energy metabolism and proteolysis pathway in mouse embryonic fibroblast. Proteomics 2013; 13:2398-413. [PMID: 23744592 DOI: 10.1002/pmic.201300017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/01/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Fas-associated death domain-containing protein (FADD) is a classical apoptotic pathway adaptor. Further studies revealed that it also plays essential roles in nonapoptotic processes, which is assumed to be regulated by its phosphorylation. However, the exact mechanisms are still poorly understood. To study the nonapoptotic effects of FADD, a comprehensive strategy of proteomics identification combined with bioinformatic analysis was undertaken to identify proteins differentially expressed in three cell lines containing FADD and its mutant, FADD-A and FADD-D. The cell lines were thought to bear wild-type FADD, unphosphorylated FADD mimic and constitutive phosphorylated FADD mimic, respectively. A total of 47 proteins were identified to be significantly changed due to FADD phosphorylation. Network analysis using MetaCore™ identified a number of changed proteins that were involved in cellular metabolic process, including lipid metabolism, fatty acid metabolism, glycolysis, and oxidative phosphorylation. The finding that FADD-D cell line showed an increase in fatty acid oxidation argues that it could contribute to the leaner phenotype of FADD-D mice as reported previously. In addition, six proteins related to the ubiquitin-proteasome pathway were also specifically overexpressed in FADD-D cell line. Finally, the c-Myc gene represents a convergent hub lying at the center of dysregulated pathways, and was upregulated in FADD-D cells. Taken together, these studies allowed us to conclude that impaired mitochondrial function and proteolysis might play pivotal roles in the dysfunction associated with FADD phosphorylation-induced disorders.
Collapse
Affiliation(s)
- Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, PR China
| | | | | | | | | |
Collapse
|
11
|
Zhuang H, Gan Z, Jiang W, Zhang X, Hua ZC. Functional specific roles of FADD: comparative proteomic analyses from knockout cell lines. MOLECULAR BIOSYSTEMS 2013; 9:2063-78. [DOI: 10.1039/c3mb70023b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Comparative proteomics identification combined with bioinformatic analyses and cell biology validation revealed novel non-apoptotic functions of FADD in energy metabolism and proteolysis.
Collapse
Affiliation(s)
- Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology
- College of Life Science and School of Stomatology
- Affiliated Stomatological Hospital
- Nanjing University
- Nanjing 210093
| | - Ziyi Gan
- The State Key Laboratory of Pharmaceutical Biotechnology
- College of Life Science and School of Stomatology
- Affiliated Stomatological Hospital
- Nanjing University
- Nanjing 210093
| | - Weiwei Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology
- College of Life Science and School of Stomatology
- Affiliated Stomatological Hospital
- Nanjing University
- Nanjing 210093
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology
- College of Life Science and School of Stomatology
- Affiliated Stomatological Hospital
- Nanjing University
- Nanjing 210093
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology
- College of Life Science and School of Stomatology
- Affiliated Stomatological Hospital
- Nanjing University
- Nanjing 210093
| |
Collapse
|
12
|
Bach I. Releasing the break on X chromosome inactivation: Rnf12/RLIM targets REX1 for degradation. Cell Res 2012; 22:1524-6. [PMID: 22785560 DOI: 10.1038/cr.2012.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the two X chromosomes in cells of female mammals is transcriptionally silenced in a process known as X chromosome inactivation (XCI). Initiation of XCI is regulated by the ubiquitin ligase Rnf12/RLIM, but the mechanisms by which Rnf12/RLIM mediates this process has been a mystery. A recent study by Gontan et al. shows that Rnf12/RLIM targets REX1, an inhibitor of XCI, for proteasomal degradation, providing an answer to this question.
Collapse
Affiliation(s)
- Ingolf Bach
- Program in Gene Function & Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Lange A, Hoeller D, Wienk H, Marcillat O, Lancelin JM, Walker O. NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Biochemistry 2010; 50:48-62. [PMID: 21121635 DOI: 10.1021/bi101594a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The VHS domain of the Stam2 protein is a ubiquitin binding domain involved in the recognition of ubiquitinated proteins committed to lysosomal degradation. Among all VHS domains, the VHS domain of Stam proteins is the strongest binder to monoubiqiuitin and exhibits preferences for K63-linked chains. In the present paper, we report the solution NMR structure of the Stam2-VHS domain in complex with monoubiquitin by means of chemical shift perturbations, spin relaxation, and paramagnetic relaxation enhancements. We also characterize the interaction of Stam2-VHS with K48- and K63-linked diubiquitin chains and report the first evidence that VHS binds differently to these two chains. Our data reveal that VHS enters the hydrophobic pocket of K48-linked diubiquitin and binds the two ubiquitin subunits with different affinities. In contrast, VHS interacts with K63-linked diubiquitin in a mode similar to its interaction with monoubiquitin. We also suggest possible structural models for both K48- and K63-linked diubiquitin in interaction with VHS. Our results, which demonstrate a different mode of binding of VHS for K48- and K63-linked diubiquitin, may explain the preference of VHS for K63- over K48-linked diubiquitin chains and monoubiquitin.
Collapse
Affiliation(s)
- Anja Lange
- Université de Lyon, UMR-CNRS 5180 Sciences Analytiques, 69622 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
14
|
Dirac AMG, Bernards R. The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling. Mol Cancer Res 2010; 8:844-54. [PMID: 20501646 DOI: 10.1158/1541-7786.mcr-09-0424] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and is essential for male sexual development and maturation, as well as prostate cancer development. Regulation of AR signaling activity depends on several posttranslational modifications, one of these being ubiquitination. We screened a short hairpin library targeting members of the deubiquitination enzyme family and identified the X-linked deubiquitination enzyme USP26 as a novel regulator of AR signaling. USP26 is a nuclear protein that binds to AR via three important nuclear receptor interaction motifs, and modulates AR ubiquitination, consequently influencing AR activity and stability. Our data suggest that USP26 assembles with AR and other cofactors in subnuclear foci, and serves to counteract hormone-induced AR ubiquitination, thereby contributing to the regulation of AR transcriptional activity.
Collapse
Affiliation(s)
- Annette M G Dirac
- The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX Netherlands.
| | | |
Collapse
|
15
|
Johnsen SA, Güngör C, Prenzel T, Riethdorf S, Riethdorf L, Taniguchi-Ishigaki N, Rau T, Tursun B, Furlow JD, Sauter G, Scheffner M, Pantel K, Gannon F, Bach I. Regulation of estrogen-dependent transcription by the LIM cofactors CLIM and RLIM in breast cancer. Cancer Res 2009; 69:128-36. [PMID: 19117995 PMCID: PMC2713826 DOI: 10.1158/0008-5472.can-08-1630] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mammary oncogenesis is profoundly influenced by signaling pathways controlled by estrogen receptor alpha (ERalpha). Although it is known that ERalpha exerts its oncogenic effect by stimulating the proliferation of many human breast cancers through the activation of target genes, our knowledge of the underlying transcriptional mechanisms remains limited. Our published work has shown that the in vivo activity of LIM homeodomain transcription factors (LIM-HD) is critically regulated by cofactors of LIM-HD proteins (CLIM) and the ubiquitin ligase RING finger LIM domain-interacting protein (RLIM). Here, we identify CLIM and RLIM as novel ERalpha cofactors that colocalize and interact with ERalpha in primary human breast tumors. We show that both cofactors associate with estrogen-responsive promoters and regulate the expression of endogenous ERalpha target genes in breast cancer cells. Surprisingly, our results indicate opposing functions of LIM cofactors for ERalpha and LIM-HDs: whereas CLIM enhances transcriptional activity of LIM-HDs, it inhibits transcriptional activation mediated by ERalpha on most target genes in vivo. In turn, the ubiquitin ligase RLIM inhibits transcriptional activity of LIM-HDs but enhances transcriptional activation of endogenous ERalpha target genes. Results from a human breast cancer tissue microarray of 1,335 patients revealed a highly significant correlation of elevated CLIM levels to ER/progesterone receptor positivity and poor differentiation of tumors. Combined, these results indicate that LIM cofactors CLIM and RLIM regulate the biological activity of ERalpha during the development of human breast cancer.
Collapse
Affiliation(s)
- Steven A. Johnsen
- Department of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Cenap Güngör
- Program in Gene Function & Expression, University of Massachusetts Medical School, Worcester, MA, U.S.A
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Prenzel
- Department of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Sabine Riethdorf
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Naoko Taniguchi-Ishigaki
- Program in Gene Function & Expression, University of Massachusetts Medical School, Worcester, MA, U.S.A
| | - Thomas Rau
- Institute of Pharmacology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Baris Tursun
- Program in Gene Function & Expression, University of Massachusetts Medical School, Worcester, MA, U.S.A
| | - J. David Furlow
- Section of Neurobiology, Physiology and Behavior, University of California, Davis, CA, U.S.A
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Gannon
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ingolf Bach
- Program in Gene Function & Expression, University of Massachusetts Medical School, Worcester, MA, U.S.A
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, U.S.A
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Konecny M, Vizvaryova M, Zavodna K, Behulova R, Gerykova Bujalkova M, Krivulcik T, Cisarik F, Kausitz J, Weismanova E. Identification of a novel mutations BRCA1*c.80 + 3del4 and BRCA2*c.6589delA in Slovak HBOC families. Breast Cancer Res Treat 2008; 119:233-7. [PMID: 19011960 DOI: 10.1007/s10549-008-0244-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 10/30/2008] [Indexed: 01/19/2023]
Abstract
Mutations in the BRCA1 and BRCA2 genes account for the majority of hereditary breast ovarian cancer (HBOC) cases. However, after BRCA1 and BRCA2 screening still the most HBOC cases remain negative for any mutational event. Accordingly, in these cases raises the relevance to analyze the unusual BRCA1/2 variants of uncertain clinical significance. Complex RNA/cDNA analysis may constitute the solution and help to interpret the HBOC syndrome in the family. In our study we analyzed the novel, to our knowledge, not yet published mutations identified in Slovak HBOC families, c.80 + 3del4 (IVS2 + 3delAGTC) in BRCA1 gene and mutation c.6589delA (6817delA) in BRCA2 gene. To determine the effect of the BRCA1 mutation, we applied different approaches: segregation analysis of mutation with disease, presence in the set of unaffected controls and finally RNA/cDNA BRCA1 analysis. Novel BRCA2 mutation was determined performing direct sequencing analysis. In conclusion, considering the results from all used techniques we approved the mentioned mutations as seriously pathogenic and disease causing with clear effect on the onset of HBOC syndrome.
Collapse
Affiliation(s)
- Michal Konecny
- Department of Clinical Genetics, St. Elizabeth Cancer Institute, Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guo Q, Zhang J, Gao Q, Xing S, Li F, Wang W. Drought tolerance through overexpression of monoubiquitin in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1745-55. [PMID: 18280007 DOI: 10.1016/j.jplph.2007.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 10/08/2007] [Accepted: 10/09/2007] [Indexed: 05/24/2023]
Abstract
Ubiquitin (Ub) is present in all eukaryotic species examined. It is a multifunctional protein and one of its main known functions is to tag proteins for selective degradation by the 26S proteasome. In this study, Ta-Ub2, a cDNA sequence containing a single Ub repeat and a 3' non-coding region of a polyubiquitin gene, was isolated from wheat (Triticum aestivum) by reverse transcription-polymerase chain reaction (RT-PCR). A PBI sense vector with Ta-Ub2 was constructed and transformed into tobacco plants. Ub expression in wheat leaves, monitored by semi-quantitative RT-PCR, responded to drought stress. In transgenic tobacco, determined by protein gel blot analysis, we found higher amounts of Ub-protein conjugates than in control (tobacco carrying a PBI GUS vector without Ta-Ub2) and wild-type (WT) lines. However, free Ub levels did not significantly differ in the 3 genotypes. Seeds from transgenic, Ub-overexpressing tobacco germinated faster and seedlings grew more vigorously than control and WT samples, both under drought and non-drought conditions. Furthermore, CO(2) assimilation of transgenic plants was significantly higher under drought stress. Our results indicate that Ub may be involved in the response of plants to drought stress and that overexpression of monoubiquitin might be an effective strategy for enhancing drought tolerance.
Collapse
Affiliation(s)
- Qifang Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong, PR China
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
The role of the ubiquitin-proteasome system in the response of the ligninolytic fungus Trametes versicolor to nitrogen deprivation. Fungal Genet Biol 2008; 45:328-37. [PMID: 18273947 DOI: 10.1016/j.fgb.2007.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The white rot fungus Trametes versicolor is an efficient lignin degrader with ecological significance and industrial applications. Lignin-modifying enzymes of white rot fungi are mainly produced during secondary metabolism triggered in these microorganisms by nutrient deprivation. Selective ubiquitin/proteasome-mediated proteolysis is known to play a crucial role in the response of cells to various stresses such as nutrient limitation, heat shock, and heavy metal exposure. Previous studies from our laboratory demonstrated that proteasomal degradation of intracellular proteins is involved in the regulation of laccase, a major ligninolytic enzyme of T. versicolor, in response to cadmium. In the present study, it was found that the 6-h nitrogen starvation leads to depletion of intracellular free ubiquitin pool in T. versicolor. The difference in the intracellular level of free monomeric ubiquitin observed between the mycelium extract from the nitrogen-deprived and that from the nitrogen-sufficient culture was accompanied by the different pattern of ubiquitin-dependent degradation. Furthermore, it was found that nitrogen deprivation affected 26S proteasome activities of T. versicolor. Proteasome inhibition by lactacystin beta-lactone, a highly specific agent, increased laccase activity in nitrogen-deprived cultures, but not in nitrogen-sufficient cultures. The present study implicates the ubiquitin/proteasome-mediated proteolytic pathway in the response of T. versicolor to nitrogen deprivation.
Collapse
|
20
|
Martinet W, Knaapen MWM, Kockx MM, De Meyer GRY. Autophagy in cardiovascular disease. Trends Mol Med 2007; 13:482-91. [PMID: 18029229 DOI: 10.1016/j.molmed.2007.08.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 08/14/2007] [Accepted: 08/30/2007] [Indexed: 01/12/2023]
Abstract
Autophagy is a major cytoprotective pathway that eukaryotic cells use to degrade and recycle cytoplasmic contents. Recent evidence indicates that autophagy under baseline conditions represents an important homeostatic mechanism for the maintenance of normal cardiovascular function and morphology. By contrast, excessive induction of the autophagic process by environmental or intracellular stress has an important role in several types of cardiomyopathy by functioning as a death pathway. As a consequence, enhanced autophagy represents one of the mechanisms underlying the cardiomyocyte dropout responsible for the worsening of heart failure. Successful therapeutic approaches that regulate autophagy have been reported recently, suggesting that the autophagic machinery can be manipulated to treat heart failure or to prevent rupture of atherosclerotic plaques and sudden death.
Collapse
Affiliation(s)
- Wim Martinet
- Division of Pharmacology, University of Antwerp, Wilrijk, Belgium.
| | | | | | | |
Collapse
|
21
|
Güngör C, Taniguchi-Ishigaki N, Ma H, Drung A, Tursun B, Ostendorff HP, Bossenz M, Becker CG, Becker T, Bach I. Proteasomal selection of multiprotein complexes recruited by LIM homeodomain transcription factors. Proc Natl Acad Sci U S A 2007; 104:15000-5. [PMID: 17848518 PMCID: PMC1986602 DOI: 10.1073/pnas.0703738104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complexes composed of multiple proteins regulate most cellular functions. However, our knowledge about the molecular mechanisms governing the assembly and dynamics of these complexes in cells remains limited. The in vivo activity of LIM homeodomain (LIM-HD) proteins, a class of transcription factors that regulates neuronal development, depends on the high-affinity association of their LIM domains with cofactor of LIM homeodomain proteins (LIM-HDs) (CLIM, also known as Ldb or NLI). CLIM cofactors recruit single-stranded DNA-binding protein 1 (SSDP1, also known as SSBP3), and this interaction is important for the activation of the LIM-HD/CLIM protein complex in vivo. Here, we identify a cascade of specific protein interactions that protect LIM-HD multiprotein complexes from proteasomal degradation. In this cascade, CLIM stabilizes LIM-HDs, and SSDP1 stabilizes CLIM. Furthermore, we show that stabilizing cofactors prevent binding of ubiquitin ligases to multiple protein interaction domains in LIM-HD recruited protein complexes. Together, our results indicate a combinatorial code that selects specific multiprotein complexes via proteasomal degradation in cells with broad implications for the assembly and specificity of multiprotein complexes.
Collapse
Affiliation(s)
| | | | - Hong Ma
- Programs in *Gene Function and Expression and
| | | | | | - Heather P. Ostendorff
- Center for Molecular Neurobiology (ZMNH), University of Hamburg, D-20251 Hamburg, Germany; and
| | - Michael Bossenz
- Center for Molecular Neurobiology (ZMNH), University of Hamburg, D-20251 Hamburg, Germany; and
| | - Catherina G. Becker
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom
| | - Thomas Becker
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom
| | - Ingolf Bach
- Programs in *Gene Function and Expression and
- Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Woelk T, Sigismund S, Penengo L, Polo S. The ubiquitination code: a signalling problem. Cell Div 2007; 2:11. [PMID: 17355622 PMCID: PMC1832185 DOI: 10.1186/1747-1028-2-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/13/2007] [Indexed: 11/10/2022] Open
Abstract
Ubiquitin is a highly versatile post-translational modification that controls virtually all types of cellular events. Over the past ten years we have learned that diverse forms of ubiquitin modifications and of ubiquitin binding modules co-exist in the cell, giving rise to complex networks of protein:protein interactions. A central problem that continues to puzzle ubiquitinologists is how cells translate this myriad of stimuli into highly specific responses. This is a classical signalling problem. Here, we draw parallels with the phosphorylation signalling pathway and we discuss the expanding repertoire of ubiquitin signals, signal tranducers and signalling-regulated E3 enzymes. We examine recent advances in the field, including a new mechanism of regulation of E3 ligases that relies on ubiquitination.
Collapse
Affiliation(s)
- Tanja Woelk
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | - Sara Sigismund
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | - Lorenza Penengo
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | - Simona Polo
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
23
|
Nguewa PA, Fuertes MA, Cepeda V, Iborra S, Carrión J, Valladares B, Alonso C, Pérez JM. Pentamidine is an antiparasitic and apoptotic drug that selectively modifies ubiquitin. Chem Biodivers 2007; 2:1387-400. [PMID: 17191940 DOI: 10.1002/cbdv.200590111] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have determined the cytotoxic properties of pentamidine isethionate (2) towards the promastigotes of the protozoan parasite Leishmania infantum. The leishmanicidal activity of 2 was 60 times higher after 72 h of incubation than that of cisplatin (4). The pentamidine salt 2 induced a higher amount of programmed cell death (PCD) than cisplatin, which is associated with inhibition of DNA synthesis and cell-cycle arrest in the G2/M phase. Circular dichroism (CD) data indicate that binding of 2 to calf-thymus DNA (CT-DNA) induces conformational changes in the DNA double helix, consistent with a B-->A transition. Moreover, the interaction of 2 with ubiquitin led to a 6% increase in the beta-sheet content of the protein as observed by CD spectroscopy. Fluorescence-spectroscopy studies agreed with the CD data, showing that the pentamidine portion of 2 induces a significant decrease in the fluorescence of the Ub residues Phe4 and Phe45 located on the beta-cluster of the molecule, but not of Tyr59 on the alpha-cluster. These data indicate that pentamidine specifically modifies the beta-cluster, i.e., the 'basic face' of ubiquitin. Our results suggest that the biochemical mechanism of action of pentamidine may be a consequence of its dual binding to DNA and proteins.
Collapse
Affiliation(s)
- Paul A Nguewa
- Departamento de Parasitología, Facultad de Farmacia, Universidad de la Laguna Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Li S, Shang Y. Regulation of SRC family coactivators by post-translational modifications. Cell Signal 2007; 19:1101-12. [PMID: 17368849 DOI: 10.1016/j.cellsig.2007.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 02/01/2007] [Accepted: 02/01/2007] [Indexed: 02/05/2023]
Abstract
Initially identified as a group of auxiliary protein factors involved in transcriptional regulation by steroid hormone receptors as well as by other members of the nuclear receptor superfamily, the steroid receptor coactivators (SRCs) have since then been implicated in the transcriptional regulation of other transcription factors which are important components of very different signaling pathways. Members of the SRC family have been shown to interact with myogenin, MEF-2, transcriptional enhancer factor (TEF), NF-kappaB, AP-1, STAT, p53, and E2F1, suggesting that SRC coactivators participate in diverse cellular processes. Recent evidence indicates that various post-translational modifications play critical roles in determining the final transcriptional output and specificity of SRC coactivators. In this review, we summarized the current knowledge concerning post-translational modifications, dynamic interplay between different modifications, and patho-physiological relevance of the modifications of SRC proteins.
Collapse
Affiliation(s)
- Shaosi Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, PR China
| | | |
Collapse
|
25
|
Melner MH, Haas AL, Klein JM, Brash AR, Boeglin WE, Nagdas SK, Winfrey VP, Olson GE. Demonstration of ubiquitin thiolester formation of UBE2Q2 (UBCi), a novel ubiquitin-conjugating enzyme with implantation site-specific expression. Biol Reprod 2006; 75:395-406. [PMID: 16760379 DOI: 10.1095/biolreprod.106.051458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We recently identified a differentially expressed gene in implantation stage rabbit endometrium encoding a new member of the ubiquitin-conjugating enzyme family designated UBE2Q2 (also known as UBCi). Its unusually high molecular mass, novel N-terminus extension, and highly selective pattern of mRNA expression suggest a specific function in implantation. This study analyzes its relationship to the E2 ubiquitin-conjugating enzyme superfamily, investigates its enzymatic activity, and examines its localization in implantation site endometrium. Construction of a dendrogram indicated that UBE2Q2 is homologous to the UBC2 family of enzymes, and isoforms are present in a broad range of species. In vitro enzymatic assays of ubiquitin thiolester formation demonstrated that UBE2Q2 is a functional ubiquitin-conjugating enzyme. The Km for transfer of ubiquitin thiolester from E1 to UBE2Q2 is 817 nM compared to 100 nM for other E2 paralogs; this suggests that the unique amino terminal domain of UBE2Q2 confers specific functional differences. Affinity-purified antibodies prepared with purified recombinant UBE2Q2 showed that the protein was undetectable by immunoblot analysis in endometrial lysates from estrous and Day 6(3/4) pregnant (blastocyst attachment stage) rabbits but was expressed in both mesometrial and antimesometrial implantation site endometrium of Day 8 pregnant animals. No expression was detected in adjacent interimplantion sites. Immunohistochemistry demonstrated UBE2Q2 expression exclusively in mesometrial and antimesometrial endometrial luminal epithelial cells of the Day 8 implantation chamber. Immunohistochemical localization of ubiquitin mirrored UBE2Q2 expression, with low-to-undetectable levels in implantation sites of Day 6(3/4) pregnant endometrium but high levels in luminal epithelial cells of Day 8 pregnant endometrium. This implantation site-specific expression of UBE2Q2 in luminal epithelial cells could play major roles in orchestrating differentiation events through the modification of specific protein substrates.
Collapse
Affiliation(s)
- Michael H Melner
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ostendorff HP, Tursun B, Cornils K, Schlüter A, Drung A, Güngör C, Bach I. Dynamic expression of LIM cofactors in the developing mouse neural tube. Dev Dyn 2006; 235:786-91. [PMID: 16395690 DOI: 10.1002/dvdy.20669] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The developmental regulation of LIM homeodomain transcription factors (LIM-HD) by the LIM domain-binding cofactors CLIM/Ldb/NLI and RLIM has been demonstrated. Whereas CLIM cofactors are thought to be required for at least some of the in vivo functions of LIM-HD proteins, the ubiquitin ligase RLIM functions as a negative regulator by its ability to target CLIM cofactors for proteasomal degradation. In this report, we have investigated and compared the protein expression of both factors in the developing mouse neural tube. We co-localize both proteins in many tissues and, although widely expressed, we detect high levels of both cofactors in specific neural tube regions, e.g., in the ventral neural tube, where motor neurons reside. The mostly ubiquitous distribution of RLIM- and CLIM-encoding mRNA differs from the more specific expression of both cofactors at the protein level, indicating post-transcriptional regulation. Furthermore, we show that both cofactors not only co-localize with each other but also with Isl and Lhx3 LIM-HD proteins in developing ventral neural tube neurons. Our results demonstrate the dynamic expression of cofactors participating in the regulation of LIM-HD proteins during the development of the neural tube in mice and suggest additional post-transcriptional regulation in the nuclear LIM-HD protein network.
Collapse
Affiliation(s)
- Heather P Ostendorff
- Zentrum für Molekulare Neurobiologie Hamburg , Universität Hamburg, Martinistr. 85, 20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Taylor C, Jobin C. Ubiquitin protein modification and signal transduction: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2005; 11:1097-107. [PMID: 16306773 DOI: 10.1097/01.mib.0000187577.26043.e5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A dysregulated immune response to luminal antigen(s) is associated with the development of inflammatory bowel diseases (IBDs). A complex network of inflammatory and immune mediators released by immune and nonimmune cells participate in the physiopathology of IBD. At the molecular level, events leading to the improper use of the signaling grid are likely responsible for the dysregulated activation of various transcription factors and subsequent induction of inflammatory genes. The posttranslational modification of signaling proteins by the ubiquitin system is a critical event in activation or repression of transcription factors. Two important transcriptional pathways in which ubiquitin is central are the nuclear factor-kappaB and hypoxia inducible factor-1 (HIF-1) pathways, both of which are important components of intestinal homeostasis. In this review, we discuss the role of ubiquitin modification in relation to nuclear factor-kappaB and HIF-1 signaling and consider its impact on intestinal inflammation. A greater understanding of posttranslational ubiquitin modification may lead to the identification of new therapeutic opportunities for the treatment of IBD.
Collapse
Affiliation(s)
- Cormac Taylor
- The Conway Institute, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
28
|
Iwahashi CK, Yasui DH, An HJ, Greco CM, Tassone F, Nannen K, Babineau B, Lebrilla CB, Hagerman RJ, Hagerman PJ. Protein composition of the intranuclear inclusions of FXTAS. ACTA ACUST UNITED AC 2005; 129:256-71. [PMID: 16246864 DOI: 10.1093/brain/awh650] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by premutation expansions (55-200 CGG repeats) in the fragile X mental retardation 1 (FMR1) gene. The pathologic hallmark of FXTAS is the ubiquitin-positive intranuclear inclusion found in neurons and astrocytes in broad distribution throughout the brain. The pathogenesis of FXTAS is likely to involve an RNA toxic gain-of-function mechanism, and the FMR1 mRNA has recently been identified within the inclusions. However, little is known about the proteins that mediate the abnormal cellular response to the expanded CGG repeat allele. As one approach to identify the protein mediators, we have endeavoured to define the protein complement of the inclusion itself. Fluorescence-activated flow-based methods have been developed for the efficient purification of inclusions from the post-mortem brain tissue of FXTAS patients. Mass spectrometric analysis of the entire protein complement of the isolated inclusions, combined with immunohistochemical analysis of both isolated nuclei and tissue sections, has been used to identify inclusion-associated proteins. More than 20 inclusion-associated proteins have been identified on the basis of combined immunohistochemical and mass spectrometric analysis, including a number of neurofilaments and lamin A/C. There is no dominant protein species in the inclusions, and ubiquitinated proteins represent only a minor component; thus, inclusion formation is not likely to reflect a breakdown in proteasomal degradation of nuclear proteins. The list of proteins includes at least two RNA binding proteins, heterogeneous nuclear ribonucleoprotein A2 and muscle blind-like protein 1, which are possible mediators of the RNA gain-of-function in FXTAS.
Collapse
Affiliation(s)
- C K Iwahashi
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Firnhaber C, Pühler A, Küster H. EST sequencing and time course microarray hybridizations identify more than 700 Medicago truncatula genes with developmental expression regulation in flowers and pods. PLANTA 2005; 222:269-83. [PMID: 15968508 DOI: 10.1007/s00425-005-1543-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 02/25/2005] [Indexed: 05/03/2023]
Abstract
To evaluate the molecular mechanisms during pod and seed formation in legumes, starting with the development of reproductive organs, we constructed two cDNA libraries from developing flowers (MtFLOW) and pods including seeds (MtPOSE) of the model plant Medicago truncatula Gaertner. A total of 2,516 expressed sequence tags (ESTs) clustered into 1,776 nonredundant sequences (2k-set), which were annotated and assigned to functional classes. While about 30% of the ESTs encoded proteins of yet unknown function, typical annotations pointed to seed storage proteins, LTPs and lipoxygenases. The 2k-set was used to upgrade Mt6k-RIT microarrays (Küster et al. in J Biotechnol 108: 95, 2004) to Mt8k versions representing approximately 6,300 nonredundant M. truncatula genes. These were used to perform time course expression profiling studies based on hybridizations of samples that covered eight different developmental stages from flower buds to almost mature pods versus leaves as a common reference. About 180 up- and 70 downregulated genes were typically found for each stage and in total, 782 genes were either twofold up- or downregulated in at least one of the eight stages investigated. Based on this set, a combination of self-organizing map and hierarchical clustering revealed genes displaying expression regulation during characteristic stages of M. truncatula flower and pod development. Amongst those, several genes encoded proteins related to seed metabolism and development including novel regulators and proteins involved in signaling.
Collapse
Affiliation(s)
- Christian Firnhaber
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
| | | | | |
Collapse
|
30
|
Tursun B, Schlüter A, Peters MA, Viehweger B, Ostendorff HP, Soosairajah J, Drung A, Bossenz M, Johnsen SA, Schweizer M, Bernard O, Bach I. The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones. Genes Dev 2005; 19:2307-19. [PMID: 16204183 PMCID: PMC1240040 DOI: 10.1101/gad.1340605] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 08/10/2005] [Indexed: 11/25/2022]
Abstract
LIM kinase 1 (LIMK1) controls important cellular functions such as morphogenesis, cell motility, tumor cell metastasis, development of neuronal projections, and growth cone actin dynamics. We have investigated the role of the RING finger protein Rnf6 during neuronal development and detected high Rnf6 protein levels in developing axonal projections of motor and DRG neurons during mouse embryogenesis as well as cultured hippocampal neurons. RNAi-mediated knock-down experiments in primary hippocampal neurons identified Rnf6 as a regulator of axon outgrowth. Consistent with a role in axonal growth, we found that Rnf6 binds to, polyubiquitinates, and targets LIMK1 for proteasomal degradation in growth cones of primary hippocampal neurons. Rnf6 is functionally linked to LIMK1 during the development of axons, as the changes in axon outgrowth induced by up- or down-regulation of Rnf6 levels can be restored by modulation of LIMK1 expression. Thus, these results assign a specific role for Rnf6 in the control of cellular LIMK1 concentrations and indicate a new function for the ubiquitin/proteasome system in regulating local growth cone actin dynamics.
Collapse
Affiliation(s)
- Baris Tursun
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cariello NF, Romach EH, Colton HM, Ni H, Yoon L, Falls JG, Casey W, Creech D, Anderson SP, Benavides GR, Hoivik DJ, Brown R, Miller RT. Gene expression profiling of the PPAR-alpha agonist ciprofibrate in the cynomolgus monkey liver. Toxicol Sci 2005; 88:250-64. [PMID: 16081524 DOI: 10.1093/toxsci/kfi273] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibrates, such as ciprofibrate, fenofibrate, and clofibrate, are peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists that have been in clinical use for many decades for treatment of dyslipidemia. When mice and rats are given PPARalpha agonists, these drugs cause hepatic peroxisome proliferation, hypertrophy, hyperplasia, and eventually hepatocarcinogenesis. Importantly, primates are relatively refractory to these effects; however, the mechanisms for the species differences are not clearly understood. Cynomolgus monkeys were exposed to ciprofibrate at various dose levels for either 4 or 15 days, and the liver transcriptional profiles were examined using Affymetrix human GeneChips. Strong upregulation of many genes relating to fatty acid metabolism and mitochondrial oxidative phosphorylation was observed; this reflects the known pharmacology and activity of the fibrates. In addition, (1) many genes related to ribosome and proteasome biosynthesis were upregulated, (2) a large number of genes downregulated were in the complement and coagulation cascades, (3) a number of key regulatory genes, including members of the JUN, MYC, and NFkappaB families were downregulated, which appears to be in contrast to the rodent, where JUN and MYC are reported to upregulated after PPARalpha agonist treatment, (4) no transcriptional signal for DNA damage or oxidative stress was observed, and (5) transcriptional signals consistent with an anti-proliferative and a pro-apoptotic effect were seen. We also compared the primate data to literature reports of hepatic transcriptional profiling in PPARalpha-treated rodents, which showed that the magnitude of induction in beta-oxidation pathways was substantially greater in the rodent than the primate.
Collapse
Affiliation(s)
- Neal F Cariello
- GlaxoSmithKline Inc., Safety Assessment, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kong SE, Kobor MS, Krogan NJ, Somesh BP, Søgaard TMM, Greenblatt JF, Svejstrup JQ. Interaction of Fcp1 Phosphatase with Elongating RNA Polymerase II Holoenzyme, Enzymatic Mechanism of Action, and Genetic Interaction with Elongator. J Biol Chem 2005; 280:4299-306. [PMID: 15563457 DOI: 10.1074/jbc.m411071200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fcp1 de-phosphorylates the RNA polymerase II (RNAPII) C-terminal domain (CTD) in vitro, and mutation of the yeast FCP1 gene results in global transcription defects and increased CTD phosphorylation levels in vivo. Here we show that the Fcp1 protein associates with elongating RNAPII holoenzyme in vitro. Our data suggest that the association of Fcp1 with elongating polymerase results in CTD de-phosphorylation when the native ternary RNAPII0-DNA-RNA complex is disrupted. Surprisingly, highly purified yeast Fcp1 dephosphorylates serine 5 but not serine 2 of the RNAPII CTD repeat. Only free RNAPII0(Ser-5) and not RNAPII0-DNA-RNA ternary complexes act as a good substrate in the Fcp1 CTD de-phosphorylation reaction. In contrast, TFIIH CTD kinase has a pronounced preference for RNAPII incorporated into a ternary complex. Interestingly, the Fcp1 reaction mechanism appears to entail phosphoryl transfer from RNAPII0 directly to Fcp1. Elongator fails to affect the phosphatase activity of Fcp1 in vitro, but genetic evidence points to a functional overlap between Elongator and Fcp1 in vivo. Genetic interactions between Elongator and a number of other transcription factors are also reported. Together, these results shed new light on mechanisms that drive the transcription cycle and point to a role for Fcp1 in the recycling of RNAPII after dissociation from active genes.
Collapse
Affiliation(s)
- Stephanie E Kong
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Nguewa PA, Fuertes MA, Iborra S, Najajreh Y, Gibson D, Martínez E, Alonso C, Pérez JM. Water soluble cationic trans-platinum complexes which induce programmed cell death in the protozoan parasite Leishmania infantum. J Inorg Biochem 2005; 99:727-36. [PMID: 15708793 DOI: 10.1016/j.jinorgbio.2004.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 11/29/2004] [Accepted: 12/02/2004] [Indexed: 10/26/2022]
Abstract
We have evaluated the cytotoxic properties against the protozoan Leishmania infantum of four water soluble cationic trans-Pt(II)Cl(2) compounds containing as inert groups NH3 and piperazine (1), 4-picoline and piperazine (2), n-butylamine and piperazine (3), and NH3 and 4-piperidino-piperidine (4). The leishmanicidal activity of compounds 3 and 4 against promastigotes of the parasite Leishmania infantum was 2.5- and 1.6-times higher than that of the cytotoxic drug cis-diamminedichloroplatinum(II), respectively. Interestingly, compounds 3 and 4 produce in Leishmania infantum promastigotes a higher amount of programmed cell death than cisplatin, which is associated with cell cycle arrest in G2/M. In contrast to cis-diamminedichloroplatinum(II), binding of compounds 3 and 4 to calf thymus DNA induces conformational changes more similar to those of trans-diamminedichloroplatinum(II) that may be attributed to denaturation of the double helix. Similarly to cis-diamminedichloroplatinum(II) and trans-diamminedichloroplatinum(II), the interaction of compounds 3 and 4 with ubiquitin results in an increase of the alpha-helix content of the protein as observed by circular dichroism spectroscopy. However, fluorescence studies indicate that compounds 3 and 4 produce a decrease in the fluorescence of the tyrosine 59 residue of ubiquitin higher than both cis-diamminedichloroplatinum(II) and trans-diamminedichloroplatinum(II). Altogether, our results suggest that the biochemical mechanism of cytotoxic activity of compounds 3 and 4 against Leishmania infantum must be different from that of cis-diamminedichloroplatinum(II). To the best of our knowledge, compounds 3 and 4 are the first reported trans-platinum complexes that show antiparasitic activity.
Collapse
Affiliation(s)
- Paul A Nguewa
- Departamento de Parasitología, Facultad de Farmacia, Universidad de la Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dirac AMG, Nijman SMB, Brummelkamp TR, Bernards R. Functional annotation of deubiquitinating enzymes using RNA interference. Methods Enzymol 2005; 398:554-67. [PMID: 16275358 DOI: 10.1016/s0076-6879(05)98045-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Protein ubiquitination is a dynamic process, depending on a tightly regulated balance between the activity of ubiquitin ligases and their antagonists, the ubiquitin-specific proteases or deubiquitinating enzymes. The family of ubiquitin ligases has been studied intensively and it is well established that their deregulation contributes to diverse disease processes, including cancer. Much less is known about the function and regulation of the large group of deubiquitinating enzymes. This chapter describes how RNA interference against deubiquitinating enzymes can be used to elucidate their function. The application of this technology will greatly improve the functional annotation of this family of proteases.
Collapse
Affiliation(s)
- Annette M G Dirac
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
35
|
Martinet W, De Bie M, Schrijvers DM, De Meyer GRY, Herman AG, Kockx MM. 7-Ketocholesterol Induces Protein Ubiquitination, Myelin Figure Formation, and Light Chain 3 Processing in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2004; 24:2296-301. [PMID: 15458974 DOI: 10.1161/01.atv.0000146266.65820.a1] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxysterols such as 7-ketocholesterol (7-KC) are important mediators of cell death in atherosclerosis. Therefore, in vitro studies of human smooth muscle cell (SMC) death in response to 7-KC were undertaken to investigate the potential mechanisms. METHODS AND RESULTS Human aortic SMCs treated with 7-KC showed enhanced immunoreactivity for the oxidative stress marker 4-hydroxy-2-nonenal and upregulated several stress genes (70-kDa heat shock protein 1, heme oxygenase 1, and growth arrest and DNA damage-inducible protein 153) at the mRNA but not at the protein level. 7-KC-treated SMCs rapidly underwent cell death as determined by neutral red, counting of adherent cells, and depolarization of the mitochondrial inner membrane. Cell death was associated with upregulation of ubiquitin mRNA and ubiquitination of cellular proteins. Inhibition of the proteasome by lactacystin potentiated considerably the toxicity of 7-KC. Transmission electron microscopy revealed formation of myelin figures, extensive vacuolization, and depletion of organelles. Formation of autophagosomes was suggested by labeling cells with LysoTracker and monitoring processing of microtubule-associated protein 1 light chain 3 (LC3). Analogous to our in vitro studies, human atherosclerotic plaques showed signs of ubiquitination in SMCs. CONCLUSIONS 7-KC activates the ubiquitin-proteasome system and induces a complex mode of cell death associated with myelin figure formation and processing of LC3 evocating autophagic processes.
Collapse
Affiliation(s)
- Wim Martinet
- Division of Pharmacology, University of Antwerp, Wilrijk, Belgium.
| | | | | | | | | | | |
Collapse
|
36
|
Smith KP, Byron M, Clemson CM, Lawrence JB. Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands. Chromosoma 2004; 113:324-35. [PMID: 15616869 DOI: 10.1007/s00412-004-0325-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
The inactive X chromosome (Xi) forms a heterochromatic structure in the nucleus that is known to have several modifications to specific histones involving acetylation or methylation. Using three different antibodies in four different cell lines, we demonstrate that the Xi in human and mouse cells is highly enriched in ubiquitinated protein(s), much of which is polyubiquitinated. This ubiquitination appears specific for the Xi as it was not observed for centromeres or other regions of heterochromatin. Results using an antibody specific to ubiquitinated H2A provide a clear link between H2A ubiquitination and gene repression, as visualized across an entire inactive chromosome. Interestingly, the ubiquitination of the chromosome persists into mitosis and can be seen in a reproducible banded pattern. This pattern matches that of Xist RNA which forms bands as it detaches from the mitotic X chromosome. Both ubiquitination and Xist RNA appear enriched in gene dense regions and depleted in gene poor bands, but do not correlate with L1 LINE elements which have been suggested as key to X-inactivation. These results provide evidence that ubiquitination along with Xist RNA plays an important role in the formation of facultative heterochromatin during X-inactivation.
Collapse
Affiliation(s)
- Kelly P Smith
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
37
|
Mehta N, Loria PM, Hobert O. A genetic screen for neurite outgrowth mutants in Caenorhabditis elegans reveals a new function for the F-box ubiquitin ligase component LIN-23. Genetics 2004; 166:1253-67. [PMID: 15082545 PMCID: PMC1470768 DOI: 10.1534/genetics.166.3.1253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Axon pathfinding and target recognition are highly dynamic and tightly regulated cellular processes. One of the mechanisms involved in regulating protein activity levels during axonal and synaptic development is protein ubiquitination. We describe here the isolation of several Caenorhabditis elegans mutants, termed eno (ectopic/erratic neurite outgrowth) mutants, that display defects in axon outgrowth of specific neuron classes. One retrieved mutant is characterized by abnormal termination of axon outgrowth in a subset of several distinct neuron classes, including ventral nerve cord motor neurons, head motor neurons, and mechanosensory neurons. This mutant is allelic to lin-23, which codes for an F-box-containing component of an SCF E3 ubiquitin ligase complex that was previously shown to negatively regulate postembryonic cell divisions. We demonstrate that LIN-23 is a broadly expressed cytoplasmically localized protein that is required autonomously in neurons to affect axon outgrowth. Our newly isolated allele of lin-23, a point mutation in the C-terminal tail of the protein, displays axonal outgrowth defects similar to those observed in null alleles of this gene, but does not display defects in cell cycle regulation. We have thus defined separable activities of LIN-23 in two distinct processes, cell cycle control and axon patterning. We propose that LIN-23 targets distinct substrates for ubiquitination within each process.
Collapse
Affiliation(s)
- Nehal Mehta
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
38
|
Albrecht M, Golatta M, Wüllner U, Lengauer T. Structural and functional analysis of ataxin-2 and ataxin-3. ACTA ACUST UNITED AC 2004; 271:3155-70. [PMID: 15265035 DOI: 10.1111/j.1432-1033.2004.04245.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spinocerebellar ataxia types 2 (SCA2) and 3 (SCA3) are autosomal-dominantly inherited, neurodegenerative diseases caused by CAG repeat expansions in the coding regions of the genes encoding ataxin-2 and ataxin-3, respectively. To provide a rationale for further functional experiments, we explored the protein architectures of ataxin-2 and ataxin-3. Using structure-based multiple sequence alignments of homologous proteins, we investigated domains, sequence motifs, and interaction partners. Our analyses focused on presumably functional amino acids and the construction of tertiary structure models of the RNA-binding Lsm domain of ataxin-2 and the deubiquitinating Josephin domain of ataxin-3. We also speculate about distant evolutionary relationships of ubiquitin-binding UIM, GAT, UBA and CUE domains and helical ANTH and UBX domain extensions.
Collapse
Affiliation(s)
- Mario Albrecht
- Max-Planck-Institute for Informatics, Saarbrücken, Germany.
| | | | | | | |
Collapse
|
39
|
Xu Q, Farah M, Webster JM, Wojcikiewicz RJ. Bortezomib rapidly suppresses ubiquitin thiolesterification to ubiquitin-conjugating enzymes and inhibits ubiquitination of histones and type I inositol 1,4,5-trisphosphate receptor. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1263.3.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The proteasome inhibitor bortezomib is an emerging anticancer agent. Although the proteasome is clearly its locus of action, the early biochemical consequences of bortezomib treatment are poorly defined. Here, we show in cultured cells that bortezomib and other proteasome inhibitors rapidly inhibit free ubiquitin levels and ubiquitin thiolesterification to ubiquitin-conjugating enzymes. Inhibition of thiolesterification correlated with a reduction in the ubiquitination of certain substrates, exemplified by a dramatic decline in histone monoubiquitination and a decrease in the rate of inositol 1,4,5-trisphosphate receptor polyubiquitination. Thus, in addition to the expected effect of blocking the degradation of polyubiquitinated substrates, bortezomib can also inhibit ubiquitination. The effect of bortezomib on histone monoubiquitination may contribute to its therapeutic actions.
Collapse
Affiliation(s)
- Qun Xu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York
| | - Michelle Farah
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York
| | - Jack M. Webster
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York
| | - Richard J.H. Wojcikiewicz
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York
| |
Collapse
|
40
|
Wu X, Yen L, Irwin L, Sweeney C, Carraway KL. Stabilization of the E3 ubiquitin ligase Nrdp1 by the deubiquitinating enzyme USP8. Mol Cell Biol 2004; 24:7748-57. [PMID: 15314180 PMCID: PMC506982 DOI: 10.1128/mcb.24.17.7748-7757.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nrdp1 is a RING finger-containing E3 ubiquitin ligase that physically interacts with and regulates steady-state cellular levels of the ErbB3 and ErbB4 receptor tyrosine kinases and has been implicated in the degradation of the inhibitor-of-apoptosis protein BRUCE. Here we demonstrate that the Nrdp1 protein undergoes efficient proteasome-dependent degradation and that mutations in its RING finger domain that disrupt ubiquitin ligase activity enhance stability. These observations suggest that Nrdp1 self-ubiquitination and stability could play an important role in regulating the activity of this protein. Using affinity chromatography, we identified the deubiquitinating enzyme USP8 (also called Ubpy) as a protein that physically interacts with Nrdp1. Nrdp1 and USP8 could be coimmunoprecipitated, and in transfected cells USP8 specifically bound to Nrdp1 but not cbl, a RING finger E3 ligase involved in ligand-stimulated epidermal growth factor receptor down-regulation. The USP8 rhodanese and catalytic domains mediated Nrdp1 binding. USP8 markedly enhanced the stability of Nrdp1, and a point mutant that disrupts USP8 catalytic activity destabilized endogenous Nrdp1. Our results indicate that Nrdp1 is a specific target for the USP8 deubiquitinating enzyme and are consistent with a model where USP8 augments Nrdp1 activity by mediating its stabilization.
Collapse
Affiliation(s)
- Xiuli Wu
- UC Davis Cancer Center, Research Building III, Room 1400, 4645 2nd Ave., Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
41
|
Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog Neurobiol 2004; 73:311-57. [PMID: 15312912 DOI: 10.1016/j.pneurobio.2004.05.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 05/28/2004] [Indexed: 02/07/2023]
Abstract
A proteolytic pathway in which attachment of a small protein, ubiquitin, marks the substrates for degradation by a multi-subunit complex called the proteasome has been shown to function in synaptic plasticity and in several other physiological processes of the nervous system. Attachment of ubiquitin to protein substrates occurs through a series of highly specific and regulated steps. Degradation by the proteasome is subject to multiple levels of regulation as well. How does the ubiquitin-proteasome pathway contribute to synaptic plasticity? Long-lasting, protein synthesis-dependent, changes in the synaptic strength occur through activation of molecular cascades in the nucleus in coordination with signaling events in specific synapses. Available evidence indicates that ubiquitin-proteasome-mediated degradation has a role in the molecular mechanisms underlying synaptic plasticity that operate in the nucleus as well as at the synapse. Since the ubiquitin-proteasome pathway has been shown to be versatile in having roles in addition to proteolysis in several other cellular processes relevant to synaptic plasticity, such as endocytosis and transcription, this pathway is highly suited for a localized role in the neuron. Because of its numerous roles, malfunctioning of this pathway leads to several diseases and disorders of the nervous system. In this review, I examine the ubiquitin-proteasome pathway in detail and describe the role of regulated proteolysis in long-term synaptic plasticity. Also, using synaptic tagging theory of synapse-specific plasticity, I provide a model on the possible roles and regulation of local protein degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
42
|
Morris JR, Solomon E. BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 2004; 13:807-17. [PMID: 14976165 DOI: 10.1093/hmg/ddh095] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The N-terminus of the BRCA1 protein bears a RING finger domain that functions as an E3 ubiquitin ligase in vitro where it is able to catalyse the synthesis of monoubiquitin and polyubiquitin targeted proteins. This activity is greatly increased when BRCA1 is in a complex with its N-terminal binding partner BARD1. In this report we use an immunohistochemical approach to demonstrate the association of cellular BRCA1 with the end product of the ubiquitin conjugation and ligation pathway, conjugated ubiquitin. Association is apparent at DNA replication structures in S-phase and following treatment with hydroxyurea and also at sites of double strand break repair after exposure to ionizing radiation. Down-regulation of endogenous, cellular BRCA1 : BARD1 using siRNA results in abrogation of ubiquitin conjugation in these structures, suggesting that heterodimer activity is required for their formation. Conversely, ectopically expressed full-length BRCA1, but not BRCA1 bearing specific N-terminal amino acid substitutions, is able to cooperate with BARD1 to increase ubiquitin conjugation in cells. Conjugation of ubiquitin in foci is inhibited by the expression of ubiquitin bearing a lysine 6 mutation suggesting that the ubiquitin polymers formed at these sites are dependent on lysine-6 for linkage. Together these data demonstrate that BRCA1 directed ligation of ubiquitin occurs during S-phase and in response to replication stress and DNA damage and is therefore likely to be a significant aspect of BRCA1 cellular activity.
Collapse
Affiliation(s)
- Joanna R Morris
- Department of Medical and Molecular Genetics, Division of Genetics and Development, Guy's Kings and St Thomas' School of Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK.
| | | |
Collapse
|
43
|
Li A, Blow JJ. Non-proteolytic inactivation of geminin requires CDK-dependent ubiquitination. Nat Cell Biol 2004; 6:260-7. [PMID: 14767479 PMCID: PMC2691133 DOI: 10.1038/ncb1100] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 01/05/2003] [Indexed: 12/22/2022]
Abstract
In late mitosis and G1, a complex of the essential initiation proteins Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other times licensing is inhibited by cyclin-dependent kinases (CDKs) and geminin, thus ensuring that origins fire only once per cell cycle. Here we show that, paradoxically, CDKs are also required to inactivate geminin and activate the licensing system. On exit from metaphase in Xenopus laevis egg extracts, CDK-dependent activation of the anaphase-promoting complex (APC/C) results in the transient polyubiquitination of geminin. This ubiquitination triggers geminin inactivation without requiring ubiquitin-dependent proteolysis, and is essential for replication origins to become licensed. This reveals an unexpected role for CDKs and ubiquitination in activating chromosomal DNA replication.
Collapse
Affiliation(s)
- Anatoliy Li
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
44
|
Yewdell JW, Reits E, Neefjes J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol 2004; 3:952-61. [PMID: 14647477 DOI: 10.1038/nri1250] [Citation(s) in RCA: 326] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0440, USA
| | | | | |
Collapse
|
45
|
Abstract
Ubiquitination is a post-translational modification in which a small conserved peptide, ubiquitin, is appended to target proteins in the cell, through a series of complex enzymatic reactions. Recently, a particular form of ubiquitination, monoubiquitination, has emerged as a nonproteolytic reversible modification that controls protein function. In this review, we highlight recent findings on monoubiquitination as a signaling-induced modification, controlled, among others, by pathways originating from active receptor tyrosine kinases. Furthermore, we review the major cellular processes controlled by ubiquitin modification, including membrane trafficking, histone function, transcription regulation, DNA repair, and DNA replication.
Collapse
Affiliation(s)
- S Sigismund
- IFOM, The FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | | |
Collapse
|
46
|
Abstract
Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.
Collapse
Affiliation(s)
- Jan Smalle
- Department of Genetics, 445 Henry Mall, University of Wisconsin-Madison, Madison, Wisconsin 53706-1574, USA
| | | |
Collapse
|
47
|
Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H, Haw RA, Pootoolal J, Tong A, Canadien V, Richards DP, Wu X, Emili A, Hughes TR, Buratowski S, Greenblatt JF. A Snf2 Family ATPase Complex Required for Recruitment of the Histone H2A Variant Htz1. Mol Cell 2003; 12:1565-76. [PMID: 14690608 DOI: 10.1016/s1097-2765(03)00497-0] [Citation(s) in RCA: 458] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deletions of three yeast genes, SET2, CDC73, and DST1, involved in transcriptional elongation and/or chromatin metabolism were used in conjunction with genetic array technology to screen approximately 4700 yeast deletions and identify double deletion mutants that produce synthetic growth defects. Of the five deletions interacting genetically with all three starting mutations, one encoded the histone H2A variant Htz1 and three encoded components of a novel 13 protein complex, SWR-C, containing the Snf2 family ATPase, Swr1. The SWR-C also copurified with Htz1 and Bdf1, a TFIID-interacting protein that recognizes acetylated histone tails. Deletions of the genes encoding Htz1 and seven nonessential SWR-C components caused a similar spectrum of synthetic growth defects when combined with deletions of 384 genes involved in transcription, suggesting that Htz1 and SWR-C belong to the same pathway. We show that recruitment of Htz1 to chromatin requires the SWR-C. Moreover, like Htz1 and Bdf1, the SWR-C promotes gene expression near silent heterochromatin.
Collapse
Affiliation(s)
- Nevan J Krogan
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, Canada M5G 1L6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|