1
|
Su G, Xu Y, Chen B, Ju K, Jin Y, Chen H, Zhang S, Luan X. Structural and biochemical mechanism of short-chain enoyl-CoA hydratase (ECHS1) substrate recognition. Commun Biol 2025; 8:619. [PMID: 40240482 PMCID: PMC12003839 DOI: 10.1038/s42003-025-07924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
Deficiency of short-chain enoyl-CoA hydratase (ECHS1), a crucial enzyme in fatty acid metabolism through the mitochondrial β-oxidation pathway, has been strongly linked to various diseases, especially cardiomyopathy. However, the structural and biochemical mechanisms through which ECHS1 recognizes acyl-CoAs remain poorly understood. Herein, cryo-EM analysis reveals the apo structure of ECHS1 and structures of the ECHS1-crotonyl-CoA, ECHS1-acetoacetyl-CoA, ECHS1-hexanoyl-CoA, and ECHS1-octanoyl-CoA complexes at high resolutions. The mechanism through which ECHS1 recognizes its substrates varies with the fatty acid chain lengths of acyl-CoAs. Furthermore, crucial point mutations in ECHS1 have a great impact on substrate recognition, resulting in significant changes in binding affinity and enzyme activity, as do disease-related point mutations in ECHS1. The functional mechanism of ECHS1 is systematically elucidated from structural and biochemical perspectives. These findings provide a theoretical basis for subsequent work focused on determining the role of ECHS1 deficiency (ECHS1D) in the occurrence of diseases such as cardiomyopathy.
Collapse
Affiliation(s)
- Gengchen Su
- Department of Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, 100730, Beijing, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Youwei Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Binxian Chen
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Kaide Ju
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Ye Jin
- Department of Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, 100730, Beijing, China
| | - Houzao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.
| | - Shuyang Zhang
- Department of Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, 100730, Beijing, China.
- School of Medicine, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
| | - Xiaodong Luan
- Department of Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, 100730, Beijing, China.
- Center for Drug Research and Evaluation, Institute of Clinical Medicine, Peking Union Medical College Hospital, 100730, Beijing, China.
| |
Collapse
|
2
|
Hao B, Liu Y, Wang B, Wu H, Chen Y, Zhang L. Hepatitis B surface antigen: carcinogenesis mechanisms and clinical implications in hepatocellular carcinoma. Exp Hematol Oncol 2025; 14:44. [PMID: 40141002 PMCID: PMC11938626 DOI: 10.1186/s40164-025-00642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Liver cancer is the third leading cause of death globally, with hepatitis B virus (HBV) infection being identified as the primary risk factor for its development. The occurrence of HBV-related hepatocellular carcinoma (HCC) is attributed to various mechanisms, such as chronic inflammation and liver cell regeneration induced by the cytotoxic immune response triggered by the virus, abnormal activation of oncogenes arising from HBV DNA insertion mutations, and epigenetic alterations mediated by viral oncoproteins. The envelope protein of the HBV virus, known as hepatitis B surface antigen (HBsAg), is a key indicator of increased risk for developing HCC in HBsAg-positive individuals. The HBsAg seroclearance status is found to be associated with recurrence in HCC patients undergoing hepatectomy. Additional evidence indicates that HBsAg is essential to the entire process of tumor development, from initiation to advancement, and acts as an oncoprotein involved in accelerating tumor progression. This review comprehensively analyzes the extensive effects and internal mechanisms of HBsAg during the various stages of the initiation and progression of HCC. Furthermore, it highlights the importance and potential applications of HBsAg in the realms of HCC early diagnosis and personalized therapeutic interventions. An in-depth understanding of the molecular mechanism of HBsAg in the occurrence and development of HCC is provided, which is expected to develop more precise and efficient strategies for the prevention and management of HCC in the future.
Collapse
Affiliation(s)
- Bingyan Hao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Chen
- Department of Paediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Zhang N, Zhao P, Zhang W, Wang H, Wang K, Wang X, Zhang Z, Tan N, Chen L. A chromosome-level genome of Lobelia seguinii provides insights into the evolution of Campanulaceae and the lobeline biosynthesis. Genomics 2025; 117:110979. [PMID: 39675685 DOI: 10.1016/j.ygeno.2024.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Lobelia seguinii is a plant with great ecological and medicinal value and belongs to Campanulaceae. Lobelia contains lobeline, a well-known compound used to treat respiratory diseases. Nevertheless, lobeline biosynthesis needs further exploration. Moreover, whole-genome duplication (WGD) and karyotype evolution within Campanulaceae still need to be better understood. In this study, we obtained a chromosome-level genome of L. seguinii with a size of 1.4 Gb and 38253 protein-coding genes. Analyses revealed two WGDs within Campanulaceae, one at the most recent common ancestor (MRCA) of Campanula and Adenophora, and another at the MRCA of Lobelioideae. Analyses further revealed that the karyotype of Platycodon grandiflorus represents the ancient type within Asterales. We proposed eight enzymes involved in the lobeline biosynthesis pathway of L. seguinii. Molecular cloning and heterologous expression of phenylalanine ammonia-lyase (PAL), a candidate enzyme involved in the first step of lobeline biosynthesis, verified its function to catalyze the deamination of phenylalanine to cinnamic acid. This study sheds light on the evolution of Campanulaceae and lobeline biosynthesis.
Collapse
Affiliation(s)
- Na Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Puguang Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenda Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huiying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangyu Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhanjiang Zhang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023 Nanning, China.
| | - Ninghua Tan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lingyun Chen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Guo W, Weng Y, Ma W, Chang C, Gao Y, Huang X, Zhang F. Improving Lipid Content in the Diatom Phaeodactylum tricornutum by the Knockdown of the Enoyl-CoA Hydratase Using CRISPR Interference. Curr Issues Mol Biol 2024; 46:10923-10933. [PMID: 39451529 PMCID: PMC11506698 DOI: 10.3390/cimb46100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The diatom Phaeodactylum tricornutum shows potential as a source for biofuel production because of its considerable lipid content. Fatty acid β-oxidation plays a critical role in lipid breakdown. However, we still have a limited understanding of the role of fatty acid β-oxidation in lipid content in this microalga. In our study, we utilized a CRISPR interference method to reduce the expression of enoyl-CoA hydratase (PtECH), which is involved in the hydration of trans-2-enoyl-CoA to produce 3-hydroxyacyl-CoA during the β-oxidation pathway. Using this method, we developed two transgenic lines, PtECH21 and PtECH1487, which resulted from interference at two different sites of the PtECH gene, respectively. RT-qPCR analysis confirmed that the mRNA levels of PtECH in both mutants were significantly lower compared to the wild type. Surprisingly, the lipid content of both mutants increased notably. Additionally, both knockdown mutants exhibited higher chlorophyll content and improved photosynthetic efficiency of the photosystem II compared to the wild type. This study introduces a new approach for enhancing lipid content in P. tricornutum and expands our knowledge of the functions of enoyl-CoA hydratase in microalgae.
Collapse
Affiliation(s)
- Wenfeng Guo
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yuwei Weng
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
| | - Wenkai Ma
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Chaofeng Chang
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yuqing Gao
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Xuguang Huang
- College of Chemistry and Environmental Science, Minnan Normal University, Zhangzhou 363000, China
| | - Feng Zhang
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
5
|
Zhou K, Luo Z, Huang W, Liu Z, Miao X, Tao S, Wang J, Zhang J, Wang S, Zeng X. Biological Roles of Lipids in Rice. Int J Mol Sci 2024; 25:9046. [PMID: 39201734 PMCID: PMC11354756 DOI: 10.3390/ijms25169046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Lipids are organic nonpolar molecules with essential biological and economic importance. While the genetic pathways and regulatory networks of lipid biosynthesis and metabolism have been extensively studied and thoroughly reviewed in oil crops such as soybeans, less attention has been paid to the biological roles of lipids in rice, a staple food for the global population and a model species for plant molecular biology research, leaving a considerable knowledge gap in the biological roles of lipids. In this review, we endeavor to furnish a current overview of the advancements in understanding the genetic foundations and physiological functions of lipids, including triacylglycerol, fatty acids, and very-long-chain fatty acids. We aim to summarize the key genes in lipid biosynthesis, metabolism, and transcriptional regulation underpinning rice's developmental and growth processes, biotic stress responses, abiotic stress responses, fertility, seed longevity, and recent efforts in rice oil genetic improvement.
Collapse
Affiliation(s)
- Kun Zhou
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Zhengliang Luo
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Weidong Huang
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Zemin Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Xuexue Miao
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Shuhua Tao
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Jiemin Wang
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Jian Zhang
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Shiyi Wang
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Xiaoshan Zeng
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| |
Collapse
|
6
|
Pramanik A, Datta S. Structural and functional insights of itaconyl-CoA hydratase from Pseudomonas aeruginosa highlight a novel N-terminal hotdog fold. FEBS Lett 2024; 598:1387-1401. [PMID: 38575551 DOI: 10.1002/1873-3468.14867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Itaconyl-CoA hydratase in Pseudomonas aeruginosa (PaIch) converts itaconyl-CoA to (S)-citramalyl-CoA upon addition of a water molecule, a part of an itaconate catabolic pathway in virulent organisms required for their survival in humans host cells. Crystal structure analysis of PaIch showed that a unique N-terminal hotdog fold containing a 4-residue short helical segment α3-, named as an "eaten sausage", followed by a flexible loop region slipped away from the conserved β-sheet scaffold, whereas the C-terminal hotdog fold is similar to all MaoC. A conserved hydratase motif with catalytic residues provides mechanistic insights into catalysis, and existence of a longer substrate binding tunnel may suggest the binding of longer CoA derivatives.
Collapse
Affiliation(s)
- Atanu Pramanik
- Department of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Saumen Datta
- Department of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
He J, Yi J, Ji L, Dai L, Chen Y, Xue W. ECHDC2 inhibits the proliferation of gastric cancer cells by binding with NEDD4 to degrade MCCC2 and reduce aerobic glycolysis. Mol Med 2024; 30:69. [PMID: 38783226 PMCID: PMC11118108 DOI: 10.1186/s10020-024-00832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The Enoyl-CoA hydratase/isomerase family plays a crucial role in the metabolism of tumors, being crucial for maintaining the energy balance and biosynthetic needs of cancer cells. However, the enzymes within this family that are pivotal in gastric cancer (GC) remain unclear. METHODS We employed bioinformatics techniques to identify key Enoyl-CoA hydratase/isomerase in GC. The expression of ECHDC2 and its clinical significance were validated through tissue microarray analysis. The role of ECHDC2 in GC was further assessed using colony formation assays, CCK8 assay, EDU assay, Glucose and lactic acid assay, and subcutaneous tumor experiments in nude mice. The mechanism of action of ECHDC2 was validated through Western blotting, Co-immunoprecipitation, and immunofluorescence experiments. RESULTS Our analysis of multiple datasets indicates that low expression of ECHDC2 in GC is significantly associated with poor prognosis. Overexpression of ECHDC2 notably inhibits aerobic glycolysis and proliferation of GC cells both in vivo and in vitro. Further experiments revealed that overexpression of ECHDC2 suppresses the P38 MAPK pathway by inhibiting the protein level of MCCC2, thereby restraining glycolysis and proliferation in GC cells. Ultimately, it was discovered that ECHDC2 promotes the ubiquitination and subsequent degradation of MCCC2 protein by binding with NEDD4. CONCLUSIONS These findings underscore the pivotal role of the ECHDC2 in regulating aerobic glycolysis and proliferation in GC cells, suggesting ECHDC2 as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Jiancheng He
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Jianfeng Yi
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Li Ji
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Lingchen Dai
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China.
| | - Wanjiang Xue
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China.
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China.
| |
Collapse
|
8
|
Guo R, Huang K, Yu K, Li J, Huang J, Wang D, Li Y. Effects of Fat and Carnitine on the Expression of Carnitine Acetyltransferase and Enoyl-CoA Hydratase Short-Chain 1 in the Liver of Juvenile GIFT ( Oreochromis niloticus). Genes (Basel) 2024; 15:480. [PMID: 38674414 PMCID: PMC11050330 DOI: 10.3390/genes15040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Carnitine acetyltransferase (CAT) and Enoyl-CoA hydratase short-chain 1 (ECHS1) are considered key enzymes that regulate the β-oxidation of fatty acids. However, very few studies have investigated their full length and expression in genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China. Here, we cloned CAT and ECHS1 full-length cDNA via the rapid amplification of cDNA ends, and the expressions of CAT and ECHS1 in the liver of juvenile GIFT were detected in different fat and carnitine diets, as were the changes in the lipometabolic enzymes and serum biochemical indexes of juvenile GIFT in diets with different fat and carnitine levels. CAT cDNA possesses an open reading frame (ORF) of 2167 bp and encodes 461 amino acids, and the ECHS1 cDNA sequence is 1354 bp in full length, the ORF of which encodes a peptide of 391 amino acids. We found that juvenile GIFT had higher lipometabolic enzyme activity and lower blood CHOL, TG, HDL-C, and LDL-C contents when the dietary fat level was 2% or 6% and when the carnitine level was 500 mg/kg. We also found that the expression of ECHS1 and CAT genes in the liver of juvenile GIFT can be promoted by a 500 mg/kg carnitine level and 6% fat level feeding. These results suggested that CAT and ECHS1 may participate in regulating lipid metabolism, and when 2% or 6% fat and 500 mg/kg carnitine are added to the feed, it is the most beneficial to the liver and lipid metabolism of juvenile GIFT. Our results may provide a theoretical basis for GIFT feeding and treating fatty liver disease.
Collapse
Affiliation(s)
- Ruijie Guo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Kai Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Jinghua Li
- Fisheries Research and Technology Extension Center of Shaanxi, Xi’an 710086, China;
| | - Jiao Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Dandan Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Yuda Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| |
Collapse
|
9
|
Zhao Q, Du X, Liu F, Zhang Y, Qin W, Zhang Q. ECHDC3 Variant Regulates the Right Hippocampal Microstructural Integrity and Verbal Memory in Type 2 Diabetes Mellitus. Neuroscience 2024; 538:30-39. [PMID: 38070593 DOI: 10.1016/j.neuroscience.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
ECHDC3 is a risk gene for white matter (WM) hyperintensity and is associated with insulin resistance. This study aimed to investigate whether ECHDC3 variants selectively regulate brain WM microstructures and episodic memory in patients with type 2 diabetes mellitus (T2DM). We enrolled 106 patients with T2DM and 111 healthy controls. A voxel-wise general linear model was employed to explore the interaction effect between ECHDC3 rs11257311 polymorphism and T2DM diagnosis on fractional anisotropy (FA). A linear modulated mediation analysis was conducted to examine the potential of FA value to mediate the influence of T2DM on episodic memory in an ECHDC3-dependent manner. We observed a noteworthy interaction between genotype and diagnosis on FA in the right inferior temporal WM, right anterior limb of the internal capsule, right frontal WM, and the right hippocampus. Modulated mediation analysis revealed a significant ECHDC3 modulation on the T2DM → right hippocampal FA → short-term memory pathway, with only rs11257311 G risk homozygote demonstrating significant mediation effect. Together, our findings provide evidence of ECHDC3 modulating the effect of T2DM on right hippocampal microstructural impairment and short-term memory decline, which might be a neuro-mechanism for T2DM related episodic memory impairment.
Collapse
Affiliation(s)
- Qiyu Zhao
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Du
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Quan Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
10
|
Lu L, Yang Y, Shi G, He X, Xu X, Feng Y, Wang W, Li Z, Yang J, Li B, Sun G. Alterations in mitochondrial structure and function in response to environmental temperature changes in Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106330. [PMID: 38171258 DOI: 10.1016/j.marenvres.2023.106330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Global temperatures have risen as a result of climate change, and the resulting warmer seawater will exert physiological stresses on many aquatic animals, including Apostichopus japonicus. It has been suggested that the sensitivity of aquatic poikilothermal animals to climate change is closely related to mitochondrial function. Therefore, understanding the interaction between elevated temperature and mitochondrial functioning is key to characterizing organisms' responses to heat stress. However, little is known about the mitochondrial response to heat stress in A. japonicus. In this work, we investigated the morphological and functional changes of A. japonicus mitochondria under three representative temperatures, control temperature (18 °C), aestivation temperature (25 °C) and heat stress temperature (32 °C) temperatures using transmission electron microscopy (TEM) observation of mitochondrial morphology combined with proteomics and metabolomics techniques. The results showed that the mitochondrial morphology of A. japonicus was altered, with decreases in the number of mitochondrial cristae at 25 °C and mitochondrial lysis, fracture, and vacuolization at 32 °C. Proteomic and metabolomic analyses revealed 103 differentially expressed proteins and 161 differential metabolites at 25 °C. At 32 °C, the levels of 214 proteins and 172 metabolites were significantly altered. These proteins and metabolites were involved in the tricarboxylic acid (TCA) cycle, substance transport, membrane potential homeostasis, anti-stress processes, mitochondrial autophagy, and apoptosis. Furthermore, a hypothetical network of proteins and metabolites in A. japonicus mitochondria in response to temperature changes was constructed based on proteomic and metabolomic data. These results suggest that the dynamic regulation of mitochondrial energy metabolism, resistance to oxidative stress, autophagy, apoptosis, and mitochondrial morphology in A. japonicus may play important roles in the response to elevated temperatures. In summary, this study describes the response of A. japonicus mitochondria to temperature changes from the perspectives of morphology, proteins, and metabolites, which provided a better understanding the mechanisms of mitochondrial regulation under environment stress in marine echinoderms.
Collapse
Affiliation(s)
- Lixin Lu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yu Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Guojun Shi
- Hekou District Science and Technology Bureau, China
| | - Xiaohua He
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Bin Li
- Yantai Haiyu Marine Science and Technology Co. Ltd, Yantai, 264002, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| |
Collapse
|
11
|
Borkar SB, Negi M, Jaiswal A, Raj Acharya T, Kaushik N, Choi EH, Kaushik NK. Plasma-generated nitric oxide water: A promising strategy to combat bacterial dormancy (VBNC state) in environmental contaminant Micrococcus luteus. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132634. [PMID: 37793251 DOI: 10.1016/j.jhazmat.2023.132634] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
The viable but non-culturable (VBNC) is an inactive state, and certain bacteria can enter under adverse conditions. The VBNC state challenges the environment, food safety, and public health since VBNCs may resuscitate and pose a risk to human health. The aim of this study was to investigate the effect of plasma-generated nitric oxide water (PG-NOW) on airborne contaminant Micrococcus luteus (M. luteus) and examine its potential to induce the VBNC state. The essential conditions for bacteria to enter VBNC state are low metabolic activity and rare or no culturable counts. The results indicated that PG-NOW effectively eliminates M. luteus, and the remaining bacteria are in culturable condition. Moreover, the conventional cultured-based method combined with a propidium iodide monoazide quantitative PCR (PMAxxTM-qPCR) showed no significant VBNC induction and moderate culturable counts. Results from the qPCR revealed that gene levels in PG-NOW treated bacteria related to resuscitation-promoting factors, amino acid biosynthesis, and fatty acid metabolism were notably upregulated. PG-NOW inactivated M. luteus showed negligible VBNC formation and alleviated infection ability in lung cells. This study provides new insights into the potential use of PG-NOW reactive species for the prevention and control of the VBNC state of M. luteus.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Apurva Jaiswal
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
12
|
Luo M, Wang H, Zhang J, Yixi K, Shu S, Fu C, Zhong J, Peng W. IMF deposition ceRNA network analysis and functional study of HIF1a in yak. Front Vet Sci 2023; 10:1272238. [PMID: 37915947 PMCID: PMC10616239 DOI: 10.3389/fvets.2023.1272238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The concentration of intramuscular fat (IMF) is a crucial determinant of yak meat quality. However, the molecular mechanisms that regulate IMF in yak remain largely elusive. In our study, we conducted transcriptome sequencing on the longissimus dorsi muscle tissues of yaks with varying IMF contents. We then filtered differentially expressed genes (DEGs), microRNAs (DEMs), and long non-coding RNAs (DELs) to elucidate potential regulatory pathways of adipogenesis in yaks. Overall, our research sheds light on an array of potential mRNAs and noncoding RNAs implicated in IMF deposition and elaborates on the role of HIF1α in yaks. These findings contribute valuable insights that can serve as a guide for further research into the molecular mechanisms governing IMF deposition.
Collapse
Affiliation(s)
- Mengning Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jun Zhang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Kangzhu Yixi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Shi Shu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Changqi Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
13
|
Bu X, Zhao W, Li W, Zou H, Li M, Wang G. Comparative Transcriptomics of Chilodonella hexasticha and C. uncinata Provide New Insights into Adaptations to a Parasitic Lifestyle and Mdivi-1 as a Potential Agent for Chilodonellosis Control. Int J Mol Sci 2023; 24:13058. [PMID: 37685862 PMCID: PMC10488290 DOI: 10.3390/ijms241713058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Chilodonella hexasticha is a harmful parasitic ciliate that can cause severe damage to fish and high mortalities worldwide. Its congeneric species, C. uncinata, is a facultative parasite that not only can be free-living but also can parasitize on fish gills and fins. In this study, single-cell transcriptomes of these two species were assembled and characterized. Numerous enzymes related to energy metabolism and parasitic adaption were identified through annotation in the Non-Redundant (NR), Clusters of Orthologous Genes (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of isocitrate dehydrogenase (IDH), cytochrome c oxidase subunit 1 (Cox1) and ATP synthase F1, delta subunit (ATP5D) was up-regulated in C. hexasticha compared with C. uncinata. The oxidative phosphorylation process was also enriched in C. hexasticha. The main mitochondrial metabolic pathways in C. hexasticha were depicted and enzymes related to energy metabolism pathways were compared between these two species. More importantly, mitochondrial division inhibitor 1 (mdivi-1) proved to be very effective in killing both C. hexasticha and C. uncinata, which could be a novel drug for Chilodonellosis control. This study can help us better understand the energy metabolisms of C. hexasticha and C. uncinata and provide new insight into novel targets for chilodonellosis control. Meanwhile, the transcriptome data can also facilitate genomic studies of these two species in the future.
Collapse
Affiliation(s)
- Xialian Bu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weishan Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenxiang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
| | - Hong Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
| | - Ming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guitang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
| |
Collapse
|
14
|
Production of various phenolic aldehyde compounds using the 4CL-FCHL biosynthesis platform. Int J Biol Macromol 2023; 226:608-617. [PMID: 36521700 DOI: 10.1016/j.ijbiomac.2022.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Vanillin (3-methoxy-4-hydroxybenzaldehyde) is one of the most important flavoring substances used in the cosmetic and food industries. Feruloyl-CoA hydratase/lyase (FCHL) is an enzyme that catalyzes the production of vanillin from feruloyl-CoA. In this study, we report kinetic parameters and biochemical properties of FCHL from Sphingomonas paucimobilis SYK-6 (SpFCHL). Also, the crystal structures of an apo-form of SpFCHL and two complexed forms with acetyl-CoA and vanillin/CoA was present. Comparing the apo structure to its complexed forms of SpFCHL, a gate loop with an "open and closed" role was observed at the entrance of the substrate-binding site. With vanillin and CoA complexed to SpFCHL, we captured a conformational change in the feruloyl moiety-binding pocket that repositions the catalytic SpFCHLE146 and other key residues. This binding pocket does not tightly fit the vanillin structure, suggesting substrate promiscuity of this enzyme. This observation is in good agreement with assay results for phenylpropanoid-CoAs and indicates important physicochemical properties of the substrate for the hydratase/lyase reaction mechanism. In addition, we showed that various phenolic aldehydes could be produced using the 4CL-FCHL biosynthesis platform.
Collapse
|
15
|
Clifford MN, King LJ, Kerimi A, Pereira-Caro MG, Williamson G. Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 2022; 64:3326-3383. [PMID: 36226718 DOI: 10.1080/10408398.2022.2131730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ω-Phenyl-alkenoic acids are abundant in coffee, fruits, and vegetables. Along with ω-phenyl-alkanoic acids, they are produced from numerous dietary (poly)phenols and aromatic amino acids in vivo. This review addresses how phenyl-ring substitution and flux modulates their gut microbiota and endogenous β-oxidation. 3',5'-Dihydroxy-derivatives (from alkyl-resorcinols, flavanols, proanthocyanidins), and 4'-hydroxy-phenolic acids (from tyrosine, p-coumaric acid, naringenin) are β-oxidation substrates yielding benzoic acids. In contrast, 3',4',5'-tri-substituted-derivatives, 3',4'-dihydroxy-derivatives and 3'-methoxy-4'-hydroxy-derivatives (from coffee, tea, cereals, many fruits and vegetables) are poor β-oxidation substrates with metabolism diverted via gut microbiota dehydroxylation, phenylvalerolactone formation and phase-2 conjugation, possibly a strategy to conserve limited pools of coenzyme A. 4'-Methoxy-derivatives (citrus fruits) or 3',4'-dimethoxy-derivatives (coffee) are susceptible to hepatic "reverse" hydrogenation suggesting incompatibility with enoyl-CoA-hydratase. Gut microbiota-produced 3'-hydroxy-4'-methoxy-derivatives (citrus fruits) and 3'-hydroxy-derivatives (numerous (poly)phenols) are excreted as the phenyl-hydracrylic acid β-oxidation intermediate suggesting incompatibility with hydroxy-acyl-CoA dehydrogenase, albeit with considerable inter-individual variation. Further investigation is required to explain inter-individual variation, factors determining the amino acid to which C6-C3 and C6-C1 metabolites are conjugated, the precise role(s) of l-carnitine, whether glycine might be limiting, and whether phenolic acid-modulation of β-oxidation explains how phenolic acids affect key metabolic conditions, such as fatty liver, carbohydrate metabolism and insulin resistance.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Laurence J King
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
| | - Asimina Kerimi
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Maria Gema Pereira-Caro
- Department of Food Science and Health, Instituto Andaluz de Investigacion y Formacion Agraria Pesquera Alimentaria y de la Produccion Ecologica, Sevilla, Spain
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| |
Collapse
|
16
|
Sagawa CHD, Assis RDAB, Zaini PA, Saxe H, Wilmarth PA, Salemi M, Phinney BS, Dandekar AM. De Novo Arginine Synthesis Is Required for Full Virulence of Xanthomonas arboricola pv. juglandis During Walnut Bacterial Blight Disease. PHYTOPATHOLOGY 2022; 112:1500-1512. [PMID: 34941365 DOI: 10.1094/phyto-07-21-0302-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Walnut blight (WB) disease caused by Xanthomonas arboricola pv. juglandis (Xaj) threatens orchards worldwide. Nitrogen metabolism in this bacterial pathogen is dependent on arginine, a nitrogen-enriched amino acid that can either be synthesized or provided by the plant host. The arginine biosynthetic pathway uses argininosuccinate synthase (argG), associated with increased bacterial virulence. We examined the effects of bacterial arginine and nitrogen metabolism on the plant response during WB by proteomic analysis of the mutant strain Xaj argG-. Phenotypically, the mutant strain produced 42% fewer symptoms and survived in the plant tissue with 2.5-fold reduced growth compared with wild type, while showing itself to be auxotrophic for arginine in vitro. Proteomic analysis of infected tissue enabled the profiling of 676 Xaj proteins and 3,296 walnut proteins using isobaric labeling in a data-dependent acquisition approach. Comparative analysis of differentially expressed proteins revealed distinct plant responses. Xaj wild type (WT) triggered processes of catabolism and oxidative stress in the host under observed disease symptoms, while most of the host biosynthetic processes triggered by Xaj WT were inhibited during Xaj argG- infection. Overall, the Xaj proteins revealed a drastic shift in carbon and energy management induced by disruption of nitrogen metabolism while the top differentially expressed proteins included a Fis transcriptional regulator and a peptidyl-prolyl isomerase. Our results show the critical role of de novo arginine biosynthesis to sustain virulence and minimal growth during WB. This study is timely and critical as copper-based control methods are losing their effectiveness, and new sustainable methods are urgently needed in orchard environments.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Cíntia H D Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Renata de A B Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Houston Saxe
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, U.S.A
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA 95616, U.S.A
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, U.S.A
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
17
|
Guo XF, Zhou YL, Liu M, Li Z, Zhou L, Wang ZW, Gui JF. A High-Density Genetic Map and QTL Fine Mapping for Growth- and Sex-Related Traits in Red Swamp Crayfish ( Procambarus clarkii). Front Genet 2022; 13:852280. [PMID: 35242171 PMCID: PMC8886229 DOI: 10.3389/fgene.2022.852280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 01/24/2023] Open
Abstract
Red swamp crayfish (Procambarus clarkii) is a commercially important species in global aquaculture and most successfully invasive freshwater shrimp in China. In order to determine the genetic basis of growth- and sex-related traits, a high-density genetic linkage map was constructed using 2b-RAD sequencing technology in a full-sib family. The consensus map contains 4,878 SNP markers assigned to 94 linkage groups (LGs) and spanned 6,157.737 cM with an average marker interval of 1.26 cM and 96.93% genome coverage. The quantitative trait locus (QTL) mapping for growth and sex traits was performed for the first time. QTL mapping uncovers 28 QTLs for growth-related traits in nine LGs, explaining 7.9-14.4% of the phenotypic variation, and identifies some potential candidate growth-related genes such as mih, lamr, golgb1, nurf301, and tbcd1 within the QTL intervals. A single major locus for sex determination was revealed in LG20 that explains 59.3-63.7% of the phenotypic variations. Some candidate sex-related genes, such as vps4bl, ssrf, and acot1, were identified in the QTL intervals and found to be differentially expressed in the muscle tissues between the females and the males. Furthermore, the identified SNPs were revealed to be female heterozygotes, suggesting that red swamp crayfish might have the female heterogametic ZZ/ZW sex determination system. The present study provides a valuable resource for marker-assisted selection and genetic improvement and for further genetic and genomic research in red swamp crayfish.
Collapse
Affiliation(s)
- Xin-Fen Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,Key Laboratory of Ministry of Water Resources for Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources, Chinese Academy of Sciences, Wuhan, China
| | - Min Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Zhong-Wei Wang,
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Wang Q, Wang Q, Zhao L, Bin Y, Wang L, Wang L, Zhang K, Li Q. Blood Bacterial 16S rRNA Gene Alterations in Women With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2022; 13:814520. [PMID: 35282443 PMCID: PMC8908962 DOI: 10.3389/fendo.2022.814520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Evidence proved the association between gut microbiome dysbiosis and polycystic ovary syndrome (PCOS) in metabolic disorder, decreased fertility, and hyperandrogenism. However, alterations in blood microbiome of PCOS remained unknown. OBJECTIVE This study aims to measure the blood microbiome profile of PCOS patients compared with healthy controls by 16S rRNA sequencing and to investigate its association with PCOS. METHODS In this case-control study, bacterial DNA in blood of 24 PCOS patients and 24 healthy controls was investigated by 16S rRNA gene sequencing using the MiSeq technology. Alpha and beta diversity were used to analyze within-sample biodiversity and similarity of one group to another, respectively. Linear discriminant analysis effect size (LEfSe) was calculated to determine biomarkers between groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional prediction was performed at genera level. RESULT Alpha diversity of blood microbiome decreased significantly in women with PCOS, and beta diversity analysis demonstrated a major separation between the two groups. In the PCOS group, the relative abundance of Proteobacteria, Firmicutes, and Bacteroidetes decreased significantly, while Actinobacteria increased significantly. Cladogram demonstrated the microbiome differences between the two groups at various phylogenic levels. Meanwhile, linear discriminant analysis (LDA) presented significant decreases in Burkholderiaceae, Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, and S24-7 and significant increases in Nocardioidaceae and Oxalobacteraceae of the PCOS group. KEGG pathway analysis at genera level suggested that 14 pathways had significant differences between the two groups. CONCLUSION Our findings demonstrated that blood microbiome had a significantly lower alpha diversity, different beta diversity, and significant taxonomic variations in PCOS patients compared with healthy controls.
Collapse
|
19
|
Xing Y, Thanasirungkul W, Aslam A, Niu F, Guo HR, Chi DF. Genes involved in the Type I pheromone biosynthesis pathway and chemoreception from the sex pheromone gland transcriptome of Dioryctria abietella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100892. [PMID: 34428712 DOI: 10.1016/j.cbd.2021.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
Dioryctria abietella is a coniferous seed orchard pest that can damage a series of host plants and cause huge losses to the forest economy. Sex pheromones play an important role in lepidopteran sex communication for reproduction and can be used as biological control agents to monitor and trap pests. However, the genes involved in the biosynthesis, transportation, and degradation of D. abietella sex pheromones have not been studied extensively. Transcriptome analysis of female D. abietella sex pheromone glands (PGs) revealed that 210 candidate genes might be involved in sex pheromone biosynthesis (139 genes) and chemoreception systems (71 genes). The gene expression patterns exhibited four desaturase genes (DabiDES4-7) and one fatty acid reductase gene (DabiFAR6), which were more highly expressed in sex pheromone glands than in other tissues, suggesting that these enzymes play an important role in D. abietella sex pheromone synthesis. In addition, most DabiOBPs showed high expression in antennae, but only DabiOBP4 exhibited specific expression in sex pheromone glands, suggesting that they may play many physiological roles in D. abietella. We put forth a reasonable hypothesis about type I pheromone biosynthesis pathways based on these genes identified in the D. abietella sex pheromone gland transcriptome. Our findings lay a foundation for population monitoring, mating disruption, mass trapping, and the development of ecologically acceptable management strategies.
Collapse
Affiliation(s)
- Ya Xing
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Wariya Thanasirungkul
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Asad Aslam
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Fang Niu
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Hong-Ru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - De-Fu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
20
|
Padavattan S, Jos S, Gogoi H, Bagautdinov B. Crystal structure of enoyl-CoA hydratase from Thermus thermophilus HB8. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2021; 77:148-155. [PMID: 33949975 DOI: 10.1107/s2053230x21004593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
Fatty-acid degradation is an oxidative process that involves four enzymatic steps and is referred to as the β-oxidation pathway. During this process, long-chain acyl-CoAs are broken down into acetyl-CoA, which enters the mitochondrial tricarboxylic acid (TCA) cycle, resulting in the production of energy in the form of ATP. Enoyl-CoA hydratase (ECH) catalyzes the second step of the β-oxidation pathway by the syn addition of water to the double bond between C2 and C3 of a 2-trans-enoyl-CoA, resulting in the formation of a 3-hydroxyacyl CoA. Here, the crystal structure of ECH from Thermus thermophilus HB8 (TtECH) is reported at 2.85 Å resolution. TtECH forms a hexamer as a dimer of trimers, and wide clefts are uniquely formed between the two trimers. Although the overall structure of TtECH is similar to that of a hexameric ECH from Rattus norvegicus (RnECH), there is a significant shift in the positions of the helices and loops around the active-site region, which includes the replacement of a longer α3 helix with a shorter α-helix and 310-helix in RnECH. Additionally, one of the catalytic residues of RnECH, Glu144 (numbering based on the RnECH enzyme), is replaced by a glycine in TtECH, while the other catalytic residue Glu164, as well as Ala98 and Gly141 that stabilize the enolate intermediate, is conserved. Their putative ligand-binding sites and active-site residue compositions are dissimilar.
Collapse
Affiliation(s)
- Sivaraman Padavattan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560 029, India
| | - Sneha Jos
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560 029, India
| | - Hemanga Gogoi
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560 029, India
| | - Bagautdin Bagautdinov
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
21
|
Bharathi M, Senthil Kumar N, Chellapandi P. Functional Prediction and Assignment of Methanobrevibacter ruminantium M1 Operome Using a Combined Bioinformatics Approach. Front Genet 2020; 11:593990. [PMID: 33391347 PMCID: PMC7772410 DOI: 10.3389/fgene.2020.593990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Methanobrevibacter ruminantium M1 (MRU) is a rod-shaped rumen methanogen with the ability to use H2 and CO2, and formate as substrates for methane formation in the ruminants. Enteric methane emitted from this organism can also be influential to the loss of dietary energy in ruminants and humans. To date, there is no successful technology to reduce methane due to a lack of knowledge on its molecular machinery and 73% conserved hypothetical proteins (HPs; operome) whose functions are still not ascertained perceptively. To address this issue, we have predicted and assigned a precise function to HPs and categorize them as metabolic enzymes, binding proteins, and transport proteins using a combined bioinformatics approach. The results of our study show that 257 (34%) HPs have well-defined functions and contributed essential roles in its growth physiology and host adaptation. The genome-neighborhood analysis identified 6 operon-like clusters such as hsp, TRAM, dsr, cbs and cas, which are responsible for protein folding, sudden heat-shock, host defense, and protection against the toxicities in the rumen. The functions predicted from MRU operome comprised of 96 metabolic enzymes with 17 metabolic subsystems, 31 transcriptional regulators, 23 transport, and 11 binding proteins. Functional annotation of its operome is thus more imperative to unravel the molecular and cellular machinery at the systems-level. The functional assignment of its operome would advance strategies to develop new anti-methanogenic targets to mitigate methane production. Hence, our approach provides new insight into the understanding of its growth physiology and lifestyle in the ruminants and also to reduce anthropogenic greenhouse gas emissions worldwide.
Collapse
Affiliation(s)
- M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - N Senthil Kumar
- Human Genetics Lab, Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
22
|
Xu T, Lim YT, Chen L, Zhao H, Low JH, Xia Y, Sobota RM, Fang M. A Novel Mechanism of Monoethylhexyl Phthalate in Lipid Accumulation via Inhibiting Fatty Acid Beta-Oxidation on Hepatic Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15925-15934. [PMID: 33225693 DOI: 10.1021/acs.est.0c01073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Monoethylhexyl phthalate (MEHP) is one of the main active metabolites of the plasticizer di(2-ethylhexyl) phthalate. It has been known that MEHP has an impact on lipolysis; however, its mechanism on the cellular lipid metabolism remains largely unclear. Here, we first utilized global lipid profiling to fully characterize the lipid synthesis and degradation pathways upon MEHP treatment on hepatic cells. Meanwhile, we further identified the possible MEHP-targeted proteins in living cells using the cellular thermal shift assay (CETSA) method. The lipidomics results showed that there was a significant accumulation of fatty acids and other lipids in the cell. The CETSA identified 18 proteins and fatty acid β-oxidation inhibition pathways that were significantly perturbed. MEHP's binding with selected proteins HADH and HSD17B10 was further evaluated using molecule docking, and results showed that MEHP has higher affinities as compared to endogenous substrates, which was further experimentally confirmed in the surface plasma resonance interaction assay. In summary, we found a novel mechanism for MEHP-induced lipid accumulation, which was probably due to its inhibitive effects on the enzymes in fatty acid β-oxidation. This mechanism substantiates the public concerns on the high exposure level to plasticizers and their possible role as an obesogen.
Collapse
Affiliation(s)
- Tengfei Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Yan Ting Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Liyan Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Haoduo Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jian Hui Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Radoslaw Mikolaj Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| |
Collapse
|
23
|
Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. Mar Drugs 2020; 18:md18120612. [PMID: 33271856 PMCID: PMC7760700 DOI: 10.3390/md18120612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various levels of sodium nitrate (SN) (1–50 mM) or urea (1–50 mM). Compared with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3 PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid (DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes (RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation, contributing to the extension and unsaturated bond formation. These findings indicated that regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production in Thraustochytriidae sp.
Collapse
|
24
|
Luo ZH, Liu ZW, Mao Y, Shu R, Fu LC, Yang RY, Hu YJ, Shen XL. Cajanolactone A, a stilbenoid from cajanus cajan, prevents ovariectomy-induced obesity and liver steatosis in mice fed a regular diet. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153290. [PMID: 32777485 DOI: 10.1016/j.phymed.2020.153290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Visceral obesity and fatty liver are prevalent in postmenopausal women. The stilbene-rich extract of Cajanus cajan (L.) Millsp. has been reported to prevent ovariectomy-induced and diet-induced weight gain in animal models, and stilbenoids from C. cajan are thought to have the potential to prevent postmenopausal obesity and fatty liver. PURPOSE Cajanolactone A (CLA) is the main stilbenoid from C. cajan with osteoblastogenic promoting activity. This study investigated the potential of CLA to prevent postmenopausal obesity and fatty liver. Underlying mechanisms were also investigated. METHOD Ovariectomized C57BL/6 mice fed a regular diet were used as mimics of postmenopausal women and given 10, 20, or 40 mg/kg/d of CLA, 0.1 mg/kg/d of estradiol valerate (EV, positive control), or vehicle (OVX) orally for 16 weeks. Mice of the same age subjected to a sham operation were used as control (Sham). Body weights were recorded every 2 weeks for 16 weeks. Body compositions were analyzed via micro-CT. Serum levels of lipids, adipocytokines and aminotransferases were measured using the relevant kits. mRNA levels of genes of interest were detected by RT-qPCR. Proteomic study of perigonadal white adipose tissue (pWAT) was performed using tandem-mass-tags-based proteomic technology combined with Parallel-Reaction-Monitoring (PRM) validation. RESULTS CLA showed potential equivalent to that of EV to prevent ovariectomy-induced overweight, obesity, dyslipidemia, liver steatosis and liver dysfunction, but did not prevent uterine atrophy. In the liver, CLA significantly inhibited ovariectomy-induced upregulation in expression of lipogenic genes SREBP-1c and ChREBP, and stimulated the mRNA expression of apolipoprotein B gene ApoB. In pWAT, CLA reversed, or partially reversed ovariectomy-induced downregulation in the expression of a number of metabolism- and mitochondrial-function-related proteins, including Ndufa3, Pcx, Pdhb, Acly, Acaca, Aldh2, Aacs and Echs1. In addition, ovariectomy-inhibited mRNA expression of Pdhb, Aacs, Acsm5, Echs1, and Aldh2 genes in pWAT was also reversed. CONCLUSION CLA was demonstrated to be a potential non-estrogen-like drug candidate for prevention of postmenopausal obesity and fatty liver. The underlying mechanism might involve the inhibition of lipogenesis and promotion of triglycerides output in the liver, and the promotion of metabolism and mitochondrial functions of visceral white adipose tissue.
Collapse
Affiliation(s)
- Zhuo-Hui Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Zhi-Wen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Yu Mao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Rong Shu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Lin-Chun Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Rui-Yi Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Ying-Jie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China.
| | - Xiao-Ling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China.
| |
Collapse
|
25
|
Zhao NL, Zhang QQ, Zhao C, Liu L, Li T, Li CC, He LH, Zhu YB, Song YJ, Liu HX, Bao R. Structural and molecular dynamic studies of Pseudomonas aeruginosa OdaA reveal the regulation role of a C-terminal hinge element. Biochim Biophys Acta Gen Subj 2020; 1865:129756. [PMID: 33010351 DOI: 10.1016/j.bbagen.2020.129756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Crotonase superfamily members exhibit great catalytic diversity towards various acyl-CoA substrates. A common CoA moiety binding pattern is usually observed in this family, understanding the substrate-binding mechanism would facilitate the rational engineering of crotonases for improved properties. METHODS We applied X-ray crystallography to investigate a putative enoyl-CoA hydratase/isomerase OdaA in Pseudomonas aeruginosa. Thermal shift assay (TSA) were performed to explore the binding of OdaA with CoA thioester substrates. Furthermore, we performed molecular dynamics (MD) simulations to elucidate the dynamics of its CoA-binding site. RESULTS We solved the crystal structures of the apo and CoA-bound OdaA. Thermal shift assay (TSA) showed that CoA thioester substrates bind to OdaA with a different degree. MD simulations demonstrated that the C-terminal alpha helix underwent a structural transition and a hinge region would associate with this conformational change. CONCLUSIONS TSA in combination with MD simulations elucidate that the dynamics of C-terminal alpha helix in CoA-binding, and a hinge region play an important role in conformational change. GENERAL SIGNIFICANCE Those results help to extend our knowledge about the nature of crotonases and would be informative for future mechanistic studies and industry applications.
Collapse
Affiliation(s)
- Ning-Lin Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qian-Qian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chang Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Liu
- Department of dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chang-Cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li-Hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yi-Bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ying-Jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Huan-Xiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
26
|
Mitschke N, Jarling R, Rabus R, Christoffers J, Wilkes H. Metabolites of the anaerobic degradation of diethyl ether by denitrifying betaproteobacterium strain HxN1. Org Biomol Chem 2020; 18:7098-7109. [PMID: 32897282 DOI: 10.1039/d0ob01419b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The constitutions of five metabolites formed during co-metabolic, anaerobic degradation of diethyl ether by the denitrifying betaproteobacterium Aromatoleum sp. strain HxN1 were elucidated by comparison of mass spectrometric and gas chromatographic data with those of synthetic reference standards. Furthermore, the absolute configurations of two stereogenic centers in the metabolites were established. Based on these results a degradation pathway for diethyl ether by Aromatoleum sp. HxN1 analogous to that of n-hexane is proposed. Synthesis of both enantiomers of methyl (E)-4-ethoxy-2-pentenoate was accomplished by etherification of ethyl (R)- or (S)-lactate, followed by hydrolysis of the ester group and reduction to furnish 2-ethoxy-1-propanol. The primary alcohol was converted by a Swern oxidation followed by a Horner-Wadsworth-Emmons reaction to methyl (E)-4-ethoxy-2-pentenoate that was finally hydrogenated to methyl 4-ethoxypentanoate. Methyl (S)-4-ethoxy-3-oxopentanoate was prepared by conversion of (S)-2-ethoxypropanoyl chloride with Meldrum's acid. Reduction of the resulting β-oxoester with NaBH4 or baker's yeast gave both diastereoisomers of methyl 4-ethoxy-3-hydroxypentanoate. The stereocenter at C-3 of the main diastereoisomer produced with baker's yeast was determined by Mosher ester analysis to be (R)-configurated. Dimethyl 2-(1-ethoxyethyl)succinate was prepared by Michael addition of nitroethane to diethyl maleate, followed by conjugate addition of sodium ethanolate, hydrolysis and esterification with diazomethane.
Collapse
Affiliation(s)
- Nico Mitschke
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - René Jarling
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Ralf Rabus
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Jens Christoffers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Heinz Wilkes
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
27
|
Cuetos A, Iglesias-Fernández J, Danesh-Azari HR, Zukic E, Dowle A, Osuna S, Grogan G. Mutational Analysis of Linalool Dehydratase Isomerase Suggests That Alcohol and Alkene Transformations Are Catalyzed Using Noncovalent Mechanisms. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anibal Cuetos
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD York, U.K
| | - Javier Iglesias-Fernández
- CompBioLab group, Institut de Química Computacional i Catàlisi, Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Hamid-Reza Danesh-Azari
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD York, U.K
| | - Erna Zukic
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD York, U.K
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD, York, U.K
| | - Sílvia Osuna
- CompBioLab group, Institut de Química Computacional i Catàlisi, Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD York, U.K
| |
Collapse
|
28
|
Zhang SZ, Zhu LB, Yu D, You LL, Wang J, Cao HH, Liu YX, Wang YL, Kong X, Toufeeq S, Xu JP. Identification and Functional Analysis of BmNPV-Interacting Proteins From Bombyx mori (Lepidoptera) Larval Midgut Based on Subcellular Protein Levels. Front Microbiol 2020; 11:1481. [PMID: 32695093 PMCID: PMC7338592 DOI: 10.3389/fmicb.2020.01481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. However, the molecular mechanism of silkworm resistance to BmNPV and the interactions of this virus with the host during infection remain largely unclear. To explore the virus-binding proteins of silkworms, the midgut subcellular component proteins that may interact with BmNPV were analyzed in vitro based on one- and two-dimensional electrophoresis and far-western blotting combined with mass spectrometry (MS). A total of 24 proteins were determined to be specifically bound to budded viruses (BVs) in two subcellular fractions (mitochondria and microsomes). These proteins were involved in viral transportation, energy metabolism, apoptosis and viral propagation, and they responded to BmNPV infection with different expression profiles in different resistant strains. In particular, almost all the identified proteins were downregulated in the A35 strain following BmNPV infection. Interestingly, there were no virus-binding proteins identified in the cytosolic fraction of the silkworm midgut. Two candidate proteins, RACK1 and VDAC2, interacted with BVs, as determined with far-western blotting and reverse far-western blotting. We speculated that the proteins interacting with the virus could either enhance or inhibit the infection of the virus. The data provide comprehensive useful information for further research on the interaction of the host with BmNPV.
Collapse
Affiliation(s)
- Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Dong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Yu-Ling Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xue Kong
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
29
|
Ju Z, Ya J, Li X, Wang H, Zhao H. The effects of chronic cadmium exposure on Bufo gargarizans larvae: Histopathological impairment, gene expression alteration and fatty acid metabolism disorder in the liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105470. [PMID: 32199138 DOI: 10.1016/j.aquatox.2020.105470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) a highly toxic metal to human and wildlife health and it is hazardous to both terrestrial and aquatic life. In this study, we used RNA sequencing analysis to examine the effects of chronic cadmium exposure on liver lipid metabolism of Bufo gargarizans larvae. Tadpoles were exposed to cadmium concentrations at 0, 5, 10, 50, 100 and 200 μg L-1 from Gosner stage 26-42 of metamorphic climax. The results showed high dose cadmium (50, 100 and 200 μg L-1) caused obvious histological changes characterized by hepatocytes deformation, nuclear pyknosis, increasing melanomacrophage centers (MMCs) and aggregated lipid droplets. Moreover, transcriptome analysis showed that liver function was seriously affected by cadmium exposure. Furthermore, high dose cadmium significantly upregulated the mRNA expression of elongation of very-long-chain fatty acids 1 (ELOVL1), Mitochondrial trans-2-enoyl-CoA reductase (MECR), Trans-2, 3-enoyl-CoA reductase (TER) and Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) which are related with fatty acid synthesis. Meanwhile, mRNA levels of genes related with fat acid oxidation such as acetyl-CoA acyltransferase 2 (ACAA2) and enoyl-coenzyme A (CoA) hydratase short chain 1 (ECHS1) were significantly upregulated while the expression of Acyl-coA thioesterase 1 (ACOT1), 3-hydroxyacyl-CoA dehydrogenase (HADH), Palmitoyl-protein thioesterase 1(PPT1) and Acetyl-CoA acyltransferase 1(ACAA1) was significantly downregulated by high dose cadmium exposure. Furthermore, the mRNA level of ATP-binding cassette subfamily B member 11 (ABCB11) related with bile secretion was significantly decreased exposed to high dose cadmium. Our results suggested cadmium can cause liver dysfunction by inducing histopathological damages, genetic expression alterations and fatty acid metabolism disorder.
Collapse
Affiliation(s)
- Zongqi Ju
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Ya
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
30
|
Hwang J, Jeong CS, Lee CW, Shin SC, Kim HW, Lee SG, Youn UJ, Lee CS, Oh TJ, Kim HJ, Park H, Park HH, Lee JH. Structural and sequence comparisons of bacterial enoyl-CoA isomerase and enoyl-CoA hydratase. J Microbiol 2020; 58:606-613. [PMID: 32323197 DOI: 10.1007/s12275-020-0089-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.
Collapse
Affiliation(s)
- Jisub Hwang
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Chang-Sook Jeong
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Chang Woo Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Han-Woo Kim
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Sung Gu Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Ui Joung Youn
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.,Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea.,Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea.,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, 21990, Republic of Korea. .,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| |
Collapse
|
31
|
Yang Y, Wang W, Liu X, Song X, Chai L. Probing the effects of hexavalent chromium exposure on histology and fatty acid metabolism in liver of Bufo gargarizans tadpoles. CHEMOSPHERE 2020; 243:125437. [PMID: 31995885 DOI: 10.1016/j.chemosphere.2019.125437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Hexavalent chromium is one of the major detrimental heavy metal pollutants. B. gargarizans tadpoles were treated with different concentrations of Cr6+ (0, 13, 52, 104, 208, and 416 μg Cr6+ L-1) from Gs 2 to Gs 42. The effect of Cr6+ on histopathological alterations and transcript levels of fatty acid metabolism-related genes as well as fatty acids composition and content in liver were examined. Histopathological changes were observed in liver at 52, 104, 208, and 416 μg Cr6+ L-1. Moreover, RT-qPCR analyses showed the downregulated mRNA levels of the genes related to fatty acid synthesis (SCD, MECR, TECR and ELOVL1) and fatty acid β-oxidation (ACOT1, PPT1, HADH and ACAA2) at 416 μg Cr6+ L-1. However, the mRNA expression of fatty acid β-oxidation-related genes (ECHS1, HADHA and ACAA1) were significantly upregulated at 13, 52, 104, 208 and 416 μg Cr6+ L-1. In situ hybridization revealed BSEP was expressed in hepatocyte nucleus and plasma membrane, and HSD17B12 was abundantly expressed in the plasma membrane. The HSD17B12 mRNA levels were significantly upregulated in tadpoles exposed to all Cr6+ treatment groups, while the BSEP mRNA levels were downregulated at 104, 208 and 416 μg Cr6+ L-1 groups compared to control. In addition, an increase in polyunsaturated fatty acids and a decrease in monounsaturated fatty acids were found in 52, 104 and 416 μg Cr6+ L-1 groups. Overall, chronic exposure to Cr6+ may suppress fatty acid synthesis, disturb fatty acid β-oxidation, aggravate disorders of hepatic function and induce hepatic impairment in B. gargarizans tadpoles.
Collapse
Affiliation(s)
- Yijie Yang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Wenxiang Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Xiuling Song
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
32
|
A Gene Cluster That Encodes Histone Deacetylase Inhibitors Contributes to Bacterial Persistence and Antibiotic Tolerance in Burkholderia thailandensis. mSystems 2020; 5:5/1/e00609-19. [PMID: 32047060 PMCID: PMC7018527 DOI: 10.1128/msystems.00609-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The discovery of antibiotics such as penicillin and streptomycin marked a historic milestone in the 1940s and heralded a new era of antimicrobial therapy as the modern standard for medical treatment. Yet, even in those early days of discovery, it was noted that a small subset of cells (∼1 in 105) survived antibiotic treatment and continued to persist, leading to recurrence of chronic infection. These persisters are phenotypic variants that have modified their physiology to survive environmental stress. In this study, we have performed three transcriptomic screens to identify persistence genes that are common between three different stressor conditions. In particular, we identified genes that function in the synthesis of secondary metabolites, small molecules, and complex lipids, which are likely required to maintain the persistence state. Targeting universal persistence genes can lead to the development of clinically relevant antipersistence therapeutics for infectious disease management. Persister cells are genetically identical variants in a bacterial population that have phenotypically modified their physiology to survive environmental stress. In bacterial pathogens, persisters are able to survive antibiotic treatment and reinfect patients in a frustrating cycle of chronic infection. To better define core persistence mechanisms for therapeutics development, we performed transcriptomics analyses of Burkholderia thailandensis populations enriched for persisters via three methods: flow sorting for low proton motive force, meropenem treatment, and culture aging. Although the three persister-enriched populations generally displayed divergent gene expression profiles that reflect the multimechanistic nature of stress adaptations, there were several common gene pathways activated in two or all three populations. These include polyketide and nonribosomal peptide synthesis, Clp proteases, mobile elements, enzymes involved in lipid metabolism, and ATP-binding cassette (ABC) transporter systems. In particular, identification of genes that encode polyketide synthases (PKSs) and fatty acid catabolism factors indicates that generation of secondary metabolites, natural products, and complex lipids could be part of the metabolic program that governs the persistence state. We also found that loss-of-function mutations in the PKS-encoding gene locus BTH_I2366, which plays a role in biosynthesis of histone deacetylase (HDAC) inhibitors, resulted in increased sensitivity to antibiotics targeting DNA replication. Furthermore, treatment of multiple bacterial pathogens with a fatty acid synthesis inhibitor, CP-640186, potentiated the efficacy of meropenem against the persister populations. Altogether, our results suggest that bacterial persisters may exhibit an outwardly dormant physiology but maintain active metabolic processes that are required to maintain persistence. IMPORTANCE The discovery of antibiotics such as penicillin and streptomycin marked a historic milestone in the 1940s and heralded a new era of antimicrobial therapy as the modern standard for medical treatment. Yet, even in those early days of discovery, it was noted that a small subset of cells (∼1 in 105) survived antibiotic treatment and continued to persist, leading to recurrence of chronic infection. These persisters are phenotypic variants that have modified their physiology to survive environmental stress. In this study, we have performed three transcriptomic screens to identify persistence genes that are common between three different stressor conditions. In particular, we identified genes that function in the synthesis of secondary metabolites, small molecules, and complex lipids, which are likely required to maintain the persistence state. Targeting universal persistence genes can lead to the development of clinically relevant antipersistence therapeutics for infectious disease management.
Collapse
|
33
|
Zhou B, Ma Y, Tian Y, Li J, Zhong H. Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals Inhibition Mechanism of Pigments and Citrinin Production of Monascus Response to High Ammonium Chloride Concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:808-817. [PMID: 31870144 DOI: 10.1021/acs.jafc.9b05852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various Monascus bioactive metabolites used as food or food additives in Asia for centuries are subjected to constant physical and chemical changes and different Monascus genus. With the aim to identify enzymes that participate in or indirectly regulate the pigments and citrinin biosynthesis pathways of Monascus purpureus cultured under high ammonium chloride, the changes of the proteome profile were examined using sequential window acquisition of all theoretical mass spectra-mass spectrometry-based quantitative proteomics approach in combination with bioinformatics analysis. A total of 292 proteins were confidently detected and quantified in each sample, including 163 that increased and 129 that decreased (t-tests, p ≤ 0.05). Pathway analysis indicated that high ammonium chloride in the present study accelerates the carbon substrate utilization and promotes the activity of key enzymes in glycolysis and β-oxidation of fatty acid catabolism to generate sufficient acetyl-CoA. However, the synthesis of the monascus pigments and citrinin was not enhanced because of inhibition of the polyketide synthase activity. All results demonstrated that the cause of initiation of pigments and citrinin synthesis is mainly due to the apparent inhibition of acyl and acetyl transfer by some acyltransferase and acetyltransferase, likely malony-CoA:ACP transacylase.
Collapse
Affiliation(s)
- Bo Zhou
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose , Changsha 410004 , China
| | - Yifan Ma
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
| | - Yuan Tian
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
| | - Jingbo Li
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Haiyan Zhong
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
| |
Collapse
|
34
|
Sharma NK, Chuang Key CC, Civelek M, Wabitsch M, Comeau ME, Langefeld CD, Parks JS, Das SK. Genetic Regulation of Enoyl-CoA Hydratase Domain-Containing 3 in Adipose Tissue Determines Insulin Sensitivity in African Americans and Europeans. Diabetes 2019; 68:1508-1522. [PMID: 31010960 PMCID: PMC6609988 DOI: 10.2337/db18-1229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Insulin resistance (IR) is a harbinger of type 2 diabetes (T2D) and partly determined by genetic factors. However, genetically regulated mechanisms of IR remain poorly understood. Using gene expression, genotype, and insulin sensitivity data from the African American Genetics of Metabolism and Expression (AAGMEx) cohort, we performed transcript-wide correlation and expression quantitative trait loci (eQTL) analyses to identify IR-correlated cis-regulated transcripts (cis-eGenes) in adipose tissue. These IR-correlated cis-eGenes were tested in the European ancestry individuals in the Metabolic Syndrome in Men (METSIM) cohort for trans-ethnic replication. Comparison of Matsuda index-correlated transcripts in AAGMEx with the METSIM study identified significant correlation of 3,849 transcripts, with concordant direction of effect for 97.5% of the transcripts. cis-eQTL for 587 Matsuda index-correlated genes were identified in both cohorts. Enoyl-CoA hydratase domain-containing 3 (ECHDC3) was the top-ranked Matsuda index-correlated cis-eGene. Expression levels of ECHDC3 were positively correlated with Matsuda index, and regulated by cis-eQTL, rs34844369 being the top cis-eSNP in AAGMEx. Silencing of ECHDC3 in adipocytes significantly reduced insulin-stimulated glucose uptake and Akt Ser473 phosphorylation. RNA sequencing analysis identified 691 differentially expressed genes in ECHDC3-knockdown adipocytes, which were enriched in γ-linolenate biosynthesis, and known IR genes. Thus, our studies elucidated genetic regulatory mechanisms of IR and identified genes and pathways in adipose tissue that are mechanistically involved in IR.
Collapse
Affiliation(s)
- Neeraj K Sharma
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Chia-Chi Chuang Key
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mete Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mary E Comeau
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC
| | - Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC
| | - John S Parks
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Swapan K Das
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
35
|
Alonso-Cotchico L, Sciortino G, Vidossich P, Rodríguez-Guerra Pedregal J, Drienovská I, Roelfes G, Lledós A, Maréchal JD. Integrated Computational Study of the Cu-Catalyzed Hydration of Alkenes in Water Solvent and into the Context of an Artificial Metallohydratase. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Pietro Vidossich
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- COBO Computational Bio-Organic Chemistry Bogotá, Department of Chemistry, Universidad de los Andes, Carrera 1 N° 18A 10, Bogotá 111711, Colombia
| | | | - Ivana Drienovská
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Agusti Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| |
Collapse
|
36
|
Yum JH, Park S, Hiraga R, Okamura I, Notsu S, Sugiyama H. Modular DNA-based hybrid catalysts as a toolbox for enantioselective hydration of α,β-unsaturated ketones. Org Biomol Chem 2019; 17:2548-2553. [PMID: 30762058 DOI: 10.1039/c9ob00196d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The direct addition of water to a carbon-carbon double bond remains a challenge, but such a reaction is essential for the development of efficient catalysts that enable direct access to chiral alcohols. We now report on the enantioselective hydration of α,β-unsaturated ketones, catalyzed by modular DNA-based hybrid catalysts, affording β-hydroxy ketones with up to 87% enantiomeric excess. Oligonucleotides containing an intrastrand bipyridine ligand were readily synthesized by a straightforward process using an automated solid-phase synthesis. A library of DNA-based hybrid catalysts could be systematically generated based on the composition of nucleobases, and the incorporation of a binding ligand and a nonbinding steric moiety. This study demonstrates the potential of modular DNA-based hybrid catalysts as a toolbox to accomplish the challenging enantioselective hydration reaction.
Collapse
Affiliation(s)
- Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Transcriptome analysis provides insights into the molecular mechanisms responsible for evisceration behavior in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:143-157. [PMID: 30851504 DOI: 10.1016/j.cbd.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023]
Abstract
The sea cucumber Apostichopus japonicus (Selenka) is a valuable economic species in Southeast Asia. It has many fascinating behavioral characteristics, such as autolysis, aestivation, regeneration, and evisceration, thus it is a notable species for studies of special behaviors. Evisceration and autotomy are controlled by the neural network and involve a complicated physiological process. The occurrence of evisceration behavior in sea cucumbers is strongly related to their environment, and it negatively impacts their economic value. Evisceration behavior plays a pivotal role in the survival of A. japonicus, and when it is induced by dramatic changes in the coastal ecological environment and the aquaculture setting it can strongly affect the economic performance of this species. Although numerous studies have focused on intestinal regeneration of A. japonicus, less is known about evisceration behavior, especially its underlying molecular mechanisms. Thus, identification of genes that regulate evisceration in the sea cucumber likely will provide a scientific explanation for this significant specific behavior. In this study, Illumina sequencing (RNA-Seq) was performed on A. japonicus specimens in three states: normal (TCQ), eviscerating (TCZ), and 3 h after evisceration (TCH). In total, 129,905 unigenes were generated with an N50 length of 2651 base pairs, and 54,787 unigenes were annotated from seven functional databases (KEGG, KOG, GO, NR, NT, Interpro, and Swiss-Prot). Additionally, 190, 191, and 320 genes were identified as differentially expressed genes (DEGs) in the comparisons of TCQ vs. TCZ, TCZ vs. TCH, and TCQ vs. TCH, respectively. These DEGs mapped to 157, 113, and 190 signaling pathways in the KEGG database, respectively. KEGG analyses also revealed that potential DEGs enriched in the categories of "environmental information processing," "organismal system," "metabolism," and "cellular processes," and they were involved in evisceration behavior in A. japonicus. These DEGs are related to muscle contraction, hormone and neurotransmitter secretion, nerve and muscle damage, energy support, cellular stress, and apoptosis. In conclusion, through our comparative analysis of A. japonicus in different stages, we identified many candidate evisceration-related genes and signaling pathways that likely are involved in evisceration behavior. These results should help further elucidate the mechanisms underlying evisceration behavior in sea cucumbers.
Collapse
|
38
|
Seo H, Kim KJ. Crystal Structure of a Novel Type Isomerase of Enoyl-CoA Hydratase/Isomerase Family Protein from Cupriavidus necator H16. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Heine V, Meinert-Berning C, Lück J, Mikowsky N, Voigt B, Riedel K, Steinbüchel A. The catabolism of 3,3'-thiodipropionic acid in Variovorax paradoxus strain TBEA6: A proteomic analysis. PLoS One 2019; 14:e0211876. [PMID: 30742653 PMCID: PMC6370202 DOI: 10.1371/journal.pone.0211876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
Variovorax paradoxus strain TBEA6 is one of the few organisms known to utilize 3,3'-thiodipropionate (TDP) as the only source of carbon and energy. It cleaves TDP to 3-mercaptopropionate (3MP), which is a direct precursor for polythioester synthesis. To establish this process in V. paradoxus TBEA6, it is crucial to unravel its TDP metabolism. Therefore, a proteomic approach with subsequent deletion of interesting genes in the bacterium was chosen. Cells were cultivated with D-gluconate, TDP or 3-sulfinopropionate as the only carbon sources. Proteins with high abundances in gels of cells cultivated with either of the organic sulfur compounds were analyzed further. Thereby, we did not only confirm parts of the already postulated TDP metabolism, but also eight new protein candidates for TDP degradation were detected. Deletions of the corresponding genes (two enoyl-CoA hydratases (Ech-20 and Ech-30), an FK506-binding protein, a putative acetolactate synthase, a carnitinyl-CoA dehydratase, and a putative crotonase family protein) were obtained. Only the deletions of both Ech-20 and Ech-30 led to a TDP negative phenotype. The deletion mutant of VPARA_05510, which encodes the putative crotonase family protein showed reduced growth with TDP. The three genes are located in one cluster with genes proven to be involved in TDP metabolism. Thermal shift assays showed an increased stability of Ech-20 with TDP-CoA but not with TDP. These results indicate that Ech-20 uses TDP-CoA as a substrate instead of TDP. Hence, we postulate a new putative pathway for TDP metabolism. Ech-30 interacts with neither TDP-CoA nor TDP but might interact with other CoA-activated intermediates of the proposed pathway. Further enzyme characterization is necessary to unravel the complete pathway from TDP to 3MP.
Collapse
Affiliation(s)
- Viktoria Heine
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Janina Lück
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Nadine Mikowsky
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Kashash Y, Doron-Faigenboim A, Bar-Ya'akov I, Hatib K, Beja R, Trainin T, Holland D, Porat R. Diversity among Pomegranate Varieties in Chilling Tolerance and Transcriptome Responses to Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:760-771. [PMID: 30567435 DOI: 10.1021/acs.jafc.8b06321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We found great variability in chilling tolerance among 84 pomegranate varieties from the Newe Ya'ar collection; among them, 'Ganesh' was chilling-sensitive, whereas 'Wonderful' was relatively chilling-tolerant. To evaluate the different molecular responses of these varieties to cold storage, we analyzed the transcriptomic changes in the inner membrane tissues of 'Ganesh' and 'Wonderful' fruit after 2 weeks of cold storage at 1 °C. By functional categorization of the differentially expressed transcripts using MapMan, we found that many transcripts related to various pathways, such as jasmonic acid biosynthesis and signaling, galactinol, raffinose, phenol, and phenylpropanoid biosynthesis, calcium and mitogen-activated protein kinase signaling, lipid metabolism, and various transcription factors and heat-shock proteins, have been massively upregulated in 'Wonderful' but not in 'Ganesh' fruit. Thus, it is suggested that these pathways most likely participate in imparting chilling tolerance in pomegranate fruit.
Collapse
Affiliation(s)
- Yael Kashash
- The Robert H. Smith Faculty of Agricultural, Food and Environmental Quality Sciences , The Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | | | - Irit Bar-Ya'akov
- Department of Fruit Tree Sciences , Agricultural Research Organization (ARO), Newe Ya'ar Research Center , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Kamel Hatib
- Department of Fruit Tree Sciences , Agricultural Research Organization (ARO), Newe Ya'ar Research Center , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Rotem Beja
- Department of Fruit Tree Sciences , Agricultural Research Organization (ARO), Newe Ya'ar Research Center , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Taly Trainin
- Department of Fruit Tree Sciences , Agricultural Research Organization (ARO), Newe Ya'ar Research Center , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Doron Holland
- Department of Fruit Tree Sciences , Agricultural Research Organization (ARO), Newe Ya'ar Research Center , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | | |
Collapse
|
41
|
Endo Y, Kamei KI, Inoue-Murayama M. Genetic signatures of lipid metabolism evolution in Cetacea since the divergence from terrestrial ancestor. J Evol Biol 2018; 31:1655-1665. [DOI: 10.1111/jeb.13361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/12/2018] [Accepted: 07/28/2018] [Indexed: 12/25/2022]
Affiliation(s)
| | - Ken-ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center; Kyoto University; Kyoto Japan
- Wildlife Genome Collaborative Research Group; National Institute for Environmental Studies; Tsukuba Ibaraki Japan
| |
Collapse
|
42
|
Lee D, Kim KJ. Structural Insight into Substrate Specificity of 3-Hydroxypropionyl-Coenzyme A Dehydratase from Metallosphaera sedula. Sci Rep 2018; 8:10692. [PMID: 30013155 PMCID: PMC6048173 DOI: 10.1038/s41598-018-29070-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 11/09/2022] Open
Abstract
Metallosphaera sedula is a thermoacidophilic autotrophic archaeon known to utilize the 3-hydroxypropionate/4-hydroxybutyrate cycle (3-HP/4-HB cycle) as carbon fixation pathway. 3-Hydroxypropionyl-CoA dehydratase (3HPCD) is an enzyme involved in the 3-HP/4-HB cycle by converting 3-hydroxypropionyl-CoA to acryloyl-CoA. To elucidate the molecular mechanism of 3HPCD from M. sedula (Ms3HPCD), we determined its crystal structure in complex with Coenzyme A (CoA). Ms3HPCD showed an overall structure and the CoA-binding mode similar to other enoyl-CoA hydratase (ECH) family enzymes. However, compared with the other ECHs, Ms3HPCD has a tightly formed α3 helix near the active site, and bulky aromatic residues are located at the enoyl-group binding site, resulting in the enzyme having an optimal substrate binding site for accepting short-chain 3-hydroxyacyl-CoA as a substrate. Moreover, based on the phylogenetic tree analysis, we propose that the 3HPCD homologues from the phylum Crenarchaeota have an enoyl-group binding pocket similar to that of bacterial short-chain ECHs.
Collapse
Affiliation(s)
- Donghoon Lee
- KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.,KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea. .,KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
43
|
In vivo studies on the mechanism of methylene cyclopropyl acetic acid and methylene cyclopropyl glycine-induced hypoglycemia. Biochem J 2018; 475:1063-1074. [PMID: 29483297 DOI: 10.1042/bcj20180063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 01/20/2023]
Abstract
Exposure to the toxins methylene cyclopropyl acetic acid (MCPA) and methylene cyclopropyl glycine (MCPG) of unripe ackee and litchi fruit can lead to hypoglycemia and death; however, the molecular mechanisms by which MCPA and MCPG cause hypoglycemia have not been established in vivo To determine the in vivo mechanisms of action of these toxins, we infused them into conscious rodents and assessed rates of hepatic gluconeogenesis and ketogenesis, hepatic acyl-CoA and hepatic acetyl-CoA content, and hepatocellular energy charge. MCPG suppressed rates of hepatic β-oxidation as reflected by reductions in hepatic ketogenesis, reducing both short- and medium-chain hepatic acyl-CoA concentrations. Hepatic acetyl-CoA content decreased, and hepatic glucose production was inhibited. MCPA also suppressed β-oxidation of short-chain acyl-CoAs, rapidly inhibiting hepatic ketogenesis and hepatic glucose production, depleting hepatic acetyl-CoA content and ATP content, while increasing other short-chain acyl-CoAs. Utilizing a recently developed positional isotopomer NMR tracer analysis method, we demonstrated that MCPA-induced reductions in hepatic acetyl-CoA content were associated with a marked reduction of hepatic pyruvate carboxylase (PC) flux. Taken together, these data reveal the in vivo mechanisms of action of MCPA and MCPG: the hypoglycemia associated with ingestion of these toxins can be ascribed mostly to MCPA- or MCPG-induced reductions in hepatic PC flux due to inhibition of β-oxidation of short-chain acyl-CoAs by MCPA or inhibition of both short- and medium-chain acyl-CoAs by MCPG with resultant reductions in hepatic acetyl-CoA content, with an additional contribution to hypoglycemia through reduced hepatic ATP stores by MCPA.
Collapse
|
44
|
Dou J, Qin W, Ding A, Liu X, Zhu Y. iTRAQ-based proteomic profiling of a Microbacterium sp. strain during benzo(a)pyrene removal under anaerobic conditions. Appl Microbiol Biotechnol 2017; 101:8365-8377. [DOI: 10.1007/s00253-017-8536-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
45
|
Blaisse MR, Dong H, Fu B, Chang MCY. Discovery and Engineering of Pathways for Production of α-Branched Organic Acids. J Am Chem Soc 2017; 139:14526-14532. [PMID: 28990776 DOI: 10.1021/jacs.7b07400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-based synthesis offers many opportunities for preparing small molecules from simple renewable carbon sources by telescoping multiple reactions into a single fermentation step. One challenge in this area is the development of enzymatic carbon-carbon bond forming cycles that enable a modular disconnection of a target structure into cellular building blocks. In this regard, synthetic pathways based on thiolase enzymes to catalyze the initial carbon-carbon bond forming step between acyl coenzyme A (CoA) substrates offer a versatile route for biological synthesis, but the substrate diversity of such pathways is currently limited. In this report, we describe the identification and biochemical characterization of a thiolase-ketoreductase pair involved in production of branched acids in the roundworm, Ascaris suum, that demonstrates selectivity for forming products with an α-methyl branch using a propionyl-CoA extender unit. Engineering synthetic pathways for production of α-methyl acids in Escherichia coli using these enzymes allows the construction of microbial strains that produce either chiral 2-methyl-3-hydroxy acids (1.1 ± 0.2 g L-1) or branched enoic acids (1.12 ± 0.06 g L-1) in the presence of a dehydratase at 44% and 87% yield of fed propionate, respectively. In vitro characterization along with in vivo analysis indicates that the ketoreductase is the key driver for selectivity, forming predominantly α-branched products even when paired with a thiolase that highly prefers unbranched linear products. Our results expand the utility of thiolase-based pathways and provide biosynthetic access to α-branched compounds as precursors for polymers and other chemicals.
Collapse
Affiliation(s)
- Michael R Blaisse
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Hongjun Dong
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Beverly Fu
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States.,Department of Molecular and Cell Biology, University of California, Berkeley , Berkeley, California 94720-1460, United States
| |
Collapse
|
46
|
Lohans CT, Wang DY, Wang J, Hamed RB, Schofield CJ. Crotonases: Nature’s Exceedingly Convertible Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christopher T. Lohans
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - David Y. Wang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jimmy Wang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Refaat B. Hamed
- Department
of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
47
|
Redox-sensing regulator Rex regulates aerobic metabolism, morphological differentiation, and avermectin production in Streptomyces avermitilis. Sci Rep 2017; 7:44567. [PMID: 28303934 PMCID: PMC5355995 DOI: 10.1038/srep44567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
The regulatory role of redox-sensing regulator Rex was investigated in Streptomyces avermitilis. Eleven genes/operons were demonstrated to be directly regulated by Rex; these genes/operons are involved in aerobic metabolism, morphological differentiation, and secondary metabolism. Rex represses transcription of target genes/operons by binding to Rex operator (ROP) sequences in the promoter regions. NADH reduces DNA-binding activity of Rex to target promoters, while NAD+ competitively binds to Rex and modulates its DNA-binding activity. Rex plays an essential regulatory role in aerobic metabolism by controlling expression of the respiratory genes atpIBEFHAGDC, cydA1B1CD, nuoA1-N1, rex-hemAC1DB, hppA, and ndh2. Rex also regulates morphological differentiation by repressing expression of wblE, which encodes a putative WhiB-family transcriptional regulator. A rex-deletion mutant (Drex) showed higher avermectin production than the wild-type strain ATCC31267, and was more tolerant of oxygen limitation conditions in regard to avermectin production.
Collapse
|
48
|
Kallscheuer N, Vogt M, Marienhagen J. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism. ACS Synth Biol 2017; 6:410-415. [PMID: 27936616 DOI: 10.1021/acssynbio.6b00291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Numerous plant polyphenols have potential applications as pharmaceuticals or nutraceuticals. Stilbenes and flavonoids as most abundant polyphenols are synthesized from phenylpropanoids, which are exclusively derived from aromatic amino acids in nature. Several microorganisms were engineered for the synthesis of biotechnologically interesting plant polyphenols; however, low activity of heterologous ammonia lyases, linking endogenous microbial aromatic amino acid biosynthesis to phenylpropanoid synthesis, turned out to be the limiting step during microbial synthesis. We here developed an alternative strategy for polyphenol production from cheap benzoic acids by reversal of a β-oxidative phenylpropanoid degradation pathway avoiding any ammonia lyase activity. The synthetic pathway running in the non-natural direction is feasible with respect to thermodynamics and involved reaction mechanisms. Instantly, product titers of 5 mg/L resveratrol could be achieved in recombinant Corynebacterium glutamicum strains indicating that phenylpropanoid synthesis from 4-hydroxybenzoic acid can in principle be implemented independently from aromatic amino acids and ammonia lyase activity.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Michael Vogt
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
49
|
Adamek M, Spohn M, Stegmann E, Ziemert N. Mining Bacterial Genomes for Secondary Metabolite Gene Clusters. Methods Mol Biol 2017; 1520:23-47. [PMID: 27873244 DOI: 10.1007/978-1-4939-6634-9_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With the emergence of bacterial resistance against frequently used antibiotics, novel antibacterial compounds are urgently needed. Traditional bioactivity-guided drug discovery strategies involve laborious screening efforts and display high rediscovery rates. With the progress in next generation sequencing methods and the knowledge that the majority of antibiotics in clinical use are produced as secondary metabolites by bacteria, mining bacterial genomes for secondary metabolites with antimicrobial activity is a promising approach, which can guide a more time and cost-effective identification of novel compounds. However, what sounds easy to accomplish, comes with several challenges. To date, several tools for the prediction of secondary metabolite gene clusters are available, some of which are based on the detection of signature genes, while others are searching for specific patterns in gene content or regulation.Apart from the mere identification of gene clusters, several other factors such as determining cluster boundaries and assessing the novelty of the detected cluster are important. For this purpose, comparison of the predicted secondary metabolite genes with different cluster and compound databases is necessary. Furthermore, it is advisable to classify detected clusters into gene cluster families. So far, there is no standardized procedure for genome mining; however, different approaches to overcome all of these challenges exist and are addressed in this chapter. We give practical guidance on the workflow for secondary metabolite gene cluster identification, which includes the determination of gene cluster boundaries, addresses problems occurring with the use of draft genomes, and gives an outlook on the different methods for gene cluster classification. Based on comprehensible examples a protocol is set, which should enable the readers to mine their own genome data for interesting secondary metabolites.
Collapse
Affiliation(s)
- Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Marius Spohn
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, 72076, Tübingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, 72076, Tübingen, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
50
|
CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase. Proc Natl Acad Sci U S A 2016; 113:14722-14726. [PMID: 27930319 DOI: 10.1073/pnas.1614656113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogenases are nature's key catalysts involved in both microbial consumption and production of molecular hydrogen. H2 exhibits a strongly bonded, almost inert electron pair and requires transition metals for activation. Consequently, all hydrogenases are metalloenzymes that contain at least one iron atom in the catalytic center. For appropriate interaction with H2, the iron moiety demands for a sophisticated coordination environment that cannot be provided just by standard amino acids. This dilemma has been overcome by the introduction of unprecedented chemistry-that is, by ligating the iron with carbon monoxide (CO) and cyanide (or equivalent) groups. These ligands are both unprecedented in microbial metabolism and, in their free form, highly toxic to living organisms. Therefore, the formation of the diatomic ligands relies on dedicated biosynthesis pathways. So far, biosynthesis of the CO ligand in [NiFe]-hydrogenases was unknown. Here we show that the aerobic H2 oxidizer Ralstonia eutropha, which produces active [NiFe]-hydrogenases in the presence of O2, employs the auxiliary protein HypX (hydrogenase pleiotropic maturation X) for CO ligand formation. Using genetic engineering and isotope labeling experiments in combination with infrared spectroscopic investigations, we demonstrate that the α-carbon of glycine ends up in the CO ligand of [NiFe]-hydrogenase. The α-carbon of glycine is a building block of the central one-carbon metabolism intermediate, N10-formyl-tetrahydrofolate (N10-CHO-THF). Evidence is presented that the multidomain protein, HypX, converts the formyl group of N10-CHO-THF into water and CO, thereby providing the carbonyl ligand for hydrogenase. This study contributes insights into microbial biosynthesis of metal carbonyls involving toxic intermediates.
Collapse
|