1
|
Ghosh A, Dutta M, Chatterjee A. Contrasting features of winter-time PM 2.5 pollution and PM 2.5-toxicity based on oxidative potential: A long-term (2016-2023) study over Kolkata megacity at eastern Indo-Gangetic Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176640. [PMID: 39362548 DOI: 10.1016/j.scitotenv.2024.176640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The present study is an attempt to understand the level of PM2.5 pollution and its toxicity based on the oxidative potential (OP) during the winter-time pollution period over Kolkata, a megacity at the eastern most parts of Indo-Gangetic Plain (IGP) during the period of 2016-2023. We have assessed the effectiveness of the Government of India's national mission, the National Clean Air Program (NCAP) in PM2.5 reduction over this city, and the study revealed that the mission has been efficacious in lessening the PM2.5 load by 28 % from pre-NCAP (2016-2019) to post-NCAP (2021-2023) periods. Several policy interventions reduced the contributions from various anthropogenic sources; however, biomass/solid waste burning remained a major concern with no significant reduction. The results revealed that the volume-weighted OP (OPv) remains mass-independent and the same when PM2.5 remains within 70 μg m-3 (OPv range between 2.7 and 3.1 nmol DTT min-1 m-3). With the rise in PM2.5 mass from 70 μg m-3, OPv boosts up sharply and reaches its peak (at ∼145 μg m-3 during pre-NCAP and ∼105 μg m-3 during post-NCAP) followed by an insignificant change with the further rise in PM2.5. We observed that biomass/solid waste burning is the major concern over Kolkata in the current scenario (post-NCAP) even after NCAP policy interventions. Such high OP-based toxicity of PM2.5 during post-NCAP periods could be minimized if actions are taken against this particular source.
Collapse
Affiliation(s)
- Abhinandan Ghosh
- Department of Chemical Sciences, Bose Institute, EN Block, Sector-V, Salt Lake, Kolkata 700091, India
| | - Monami Dutta
- Department of Chemical Sciences, Bose Institute, EN Block, Sector-V, Salt Lake, Kolkata 700091, India
| | - Abhijit Chatterjee
- Department of Chemical Sciences, Bose Institute, EN Block, Sector-V, Salt Lake, Kolkata 700091, India.
| |
Collapse
|
2
|
Kang H, Niu L, Zhang F, Qing C, Dong M, Guan L, Zhang M, Liu Z. A Novel Piezoelectric Nonwoven Fabric for Recoverable High-Efficiency Filters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54566-54573. [PMID: 39344529 DOI: 10.1021/acsami.4c10922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Serious haze pollution, mainly caused by fine and ultrafine particulate matters (PMs) and aerosols, poses a significant threat to the public health, especially when the aerodynamic diameter is less than 2.5 μm. Electrostatic capture techniques, such as polymer electret filters and kinetic plasma processes, are widely used instead of mechanical filtration with high removal efficiency and low wind resistance (pressure drop). However, the inability to recharge, coupled with the generation of ozone byproducts, makes it challenging to meet the requirements for both recoverability and highly efficient filtration. Here, we propose an electrostatic filter as an alternative to conventional polymer electrets, aiming to achieve an ultrahigh removal efficiency, long-term performance stability, and reusability. Piezoelectric LiNbO3 (LN) particles are integrated into the polypropylene (PP) matrix through the melt-blown strategy to fabricate the LN/PP nonwoven fabric. Benefiting from the employment of piezoelectric LN particles, the LN/PP nonwovens exhibit an ultrahigh removal efficiency of 99.9% for PM0.3 to PM10. The airflow facilitates the sustained regeneration of piezoelectric charges on the surface of LN/PP nonwovens, thereby maintaining a removal efficiency of approximately 95% for continuous filtration over 11 days. Even after eight cycles of washing, the removal efficiency of the LN/PP nonwovens remains at nearly 90%, demonstrating the excellent reusability. Our proposed strategy offers an ingenious combination of high-efficiency and recoverability for filters, holding great promise for reducing plastic pollution.
Collapse
Affiliation(s)
- Hua Kang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Lin Niu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Fan Zhang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Chenglin Qing
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Li Guan
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zheng Liu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
3
|
Jashim ZB, Shahrukh S, Hossain SA, Jahan-E-Gulshan, Huda MN, Islam MM, Hossain ME. Biomonitoring potentially toxic elements in atmospheric particulate matter of greater Dhaka region using leaves of higher plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:468. [PMID: 38656463 DOI: 10.1007/s10661-024-12612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.
Collapse
Affiliation(s)
- Zuairia Binte Jashim
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saif Shahrukh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahid Akhtar Hossain
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Jahan-E-Gulshan
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Muhammad Nurul Huda
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mominul Islam
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | | |
Collapse
|
4
|
Wu K, Tao J, Wu Q, Su H, Huang C, Xia Q, Zhu C, Wei J, Yang M, Yan J, Cheng J. A stronger association of mental disorders with smaller particulate matter and a modifying effect of air temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123677. [PMID: 38447653 DOI: 10.1016/j.envpol.2024.123677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Mental disorders (MDs) can be triggered by adverse weather conditions and particulate matter (PM) such as PM2.5 and PM10 (aerodynamic diameter ≤2.5 μm and ≤10 μm). However, there is a dearth of evidence on the role of smaller PM (e.g. PM1, aerodynamic diameter ≤1 μm) and the potential modifying effects of weather conditions. We aimed to collect daily data on emergency department visits and hospitalisations for schizophrenia-, mood-, and stress-related disorders in a densely populated Chinese city (Hefei) between 2016 and 2019. A time-stratified case-crossover analysis was used to examine the short-term association of MDs with PM1, PM2.5, and PM10. The potential modifying effects of air temperature conditions (cold and warm days) were also explored. The three size-fractioned PMs were all associated with an increased risk of MDs; however, the association differed between emergency department visit and hospitalisation. Specifically, PM1 was primarily associated with an increased risk of emergency department visit, whereas PM2.5 was primarily associated with an increased risk of hospitalisation, and PM10 was associated with an increased risk of both emergency department visit and hospitalisation. The PM-MD association appeared to be greatest (although not significant) for PM1 (odds ratio range: 1.014-1.055), followed by PM2.5 (odds ratio range: 1.001-1.009) and PM10 (odds ratio range: 1.001-1.006). Furthermore, the PM-MD association was observed on cold days; notably, the association between PM and schizophrenia-related disorders was significant on both cold and warm days. Our results suggest that the smaller the PM, the greater the risk of MDs, and that the PM-MD association could be determined by air temperature conditions.
Collapse
Affiliation(s)
- Keyu Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Junwen Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Qiyue Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Anhui Mental Health Center, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Cuizhen Zhu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Anhui Mental Health Center, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA
| | - Min Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Junwei Yan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Anhui Mental Health Center, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China.
| |
Collapse
|
5
|
Zeb B, Ditta A, Alam K, Sorooshian A, Din BU, Iqbal R, Habib Ur Rahman M, Raza A, Alwahibi MS, Elshikh MS. Wintertime investigation of PM 10 concentrations, sources, and relationship with different meteorological parameters. Sci Rep 2024; 14:154. [PMID: 38167892 PMCID: PMC10761681 DOI: 10.1038/s41598-023-49714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Meteorological factors play a crucial role in affecting air quality in the urban environment. Peshawar is the capital city of the Khyber Pakhtunkhwa province in Pakistan and is a pollution hotspot. Sources of PM10 and the influence of meteorological factors on PM10 in this megacity have yet to be studied. The current study aims to investigate PM10 mass concentration levels and composition, identify PM10 sources, and quantify links between PM10 and various meteorological parameters like temperature, relative humidity (RH), wind speed (WS), and rainfall (RF) during the winter months from December 2017 to February 2018. PM10 mass concentrations vary from 180 - 1071 µg m-3, with a mean value of 586 ± 217 µg m-3. The highest concentration is observed in December, followed by January and February. The average values of the mass concentration of carbonaceous species (i.e., total carbon, organic carbon, and elemental carbon) are 102.41, 91.56, and 6.72 μgm-3, respectively. Water-soluble ions adhere to the following concentration order: Ca2+ > Na+ > K+ > NH4+ > Mg2+. Twenty-four elements (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Co, Zn, Ga, Ge, As, Se, Kr, Ag, Pb, Cu, and Cd) are detected in the current study by PIXE analysis. Five sources based on Positive Matrix Factorization (PMF) modeling include industrial emissions, soil and re-suspended dust, household combustion, metallurgic industries, and vehicular emission. A positive relationship of PM10 with temperature and relative humidity is observed (r = 0.46 and r = 0.56, respectively). A negative correlation of PM10 is recorded with WS (r = - 0.27) and RF (r = - 0.46). This study's results motivate routine air quality monitoring owing to the high levels of pollution in this region. For this purpose, the establishment of air monitoring stations is highly suggested for both PM and meteorology. Air quality standards and legislation need to be revised and implemented. Moreover, the development of effective control strategies for air pollution is highly suggested.
Collapse
Affiliation(s)
- Bahadar Zeb
- Department of Mathematics, Shaheed Benazir Bhutto University Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan.
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa, 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Khan Alam
- Department of Physics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Hydrology and Atmospheric Sciences, University Arizona, Tucson, AZ, 85721, USA
| | - Badshah Ud Din
- University Boys College, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammed Habib Ur Rahman
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Punjab, Pakistan
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Ahsan Raza
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany.
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany.
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Zhao H, Niu Z, Zhou W, Wang S, Feng X, Wu S, Lu X, Du H. Comparing sources of carbonaceous aerosols during haze and nonhaze periods in two northern Chinese cities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119024. [PMID: 37738728 DOI: 10.1016/j.jenvman.2023.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Radiocarbon (14C), stable carbon isotope (13C), and levoglucosan in PM2.5 were measured in two northern Chinese cities during haze events and nonhaze periods in January 2019, to ascertain the sources and their differences in carbonaceous aerosols between the two periods. The contribution of primary vehicle emissions (17.8 ± 3.7%) to total carbon in Beijing during that haze event was higher than that of primary coal combustion (7.3 ± 4.2%), and it increased significantly (7.1%) compared to the nonhaze period. The contribution of primary vehicle emissions (4.1 ± 2.8%) was close to that of primary coal combustion (4.3 ± 3.3%) during the haze event in Xi'an, and the contribution of primary vehicle emissions decreased by 5.8% compared to the nonhaze period. Primary biomass burning contributed 21.1 ± 10.5% during the haze event in Beijing and 40.9 ± 6.6% in Xi'an (with an increase of 3.3% compared with the nonhaze period). The contribution of secondary fossil fuel sources to total secondary organic carbon increased by 29.2% during the haze event in Beijing and by 18.4% in Xi'an compared to the nonhaze period. These results indicate that specific management measures for air pollution need to be strengthened in different Chinese cities in the future, that is, controlling vehicle emissions in Beijing and restricting the use of coal and biomass fuels in winter in Xi'an.
Collapse
Affiliation(s)
- Huiyizhe Zhao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an, 710061, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenchuan Niu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, 710049, China; Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266061, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Weijian Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266061, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an, 710061, China
| | - Sen Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Xue Feng
- National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Shugang Wu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an, 710061, China
| | - Xuefeng Lu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an, 710061, China
| | - Hua Du
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an, 710061, China
| |
Collapse
|
8
|
Yang Y, Wang H, Wang C, Chen Y, Dang B, Liu M, Zhang X, Li Y, Sun Q. Dual-Network Structured Nanofibrous Membranes with Superelevated Interception Probability for Extrafine Particles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36907989 DOI: 10.1021/acsami.3c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Airborne particulate matter (PM) pollution has caused a public health threat, including nanoscale particles, especially with emerging infectious diseases and indoor and vehicular environmental pollution. However, most existing indoor air filtration units are expensive, energy-intensive, and bulky, and there is an unavoidable trade-off between low-efficiency PM0.3/pathogen interception, PM removal, and air resistance. Herein, we designed and synthesized a two-dimensional continuous cellulose-sheath/net with a unique dual-network corrugated architecture to manufacture high-efficiency air filters and even N95 particulate face mask. Combined with its sheath/net structured pores (size 100-200 nm) consisting of a cellulose framework (1-100 nm diameter), the cellulose sheath/net filter offers high-efficiency air filtration (>99.5338%, Extrafine particles; >99.9999%, PM2.5), low-pressure drops, and a robustness quality factor of >0.14 Pa-1, utilizing their ultralight weight of 30 mg/m2 and physical adhesion and sieving behaviors. Simultaneously, masks prepared with cellulose-sheath/net filters are more likely to capture and block smaller particles than the N95 standard. The synthesis of such materials with their nanoscale features and designed macrostructures may suggest new design criteria for a novel generation of high-efficiency air filter media for different applications such as personal protection products and industrial dust removal.
Collapse
Affiliation(s)
- Yushan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Hanwei Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Chao Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Yipeng Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Baokang Dang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Ming Liu
- Guangxi Fenglin Wood Industry Group Co., Ltd., Nanning 530000, P. R. China
| | - Xiaochun Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| |
Collapse
|
9
|
Zhang X, Feng X, Tian J, Zhang Y, Li Z, Wang Q, Cao J, Wang J. Dynamic harmonization of source-oriented and receptor models for source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160312. [PMID: 36403825 DOI: 10.1016/j.scitotenv.2022.160312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Millions of premature mortalities are caused by the air pollution of fine particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5) globally per year. To effectively control the dominant emission sources and abate air pollution, source apportionment of PM2.5 is normally conducted to quantify the contributions of various sources, but the results of different methods might be inconsistent. In this study, we dynamically harmonized the results from the two dominant source apportionment methods, the source-oriented and receptor models, by updating the emission inventories of primary PM2.5 from the major sectors based on the Bayesian Inference. An adjoint model was developed to efficiently construct the source-receptor sensitivity matrix, which was the critical information for the updates, and depicted the response of measurements to the changes in the emissions of various sources in different regions. The harmonized method was applied to a measurement campaign in Beijing from January to February 2021. The results suggested a significant reduction of primary PM2.5 emissions in Beijing. Compared with the baseline emission inventory of 2017, the primary PM2.5 emissions from the local residential combustion and industry in Beijing had significantly declined by about 90 % during the investigated period of the year, and the traffic emission decreased by about 50 %. The proposed methods successfully identified the temporally dynamic changes in the emissions induced by the Spring Festival. The methods could be a promising pathway for the harmonization of source-oriented and receptor source apportionment models.
Collapse
Affiliation(s)
- Xiaole Zhang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf CH-8600, Switzerland; Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Xiaoxiao Feng
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf CH-8600, Switzerland
| | - Jie Tian
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Yong Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhiyu Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf CH-8600, Switzerland.
| |
Collapse
|
10
|
Zhao S, Feng T, Xiao W, Zhao S, Tie X. Weather-Climate Anomalies and Regional Transport Contribute to Air Pollution in Northern China During the COVID-19 Lockdown. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2021JD036345. [PMID: 36718351 PMCID: PMC9877581 DOI: 10.1029/2021jd036345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Two persistent and heavy haze episodes during the COVID-19 lockdown (from 20 Jan to 22 Feb 2020) still occur in northern China, when anthropogenic emissions, particularly from transportation sources, are greatly reduced. To investigate the underlying cause, this study comprehensively uses in-situ measurements for ambient surface pollutants, reanalysis meteorological data and the WRF-Chem model to calculate the contribution of NOx emission change and weather-climate change to the "unexpectedly heavy" haze. Results show that a substantial NOx reduction has slightly decreased PM2.5 concentration. By contrast, the weakest East Asian winter monsoon (EAWM) in the 2019-2020 winter relative to the past decade is particularly important for haze occurrence. A warmer and moister climate is also favorable. Model results suggest that climate anomalies lead to a 25-50 μg m-3 increase of PM2.5 concentration, and atmospheric transport is also an important contributor to two haze episodes. The first haze is closely related to the atmospheric transport of pollutants from NEC to the south, and fireworks emissions in NEC are a possible amplifying factor that warrants future studies. The second one is caused by the convergence of a southerly wind and a mountain wind, resulting in an intra-regional transport within BTH, with a maximal PM2.5 increment of 50-100 μg m-3. These results suggest that climate change and regional transport are of great importance to haze occurrence in China, even with significant emission reductions of pollutants.
Collapse
Affiliation(s)
| | - Tian Feng
- Department of Geography & Spatial Information TechniquesNingbo UniversityNingboChina
| | | | - Shuyun Zhao
- Department of Atmospheric ScienceSchool of Environmental StudiesChina University of GeosciencesWuhanChina
| | - Xuexi Tie
- KLACPState Key Laboratory of Loess and Quaternary GeologyInstitute of Earth EnvironmentChinese Academy of SciencesXi'anChina
| |
Collapse
|
11
|
Characteristics and Source Apportionment of Size-Fractionated Particulate Matter at Ground and above the Urban Canopy (380 m) in Nanjing, China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, the concentrations and chemical components of size-fractionated particulate matter (PM) in Nanjing at the ground (Gulou, 20 m) and above the urban canopy (Zifeng, 380 m) were sampled and analyzed from 16 November to 12 December in 2016. Higher concentrations of PM10, PM10-2.1, and PM2.1 (108.3 ± 23.4 μg m−3, 47.3 ± 10.6 μg m−3, and 61.0 ± 18.8 μg m−3) were measured at Gulou than those (88.1 ± 21.1 μg m−3, 31.4 ± 6.7 μg m−3, and 56.7 ± 18.6 μg m−3) at Zifeng. The most abundant chemical components for size-fractionated PM were SO42−, NO3−, organic carbon (OC), NH4+, elemental carbon (EC), and crustal elements such as Al, Ca, Fe, and Mg, varying significantly on different particulate sizes. The concentrations of OC and EC were 7.46–19.60 μg m−3 and 3.44–5.96 μg m−3 at Gulou and were 8.34–18.62 μg m−3 and 2.86–4.11 μg m−3 at Zifeng, showing an equal importance in both fine and coarse particles. Nitrate, sulfate, and ammonium were more concentrated in PM2.1, contributing 11.30–13.76 μg m−3, 8.91–9.40 μg m−3, and 5.78–6.81 μg m−3, which was more than in PM10-2.1, which contributed 2.73–5.06 μg m−3, 2.16–3.81 μg m−3, and 0.85–0.87 μg m−3. In contrast, the crustal elements were larger in coarse particles and at the ground level, accounting for 18.6% and 15.3% of the total PM at Gulou and Zifeng. Source apportionment using the chemical mass balance (CMB) model EPA showed that the dominant three sources were secondary nitrate (18.2–24.9%), secondary sulfate (14.5–20.4%), and secondary organic aerosols (15.5–19.6%) for PM10, PM2.1, and PM1.1 at both Gulou and Zifeng during the entire sampling period. However, for PM10-2.1, the largest three contributors were secondary organic aerosols (18.3%), the coal-fired power plant (15.6%), and fugitive dust (14.4%), indicating dusts including construction dust, fugitive dust, and soil dust would contribute more at the ground. The results also showed that the concentrations of PM10, PM2.1, and PM1.1 were lower than the work carried out in the winter of 2010 at the same sampling site by 41.4%, 26.3%, and 24.8%, confirming the improvement of the air quality and the efficient control of PM pollutants.
Collapse
|
12
|
Ting YC, Young LH, Lin TH, Tsay SC, Chang KE, Hsiao TC. Quantifying the impacts of PM 2.5 constituents and relative humidity on visibility impairment in a suburban area of eastern Asia using long-term in-situ measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151759. [PMID: 34822889 DOI: 10.1016/j.scitotenv.2021.151759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The deterioration of visibility due to air pollutants and relative humidity has been a serious environmental problem in eastern Asia. In most previous studies, chemical compositions of atmospheric particles were provided using filter-based offline analyses, which were unable to provide long-term and in-situ measurements that resolve sufficient temporal variations of air pollution and meteorology, hindering the resolution of the relationship between air quality and visibility. Here, we present a year-long continuously measured data from a comprehensive suite of online instruments to investigate diurnal and seasonal impacts of the aerosol chemical compositions in PM2.5 on visibility seasonally and diurnally. The measured dry aerosol extinction at λ = 550 nm reached a closure with that predicted by aerosol compositions within 12%. However, the hygroscopic growth of particles under ambient RH could enhance the aerosol extinction by a factor of 2-6, matching the perceptive visibility of the public. Particulate ammonium nitrate was most sensitive to reducing visibility, while ammonium sulfate contributed the most to the light extinction. In spring and winter, the monsoon and stagnant air masses reduced the visibility and increased PM2.5 (>35 μg m-3). The moisture was found to substantially enhance the light extinction under RH = 60-90%, reducing visibility by approximately 15 km, largely attributed to hygroscopic inorganic salts. This study serves as a metric to highlight the need to consider the influence of RH, and aqueous reactions in producing secondary inorganic aerosols on atmospheric visibility, underpinning the more accurate mitigation strategies of air pollution.
Collapse
Affiliation(s)
- Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Li-Hao Young
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan
| | - Tang-Huang Lin
- Center for Space and Remote Sensing Research, National Central University, Taoyuan, Taiwan
| | - Si-Chee Tsay
- NASA Goddard Space Flight Centre, Greenbelt, MD, USA
| | - Kuo-En Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
13
|
Sun Y, Huang Y, Xu S, Li J, Yin M, Tian H. Seasonal Variations in the Characteristics of Microbial Community Structure and Diversity in Atmospheric Particulate Matter from Clean Days and Smoggy Days in Beijing. MICROBIAL ECOLOGY 2022; 83:568-582. [PMID: 34105008 DOI: 10.1007/s00248-021-01764-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Microorganisms are an important part of atmospheric particulate matter and are closely related to human health. In this paper, the variations in the characteristics of the chemical components and bacterial communities in PM10 and PM2.5 grouped according to season, pollution degree, particle size, and winter heating stage were studied. The influence of environmental factors on community structure was also analyzed. The results showed that seasonal variations were significant. NO3- contributed the most to the formation of particulate matter in spring and winter, while SO42- contributed the most in summer and autumn. The community structures in summer and autumn were similar, while the community structure in spring was significantly different. The dominant phyla were similar among seasons, but their proportions were different. The dominant genera were no-rank_c_Cyanobacteria, Acidovorax, Escherichia-Shigella and Sphingomonas in spring; Massilia, Bacillus, Acinetobacter, Rhodococcus, and Brevibacillus in summer and autumn; and Rhodococcus in winter. The atmospheric microorganisms in Beijing mainly came from soil, water, and plants. The few pathogens detected were mainly affected by the microbial source on the sampling day, regardless of pollution level. RDA (redundancy analysis) showed that the bacterial community was positively correlated with the concentration of particulate matter and that the wind speed in spring was positively correlated with NO3- levels, NH4+ levels, temperature, and relative humidity in summer and autumn, but there was no clear consistency among winter samples. This study comprehensively analyzed the variations in the characteristics of the airborne bacterial community in Beijing over one year and provided a reference for understanding the source, mechanism, and assessment of the health effects of different air qualities.
Collapse
Affiliation(s)
- Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yujia Huang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shangwei Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jie Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Meng Yin
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hezhong Tian
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Modified cellulose nanofibers aerogels as a novel air filters; Synthesis and performance evaluation. Int J Biol Macromol 2022; 203:601-609. [PMID: 35122799 DOI: 10.1016/j.ijbiomac.2022.01.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/28/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Nanofilters made with high adsorption freeze-dried modified cellulose nanofiber (CNF) aerogel were produced. The modification was made using functional groups containing phthalimide, and then their ability to adsorb particulate matter (PM) was evaluated and compared with the control filter (HEPA). The results showed that the highest adsorption of PM2.5 (99.95%) belonged to the nanofilters made of 1.5% phthalimide-modified CNF aerogel, and the lowest adsorption (76.66%) was related to the control samples. Moreover, based on the results, the nanofilter produced from freeze-dried phthalimide-modified CNF aerogel showed high filtration efficiency as well as excellent resistance to temperature and humidity. This modification enables the filter to operate in different environmental conditions, especially for particles less than 0.1 μm that are mainly responsible for reducing air quality, human health, air visibility, and climate change. In conclusion, we developed an environmentally friendly biodegradable nanofilter capable of high-performance filtration functions and structural stability in different environmental conditions.
Collapse
|
15
|
Tang J, Yang Z, Tui Y, Wang J. Fine particulate matter pollution characteristics and source apportionment of Changchun atmosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12694-12705. [PMID: 35001262 DOI: 10.1007/s11356-021-17690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
In order to study the pollution characteristics and main sources of fine particulate matter in the atmosphere of the city of Changchun, PM2.5 samples were collected during the four seasons in 2014, and representative months for each season are January, April, July, and October. Sample collection was carried out on 10 auto-monitoring stations in Changchun, and PM2.5 mass concentration and its chemical components (including inorganic elements, organic carbon, elemental carbon, and water-soluble ions) were measured. The results show that the annual average mass concentration of PM2.5 in Changchun in 2014 was about 66.77 μg/m3. Organic matter was the highest component in PM2.5, followed by secondary inorganic ions (SNA), mineral dust (MIN), elemental carbon (EC), and trace elements (TE). Positive matrix factorization (PMF) results gave seven factors, namely, industrial, biomass and coal burning, industrial and soil dust, motor vehicle, soil and secondary ion, light industrial, and hybrid automotive and industrial sources in PM2.5, with contributing values of 18.9%, 24.2%, 5.7%, 23.0%, 11.5%, 13.0%, and 3.6%, respectively.
Collapse
Affiliation(s)
- Jie Tang
- College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Zhuo Yang
- College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Yue Tui
- College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Ju Wang
- College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
16
|
Gao C, Li S, Liu M, Zhang F, Achal V, Tu Y, Zhang S, Cai C. Impact of the COVID-19 pandemic on air pollution in Chinese megacities from the perspective of traffic volume and meteorological factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145545. [PMID: 33940731 PMCID: PMC7857078 DOI: 10.1016/j.scitotenv.2021.145545] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 05/09/2023]
Abstract
During 2020, the COVID-19 pandemic resulted in a widespread lockdown in many cities in China. In this study, we assessed the impact of changes in human activities on air quality during the COVID-19 pandemic by determining the relationships between air quality, traffic volume, and meteorological conditions. The megacities of Wuhan, Beijing, Shanghai, and Guangzhou were selected as the study area, and the variation trends of air pollutants for the period January-May between 2016 and 2020 were analyzed. The passenger volume of public transportation (PVPT) and the passenger volume of taxis (PVT) along with data on precipitation, temperature, relative humidity, wind speed, and boundary layer height were used to identify and quantify the driving force of the air pollution variation. The results showed that the change rates of fine particulate matter (PM2.5), NO2, and SO2 before and during the lockdown in the four megacities ranged from -49.9% to 78.2% (average: -9.4% ± 59.3%), -55.4% to -32.3% (average: -43.0% ± 9.7%), and - 21.1% to 11.9% (average: -10.9% ± 15.4%), respectively. The response of NO2 to the lockdown was the most sensitive, while the response of PM2.5 was smaller and more delayed. During the lockdown period, haze from uninterrupted industrial emissions and fireworks under the effect of air mass transport from surrounding areas and adverse climate conditions was probably the cause of abnormally high PM2.5 concentrations in Beijing. In addition, the PVT was the most significant factor for NO2, and meteorology had a greater impact on PM2.5 than NO2 and SO2. There is a need for more national-level policies for limiting firework displays and traffic emissions, as well as further studies on the formation and transmission of secondary air pollutants.
Collapse
Affiliation(s)
- Chanchan Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shuhui Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| | - Fengying Zhang
- China National Environmental Monitoring Center, Beijing 100012, China
| | - V Achal
- Environmental Engineering Program, Guangdong Technion Israel Institute of Technology, Shantou 515063, China
| | - Yue Tu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shiqing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chaolin Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
17
|
Jiang M, Wu Y, Chang Z, Shi K. The Effects of Urban Forms on the PM 2.5 Concentration in China: A Hierarchical Multiscale Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3785. [PMID: 33916395 PMCID: PMC8038580 DOI: 10.3390/ijerph18073785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
For a better environment and sustainable development of China, it is indispensable to unravel how urban forms (UF) affect the fine particulate matter (PM2.5) concentration. However, research in this area have not been updated consider multiscale and spatial heterogeneities, thus providing insufficient or incomplete results and analyses. In this study, UF at different scales were extracted and calculated from remote sensing land-use/cover data, and panel data models were then applied to analyze the connections between UF and PM2.5 concentration at the city and provincial scales. Our comparison and evaluation results showed that the PM2.5 concentration could be affected by the UF designations, with the largest patch index (LPI) and landscape shape index (LSI) the most influential at the provincial and city scales, respectively. The number of patches (NP) has a strong negative influence (-0.033) on the PM2.5 concentration at the provincial scale, but it was not statistically significant at the city scale. No significant impact of urban compactness on the PM2.5 concentration was found at the city scale. In terms of the eastern and central provinces, LPI imposed a weighty positive influence on PM2.5 concentration, but it did not exert a significant effect in the western provinces. In the western cities, if the urban layout were either irregular or scattered, exposure to high PM2.5 pollution levels would increase. This study reveals distinct ties of the different UF and PM2.5 concentration at the various scales and helps to determine the reasonable UF in different locations, aimed at reducing the PM2.5 concentration.
Collapse
Affiliation(s)
- Mingyue Jiang
- School of Geographical Sciences, State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China; (M.J.); (Y.W.); (Z.C.)
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Centre for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yizhen Wu
- School of Geographical Sciences, State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China; (M.J.); (Y.W.); (Z.C.)
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Centre for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Zhijian Chang
- School of Geographical Sciences, State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China; (M.J.); (Y.W.); (Z.C.)
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Centre for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Kaifang Shi
- School of Geographical Sciences, State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China; (M.J.); (Y.W.); (Z.C.)
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Centre for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Aguilera Sammaritano ML, Cometto PM, Bustos DA, Wannaz ED. Monitoring of particulate matter (PM 2.5 and PM 10) in San Juan city, Argentina, using active samplers and the species Tillandsia capillaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13174-4. [PMID: 33638068 DOI: 10.1007/s11356-021-13174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The concentration of particulate matter (PM2.5 and PM10) was studied in San Juan city, Argentina, during winter and spring of 2017. Samplers of particulate matter (PM) and individuals of the plant species Tillandsia capillaris were placed in the centre of the city to be used as a biomonitors of atmospheric particulate matter. The PM filters and PM deposited in T. capillaris leaves were analysed to measure particle concentration and concentrations of elements (K, Ca, Mn, Fe, Cu, Zn, Br, Sr, Ba and Pb) using X-ray fluorescence by synchrotron radiation (SR-XRF). Linear regression analysis showed significant positive correlations between PM concentration in the atmosphere and the particles deposited on T. capillaris leaves. The elements quantified in PM2.5 and PM10 filters were subjected to a principal component analysis, which showed the presence of three emission sources in the study area (soil, vehicular traffic and industry) in both fractions. It was not possible to conduct this analysis with the elements obtained from the extraction of T. capillaris leaves, since most of them are solubilised at the moment of extraction. Biomonitoring with T. capillaris might be used to estimate the concentration of particulate matter in large areas or in remote sites with no electrical power supply to run active samplers. Further studies should be carried out in other regions, and more variables should be incorporated to obtain increasingly deterministic models.
Collapse
Affiliation(s)
| | - Pablo Marcelo Cometto
- CONICET, Instituto de Altos Estudios Espaciales 'Mario Gulich', UNC-CONAE, Falda del Cañete, Córdoba, Argentina
| | - Daniel Alfredo Bustos
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía, Humanidades y Artes, Universidad Nacional de San Juan, San Juan, Argentina
| | - Eduardo Daniel Wannaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
19
|
Lee HJ, Choi WS. 2D and 3D Bulk Materials for Environmental Remediation: Air Filtration and Oil/Water Separation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5714. [PMID: 33333822 PMCID: PMC7765286 DOI: 10.3390/ma13245714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023]
Abstract
Air and water pollution pose an enormous threat to human health and ecosystems. In particular, particulate matter (PM) and oily wastewater can cause serious environmental and health concerns. Thus, controlling PM and oily wastewater has been a great challenge. Various techniques have been reported to effectively remove PM particles and purify oily wastewater. In this article, we provide a review of the recent advancements in air filtration and oil/water separation using two- and three-dimensional (2D and 3D) bulk materials. Our review covers the advantages, characteristics, limitations, and challenges of air filters and oil/water separators using 2D and 3D bulk materials. In each section, we present representative works in detail and describe the concepts, backgrounds, employed materials, fabrication methods, and characteristics of 2D and 3D bulk material-based air filters and oil/water separators. Finally, the challenges, technical problems, and future research directions are briefly discussed for each section.
Collapse
Affiliation(s)
- Ha-Jin Lee
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyun-ro, Seoudaemun-gu, Seoul 120-140, Korea;
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Korea
| |
Collapse
|
20
|
Park EJ, Yoon C, Han JS, Lee GH, Kim DW, Park EJ, Lim HJ, Kang MS, Han HY, Seol HJ, Kim KP. Effect of PM10 on pulmonary immune response and fetus development. Toxicol Lett 2020; 339:1-11. [PMID: 33301788 DOI: 10.1016/j.toxlet.2020.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 01/12/2023]
Abstract
Despite numerous reports that ambient particulate matter is a key determinant for human health, toxicity data produced based on physicochemical properties of particulate matters is very lack, suggesting lack of scientific evidence for regulation. In this study, we sampled inhalable particulate matters (PM10) in northern Seoul, Korea. PM10 showed atypical- and fiber-type particles with the average size and the surface charge of 1,598.1 ± 128.7 nm and -27.5 ± 2.8, respectively, and various toxic elements were detected in the water extract. On day 90 after the first pulmonary exposure, total cell number dose-dependently increased in the lungs of both sexes of mice. PM10 induced Th1-dominant immune response with pathological changes in both sexes of mice. Meanwhile, composition of total cells and expression of proteins which functions in cell-to-cell communication showed different trends between sexes. Following, male and female mice were mated to identify effects of PM10 to the next generation. PM10 remained in the lung of dams until day 21 after birth, and the levels of IgA and IgE increased in the blood of dams exposed to the maximum dose compared to control. In addition, the interval between births of fetuses, the number of offspring, the neonatal survival rate (day 4 after birth) and the sex ratio seemed to be affected at the maximum dose, and particularly, all offspring from one dam were stillborn. In addition, expression of HIF-1α protein increased in the lung tissue of dams exposed to PM10, and level of hypoxia-related proteins was notably enhanced in PM10-exposed bronchial epithelial cells compared to control. Taken together, we suggest that inhaled PM10 may induce Th1-shifting immune response in the lung, and that it may affect reproduction (fetus development) by causing lung hypoxia. Additionally, we propose that further study is needed to identify particle-size-dependent effects on development of the next generation.
Collapse
Affiliation(s)
- Eun-Jung Park
- East-West Medical Science Research Institute, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Ji-Seok Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Eun-Jun Park
- East-West Medical Science Research Institute, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ji Lim
- East-West Medical Science Research Institute, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Sung Kang
- General Toxicology & Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeollabuk-do, Republic of Korea
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Hyun-Joo Seol
- Department of Obstetrics & Gynecology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea; Department of Biomedical Science and technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Cheng N, Zhang C, Jing D, Li W, Guo T, Wang Q, Li S. An integrated chemical mass balance and source emission inventory model for the source apportionment of PM 2.5 in typical coastal areas. J Environ Sci (China) 2020; 92:118-128. [PMID: 32430115 DOI: 10.1016/j.jes.2020.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/04/2020] [Accepted: 01/19/2020] [Indexed: 05/10/2023]
Abstract
The source apportionment of PM2.5 is essential for pollution prevention. In view of the weaknesses of individual models, we proposed an integrated chemical mass balance-source emission inventory (CMB-SEI) model to acquire more accurate results. First, the SEI of secondary component precursors (SO2, NOx, NH3, and VOCs) was compiled to acquire the emission ratios of these sources for the precursors. Then, a regular CMB simulation was executed to obtain the contributions of primary particle sources and secondary components (SO42-, NO3-, NH4+, and SOC). Afterwards, the contributions of secondary components were apportioned into primary sources according to the source emission ratios. The final source apportionment results combined the contributions of primary sources by CMB and SEI. This integrated approach was carried out via a case study of three coastal cities (Zhoushan, Taizhou, and Wenzhou; abbreviated WZ, TZ, and ZS) in Zhejiang Province, China. The regular CMB simulation results showed that PM2.5 pollution was mainly affected by secondary components and mobile sources. The SEI results indicated that electricity, industrial production and mobile sources were the largest contributors to the emission of PM2.5 gaseous precursors. The simulation results of the CMB-SEI model showed that PM2.5 pollution in the coastal areas of Zhejiang Province presented complex pollution characteristics dominated by mobile sources, electricity production sources and industrial production sources. Compared to the results of the CMB and SEI models alone, the CMB-SEI model completely apportioned PM2.5 to primary sources and simultaneously made the results more accurate and reliable in accordance with local industrial characteristics.
Collapse
Affiliation(s)
- Nana Cheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Cheng Zhang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Deji Jing
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Tianjiao Guo
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Qiaoli Wang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.
| |
Collapse
|
22
|
Venkatesh S, Sakthivel M, Saranav H, Saravanan N, Rathnakumar M, Santhosh K. Performance investigation of the combined series and parallel arrangement cyclone separator using experimental and CFD approach. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.10.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Song J, Liu Z, Li Z, Wu H. Continuous production and properties of mutil-level nanofiber air filters by blow spinning. RSC Adv 2020; 10:19615-19620. [PMID: 35515444 PMCID: PMC9054061 DOI: 10.1039/d0ra01656j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Nanofibers are gradually being widely used in air filtration due to their unique characteristics. However, the mass production of nanofiber filter material faces several problems. Blow spinning is an emerging technology, which have great potential for mass production of nanofibers. In this work, we have successfully realized the continuous production of 500 mm wide nanofiber membranes by blow spinning, which enables continuous preparation of multi-level nanofiber filter materials: PAN60 (filtration efficiency is 63.2%, pressure drop is 18 Pa), PAN80 (filtration efficiency is 80.7%, pressure drop is 38 Pa), PAN90 (filtration efficiency is 92.9%, pressure drop is 58 Pa) and PAN99 (filtration efficiency is 99.5%, pressure drop is 123 Pa). In order to improve the stability performance of melt-blown filters, we provide a strategy that combines nanofibers with a melt-blown filter. PAN nanofibers were sprayed directly on the melt-blown filter by blow spinning. The composite filters have more stable filtration performance and higher efficiency when intercepting particles with a diameter below 100 nm than melt-blown filters. Nanofibers are gradually being widely used in air filtration due to their unique characteristics.![]()
Collapse
Affiliation(s)
- Jianan Song
- State Key Laboratory of New Ceramics and Fine Processing
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Zhenglian Liu
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
- China
| | - Ziwei Li
- State Key Laboratory of New Ceramics and Fine Processing
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
24
|
The Impacts of Different Air Pollutants on Domestic and Inbound Tourism in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16245127. [PMID: 31847502 PMCID: PMC6950462 DOI: 10.3390/ijerph16245127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
Previous studies have reported that air pollution negatively affects the tourism industry. This paper attempted to answer the following question: among different air pollutants, which one acts as the most adverse factor? The study was based on a sample of panel data covering 337 Chinese cities for the period between 2007 and 2016. Four pollutant indicators were inspected: PM 2 . 5 (particulate matter 2.5 micrometers or less in size), PM 10 (particulate matter 10 micrometers or less in size), SO 2 (sulfur dioxide), and NO 2 (nitrogen dioxide). It was found that PM 2 . 5 had a significantly negative impact on both domestic and inbound tourist arrivals. Regarding the other three pollutant indicators, except for the negative influence of NO 2 on inbound tourist arrivals, no statistically significant impact was found. This study suggests that tourism policy makers should primarily focus on PM 2 . 5 , when considering the nexus between air quality and tourism development. According to our estimates, the negative impact of PM 2 . 5 on tourism is substantial. If the PM 2 . 5 concentration in the ambient air increases by 1 μ g/m 3 (=0.001 mg/m 3 ), domestic and inbound tourist arrivals will decline by 0.482% and 1.227%, respectively. These numbers imply an average reduction of 81,855 person-times in annual domestic tourist arrivals and 12,269 in inbound tourist arrivals in each city.
Collapse
|
25
|
Liang W, Xu Y, Li X, Wang XX, Zhang HD, Yu M, Ramakrishna S, Long YZ. Transparent Polyurethane Nanofiber Air Filter for High-Efficiency PM2.5 Capture. NANOSCALE RESEARCH LETTERS 2019; 14:361. [PMID: 31792730 PMCID: PMC6889091 DOI: 10.1186/s11671-019-3199-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/31/2019] [Indexed: 05/23/2023]
Abstract
Fine particulate matter (PM) has seriously affected human life, such as affecting human health, climate, and ecological environment. Recently, many researchers use electrospinning to prepare nanofiber air filters for effective removal of fine particle matter. However, electrospinning of the polymer fibers onto the window screen uniformly is only achieved in the laboratory, and the realization of industrialization is still very challenging. Here, we report an electrospinning method using a rotating bead spinneret for large-scale electrospinning of thermoplastic polyurethane (TPU) onto conductive mesh with high productivity of 1000 m2/day. By changing the concentration of TPU in the polymer solution, PM2.5 removal efficiency of nanofiber-based air filter can be up to 99.654% with good optical transparency of 60%, and the contact angle and the ventilation rate of the nanofiber-based air filter is 128.5° and 3480 mm/s, respectively. After 10 times of filtration, the removal efficiency is only reduced by 1.6%. This transparent air filter based on TPU nanofibers has excellent filtration efficiency and ventilation rate, which can effectively ensure indoor air quality of the residential buildings.
Collapse
Affiliation(s)
- Wen Liang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Yuan Xu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Xiao Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Xiao-Xiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Hong-Di Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
- Qingdao Junada Technology Co., Ltd, Qingdao International Academician Park, Qingdao, 266199, China
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Seeram Ramakrishna
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
- Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China.
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
26
|
Zhang K, Shang X, Herrmann H, Meng F, Mo Z, Chen J, Lv W. Approaches for identifying PM 2.5 source types and source areas at a remote background site of South China in spring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1320-1327. [PMID: 31466211 DOI: 10.1016/j.scitotenv.2019.07.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The receptor model is an effectively and widely used tool for analyzing the source of PM2.5, and its development and improvement have always been focused and challenged. In this study, approaches of source analysis is applied and compared. The PM2.5 samples were collected in spring of 2015 at a remote background site of Weizhou, South China and were analyzed for water-soluble ions, trace metals, and sugars. The 28 measurement species were introduced into the positive matrix factorization (PMF) and a non-negative matrix factorization (NMF) model for inter-comparison of PM2.5 prediction. Results showed that the NMF model is a more robust tool to identify source types and source apportionment in the case of a small sample size (n = 31). In NMF, four source variants were obtained as dust (15.6%), biomass combustion (11.8%), secondary formation (17.6%), and coal combustion (54.9%), corresponding to four main source areas. These were Southeast Asia, South China Sea, Taiwan Strait, as well as Pearl River Delta, respectively. The areas were distinguished based on hybrid receptor models, potential source contribution function (PSCF) and concentration weighted trajectory (CWT), by introducing the daily loadings of each source factor from NMF method. These model results were highly consistent with categorized chemical characteristics of PM2.5, suggesting that NMF linking with hybrid receptor models provides valuable implications for exploring source types and source areas of PM2.5. Meanwhile, biomass combustion and coal combustion comparably contributed to the high PM2.5 concentrations indicating control strategy in South China in spring.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Environmental Standards and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaona Shang
- State Key Laboratory of Environmental Standards and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hartmut Herrmann
- Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Fan Meng
- State Key Laboratory of Environmental Standards and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhaoyu Mo
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Jianhua Chen
- State Key Laboratory of Environmental Standards and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenli Lv
- State Key Laboratory of Environmental Standards and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
27
|
Cong L, Zhai J, Yan G, Liu J, Wu Y, Wang Y, Zhang Z, Zhang M. Lead isotope trends and sources in the atmosphere at the artificial wetland. PeerJ 2019; 7:e7851. [PMID: 31637124 PMCID: PMC6800525 DOI: 10.7717/peerj.7851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022] Open
Abstract
With the rapid development of industry, studies on lead pollution in total suspended particulate matter (TSP) have received extensive attention. This paper analyzed the concentration and pollution sources of lead in the Cuihu Wetland in Beijing during the period of 2016–2017. The results show that the lead contents in TSP in the Cuihu Wetland were approximately equal in summer and spring, greater in winter, and greatest in autumn. The corresponding lead concentrations were 0.052, 0.053, 0.101, and 0.115 ng/m3, respectively. We compared the 206Pb/207Pb data with other materials to further understand the potential sources of atmospheric lead. The mean values of 206Pb/207Pb from spring to winter were 1.082, 1.098, 1.092, and 1.078, respectively. We found that the lead sources may be associated with coal burning, brake and tire wear, and vehicle exhaust emissions. We also calculated the enrichment factor values for the four seasons, and the values were all much greater than 10, indicating that the lead pollution is closely related to human activities.
Collapse
Affiliation(s)
- Ling Cong
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jiexiu Zhai
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Guoxin Yan
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jiakai Liu
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yanan Wu
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yu Wang
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Zhenming Zhang
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mingxiang Zhang
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
28
|
Tang X, Zhao S, Feng S, Zhong Z, Xing W. Exploring the Key Factors in Dusty Gas Filtration: Experimental and Modeling Studies. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Shuaifei Zhao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
29
|
Spatial Distributions and Sources of Inorganic Chlorine in PM2.5 across China in Winter. ATMOSPHERE 2019. [DOI: 10.3390/atmos10090505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chlorine is an important atmospheric photochemical oxidant, but few studies have focused on atmospheric chlorine. In this study, PM2.5 samples were collected from urban and rural sites across China in January 2018, and concentrations of Cl− and other water-soluble ions in PM2.5 were analyzed. The size-segregated aerosol Cl− data measured across Chinese cities by other studies were compiled for comparison. The observed data demonstrated that the Cl− concentrations of PM2.5 in northern cities (5.0 ± 3.7 µg/m3) were higher than those in central (1.9 ± 1.2 µg/m3) and southern cities (0.84 ± 0.54 µg/m3), suggesting substantial chlorine emissions in northern cities during winter. The concentrations of Cl− in aerosol were significantly higher in urban regions (0.11–26.7 µg/m3) compared to than in rural regions (0.03–0.61 µg/m3) across China during winter, implying strong anthropogenic chlorine emission in cities. Based on the mole ratios of Cl−/Na+, Cl−/K+ and Cl−/ SO 4 2 − and the PMF model, Cl− in northern and central cities was mainly sourced from the coal combustion and biomass burning, but in southern cities, Cl− in PM2.5 was mainly affected by the equilibrium between gas-phase HCl and particulate Cl−. The size-segregated statistical data demonstrated that particulate Cl− had a bimodal pattern, and more Cl− was distributed in the fine model than that in the coarse mode in winter, with the opposite pattern was observed in summer. This may be attributed to both sources of atmospheric Cl− and Cl− involved in chemical processes. This study reports the concentrations of aerosol Cl− on a national scale, and provides important information for modeling the global atmospheric reactive chlorine distribution and the effects of chlorine on atmospheric photochemistry.
Collapse
|
30
|
Neupane BB, Mainali S, Sharma A, Giri B. Optical microscopic study of surface morphology and filtering efficiency of face masks. PeerJ 2019; 7:e7142. [PMID: 31289698 PMCID: PMC6599448 DOI: 10.7717/peerj.7142] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022] Open
Abstract
Background Low-cost face masks made from different cloth materials are very common in developing countries. The cloth masks (CM) are usually double layered with stretchable ear loops. It is common practice to use such masks for months after multiple washing and drying cycles. If a CM is used for long time, the ear loops become stretched. The loop needs to be knotted to make the mask loop fit better on the face. It is not clear how washing and drying and stretching practices change the quality of a CM. The particulate matter (PM) filtering efficiency of a mask depends on multiple parameters, such as pore size, shape, clearance, and pore number density. It is important to understand the effect of these parameters on the filtering efficiency. Methods We characterized the surface of twenty different types of CMs using optical image analysis method. The filtering efficiency of selected cloth face masks was measured using the particle counting method. We also studied the effects of washing and drying and stretching on the quality of a mask. Results The pore size of masks ranged from 80 to 500 μm, which was much bigger than particular matter having diameter of 2.5 μm or less (PM2.5) and 10 μm or less (PM10) size. The PM10 filtering efficiency of four of the selected masks ranged from 63% to 84%. The poor filtering efficiency may have arisen from larger and open pores present in the masks. Interestingly, we found that efficiency dropped by 20% after the 4th washing and drying cycle. We observed a change in pore size and shape and a decrease in microfibers within the pores after washing. Stretching of CM surface also altered the pore size and potentially decreased the filtering efficiency. As compared to CMs, the less frequently used surgical/paper masks had complicated networks of fibers and much smaller pores in multiple layers in comparison to CMs, and therefore had better filtering efficiency. This study showed that the filtering efficiency of cloth face masks were relatively lower, and washing and drying practices deteriorated the efficiency. We believe that the findings of this study will be very helpful for increasing public awareness and help governmental agencies to make proper guidelines and policies for use of face mask.
Collapse
Affiliation(s)
| | - Sangita Mainali
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Amita Sharma
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| | - Basant Giri
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| |
Collapse
|
31
|
Zhang T, Li X, Wang M, Chen H, Yang Y, Chen QL, Yao M. Time-resolved spread of antibiotic resistance genes in highly polluted air. ENVIRONMENT INTERNATIONAL 2019; 127:333-339. [PMID: 30953816 DOI: 10.1016/j.envint.2019.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a global health concern. A large volume of work has already been devoted to ARGs in aquatic ecosystems. However, ARG dispersal patterns in air remain to be largely unknown despite of its greater role in transmission. This work aims to investigate time-resolved airborne spread of ARGs and their corresponding subtype bacterial carriers in highly polluted air. Time-resolved air samples (20 m3 each with three samples) were collected using a high volume sampler (1 m3/min) every 4 h continuously (both day and night) during low (14-93 μg/m3) and high PM2.5 (36-205 μg/m3) pollution times (over 6 days with a total of 69 air samples) in Beijing. All air samples were subjected to 16S rRNA sequence analysis for 39 ARG subtypes. Pure culturable bacterial isolates from Beijing and Shijiazhuang were Sanger sequenced for species identification and also subjected to high throughput ARG subtype detection. ARG and its subtype relative abundances in the air were observed to differ greatly (up to 3 folds for abundance) both day and night, and the blaTEM gene was found to lead the ARG abundance. For an early morning time, the multi-drug resistant NDM-1 gene was detected up to 30% of total ARG abundance in highly polluted air. Identified as a major NDM-1 and vanB gene carrier, Bacillus halotolerans were also shown to disseminate more ARG subtypes. On another front, tnpA and intI1 were shown to vary greatly in abundance, while the sul3 gene was found widespread among the culturable Bacillus isolates in the air. Principal component analysis (PCA) showed different gene co-occurrence networks for different PM2.5 pollution episodes, e.g., tnpA and intI1 for gene transfer and integration, respectively, were found more abundant for the high PM2.5 pollution episode. This study highlights a serious yet previously unidentified public health threat from time-resolved airborne spread of ARGs. Further work is urgently warranted to track the sources of ARGs for their optimized control during high PM2.5 pollution episodes.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Minfei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
32
|
Souzandeh H, Wang Y, Netravali AN, Zhong WH. Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1599391] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hamid Souzandeh
- Fiber Science and Apparel Design, Cornell University, Ithaca, New York, USA
| | - Yu Wang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Anil N. Netravali
- Fiber Science and Apparel Design, Cornell University, Ithaca, New York, USA
| | - Wei-Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
33
|
Liang X, Huang T, Lin S, Wang J, Mo J, Gao H, Wang Z, Li J, Lian L, Ma J. Chemical composition and source apportionment of PM 1 and PM 2.5 in a national coal chemical industrial base of the Golden Energy Triangle, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:188-199. [PMID: 31096369 DOI: 10.1016/j.scitotenv.2018.12.335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
As part of the Energy Golden Triangle in northwest China and the largest coal-to-liquids industry in the world, the emission and contamination of fine particles in the Ningdong National Energy and Chemical Industrial Base (NECIB) are unknown. There are also large knowledge gaps in the association of air pollution with coal-to-liquids industry. This paper reports the chemical composition and source apportionment of PM1 and PM2.5 collected at two industrial sites Yinglite (YLT) and Baofeng (BF) from a field campaign during summer 2016 and winter 2017. Major chemical components in PM1 and PM2.5, including carbonaceous aerosols, water-soluble inorganic ions, and metal elements were analyzed. The Positive Matrix Factorization (PMF) model and the ISORROPIA II thermodynamic equilibrium model were used to track possible sources and contributions of these chemical components to the formation of the two fine particles. The results identified four primary sources of the fine particles, including vehicle emissions, biomass burning and waste incineration, the secondary aerosols and coal combustion, and soil dust. The PM1 and PM2.5 concentrations were higher in winter than summer. The summed secondary inorganic and carbonaceous aerosols accounted for 36.1-40.0% of PM2.5 mass. The total mass of chemical components identified in the source apportionment only explained about 64.2 to 72.4% of the PM2.5 mass. These results imply some missing sources in this large-scale coal chemical industry base. A coupled weather forecasting and atmospheric chemistry model WRF-Chem was employed to simulate the PM2.5 mass and concentrations of OC and EC, and to examine the origins of PM2.5 across the NECIB. The modeled concentrations of OC and EC were consistent with the sampled data, but the modeled mass of PM2.5 is lower considerably than the measurements, again suggesting unknown sources of fine particles in this energy industrial base.
Collapse
Affiliation(s)
- Xiaoxue Liang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Siying Lin
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinxiang Wang
- School of Geography and Environmental Engineering, City University of Lanzhou, Lanzhou 730000, China
| | - Jingyue Mo
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhanxiang Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jixiang Li
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lulu Lian
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
34
|
Zhao Z, Lv S, Zhang Y, Zhao Q, Shen L, Xu S, Yu J, Hou J, Jin C. Characteristics and source apportionment of PM 2.5 in Jiaxing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7497-7511. [PMID: 30659487 DOI: 10.1007/s11356-019-04205-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/08/2019] [Indexed: 05/16/2023]
Abstract
Herein we investigated the morphology, chemical characteristics, and source apportionment of fine particulate matter (PM2.5) samples collected from five sites in Jiaxing. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that soot aggregates and coal-fired fly ash were generally the most abundant components in the samples. All the samples were analyzed gravimetrically for mass concentrations and their various compositions were determined. Our results revealed that the PM2.5 concentrations in the samples were in the following order: winter > spring > autumn > summer. The PM2.5 concentrations in winter and spring were higher than those in autumn and summer, except for inorganic elements. Carbonaceous species and water-soluble inorganic ions were the most abundant components in the samples, accounting for 26.17-50.44% and 34.27-49.6%, respectively. The high secondary organic carbon/organic carbon ratio indicated that secondary organic pollution in Jiaxing was severe. The average ratios of NO3-/SO42-, ranging from 1.01 to 1.25 at the five sites, indicated that mobile pollution sources contributed more to the formation of PM2.5 than stationary sources. The BeP/(BeP + BaP) ratio (0.52-0.71) in samples reflected the influence of transportation from outside of Jiaxing. The positive matrix factorization (PMF) model identified eight main pollution sources: secondary nitrates (26.95%), secondary sulfates (15.49%), secondary organic aerosol (SOA) (19.64%), vehicle exhaust (15.67%), coal combustion (8.6%), fugitive dust (7.7%), ships and heavy oil (5.23%), biomass burning, and other sources (0.91%). Therefore, PM2.5 pollution in Jiaxing during the winter and spring seasons was more severe than that in the summer and autumn. Secondary aerosols were the most important source of PM2.5 pollution; therefore, focus should be placed on controlling gaseous precursors.
Collapse
Affiliation(s)
- Zhipeng Zhao
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng Lv
- Jiaxing Environmental Monitoring Station, Jiaxing, 314000, China
| | - Yihua Zhang
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Qianbiao Zhao
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Lin Shen
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shi Xu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianqiang Yu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengyu Jin
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
35
|
Du J, Zhang X, Huang T, Gao H, Mo J, Mao X, Ma J. Removal of PM 2.5 and secondary inorganic aerosols in the North China Plain by dry deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2312-2322. [PMID: 30332664 DOI: 10.1016/j.scitotenv.2018.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
The North China Plain (NCP) has experienced heavy air pollution in the past several decades featured by high levels of fine particulate matter (PM2.5). PM2.5 removal from the atmosphere in the NCP by dry deposition was estimated from 1999 through 2013 using the inferential method, which combined PM2.5 air concentrations retrieved from satellite remote sensing and dry deposition velocities (Vd) calculated using a bulk particle dry deposition model. Dry deposition of the three major inorganic ions in PM2.5, namely NH4+ (ammonium), NO3- (nitrate), and SO42- (sulfate), with their concentrations in 2000 and 2010 obtained from WRF-Chem model simulations, were also investigated considering their important roles in PM2.5 formation and ecosystem health. High levels of modeled and satellite-retrieved PM2.5 air concentrations, the secondary inorganic aerosols (the sum of NH4+, NO3-, and SO42-), and their respective deposition fluxes were identified from the southern NCP to Beijing-Tianjin metropolitans. The deposition fluxes derived from the inferential method and WRF-Chem increased considerably in the 2000s due to rising PM2.5 atmospheric levels across the NCP. The enhancement of dry deposition velocities of PM2.5 and three aerosol species in the NCP were associated nicely with increasing vegetation coverage and wind speed. We show that both air concentrations of PM2.5 and secondary inorganic aerosols and rising dry deposition velocities related to extensive afforestation activities contributed to their deposition fluxes and an inclining trend of PM2.5 removal from the atmosphere.
Collapse
Affiliation(s)
- Jiao Du
- Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou, Gansu Province, China
| | - Xiaodong Zhang
- Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou, Gansu Province, China
| | - Tao Huang
- Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou, Gansu Province, China
| | - Hong Gao
- Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou, Gansu Province, China
| | - Jingyue Mo
- Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou, Gansu Province, China
| | - Xiaoxuan Mao
- Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou, Gansu Province, China
| | - Jianmin Ma
- Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou, Gansu Province, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
36
|
Xu X, Zhang H, Chen J, Li Q, Wang X, Wang W, Zhang Q, Xue L, Ding A, Mellouki A. Six sources mainly contributing to the haze episodes and health risk assessment of PM 2.5 at Beijing suburb in winter 2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:146-156. [PMID: 30265878 DOI: 10.1016/j.ecoenv.2018.09.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 05/16/2023]
Abstract
Aiming to a better understanding sources contributions and regional sources of fine particles, a total of 273 filter samples (159 of PM2.5 and 114 of PM1.0) were collected per 8 h during the winter 2016 at a southwest suburb of Beijing. Chemical compositions, including water soluble ions, organic carbon (OC), and elemental carbon (EC), as well as secondary organic carbon (SOC), were systematically analyzed and estimated. The total ions concentrations (TIC), OC, and SOC of PM2.5 were with the following order: 16:00-24:00 > 08:00-16:00 > 00:00-08:00. Since primary OC and EC were mainly attributed to the residential combustion in the night time, their valley values were observed in the daytime (08:00-16:00). However, the highest ratio value of SOC/OC was observed in the daytime. It is because that SOC is easily formed under sunshine and relatively high temperature in the daytime. Positive matrix factorization (PMF), clustering, and potential source contribution function (PSCF) were employed for apportioning sources contributions and speculating potential sources spatial distributions. The average concentrations of each species and the source contributions to each species were calculated based on the data of species concentrations with an 8 h period simulated by PMF model. Six likely sources, including secondary inorganic aerosols, coal combustion, industrial and traffic emissions, road dust, soil and construction dust, and biomass burning, were contributed to PM2.5 accounting for 29%, 21%, 17%, 16%, 9%, 8%, respectively. The results of cluster analysis indicated that most of air masses were transported from West and Northwest directions to the sampling location during the observation campaign. Several seriously polluted areas that might affect the air quality of Beijing by long-range transport were identified. Most of air masses were transported from Western and Northwestern China. According to the results of PSCF analysis, Western Shandong, Southern Hebei, Northern Henan, Western Inner Mongolia, Northern Shaanxi, and the whole Shanxi provinces should be the key areas of air pollution control in China. The exposure-response function was used to estimate the health impact associated with PM2.5 pollution. The population affected by PM2.5 during haze episodes reached 0.31 million, the premature death cases associated with PM2.5 reached 2032. These results provided important implication for making environmental policies to improve air quality in China.
Collapse
Affiliation(s)
- Xianmang Xu
- School of Environmental Science and Engineering, Environment Research Institute, Shandong University, Ji'nan 250100, China
| | - Hefeng Zhang
- Atmospheric Environment Institute, Chinese Research Academy of Environmental Sciences, Ministry of Environmental Protection (MEP), Beijing 100012, China
| | - Jianmin Chen
- School of Environmental Science and Engineering, Environment Research Institute, Shandong University, Ji'nan 250100, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xinfeng Wang
- School of Environmental Science and Engineering, Environment Research Institute, Shandong University, Ji'nan 250100, China
| | - Wenxing Wang
- School of Environmental Science and Engineering, Environment Research Institute, Shandong University, Ji'nan 250100, China
| | - Qingzhu Zhang
- School of Environmental Science and Engineering, Environment Research Institute, Shandong University, Ji'nan 250100, China
| | - Likun Xue
- School of Environmental Science and Engineering, Environment Research Institute, Shandong University, Ji'nan 250100, China
| | - Aijun Ding
- Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Abdelwahid Mellouki
- School of Environmental Science and Engineering, Environment Research Institute, Shandong University, Ji'nan 250100, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, 45071 Orléans cedex 02, France
| |
Collapse
|
37
|
Ren H, Kang M, Ren L, Zhao Y, Pan X, Yue S, Li L, Zhao W, Wei L, Xie Q, Li J, Wang Z, Sun Y, Kawamura K, Fu P. The organic molecular composition, diurnal variation, and stable carbon isotope ratios of PM 2.5 in Beijing during the 2014 APEC summit. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:919-928. [PMID: 30245454 DOI: 10.1016/j.envpol.2018.08.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Organic tracers are useful for investigating the sources of carbonaceous aerosols but there are still no adequate studies in China. To obtain insights into the diurnal variations, properties, and the influence of regional emission controls on carbonaceous aerosols in Beijing, day-/nighttime PM2.5 samples were collected before (Oct. 15th - Nov. 2nd) and during (Nov. 3rd - Nov. 12th) the 2014 Asia-Pacific Economic Cooperation (APEC) summit. Eleven organic compound classes were analysed using gas chromatography/mass spectrometry (GC/MS). In addition, the stable carbon isotope ratios (δ13CTC) of total carbon (TC) were detected using an elemental analyser/isotope ratio mass spectrometry (EA/irMS). Most of the organic compounds were more abundant during the night than in the daytime, and their concentrations generally decreased during the APEC. These features were associated with the strict regional emission controls and meteorological conditions. The day/night variations of δ13CTC were smaller during the APEC than those before the APEC the summit, suggesting that regionally transported aerosols are potentially played an important role in the loading of organic aerosols in Beijing before the APEC summit. The source apportionment based on the organic tracers suggested that biomass burning, plastic and microbial emissions, and fossil fuel combustion were important sources of organic aerosols in Beijing. Furthermore, a similar contribution of biomass burning to OC before and during the APEC suggests biomass burning was a persistent contributor to PM2.5 in Beijing and its surroundings.
Collapse
Affiliation(s)
- Hong Ren
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjie Kang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Lujie Ren
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yue Zhao
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Siyao Yue
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linjie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanyu Zhao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaorong Xie
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Aguilera J, Whigham LD. Using the 13C/ 12C carbon isotope ratio to characterise the emission sources of airborne particulate matter: a review of literature. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2018; 54:573-587. [PMID: 30326739 DOI: 10.1080/10256016.2018.1531854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter (PM) from atmospheric aerosols contains carbons that are harmful for living organisms and the environment. PM can originate from vehicle emissions, wearing of vehicle components, and dust. Size and composition determine PM transport and penetration depth into the respiratory system. Understanding PM emission characteristics is essential for developing strategies to improve air quality. The number of studies on carbon isotope composition (13C/12C) of PM samples to characterise emission factors has increased. The goal of this review is to integrate and interpret the findings from 13C/12C carbon isotope ratio (δ13C, ‰) analyses for the most common types of emission sources. The review integrates data from 25 studies in 13 countries. The range of δ13C of PM from vehicle emissions was from -28.3 to -24.5 ‰ and for non-vehicle anthropogenic emissions from -27.4 to -23.3 ‰. In contrast, PM ranges for δ13C from biomass burning sources differed markedly. For C3 plants, δ13C ranged from -34.7 to -25.4 ‰ and for C4 plants from -22.2 to -13.0 ‰. The 13C/12C isotope analysis of PM is valuable for understanding the sources of pollutants and distinguishing vehicle emissions from biomass burning. However, additional markers are needed to further distinguish other anthropogenic sources.
Collapse
Affiliation(s)
- Juan Aguilera
- a College of Health Sciences and the Paso del Norte Institute for Healthy Living , University of Texas at El Paso , El Paso , TX , USA
| | - Leah D Whigham
- a College of Health Sciences and the Paso del Norte Institute for Healthy Living , University of Texas at El Paso , El Paso , TX , USA
| |
Collapse
|
39
|
Zhu Y, Huang L, Li J, Ying Q, Zhang H, Liu X, Liao H, Li N, Liu Z, Mao Y, Fang H, Hu J. Sources of particulate matter in China: Insights from source apportionment studies published in 1987-2017. ENVIRONMENT INTERNATIONAL 2018; 115:343-357. [PMID: 29653391 DOI: 10.1016/j.envint.2018.03.037] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/12/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter (PM) in the atmosphere has adverse effects on human health, ecosystems, and visibility. It also plays an important role in meteorology and climate change. A good understanding of its sources is essential for effective emission controls to reduce PM and to protect public health. In this study, a total of 239 PM source apportionment studies in China published during 1987-2017 were reviewed. The documents studied include peer-reviewed papers in international and Chinese journals, as well as degree dissertations. The methods applied in these studies were summarized and the main sources in various regions of China were identified. The trends of source contributions at two major cities with abundant studies over long-time periods were analyzed. The most frequently used methods for PM source apportionment in China are receptor models, including chemical mass balance (CMB), positive matrix factorization (PMF), and principle component analysis (PCA). Dust, fossil fuel combustion, transportation, biomass burning, industrial emission, secondary inorganic aerosol (SIA) and secondary organic aerosol (SOA) are the main source categories of fine PM identified in China. Even though the sources of PM vary among seven different geographical areas of China, SIA, industrial, and dust emissions are generally found to be the top three source categories in 2007-2016. A number of studies investigated the sources of SIA and SOA in China using air quality models and indicated that fossil fuel combustion and industrial emissions were the most important sources of SIA (total contributing 63.5%-88.1% of SO42-, and 47.3%-70% NO3-), and agriculture emissions were the dominant source of NH4+ (contributing 53.9%-90%). Biogenic emissions were the most important source of SOA in China in summer, while residential and industrial emissions were important in winter. Long-term changes of PM sources at two megacities of Beijing and Nanjing indicated that the contributions of fossil fuel and industrial sources have been declining after stricter emission controls in recent years. In general, dust and industrial contributions decreased and transportation contributions increased after 2000. PM2.5 emissions are predicted to decline in most regions during 2005-2030, even though the energy consumptions except biomass burning are predicted to continue to increase. Industrial, residential, and biomass burning sources will become more important in the future in the businuess-as-usual senarios. This review provides valuable information about main sources of PM and their trends in China. A few recommendations are suggested to further improve our understanding the sources and to develop effective PM control strategies in various regions of China.
Collapse
Affiliation(s)
- Yanhong Zhu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Lin Huang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Jingyi Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Qi Ying
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Hongliang Zhang
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 77803, USA
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Nan Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Zhenxin Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Yuhao Mao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
40
|
Lappharat S, Taneepanichskul N, Reutrakul S, Chirakalwasan N. Effects of Bedroom Environmental Conditions on the Severity of Obstructive Sleep Apnea. J Clin Sleep Med 2018; 14:565-573. [PMID: 29609708 DOI: 10.5664/jcsm.7046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
STUDY OBJECTIVES Epidemiological associations have demonstrated the effects of long-term air pollution to obstructive sleep apnea (OSA) through a physiological mechanism linking particulate matter exposure to OSA. This study aimed to determine the relationship between bedroom environmental conditions, OSA severity, and sleep quality. METHODS Sixty-three participants were enrolled for an overnight polysomnography; OSA was diagnosed between May to August 2016. Personal characteristics and sleep quality were obtained by a face-to-face interview. Bedroom environments, including data on particulate matter with an aerodynamic diameter less than 10 μm (PM10), temperature, and relative humidity, were collected by personal air sampling and a HOBO tempt/RH data logger. RESULTS Sixty-eight percent of the participants experienced poor sleep. An elevation in 1-year mean PM10 concentration was significantly associated with an increase in apnea-hypopnea index (beta = 1.04, P = .021) and respiratory disturbance index (beta = 1.07, P = .013). An increase of bedroom temperature during sleep was significantly associated with poorer sleep quality (adjusted odds ratio 1.46, 95% confidence interval 1.01-2.10, P = .044). Associations between PM10 concentration and respiratory disturbance index were observed in the dry season (beta = 0.59, P = .040) but not in the wet season (beta = 0.39, P = .215). PM10 was not associated with subjective sleep quality. CONCLUSIONS Elevation of PM10 concentration is significantly associated with increased OSA severity. Our findings suggest that reduction in exposure to particulate matter and suitable bedroom environments may lessen the severity of OSA and promote good sleep.
Collapse
Affiliation(s)
- Sattamat Lappharat
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Sirimon Reutrakul
- Division of Endocrinology and Metabolism, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, Thailand.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Naricha Chirakalwasan
- Excellence Center for Sleep Disorders, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
41
|
Elad D, Zaretsky U, Avraham S, Gotlieb R, Wolf M, Katra I, Sarig S, Zaady E. In vitro exposure of nasal epithelial cells to atmospheric dust. Biomech Model Mechanobiol 2018; 17:891-901. [PMID: 29302839 DOI: 10.1007/s10237-017-0999-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
Abstract
Dust storms are common phenomena in many parts of the world, and significantly increase the level of atmospheric particulate matter (PM). The soil-derived dust is a mixture of organic and inorganic particles and even remnants of pesticides from agricultural areas nearby. The risk of human exposure to atmospheric dust is well documented, but very little is known on the impact of inhaled PM on the biological lining of the nasal cavity, which is the natural filter between the external environment and the respiratory tract. We developed a new system and methodology for in vitro exposure of cultured nasal epithelial cells (NEC) to atmospheric soil-dust pollutants under realistic and controlled laboratory simulations that mimic nasal breathing. We exposed cultured NEC to clean and dust-polluted airflows that mimic physiological conditions. The results revealed that the secretion of mucin and IL-8 from the NEC exposed to clean and dust-polluted airflows was less than the secretion at static conditions under clean air. The secretion of IL-8 from NEC exposed to dust-polluted air was larger than that of clean air, but not larger than in the static case. The experiments with dust air pollution that also contained agricultural pesticides did not reveal differences in the secretion of mucin and IL-8 as compared to the same pollution without pesticides.
Collapse
Affiliation(s)
- David Elad
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Uri Zaretsky
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sharon Avraham
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ruthie Gotlieb
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michael Wolf
- Department of Otorhinolaryngology, Sheba Medical Center, Tel Hashomer, 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Itzhak Katra
- Department of Geography and Environmental Development, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Shlomo Sarig
- The Katif Research Center, Sdot-Negev, Mobile Post Negev, 85200, Israel
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Ministry of Agriculture, Gilat Research Center, Mobile Post Negev, 8531100, Israel
| |
Collapse
|
42
|
Liu J, Wu D, Fan S, Mao X, Chen H. A one-year, on-line, multi-site observational study on water-soluble inorganic ions in PM 2.5 over the Pearl River Delta region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1720-1732. [PMID: 28618662 DOI: 10.1016/j.scitotenv.2017.06.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
As the significant components of PM2.5, almost all of previous studies on water-soluble inorganic ions (WSIIs) have been limited by the use of single sampling station, short sampling times or low temporal resolution. This paper focuses on analysing one-year (2012) observations of WSIIs at a regional central (RCEN) site, a coastal urban (CURB) site and a coastal rural (CRUR) site in the Pearl River Delta region. On average, secondary inorganic aerosols (SIA) were the most abundant component and accounted for over 80% of the total WSIIs. The ratio among sulfate, nitrate and ammonium mass concentrations was close to 2:1:1 (5:2:1) at the RCEN and CURB sites (CRUR site). Most components (except Na+) showed higher concentrations in the dry season. The diurnal variations of different ions showed obvious differences, which were partially controlled by photochemical reactions and diffusion conditions in the boundary layer. Ionic formation patterns were different among the three sites. Secondary inorganic pollution was much more serious in the northwestern PRD, and it had a significant effect on pollution in the coastal areas. High SO42- concentrations at the CRUR site may be associated with local emissions, such as dimethysulfide (DMS). Long-range transport along the southeastern coastline also played an important role in SO42- pollution over the PRD region. Sea salt aerosols were an important source in coastal regions; they contributed large amounts of Cl-, Na+, Mg2+ at the CRUR site and large amounts of Na+, Mg2+ at the CURB site. The case studies found that sea salt aerosols concentrations increased obviously during the heavy precipitation period of typhoon. The presence of warm-wet air masses before continuous moist weather (CMW) was favourable for the formation of SIA. On the other hand, during CMW periods, SIA concentrations decreased rapidly.
Collapse
Affiliation(s)
- Jian Liu
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dui Wu
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China; Institute of Atmospheric Environmental Safety and Pollution Control, Jinan University, Guangzhou 510630, China; Guangdong Engineering Research Center for Online Atmospheric Pollution Source Apportionment Mass Spectrometry System, Jinan University, Guangzhou 510630, China; Institute of Guangzhou Tropical and Marine Meteorology, China Meteorology Administration, Guangzhou 510080, China.
| | - Shaojia Fan
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xia Mao
- Shenzhen Meteorological Bureau, Shenzhen 518040, China
| | - Huizhong Chen
- Dongguan Meteorological Bureau, Dongguan 523086, China
| |
Collapse
|
43
|
Zhang Y, Cai J, Wang S, He K, Zheng M. Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:917-929. [PMID: 28237464 DOI: 10.1016/j.scitotenv.2017.02.071] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 05/10/2023]
Abstract
As the key for haze control, atmospheric fine particulate matter with aerodynamic diameter <2.5μm (or PM2.5) is of great concern lately in China. It is closely linked to fast pace of urbanization, industrialization and economic development, especially in eastern China. A good understanding of its sources is required for effective pollution abatement. Receptor models are one of the major methods for source apportionment used in China. The major objective of this study is to understand sources that contribute to fine particulate matter in China and key challenges in this area. Spatial distribution of fine particulate matter concentration, chemical composition and dominant sources in North and South China are summarized. Based on chemical speciation results from 31 cities and source apportionment results from 21 cities, it is found that secondary sources and traffic emission have higher contribution in South China while the percentage of coal combustion, dust and biomass burning to total PM2.5 are higher in North China. Source profiles established in China from 44 cities and areas are also summarized as references for future source apportionment studies. Suggestions for future research are also provided including methods for evaluating source apportionment results, ways for integrating multiple source apportionment methods, the need for standardizing protocols and developing tools for high-time resolution source apportionment.
Collapse
Affiliation(s)
- Yanjun Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jing Cai
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kebin He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
44
|
Khalid B, Bai X, Wei H, Huang Y, Wu H, Cui Y. Direct Blow-Spinning of Nanofibers on a Window Screen for Highly Efficient PM 2.5 Removal. NANO LETTERS 2017; 17:1140-1148. [PMID: 28027642 DOI: 10.1021/acs.nanolett.6b04771] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Particulate matter (PM) pollution has caused many serious public health issues. Whereas indoor air protection usually relies on expensive and energy-consuming filtering devices, direct PM filtration by window screens has attracted increasing attention. Recently, electrospun polymer nanofiber networks have been developed as transparent filters for highly efficient PM2.5 removal; however, it remains challenging to uniformly coat the nanofibers on window screens on a large scale and with low cost. Here, we report a blow-spinning technique that is fast, efficient, and free of high voltages for the large-scale direct coating of nanofibers onto window screens for indoor PM pollution protection. We have achieved a transparent air filter of 80% optical transparency with >99% standard removal efficiency level for PM2.5. A test on a real window (1 m × 2 m) in Beijing has proven that the nanofiber transparent air filter acquires excellent PM2.5 removal efficiency of 90.6% over 12 h under extremely hazy air conditions (PM2.5 mass concentration > 708 μg/m3). Moreover, we show that the nanofibers can be readily coated on the window screen for pollution protection and can be easily removed by wiping the screen after hazardous days.
Collapse
Affiliation(s)
- Bilal Khalid
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing 100084, China
| | - Xiaopeng Bai
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing 100084, China
| | - Hehe Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing 100084, China
| | - Ya Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing 100084, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing 100084, China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
45
|
Guney M, Chapuis RP, Zagury GJ. Lung bioaccessibility of contaminants in particulate matter of geological origin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24422-24434. [PMID: 27080406 DOI: 10.1007/s11356-016-6623-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Human exposure to particulate matter (PM) has been associated with adverse health effects. While inhalation exposure to airborne PM is a prominent research subject, exposure to PM of geological origin (i.e., generated from soil/soil-like material) has received less attention. This review discusses the contaminants in PM of geological origin and their relevance for human exposure and then evaluates lung bioaccessibility assessment methods and their use. PM of geological origin can contain toxic elements as well as organic contaminants. Observed/predicted PM lung clearance times are long, which may lead to prolonged contact with lung environment. Thus, certain exposure scenarios warrant the use of in vitro bioaccessibility testing to predict lung bioavailability. Limited research is available on lung bioaccessibility test development and test application to PM of geological origin. For in vitro tests, test parameter variation between different studies and concerns about physiological relevance indicate a crucial need for test method standardization and comparison with relevant animal data. Research is recommended on (1) developing robust in vitro lung bioaccessibility methods, (2) assessing bioaccessibility of various contaminants (especially polycyclic aromatic hydrocarbons (PAHs)) in PM of diverse origin (surface soils, mine tailings, etc.), and (3) risk characterization to determine relative importance of exposure to PM of geological origin.
Collapse
Affiliation(s)
- Mert Guney
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
| | - Robert P Chapuis
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada.
| |
Collapse
|
46
|
Wang Y, Zhang Y, Schauer JJ, de Foy B, Guo B, Zhang Y. Relative impact of emissions controls and meteorology on air pollution mitigation associated with the Asia-Pacific Economic Cooperation (APEC) conference in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1467-76. [PMID: 27453134 DOI: 10.1016/j.scitotenv.2016.06.215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 05/21/2023]
Abstract
The Beijing government and its surrounding provinces implemented a series of measures to ensure haze-free skies during the 22(nd) Asia-Pacific Economic Cooperation (APEC) conference (November 10(th)-11(th), 2014). These measures included restrictions on traffic, construction, and industrial activity. Twelve hour measurements of the concentration and composition of ambient fine particulate matter (PM2.5) were performed for 5 consecutive months near the APEC conference site before (September 11(th)-November 2(nd), 2014), during (November 3(rd)-12(th), 2014) and after (November 13(th), 2014-January 31(st), 2015). The measurements are used in a positive matrix factorization model to determine the contributions from seven sources of PM2.5: secondary aerosols, traffic exhaust, industrial emission, road dust, soil dust, biomass burning and residual oil combustion. The source apportionment results are integrated with backward trajectory analysis using Weather Research and Forecast (WRF) meteorological simulations, which determine the relative influence of new regulation and meteorology upon improved air quality during the APEC conference. Data show that controls are very effective, but meteorology must be taken into account to determine the actual influence of the controls on pollution reduction. The industry source control is the most effective for reducing concentrations, followed by secondary aerosol and biomass controls, while the least effective control is for the residual oil combustion source. The largest reductions in concentrations occur when air mass transport is from the west-northwest (Ulanqab). Secondary aerosol and traffic exhaust reductions are most significant for air mass transport from the north-northwest (Xilingele League) origin, and least significant for northeast transport (Chifeng via Tangshan conditions). The largest reductions of soil dust, biomass burning, and industrial source are distinctly seen for Ulanqab conditions and least distinct for Xilingele League.
Collapse
Affiliation(s)
- Yuqin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - James Jay Schauer
- Civil and Environmental Engineering Department, University of Wisconsin-Madison, Madison, WI 53705, USA; Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin de Foy
- Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108, USA
| | - Bo Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong 250100, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing 101408, China; CAS Center for Excellence in Urban Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
47
|
Effects of the Post-Olympics Driving Restrictions on Air Quality in Beijing. SUSTAINABILITY 2016. [DOI: 10.3390/su8090902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Souzandeh H, Johnson KS, Wang Y, Bhamidipaty K, Zhong WH. Soy-Protein-Based Nanofabrics for Highly Efficient and Multifunctional Air Filtration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20023-31. [PMID: 27439677 DOI: 10.1021/acsami.6b05339] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Proteins are well-known by their numerous active functional groups along the polypeptide chain. The variety of functional groups of proteins provides a great potential for proteins to interact with airborne pollutants with varying surface properties. However, to our knowledge, a successful demonstration of this potential has not been reported before. In this work, soy protein, a type of abundant plant protein, has been employed for the first time to fabricate multifunctional air-filtration materials. To take advantage of the functional groups of soy protein for air filtration, the soy protein was first well denatured to unfold the polypeptide chains and then fabricated into nanofibers with the help of poly(vinyl alcohol). It was found that the resultant nanofabrics showed high filtration efficiency not only for airborne particulates with a broad range of size but also for various toxic gaseous chemicals (e.g., formaldehyde and carbon monoxide), a capability that has not been realized by conventional air-filtering materials. This study indicates that protein-based nanofabrics are promising nanomaterials for multifunctional air-filtration applications.
Collapse
Affiliation(s)
- Hamid Souzandeh
- School of Mechanical and Materials Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Kyle S Johnson
- School of Mechanical and Materials Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Yu Wang
- School of Mechanical and Materials Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Keshava Bhamidipaty
- School of Mechanical and Materials Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Wei-Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
49
|
Zhou W, Jiang J, Duan L, Hao J. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7861-7869. [PMID: 27298095 DOI: 10.1021/acs.est.6b00075] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the absence of particulate matter (PM) control devices, residential coal combustion contributes significantly to ambient PM pollution. Characterizing PM emissions from residential coal combustion with high time resolution is beneficial for developing control policies and evaluating the environmental impact of PM. This study reports the evolution of submicrometer organic aerosols (OA) during a complete residential coal combustion process, that is, from fire start to fire extinction. Three commonly used coal types (bituminous, anthracite, and semicoke coals) were evaluated in a typical residential stove in China. For all three types of coal, the OA emission exhibited distinct characteristics in the four stages, that is, ignition, fierce combustion, relatively stable combustion, and ember combustion. OA emissions during the ignition stage accounted for 58.2-85.4% of the total OA emission of a complete combustion process. The OA concentration decreased rapidly during the fierce combustion stage and remained low during the relatively stable combustion stage. During these two stages, a significant ion peak of m/z 73 from organic acids were observed. The degree of oxidation of the OA increased from the first stage to the last stage. Implications for ambient OA source-apportionment and residential PM emission characterization and control are discussed.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Lei Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Centre for Regional Environmental Quality, Tsinghua University , Beijing 100084, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Centre for Regional Environmental Quality, Tsinghua University , Beijing 100084, China
| |
Collapse
|
50
|
Abstract
Heavy metal determination in ambient air is an important task for environmental researchers because of their toxicity to human beings. Some heavy metals (hexavalent chromium (Cr), arsenic (As), cadmium (Cd) and nickel (Ni)) have been listed as carcinogens. Furthermore, heavy metals in the atmosphere can accumulate in various plants and animals and enter humans through the food chain. This article reviews the determination of heavy metals in the atmosphere in different areas of the world since 2006. The results showed that most researchers concentrated on toxic metals, such as Cr, Cd, Ni, As and lead. A few studies used plant materials as bio-monitors for the atmospheric levels of heavy metals. Some researchers found higher concentrations of heavy metals surrounding industrial areas compared with residential and/or commercial areas. Most studies reported the major sources of the particulate matter and heavy metals in the atmosphere to be industrial emissions, vehicular emissions and secondary aerosols.
Collapse
Affiliation(s)
| | - Sung-Ok Baek
- Department of Environmental Engineering, Yeungnam University, Gyeongsan-Si, Republic of Korea
| |
Collapse
|