1
|
Sarathkumara YD, Van Bibber NW, Liu Z, Heslop HE, Rouce RH, Coghill AE, Rooney CM, Proietti C, Doolan DL. Differential antibody response to EBV proteome following EBVST immunotherapy in EBV-associated lymphomas. Blood Adv 2025; 9:1658-1669. [PMID: 39908567 PMCID: PMC11995064 DOI: 10.1182/bloodadvances.2024014937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT Epstein-Barr virus (EBV) is associated with a diverse range of lymphomas. EBV-specific T-cell (EBVST) infusions have shown promise in safety and clinical effectiveness in treating EBV-associated lymphomas; however, not all patients respond to T-cell immunotherapies. To identify EBV antigen-specific antibody responses associated with clinical outcomes, we comprehensively characterized antibody responses to the complete EBV proteome using a custom protein microarray in 56 patients with EBV-associated lymphoma who received EBVST infusions in phase 1 clinical trials. Responders (nonprogressors) and nonresponders (progressors) had distinct antibody profiles against EBV. Twenty-five immunoglobulin G (IgG) antibodies were significantly elevated in higher levels in nonresponders than in responders at 3 months after EBVST infusion. Ten of these remained significant after adjustment for sex, age, and cancer type, including LMP2A (4 variants), BGRF1/BDRF1 (2 variants), LMP1, BKRF2, BKRF4, and BALF5. Random forest analysis identified these 10 IgG antibodies as key predictors of clinical response. Paired analyses using blood samples collected at both before infusion and 3 months after EBVST infusion indicated an increase in the mean antibody level for 6 other anti-EBV antibodies (IgG [BGLF2, LF1, and BGLF3]; IgA [BGLF3, BALF2, and BBLF2/3) in nonresponders. Overall, our findings suggest that these EBV-directed antibodies as potential serological markers for predicting clinical responses to EBVST infusions and as therapeutic targets for immunotherapy in EBV-positive lymphomas. These trials were registered at www.clinicaltrials.gov as #NCT01555892 (Cytotoxic T-Lymphocytes for EBV-positive Lymphoma [GRALE]), #NCT02973113 (Nivolumab With Epstein Barr Virus Specific T Cells [EBVSTS], Relapsed/Refractory EBV Positive Lymphoma [PREVALE]), and #NCT02287311 (Most Closely Matched 3rd Party Rapidly Generated LMP, BARF1, and EBNA1 Specific CTL, EBV-Positive Lymphoma [MABEL]).
Collapse
Affiliation(s)
- Yomani D. Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nathan W. Van Bibber
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Helen E. Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX
| | - Rayne H. Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX
| | - Anna E. Coghill
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Cliona M. Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Denise L. Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Sarathkumara YD, Van Bibber NW, Liu Z, Heslop HE, Rouce RH, Coghill AE, Rooney CM, Proietti C, Doolan DL. Differential EBV protein-specific antibody response between responders and non-responders to EBVSTs immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607997. [PMID: 39211169 PMCID: PMC11361067 DOI: 10.1101/2024.08.14.607997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epstein-Barr virus (EBV) is associated with a diverse range of lymphomas. EBV-specific T-cell (EBVST) immunotherapies have shown promise in safety and clinical effectiveness in treating EBV-associated lymphomas, but not all patients respond to treatment. To identify the set of EBV-directed antibody responses associated with clinical response in patients with EBV-associated lymphomas, we comprehensively characterized the immune response to the complete EBV proteome using a custom protein microarray in 56 EBV-associated lymphoma patients who were treated with EBVST infusions enrolled in Phase I clinical trials. Significant differences in antibody profiles between responders and non-responders emerged at 3 months post-EBVST infusion. Twenty-five IgG antibodies were present at significantly higher levels in non-responders compared to responders at 3 months post-EBVST infusion, and 10 of these IgG antibody associations remained after adjustment for sex, age, and cancer diagnosis type. Random forest prediction analysis further confirmed that these 10 antibodies were important for predicting clinical response. Differential IgG antibody responses were directed against LMP2A (four fragments), BGRF1/BDRF1 (two fragments), LMP1, BKRF2, BKRF4, and BALF5. Paired analyses using blood samples collected at both pre-infusion and 3 months post-EBVST infusion indicated an increase in the mean antibody level for six other anti-EBV antibodies (IgG: BGLF2, LF1, BGLF3; IgA: BGLF3, BALF2, BBLF2/3) in non-responders. Overall, our results indicate that EBV-directed antibodies can be biomarkers for predicting the clinical response of individuals with EBV-associated lymphomas treated with EBVST infusions.
Collapse
|
3
|
Zeng X, Yang X, Yang L, Yi X, Chen X, Huang J, Wang Y, Li S. A modified multiple cross displacement amplification linked with a gold nanoparticle biosensor for the detection of Epstein-Barr virus in clinical applications. Front Microbiol 2023; 14:1268572. [PMID: 37886077 PMCID: PMC10598869 DOI: 10.3389/fmicb.2023.1268572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Epstein-Barr virus (EBV), a double-stranded DNA virus belonging to the family Herpesviridae, infects more than 95% of healthy adults by attacking the host immune system. Here, a novel detection protocol, utilizing the modified multiple cross displacement amplification (MCDA) technique combined with a gold nanoparticles-based lateral flow biosensors (AuNPs-LFB), was devised and developed to detect EBV infection (termed EBV-MCDA-LFB assay). Ten MCDA primers targeting the EBNA-LP gene were designed, including CP1* primers modified with 6-carboxyfluorescein (FAM) and D1* primers modified with biotin. Then, nucleic acid templates extracted from various pathogens and whole blood samples were used to optimize and evaluate the EBV-MCDA-LFB assay. As a result, the lowest concentration of EBNA-plasmids, which can be detected by MCDA-LFB assay with an optimal reaction condition of 67°C for 30 min, was 10 copies/reaction. Here, the MCDA-LFB assay can detect all EBV pathogens used in the study, and no cross-reactions with non-EBV organisms were observed. Meanwhile, the entire detection workflow of the EBV-MCDA-LFB assay for whole blood samples, including DNA template preparation (25 min), EBV-MCDA amplification (30 min), and AuNPs-LFB-mediated validation (2-5 min), can be completed within 1 h. Taken together, the EBV-MCDA-LFB assay established in the current study is a rapid, simplified, sensitive, specific, and easy-to-obtain technique that can be used as a screening or diagnostic tool for EBV infection in clinical applications, especially in resource-poor regions.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Ludi Yang
- Tongren People's Hospital, Tongren, Guizhou, China
| | - Xu Yi
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Yu Wang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, Guizhou, China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Meng Q, Sun H, Wu S, Familiari G, Relucenti M, Aschner M, Li X, Chen R. Epstein-Barr Virus-Encoded MicroRNA-BART18-3p Promotes Colorectal Cancer Progression by Targeting De Novo Lipogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202116. [PMID: 36307872 PMCID: PMC9762317 DOI: 10.1002/advs.202202116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/29/2022] [Indexed: 05/14/2023]
Abstract
The Epstein-Barr virus (EBV) genome encodes a cluster of 22 viral microRNAs, called miR-BamHI-A rightward transcripts (miR-BARTs), which are shown to promote the development of cancer. Here, this study reports that EBV-miR-BART18-3p is highly expressed in colorectal cancer (CRC) and is closely associated with the pathological and advanced clinical stages of CRC. Ectopic expression of EBV-miR-BART18-3p leads to increased migration and invasion capacities of CRC cells in vitro and causes tumor metastasis in vivo. Mechanistically, EBV-miR-BART18-3p activates the hypoxia inducible factor 1 subunit alpha/lactate dehydrogenase A axis by targeting Sirtuin, which promotes lactate accumulation and acetyl-CoA production in CRC cells under hypoxic condition. Increased acetyl-CoA utilization subsequently leads to histone acetylation of fatty acid synthase and fatty acid synthase-dependent fat synthesis, which in turn drives de novo lipogenesis. The oncogenic role of EBV-miR-BART18-3p is confirmed in the patient-derived tumor xenograft mouse model. Altogether, the findings define a novel mechanism of EBV-miR-BART18-3p in CRC development through the lipogenesis pathway and provide a potential clinical intervention target for CRC.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
| | - Hao Sun
- Department of Occupational HealthSchool of Public HealthShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
| | - Giuseppe Familiari
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michela Relucenti
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineForchheimer 209, 1300 Morris Park AvenueBronxNY10461USA
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Institute for Chemical CarcinogenesisGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
5
|
Ma N, Lu J, Pei Y, Robertson ES. Transcriptome reprogramming of Epstein-Barr virus infected epithelial and B cells reveals distinct host-virus interaction profiles. Cell Death Dis 2022; 13:894. [PMID: 36272970 PMCID: PMC9588026 DOI: 10.1038/s41419-022-05327-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Epstein-Barr virus (EBV) is an opportunistic pathogen that can manifest itself as a potential contributor to human diseases years after primary infection, specifically in lymphoid and epithelial cell malignancies in immune-competent and immune-compromised hosts. The virus shuttles between B cells and epithelial cells during its infection cycle, facilitating its persistence and transmission in humans. While EBV efficiently infects and transforms B-lymphocytes, epithelial cells are not as susceptible to transformation in vitro. We utilized a 3D platform for culturing normal oral keratinocyte cells (NOKs) using Matrigel for greater insights into the molecular interactions between EBV and infected cells. We determined the transcriptome of EBV infected NOKs and peripheral blood mononuclear cells (PBMCs) for 7 and 15 days. LMPs (-1, -2A, and -2B) and EBNAs (-1, -2, -3A, -3B and -3C) were detected in all samples, and lytic gene expression was significantly higher in NOKs than PBMCs. We identified over 2000 cellular genes that were differentially expressed (P-value<0.05). Gene ontology (GO) and pathway analyses significantly identified pathways related to collagen-activation, chemokine signaling, immune response, metabolism, and antiviral responses. We also identified significant changes in metalloproteases and genes encoding chemotactic ligands and cell surface molecules. C-X-C chemokine receptor type 4 (CXCR4) was dramatically downregulated in PBMCs and upregulated in NOKs. However, MMP1 was significantly downregulated in NOKs and upregulated in PBMCs. Therefore, multiple pathways contribute to distinct pathologies associated with EBV infection in epithelial and B cells, and MMP1 and CXCR4 are critical molecules involved in regulation of latent and lytic states linked to viral associated diseases.
Collapse
Affiliation(s)
- Nian Ma
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Juan Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Althurwi HN, Alharthy KM, Albaqami FF, Altharawi A, Javed MR, Muhseen ZT, Tahir ul Qamar M. mRNA-Based Vaccine Designing against Epstein-Barr Virus to Induce an Immune Response Using Immunoinformatic and Molecular Modelling Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13054. [PMID: 36293632 PMCID: PMC9602923 DOI: 10.3390/ijerph192013054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Epstein-Barr Virus (EBV) is a human pathogen that has a morbidity rate of 90% in adults worldwide. Infectious mononucleosis is caused by EBV replication in B cells and epithelial cells of the host. EBV has also been related to autoimmune illnesses, including multiple sclerosis and cancers like nasopharyngeal carcinomas and Burkitt's lymphoma. Currently, no effective medications or vaccinations are available to treat or prevent EBV infection. Thus, the current study focuses on a bioinformatics approach to design an mRNA-based multi-epitope (MEV) vaccine to prevent EBV infections. For this purpose, we selected six antigenic proteins from the EBV proteome based on their role in pathogenicity to predict, extract, and analyze T and B cell epitopes using immunoinformatics tools. The epitopes were directed through filtering parameters including allergenicity, toxicity, antigenicity, solubility, and immunogenicity assessment, and finally, the most potent epitopes able to induce T and B cell immune response were selected. In silico molecular docking of prioritized T cell peptides with respective Human Leukocytes Antigens molecules, were carried out to evaluate the individual peptide's binding affinity. Six CTL, four HTL, and ten linear B cell epitopes fulfilled the set parameters and were selected for MEV-based mRNA vaccine. The prioritized epitopes were joined using suitable linkers to improve epitope presentation. The immune simulation results affirmed the designed vaccine's capacity to elicit a proper immune response. The MEV-based mRNA vaccine constructed in this study offers a promising choice for a potent vaccine against EBV.
Collapse
Affiliation(s)
- Hassan N. Althurwi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ziyad Tariq Muhseen
- Department of Pharmacy, Al-Mustaqbal University College, Hillah 51001, Babylon, Iraq
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Li J, Zhang Y, Sun L, Liu S, Zhao M, Luo B. LMP1 Induces p53 Protein Expression via the H19/miR-675-5p Axis. Microbiol Spectr 2022; 10:e0000622. [PMID: 35674441 PMCID: PMC9241841 DOI: 10.1128/spectrum.00006-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV), a ubiquitous oncogenic herpesvirus, infects more than 90% of the adult population worldwide. The long noncoding RNA H19 is downregulated in EBV-positive gastric cancer (EBVaGC) and nasopharyngeal cancer (NPC). In this study, we found that loss of H19 is caused by hypermethylation status of the H19 promoter in EBV-positive GC and NPC cell lines. Furthermore, latent membrane protein 1 (LMP1), encoded by EBV, induced H19 promoter hypermethylation and deregulated the expression of H19 by upregulating DNMT1 expression. Transwell assays showed that H19 promoted cell migration. Furthermore, H19 promoted cell proliferation and inhibited apoptosis in CCK-8 and flow cytometry assays, respectively. p53, a well-known tumor suppressor, was upregulated in EBVaGC and NPC cell lines. miR-675-5p derived from H19 inhibited p53 protein expression by targeting the 3' untranslated region of the gene. Overall, we found that LMP1 induced p53 protein expression via the H19/miR-675-5p axis in EBVaGC and NPC. LMP1 induced H19 promoter hypermethylation, which repressed the expression of H19 and miR-675-5p and caused p53 protein overexpression in EBVaGC and NPC cells. IMPORTANCE Epstein-Barr virus (EBV) is the first virus to be known to have direct association with human cancer and to be considered as an important DNA tumor virus. The EBV life cycle consists of both latent and lytic modes of infection in B lymphocytes and epithelial cells. The persistence of EBV genomes in malignant cells promoted cell growth. p53, acting as a critical gatekeeper tumor suppressor, is involved in multiple virus-mediated tumorigeneses. Overexpression of p53 inhibits the ability of BZLF1 (EBV-encoded immediate early gene) to disrupt viral latency. In our study, we found LMP1 induces H19 promoter hypermethylation, which represses the expression of H19 and miR-675-5p and results in p53 protein overexpression in EBVaGC and NPC cells. These observations suggest a new mechanism of aberrant expression of p53 by LMP1, which facilitates EBV latency.
Collapse
Affiliation(s)
- Jun Li
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Lingling Sun
- Pathology Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Liu
- Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao, Shandong Province, China
| | - Menghe Zhao
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
8
|
LI J, HAN G, LIN X, WU L, QIAN C, XU J. Application of magnetic immunofluorescence assay based on microfluidic technology to detection of Epstein-Barr virus. Se Pu 2022; 40:372-383. [PMID: 35362685 PMCID: PMC9404092 DOI: 10.3724/sp.j.1123.2021.09005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
EB病毒(Epstein-Barr virus, EBV)的早期诊断能够降低患者发生重大疾病的风险。临床上常用的EBV抗体的检测方法存在耗时长、试剂消耗大和效率低等缺点。相比于传统的检测方法,微流控(microfluidics)技术具有高通量、试剂消耗少,污染少和自动化程度高等优点,磁免疫荧光技术具有检测效率高、信号强等优点,将两者的优势结合,能够弥补传统方法的不足。鉴于此,采用聚甲基丙烯酸甲酯(PMMA)作为芯片原材料,经过激光切割及真空热压加工工艺能够快速获得芯片。将包被抗原的磁珠及包被抗人抗体的荧光微球经过冷冻干燥工艺快速冻干成小球并嵌入芯片内,经过孵育和清洗后,进行检测。通过图像分析快速得到检测结果。通过精密度、特异性、剂量-反应曲线及检出限测试,进行性能验证。通过与化学发光免疫分析法(CLIA)检测的临床样本比对,进行方法学与临床应用评价。结果显示相对标准偏差(RSD)均小于10%。与多种常见的病原体抗体均无交叉反应。EB病毒衣壳抗原(Epstein-Barr viral capsid antigen, EB VCA)IgG项目的检出限为1.92 U/mL,线性范围为1.92~200 U/mL,阳性符合率为95.77%(68/71),阴性符合率为86%(43/50); EB VCA IgA项目的检出限为2.79 U/mL,线性范围为2.79~200 U/mL,阳性符合率为92%(46/50),阴性符合率为92.96%(66/71); EB病毒核心抗原1(Epstein-Barr nuclear antigen 1, EB NA1)IgG项目的检出限为3.13 U/mL,线性范围为3.13~200 U/mL,阳性符合率为92.96%(66/71),阴性符合率为92%(46/50); EB NA1 IgA项目的检出限为1.53 U/mL,线性范围为1.53~200 U/mL,阳性符合率为90%(45/50),阴性符合率为91.55%(65/71)。4个项目能在20 min内快速完成检测,且与临床上使用CLIA方法测试的结果具有良好的相关性,可以为临床提供一种快速、灵敏、简便、自动化程度高和易于基层推广的检测方法。
Collapse
|
9
|
Budiningsih I, Dachlan YP, Hadi U, Middeldorp JM. Quantitative cytokine level of TNF-α, IFN-γ, IL-10, TGF-β and circulating Epstein-Barr virus DNA load in individuals with acute Malaria due to P. falciparum or P. vivax or double infection in a Malaria endemic region in Indonesia. PLoS One 2021; 16:e0261923. [PMID: 34962938 PMCID: PMC8714090 DOI: 10.1371/journal.pone.0261923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Plasmodium falciparum Malaria and Epstein-Barr Virus (EBV) infection are risk factors in the development of Burkitt’s lymphoma. In Indonesia, 100% of the population is persistently infected with EBV early in life and at risk of developing EBV-linked cancers. Currently, 10.7 million people in Indonesia are living in Malaria-endemic areas. This cross-sectional study was initiated to investigate how acute Malaria dysregulates immune control over latent EBV infection. Using blood and plasma samples of 68 patients with acute Malaria and 27 healthy controls, we measured the level of parasitemia for each plasmodium type (P. falciparum, P. vivax, and mixed) by microscopy and rapid test. The level of 4 regulatory cytokines was determined by quantitative ELISA and the level of circulating EBV genome by real-time PCR targeting the single copy EBNA-1 sequence. All Plasmodium-infected cases had high-level parasitemia (>1000 parasites/ul blood) except for one case. EBV-DNA levels were significantly more elevated in P. falciparum and P. vivax infections (P<0.05) compared to controls. EBV-DNA levels were not related to age, gender, Malaria symptoms, or plasmodium type. TNF-α and IL-10 levels were increased in Malaria cases versus controls, but IFN-γ and TGF- β levels were comparable between the groups. Only TNF-α levels in P. falciparum cases showed a clear correlation with elevated EBV DNA levels (R2 = 0.8915). This is the first study addressing the relation between EBV (re)activation and cytokine responses during acute Malaria, revealing a clear correlation between pro-inflammatory cytokine TNF-α and EBV-DNA levels, specifically in P. falciparum cases, suggesting this cytokine to be key in dysregulating EBV homeostasis during acute P. falciparum Malaria.
Collapse
Affiliation(s)
- Insani Budiningsih
- Post Graduate Doctoral Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yoes Prijatna Dachlan
- Department of Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Usman Hadi
- Department of Internal Medicine, Dr. Soetomo Hospital-School of Medicine, Universitas Airlangga, Surabaya, Indonesia
- * E-mail: (UH); (JMM)
| | - Jaap Michiel Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail: (UH); (JMM)
| |
Collapse
|
10
|
Meier UC, Cipian RC, Karimi A, Ramasamy R, Middeldorp JM. Cumulative Roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human Herpes Virus-6 in Driving an Inflammatory Cascade Underlying MS Pathogenesis. Front Immunol 2021; 12:757302. [PMID: 34790199 PMCID: PMC8592026 DOI: 10.3389/fimmu.2021.757302] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501β, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.
Collapse
Affiliation(s)
- Ute-Christiane Meier
- Institut für Laboratoriumsmedizin, Klinikum der Universität München, München, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
11
|
Copresence of High-Risk Human Papillomaviruses and Epstein-Barr Virus in Colorectal Cancer: A Tissue Microarray and Molecular Study from Lebanon. Int J Mol Sci 2021; 22:ijms22158118. [PMID: 34360884 PMCID: PMC8347509 DOI: 10.3390/ijms22158118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Human papillomaviruses (HPVs) and Epstein-Barr virus (EBV) have been reported to be present in different types of human cancers, including CRCs, where they can play a key role in the onset and/or progression of these cancers. Thus, we herein explored the prevalence of high-risk HPVs and EBV in a cohort of 94 CRC tissue samples and 13 colorectal normal tissues from the Lebanese population using polymerase chain reaction, immunohistochemistry, and tissue microarray methodologies. We found that high-risk HPVs are present in 64%, while EBV is present in 29% of our CRC samples. Additionally, our data showed that high-risk HPV types (16, 18, 35, 58, 51, 45, 52, 31, and 33) are the most frequent in CRC in the Lebanese cohort, respectively. Our data point out that HPVs and EBV are copresent in 28% of the samples. Thus, this study clearly suggests that high-risk HPVs and EBV are present/copresent in CRCs, where they could play an important role in colorectal carcinogenesis. Nevertheless, further investigations using a larger cohort are needed to elucidate the possible cooperation between these oncoviruses in the development of CRC.
Collapse
|
12
|
Midoen YH, Suryandari DA, Yunaini L, Susworo R, Auerkari EI, Freisleben HJ. Epstein-Barr virus nuclear antigen-1 is useful as therapeutic efficacy marker in serum but not in saliva of nasopharyngeal cancer patients who underwent radiotherapy. Ecancermedicalscience 2021; 15:1254. [PMID: 34267810 PMCID: PMC8241448 DOI: 10.3332/ecancer.2021.1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 12/09/2022] Open
Abstract
Introduction Nasopharyngeal carcinoma (NPC) is a multifactorial disease with genetic, viral, environmental and lifestyle-related risk factors. Epstein–Barr virus (EBV) can promote the oncogenic transformation of an infected cell into malignant. EBV encodes many stimulating products including Epstein–Barr virus nuclear antigen-1 (EBNA-1) which plays a key role in the regulation of gene expression and replication of the genome in the latent period of infection. EBNA-1 in serum and tumour tissue of NPC patients correlates with NPC prognosis. Moreover, the presence of EBV DNA in serum samples from NPC patients’ blood circulation can be used as an early marker in the diagnosis of NPC. Objective The objective of this study was to find effective methods for monitoring the progress of NPC patients undergoing radiotherapy and therapeutic efficacy by observing the changes in EBV DNA in serum and saliva. Methodology The pre-experimental design compared blood and saliva taken from a pre-test and post-test group of NPC patients before and after radiation therapy. The concentration of EBV DNA was measured in the serum and saliva after amplification using quantitative polymerase chain reaction (qPCR) with compatible primers for the EBNA-1 gene. The data were statistically analysed by paired T-test. Results Highly significant (p = 0.0001) increase in cycle threshold qPCR and decrease in the mean concentration of EBV DNA (p = 0.0001) were observed in serum samples, but no significant changes were observed in saliva. Conclusions The results suggest that EBV DNA in serum can be used as the gold standard and a marker for monitoring the response to radiation therapy in NPC patients, whereas the examination of EBV DNA from saliva samples is not accurate and thus, not appropriate.
Collapse
Affiliation(s)
- Yurnadi H Midoen
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya 6, Jakarta 10430, Indonesia.,https://orcid.org/0000-0003-1594-6475
| | - Dwi A Suryandari
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya 6, Jakarta 10430, Indonesia
| | - Luluk Yunaini
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya 6, Jakarta 10430, Indonesia
| | - Raden Susworo
- Department of Radiotherapy, Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital, Jalan Pangeran Diponegoro 71, Jakarta 10430, Indonesia
| | - Elza I Auerkari
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jalan Salemba Raya 4, Jakarta 10430, Indonesia
| | - Hans-Joachim Freisleben
- Medical Research Unit, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya 4, Jakarta 10430, Indonesia.,https://orcid.org/0000-0001-7604-8826
| |
Collapse
|
13
|
Post-transplantation lymphoproliferative disorder after haematopoietic stem cell transplantation. Ann Hematol 2021; 100:865-878. [PMID: 33547921 DOI: 10.1007/s00277-021-04433-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
Post-transplantation lymphoproliferative disorder (PTLD) is a severe complication of haematopoietic stem cell transplantation (HSCT), occurring in a setting of immune suppression and dysregulation. The disease is in most cases driven by the reactivation of the Epstein-Barr virus (EBV), which induces B cell proliferation through different pathomechanisms. Beyond EBV, many factors, variably dependent on HSCT-related immunosuppression, contribute to the disease development. PTLDs share several features with primary lymphomas, though clinical manifestations may be different, frequently depending on extranodal involvement. According to the WHO classification, histologic examination is required for diagnosis, allowing also to distinguish among PTLD subtypes. However, in cases of severe and abrupt presentation, a diagnosis based on a combination of imaging studies and EBV-load determination is accepted. Therapies include prophylactic and pre-emptive interventions, aimed at eradicating EBV proliferation before symptoms onset, and targeted treatments. Among them, rituximab has emerged as first-line option, possibly combined with a reduction of immunosuppression, while EBV-specific cytotoxic T lymphocytes are effective and safe alternatives. Though prognosis remains poor, survival has markedly improved following the adoption of the aforementioned treatments. The validation of innovative, combined approaches is the future challenge.
Collapse
|
14
|
Gupta I, Ghabreau L, Al-Thawadi H, Yasmeen A, Vranic S, Al Moustafa AE, Malki MI. Co-incidence of Human Papillomaviruses and Epstein-Barr Virus Is Associated With High to Intermediate Tumor Grade in Human Head and Neck Cancer in Syria. Front Oncol 2020; 10:1016. [PMID: 32974123 PMCID: PMC7468388 DOI: 10.3389/fonc.2020.01016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
High-risk human papillomaviruses (high-risk HPVs) have been recently reported to be co-present with Epstein–Barr virus (EBV) in different types of human cancers including head and neck (HN), where they can cooperate in the initiation and/or progression of this cancer. Accordingly, we herein explored the prevalence of high-risk HPVs and EBV in 80 HN cancer tissues from the Syrian population using polymerase chain reaction, immunohistochemistry, and tissue microarray methodologies. We report that high-risk HPVs and EBV are present in 35/80 (43.7%) and 41/80 (51.2%) of our samples, respectively, and the most frequent HPV types are 33, 16, 18, 45, 52, 58, 35, 51, and 31, in this order. More significantly, our data reveal that 25/80 (31.2%) of cancer cases are positive for high-risk HPVs as well as EBV, and their co-presence is associated with high/intermediate-grade squamous cell carcinomas. These data confirm the co-presence of high-risk HPVs and EBV in HN cancers in the Syrian population of the Middle East and demonstrate that their co-incidence is linked to a more aggressive cancer phenotype. Thus, future studies are required to confirm these data and elucidate the exact role of high-risk and EBV cooperation in human HN carcinogenesis.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Lina Ghabreau
- Pathology Department, Faculty of Medicine, University of Aleppo, Aleppo, Syria.,Syrian Research Cancer Centre of the Syrian Society Against Cancer, Aleppo, Syria
| | | | - Amber Yasmeen
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar
| | | |
Collapse
|
15
|
Co-presence of human papillomaviruses and Epstein-Barr virus is linked with advanced tumor stage: a tissue microarray study in head and neck cancer patients. Cancer Cell Int 2020; 20:361. [PMID: 32774155 PMCID: PMC7397600 DOI: 10.1186/s12935-020-01348-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Human papillomaviruses (HPVs) and Epstein–Barr virus (EBV), known oncoviruses, can be co-present and cooperate in the initiation and/or progression of human carcinomas, including head and neck. Based on this fact, we recently reported the prevalence of both HPVs and EBV in cervical and breast cancers. Methods We herein explore for the first time the co-prevalence of high-risk HPVs and EBV in 98 head and neck (HN) squamous cell carcinoma (SCC) tissues from Bosnian patients using polymerase chain reaction (PCR) and immunohistochemistry (IHC) analysis, as well as tissue microarray methodology. Results The majority of these cancer tissue cases were from the oral cavity (68%). We found that high-risk HPVs and EBV are co-present in 34.7% of the SCC samples; with a significant correlation between the various HPV types and EBV co-incidence (p = 0.03). Our data showed that 30.8% of oral SCCs are positive for E6 oncoprotein of high-risk HPVs and 44.6% are positive for LMP1 of EBV. The most commonly expressed HPVs in our HNSCC samples include HPV types 16, 18, 45 and 58. Additionally, 37.5% of oral SCCs are positive for both HPVs and EBV, with statistically significant association between high-risk HPV types and EBV (p < 0.05). More importantly, our data revealed that the co-presence of HPV and EBV is strongly correlated with advanced tumor stage (p = 0.035). Conclusion In this study we show that HPV and EBV oncoviruses are co-present in HNSCC, particularly in oral cancer, where they can cooperate in the initiation and/or progression of this cancer. Thus, further studies are necessary to elucidate the mechanism of this cooperation.
Collapse
|
16
|
Post Transplant Lymphoproliferative Disorder. Indian J Hematol Blood Transfus 2020; 36:229-237. [PMID: 32425371 DOI: 10.1007/s12288-019-01182-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Posttransplant lymphoproliferative disorder is an extremely fatal complication arising in transplant recipients as a side effect of immunosuppression. PTLDs are seen after both solid organ and hematopoietic stem cell transplants though the incidence is much higher in the former. Primary Epstein-Barr virus (EBV) infection or reactivation due to a state of immune dysregulation along with intensity of immunosuppression used are of paramount importance in pathogenesis of PTLD. EBV associated PTLDs occur early in the post transplant period whereas late onset lymphomas are usually EBV negative. The uncontrolled B cell proliferation can create a spectrum of histological patterns from nondestructive lesions to destructive polymorphic or more aggressive monomorphic PTLDs. Early detection of seropositivity by serial monitoring in the recipient can prevent PTLD development by starting pre-emptive therapy. The mainstay treatment in established cases remains reduction of immunosuppression. Chemotherapeutic and immunomodulatory agents are added sequentially based on the type of PTLD and based on its response to initial therapy. Despite various treatment options available, the morbidity remains high and achieving state of disease remission without causing graft rejection can be quite challenging. Hence, a better understanding in pathobiology of EBV+ versus EBV- PTLDS may help prevent lymphomagenesis in transplant recipients.
Collapse
|
17
|
Nei T, Urano S, Motoi N, Hashimoto A, Kitamura N, Tanaka T, Nakagaki K, Takizawa J, Kaneko C, Tazawa R, Nakata K. Memory B cell pool of autoimmune pulmonary alveolar proteinosis patients contains higher frequency of GM-CSF autoreactive B cells than healthy subjects. Immunol Lett 2019; 212:22-29. [PMID: 31195018 DOI: 10.1016/j.imlet.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
Abstract
The IgG-type neutralizing GM-CSF autoantibody (GMAb) is known to be the causative agent for autoimmune pulmonary alveolar proteinosis (APAP). Previous studies report that serum levels of IgG-GMAb are approximately 50-fold higher in APAP patients than in healthy subjects (HS). Serum levels of IgM-GMAb are also higher in APAP patients than in HS, but this has been assumed to be an etiological bystander. However, the mechanism for the excessive production of IgG-GMAb in APAP remains unclear. To investigate this, we detected putative GMAb-producing B cells (PGMPB) by inoculated B cells from the peripheral blood of APAP patients, HS, and umbilical cord blood mononuclear cells (UCBMNs) with Epstein-Barr virus. Both ELISA and ELISPOT assays showed that IgM-type GMAb was consistently and frequently present in all three groups, whereas IgG-type GMAb was high only in APAP patients, in whom it was exclusively produced in memory B cells and not in naive B cells. Since PGMPB in UCBMNs produced IgM-GMAb, but not IgG-GMAb, to the same extent as in HS and APAP patients, most IgM-GMAb reacted with GM-CSF in a non-specific manner. The memory B cell pool of APAP patients contain higher frequency of PGMPB than that of healthy subjects.
Collapse
Affiliation(s)
- Takahito Nei
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan; Department of Infection Control and Prevention, Nippon Medical School Hospital, Tokyo, Japan
| | - Shinya Urano
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Natsuki Motoi
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Atsushi Hashimoto
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Nobutaka Kitamura
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Takahiro Tanaka
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Kazuhide Nakagaki
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Jun Takizawa
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Chinatsu Kaneko
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Ryushi Tazawa
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Koh Nakata
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan.
| |
Collapse
|
18
|
Holm A, Schindele A, Allard A, Eriksson I, Sandström K, Laurell G, Nylander K, Olofsson K. Mapping of human papilloma virus, p16, and epstein-barr virus in non-malignant tonsillar disease. Laryngoscope Investig Otolaryngol 2019; 4:285-291. [PMID: 31236460 PMCID: PMC6580074 DOI: 10.1002/lio2.260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022] Open
Abstract
Objectives Due to their location in the entrance of the aero-digestive tract, tonsils are steadily exposed to viruses. Human papilloma virus (HPV) and Epstein-Barr virus (EBV) are two potentially oncogenic viruses that tonsils encounter. The incidence of HPV positive tonsillar cancer is on the rise and it is unknown when infection with HPV occurs. Aim To investigate if tonsils are infected with HPV and EBV, to study the co-expression of HPV and its surrogate marker p16, and to evaluate the number of EBV positive cells in benign tonsillar disease. Materials and Methods Tonsils from 40 patients in a university hospital were removed due to hypertrophy, chronic or recurrent infection. These were analyzed for presence of HPV, its surrogate marker p16, and EBV. HPV was studied using PapilloCheck (a PCR method), while p16 was identified in epithelial and lymphoid tissue with immunohistochemistry and EBV using EBER-ISH (Epstein-Barr encoding region-in situ hybridization). Results HPV was not detected, and p16 was present at low numbers in all epithelial samples as well as in 92.5% of the lymphoid tonsillar samples. At least one EBER-positive cell was seen in 65% of cases. Larger numbers of EBER-expressing cells were only seen in two cases. Conclusion These findings demonstrate that EBV and HPV infect tonsils independently, but further studies are warranted to confirm their infectious relationship. Level of Evidence Cross-sectional study.
Collapse
Affiliation(s)
- Anna Holm
- Division of Otorhinolaryngology, Department of Clinical Sciences Uppsala University Uppsala Sweden
| | - Alexandra Schindele
- Division of Otorhinolaryngology, Department of Clinical Sciences Uppsala University Uppsala Sweden.,Department of Ear, Nose and Throat Östersunds hospital, Jämtland/Härjedalen County Council, Uppsala University Uppsala Sweden
| | - Annika Allard
- Division of Clinical Virology, Department of Clinical Microbiology Uppsala University Uppsala Sweden
| | - Irene Eriksson
- Division of Clinical Virology, Department of Clinical Microbiology Uppsala University Uppsala Sweden
| | - Karl Sandström
- Division of Otorhinolaryngology, Department of Surgical Sciences Uppsala University Uppsala Sweden
| | - Göran Laurell
- Division of Otorhinolaryngology, Department of Surgical Sciences Uppsala University Uppsala Sweden
| | | | - Katarina Olofsson
- Division of Otorhinolaryngology, Department of Clinical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
19
|
He B, Tran JT, Sanchez DJ. Manipulation of Type I Interferon Signaling by HIV and AIDS-Associated Viruses. J Immunol Res 2019; 2019:8685312. [PMID: 31089479 PMCID: PMC6476103 DOI: 10.1155/2019/8685312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Type I Interferons were first described for their profound antiviral abilities in cell culture and animal models, and later, they were translated into potent antiviral therapeutics. However, as additional studies into the function of Type I Interferons progressed, it was also seen that pathogenic viruses have coevolved to encode potent mechanisms allowing them to evade or suppress the impact of Type I Interferons on their replication. For chronic viral infections, such as HIV and many of the AIDS-associated viruses, including HTLV, HCV, KSHV, and EBV, the clinical efficacy of Type I Interferons is limited by these mechanisms. Here, we review some of the ways that HIV and AIDS-associated viruses thrive in Type I Interferon-rich environments via mechanisms that block the function of this important antiviral cytokine. Overall, a better understanding of these mechanisms creates avenues to better understand the innate immune response to these viruses as well as plan the development of antivirals that would allow the natural antiviral effect of Type I Interferons to manifest during these infections.
Collapse
Affiliation(s)
- Buyuan He
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - James T. Tran
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - David Jesse Sanchez
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| |
Collapse
|
20
|
Zhang Y, Zhang W, Liu W, Liu H, Zhang Y, Luo B. Epstein–Barr virus miRNA-BART16 modulates cell proliferation by targeting LMP1. Virus Res 2018; 256:38-44. [DOI: 10.1016/j.virusres.2018.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/06/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
|
21
|
Epstein-Barr Virus Nuclear Antigen 3C Facilitates Cell Proliferation by Regulating Cyclin D2. J Virol 2018; 92:JVI.00663-18. [PMID: 29997218 DOI: 10.1128/jvi.00663-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Cell cycle regulation is one of the hallmarks of virus-mediated oncogenesis. Epstein-Barr virus (EBV)-induced lymphomas express a repertoire of essential viral latent proteins that regulate expression of cell cycle-related proteins to dysregulate this process, thereby facilitating the proliferation of infected cells. We now demonstrate that the essential EBV latent protein 3C (EBNA3C) stabilizes cyclin D2 to regulate cell cycle progression. More specifically, EBNA3C directly binds to cyclin D2 and they colocalize together in nuclear compartments. We show that EBNA3C regulates the promoter of cyclin D2 through cooperation with master transcription factor Bcl6 and enhances its stability by inhibiting its ubiquitin-dependent degradation. EBNA3C also promoted cell proliferation in the presence of cyclin D2, suggesting that cyclin D2 contributes to EBNA3C-mediated cell cycle progression. These results provide new clues as to the role of this essential viral latent protein and its ability to regulate expression of cellular factors, which drives the oncogenic process.IMPORTANCE Epstein-Barr virus (EBV) is the first identified human tumor virus and is associated with a range of human cancers. During EBV-induced lymphomas, the essential viral latent proteins modify the expression of cell cycle-related proteins to disturb the cell cycle process, thereby facilitating the proliferative process. The essential EBV nuclear antigen 3C (EBNA3C) plays an important role in EBV-mediated B-cell transformation. Here we show that EBNA3C stabilizes cyclin D2 to regulate cell cycle progression. More specifically, EBNA3C directly binds to cyclin D2, and they colocalize together in nuclear compartments. EBNA3C enhances cyclin D2 stability by inhibiting its ubiquitin-dependent degradation and significantly promotes cell proliferation in the presence of cyclin D2. Our results provide novel insights into the function of EBNA3C on cell progression by regulating the cyclin D2 protein and raise the possibility of the development of new anticancer therapies against EBV-associated cancers.
Collapse
|
22
|
Cai Y, Song Y, Cen D, Zhang C, Mao S, Ye X, Xiong Y, Jiang P, Chen J, Xue X, Zhang L, Zhu G. Novel ELISA for serodiagnosis of nasopharyngeal carcinoma based on a B cell epitope of Epstein-Barr virus latent membrane protein 2. Oncol Lett 2018; 16:4372-4378. [PMID: 30214572 PMCID: PMC6126329 DOI: 10.3892/ol.2018.9216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 09/07/2017] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is widespread and is associated with nasopharyngeal carcinoma (NPC). Serological detection of EBV is commonly used for screening, diagnosis and epidemiological surveys of NPC. In the present study, a novel B cell multi-epitope peptide fusion protein (EBV-LMP2-3B), which is composed of three B cell linear epitopes (RIEDPPFNSLL, TLNLT and KSLSSTEFIPN) of EBV latent membrane protein 2 (LMP2), was expressed in a prokaryotic expression system and purified using Ni2+-nitrilotriacetate-Sepharose. The immunogenicity and binding specificity of EBV-LMP2-3B were evaluated on the basis of antibody responses in immunized BALB/c mice, western blotting and indirect immunofluorescence assay. Evaluation of EBV-LMP2-3B as a serological diagnostic reagent was performed using an indirect ELISA in 198 patients with NPC and 102 healthy adults. These results revealed that EBV-LMP2-3B was able to eliminate the high-titer serum antibody response in BALB/c mice. Western blot analysis and indirect immunofluorescence assay confirmed that the mouse immune sera recognized the native LMP2. Compared with healthy adults, patients with NPC demonstrated significantly greater reactivity to EBV-LMP2-3B (P<0.05). Furthermore, it was possible to effectively detect specific IgG in sera from patients with NPC, with a sensitivity of 91.91% and specificity of 93.14%, representing an improvement over the traditional viral capsid antigen-IgA-based detection method with 59.59% sensitivity and 75.49% specificity. In conclusion, the EBV-LMP2-3B protein may be used as a serological diagnostic reagent to screen for and diagnose NPC.
Collapse
Affiliation(s)
- Yiqi Cai
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yiling Song
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Danwei Cen
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chanqiong Zhang
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shanshan Mao
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoxian Ye
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yirong Xiong
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guanbao Zhu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
23
|
Cyprian FS, Al-Farsi HF, Vranic S, Akhtar S, Al Moustafa AE. Epstein-Barr Virus and Human Papillomaviruses Interactions and Their Roles in the Initiation of Epithelial-Mesenchymal Transition and Cancer Progression. Front Oncol 2018; 8:111. [PMID: 29765906 PMCID: PMC5938391 DOI: 10.3389/fonc.2018.00111] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022] Open
Abstract
Oncoviruses are implicated in around 20% of all human cancers including both solid and non-solid malignancies. Epstein–Barr virus (EBV) and human papillomaviruses (HPVs) are the most common oncoviruses worldwide. Currently, it is well established that onco-proteins of EBV (LMP1, LMP2A, and EBNA1) and high-risk HPVs (E5 and E6/E7) play an important role in the initiation and/or progression of several human carcinomas, including cervical, oral, and breast. More significantly, it has been recently pointed out that viral onco-proteins of EBV and high-risk HPVs can be co-present and consequently cooperate to initiate and/or amplify epithelial–mesenchymal transition (EMT), which is the hallmark of cancer progression and metastasis. This could occur by β-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, and/or RAS/MEK/ERK signaling pathways, which onco-proteins of EBV and HPVs share. This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast via the initiation of EMT.
Collapse
Affiliation(s)
| | | | - Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Akhtar S, Vranic S, Cyprian FS, Al Moustafa AE. Epstein-Barr Virus in Gliomas: Cause, Association, or Artifact? Front Oncol 2018; 8:123. [PMID: 29732319 PMCID: PMC5919939 DOI: 10.3389/fonc.2018.00123] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022] Open
Abstract
Gliomas are the most common malignant brain tumors and account for around 60% of all primary central nervous system cancers. Glioblastoma multiforme (GBM) is a grade IV glioma associated with a poor outcome despite recent advances in chemotherapy. The etiology of gliomas is unknown, but neurotropic viruses including the Epstein–Barr virus (EBV) that is transmitted via salivary and genital fluids have been implicated recently. EBV is a member of the gamma herpes simplex family of DNA viruses that is known to cause infectious mononucleosis (glandular fever) and is strongly linked with the oncogenesis of several cancers, including B-cell lymphomas, nasopharyngeal, and gastric carcinomas. The fact that EBV is thought to be the causative agent for primary central nervous system (CNS) lymphomas in immune-deficient patients has led to its investigations in other brain tumors including gliomas. Here, we provide a review of the clinical literature pertaining to EBV in gliomas and discuss the possibilities of this virus being simply associative, causative, or even an experimental artifact. We searched the PubMed/MEDLINE databases using the following key words such as: glioma(s), glioblastoma multiforme, brain tumors/cancers, EBV, and neurotropic viruses. Our literature analysis indicates conflicting results on the presence and role of EBV in gliomas. Further comprehensive studies are needed to fully implicate EBV in gliomagenesis and oncomodulation. Understanding the role of EBV and other oncoviruses in the etiology of gliomas, would likely open up new avenues for the treatment and management of these, often fatal, CNS tumors.
Collapse
Affiliation(s)
| | - Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Epstein-Barr Virus Gene BARF1 Expression is Regulated by the Epithelial Differentiation Factor ΔNp63α in Undifferentiated Nasopharyngeal Carcinoma. Cancers (Basel) 2018; 10:cancers10030076. [PMID: 29562599 PMCID: PMC5876651 DOI: 10.3390/cancers10030076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr Virus (EBV) BamHI-A rightward frame 1 (BARF1) protein is considered a viral oncogene in epithelial cells and has immune-modulating properties. During viral lytic replication BARF1 is expressed as an early gene, regulated by the immediate early EBV protein R. However, in viral latency BARF1 is exclusively expressed in epithelial tumors such as nasopharyngeal (NPC) and gastric carcinoma (GC) but not in lymphomas, indicating that activation of the BARF1 promoter is cell type specific. Undifferentiated NPC is characterized by high expression of ΔNp63 isoforms of the epithelial differentiation marker p63, a member of the p53 family of transcription factors. Transcription factor binding site analysis indicated potential p53 family binding sites within the BARF1 promoter region. This study investigated ability of various p53 family members to transactivate the BARF1 promoter. Using BARF1 promoter luciferase reporter constructs we demonstrate that only p63 isoform ΔNp63α is capable of transactivating the BARF1 promoter, but not the TAp63 isoforms, p53 or p73. Direct promoter binding of ΔNp63α was confirmed by Chromatin Immune Precipitation (ChIP) analysis. Deletion mutants of the BARF1 promoter revealed multiple ΔNp63 response elements to be responsible for BARF1 promoter transactivation. However, ΔNp63α alone was not sufficient to induce BARF1 in tumor cells harboring full EBV genomes, indicating that additional cofactors might be required for full BARF1 regulation. In conclusion, in EBV positive NPC and GC, BARF1 expression might be induced by the epithelial differentiation marker ΔNp63α, explaining BARF1 expression in the absence of lytic reactivation.
Collapse
|
26
|
Epstein-Barr Virus Induces Adhesion Receptor CD226 (DNAM-1) Expression during Primary B-Cell Transformation into Lymphoblastoid Cell Lines. mSphere 2017; 2:mSphere00305-17. [PMID: 29202043 PMCID: PMC5705804 DOI: 10.1128/msphere.00305-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in "clumps," and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.
Collapse
|
27
|
Chen H, Chen S, Lu J, Wang X, Li J, Li L, Fu J, Scheper T, Meyer W, Peng YH, Liu W. Multiparametric Detection of Antibodies against Different EBV Antigens to Predict Risk for Nasopharyngeal Carcinoma in a High-Risk Population of China. Cancer Prev Res (Phila) 2017; 10:542-550. [PMID: 28754665 DOI: 10.1158/1940-6207.capr-17-0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/20/2017] [Accepted: 07/21/2017] [Indexed: 02/05/2023]
Abstract
In this study, we aimed to use the combined detection of multiple antibodies against Epstein-Barr virus (EBV) antigens to develop a model for screening and diagnosis of nasopharyngeal carcinoma (NPC). Samples of 300 nasopharyngeal carcinoma patients and 494 controls, including 294 healthy subjects (HC), 99 non-nasopharyngeal carcinoma cancer patients (NNPC), and 101 patients with benign nasopharyngeal lesions (BNL), were incubated with the EUROLINE Anti-EBV Profile 2, and band intensities were used to establish a risk prediction model. The nasopharyngeal carcinoma risk probability analysis based on the panel of VCAgp125 IgA, EBNA-1 IgA, EA-D IgA, EBNA-1 IgG, EAD IgG, and VCAp19 IgG displayed the best performance. When using 26.1% as the cutoff point in ROC analysis, the AUC value and sensitivity/specificity were 0.951 and 90.7%/86.2%, respectively, in nasopharyngeal carcinoma and all controls. In nasopharyngeal carcinoma and controls without the non-nasopharyngeal carcinoma and BNL groups, the AUC value and sensitivity/specificity were 0.957 and 90.7%/88.1%, respectively. The diagnostic specificity and sensitivity of the EUROLINE Anti-EBV Profile 2 assay for both nasopharyngeal carcinoma and early-stage nasopharyngeal carcinoma were higher than that of mono-antibody detection by immune-enzymatic assay and real-time PCR (EBV DNA). In the VCA-IgA-negative group, 82.6% of nasopharyngeal carcinoma patients showed high probability for nasopharyngeal carcinoma, and the negative predictive value was 97.1%. In the VCA-IgA-positive group, 73.3% of healthy subjects showed low probability. The positive predictive value reached 98.2% in this group. The nasopharyngeal carcinoma risk probability value determined by the EUROLINE Anti-EBV Profile 2 might be a suitable tool for nasopharyngeal carcinoma screening. Cancer Prev Res; 10(9); 542-50. ©2017 AACR.
Collapse
Affiliation(s)
- Hao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Shulin Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Jie Lu
- EUROIMMUN Academy, EUROIMMUN Medical Diagnostics (China) Co., Ltd, Beijing, PR China
| | - Xueping Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Jianpei Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Linfang Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Jihuan Fu
- EUROIMMUN Academy, EUROIMMUN Medical Diagnostics (China) Co., Ltd, Beijing, PR China
| | - Thomas Scheper
- Institute of Experimental Immunology, EUROIMMUN AG, Lubeck, Germany
| | - Wolfgang Meyer
- Institute of Experimental Immunology, EUROIMMUN AG, Lubeck, Germany
| | - Yu-Hui Peng
- Department of Clinical Laboratory, The Cancer Hospital of Shantou University Medical College, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Guangdong, China.
| | - Wanli Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
28
|
Hutajulu SH, Fachiroh J, Argy G, Indrasari SR, Indrawati LPL, Paramita DK, Jati TBR, Middeldorp JM. Seroprevalence of IgA anti Epstein-Barr virus is high among family members of nasopharyngeal cancer patients and individuals presenting with chronic complaints in head and neck area. PLoS One 2017; 12:e0180683. [PMID: 28800616 PMCID: PMC5553716 DOI: 10.1371/journal.pone.0180683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr (EBV) infection and presence of a nasopharyngeal cancer (NPC) case in the family increases the risk of developing NPC. Aberrant anti-EBV immunoglobulin A (IgA) antibodies (EBV-IgA) may be present in the sera of non-cancer individuals and predict NPC. Limited studies report the presence of EBV-IgA antibodies within non-cancer individuals in Indonesia where the disease is prevalent. This study aimed at exploring whether EBV-IgA was found more frequently among first degree relatives of NPC patients and individuals presenting with chronic symptoms in the head and neck area compared to healthy controls. A total of 967 non-cancer subjects were recruited, including 509 family members of NPC cases, 196 individuals having chronic complaints in the head and neck region, and 262 healthy donors of the local blood bank. Sera were analyzed using a standardized peptide-based EBV-IgA ELISA. Overall, 61.6% of all individuals had anti-EBV IgA reactivity equal to or below cut off value (CoV). Seroreactivity above CoV was significantly higher in females (38.7%) compared to males (28.7%) (p = 0.001). Older individuals had more seroreactivity above CoV (42.5%) than the younger ones (26.4%) (p< 0.001). Seroprevalence was significantly higher in family members of NPC patients (41.7%), compared to 32.7% of individuals with chronic head and neck problems (p = 0.028) and 16.4% healthy blood donors (p< 0.001). As conclusion, this study showed a significant higher seroprevalence in healthy family members of NPC cases and subjects presenting with chronic symptoms in the head and neck area compared to healthy individuals from the general community. This finding indicates that both groups have elevated risk of developing NPC and may serve as targets for a regional NPC screening program.
Collapse
Affiliation(s)
- Susanna Hilda Hutajulu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
- * E-mail:
| | - Jajah Fachiroh
- Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Gabriella Argy
- Study Program of Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sagung Rai Indrasari
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Luh Putu Lusy Indrawati
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Dewi Kartikawati Paramita
- Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Theodola Baning Rahayu Jati
- Field Epidemiology Training Program, Department of Public Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jaap M. Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Kim H, Iizasa H, Kanehiro Y, Fekadu S, Yoshiyama H. Herpesviral microRNAs in Cellular Metabolism and Immune Responses. Front Microbiol 2017; 8:1318. [PMID: 28769892 PMCID: PMC5513955 DOI: 10.3389/fmicb.2017.01318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
The microRNAs (miRNAs) function as a key regulator in many biological processes through post-transcriptional suppression of messenger RNAs. Recent advancements have revealed that miRNAs are involved in many biological functions of cells. Not only host cells, but also some viruses encode miRNAs in their genomes. Viral miRNAs regulate cell proliferation, differentiation, apoptosis, and the cell cycle to establish infection and produce viral progeny. Particularly, miRNAs encoded by herpes virus families play integral roles in persistent viral infection either by regulation of metabolic processes or the immune response of host cells. The life-long persistent infection of gamma herpes virus subfamilies, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, induces host cells to malignant transformation. The unbalanced metabolic processes and evasion from host immune surveillance by viral miRNAs are induced either by direct targeting of key proteins or indirect regulation of multiple signaling pathways. We provide an overview of the pathogenic roles of viral miRNAs in cellular metabolism and immune responses during herpesvirus infection.
Collapse
Affiliation(s)
- Hyoji Kim
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Yuichi Kanehiro
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Sintayehu Fekadu
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| |
Collapse
|
30
|
Al-Antary N, Farghaly H, Aboulkassim T, Yasmeen A, Akil N, Al Moustafa AE. Epstein-Barr virus and its association with Fascin expression in colorectal cancers in the Syrian population: A tissue microarray study. Hum Vaccin Immunother 2017; 13:1573-1578. [PMID: 28350509 DOI: 10.1080/21645515.2017.1302046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy in both men and women worldwide. Colorectal carcinogenesis is a complex, multistep process involving environmental and lifestyle features as well as sequential genetic changes in addition to bacterial and viral infections. Viral infection has a proven role in the incidence of approximately 20% of human cancers including gastric malignancies. Accordingly, Epstein-Barr virus (EBV) has been recently shown to be present in human gastric cancers, which could play an important role in the initiation and progression of these cancers. Therefore, this work explores the prevalence of EBV in 102 CRC tissues from the Syrian population using polymerase chain reaction (PCR) and tissue microarray (TMA) analysis. We found that EBV is present in 37 (36.27%) of CRC samples. Additionally, the expression of LMP1 onco-protein of EBV was found to be correlated with Fascin expression/overexpression in the majority of CRC tissue samples, which are intermediate/high grade invasive carcinomas. Our data indicate that EBV is present in CRC and its presence is associated with more aggressive cancer phenotype. Consequently, future investigations are needed to expose the role of EBV in CRC initiation and progression.
Collapse
Affiliation(s)
- Noor Al-Antary
- a College of Medicine & Biomedical Research Centre , Qatar University , Doha , Qatar
| | | | - Tahar Aboulkassim
- c Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital , McGill University , Montreal , QC , Canada
| | - Amber Yasmeen
- c Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital , McGill University , Montreal , QC , Canada
| | - Nizar Akil
- d Department of Pathology , Gaziantep University , Gaziantep , Turkey.,e Oncology Department , McGill University , Montreal , QC , Canada
| | - Ala-Eddin Al Moustafa
- a College of Medicine & Biomedical Research Centre , Qatar University , Doha , Qatar.,e Oncology Department , McGill University , Montreal , QC , Canada.,f Syrian Research Cancer Centre of the Syrian Society against Cancer , Aleppo , Syria
| |
Collapse
|
31
|
Dharnidharka VR. Peripheral Blood Epstein-Barr Viral Nucleic Acid Surveillance as a Marker for Posttransplant Cancer Risk. Am J Transplant 2017; 17:611-616. [PMID: 27458691 DOI: 10.1111/ajt.13982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023]
Abstract
Several viruses, such as Epstein-Barr virus, are now known to be associated with several human cancers, but not all patients with these viral infections develop cancer. In transplantation, such viruses often have a prolonged time gap from infection to cancer development, and many are preceded by a period of circulating and detectable nucleic acids in the peripheral blood compartment. The interpretation of a viral load as a measure of posttransplant risk of developing cancer depends on the virus, the cancer and associated pathogenic factors. This review describes the current state of knowledge regarding the utility and limitations of peripheral blood nucleic acid testing for Epstein-Barr virus in surveillance and risk prediction for posttransplant lymphoproliferative disorders.
Collapse
Affiliation(s)
- V R Dharnidharka
- Division of Pediatric Nephrology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| |
Collapse
|
32
|
Greijer AE, Ramayanti O, Verkuijlen SAWM, Novalić Z, Juwana H, Middeldorp JM. Quantitative multi-target RNA profiling in Epstein-Barr virus infected tumor cells. J Virol Methods 2016; 241:24-33. [PMID: 27993616 DOI: 10.1016/j.jviromet.2016.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is etiologically linked to multiple acute, chronic and malignant diseases. Detection of EBV-RNA transcripts in tissues or biofluids besides EBV-DNA can help in diagnosing EBV related syndromes. Sensitive EBV transcription profiling yields new insights on its pathogenic role and may be useful for monitoring virus targeted therapy. Here we describe a multi-gene quantitative RT-PCR profiling method that simultaneously detects a broad spectrum (n=16) of crucial latent and lytic EBV transcripts. These transcripts include (but are not restricted to), EBNA1, EBNA2, LMP1, LMP2, BARTs, EBER1, BARF1 and ZEBRA, Rta, BGLF4 (PK), BXLF1 (TK) and BFRF3 (VCAp18) all of which have been implicated in EBV-driven oncogenesis and viral replication. With this method we determine the amount of RNA copies per infected (tumor) cell in bulk populations of various origin. While we confirm the expected RNA profiles within classic EBV latency programs, this sensitive quantitative approach revealed the presence of rare cells undergoing lytic replication. Inducing lytic replication in EBV tumor cells supports apoptosis and is considered as therapeutic approach to treat EBV-driven malignancies. This sensitive multi-primed quantitative RT-PCR approach can provide broader understanding of transcriptional activity in latent and lytic EBV infection and is suitable for monitoring virus-specific therapy responses in patients with EBV associated cancers.
Collapse
Affiliation(s)
- A E Greijer
- Department of Pathology, VU University Medical Center and Cancer Center Amsterdam, The Netherlands
| | - O Ramayanti
- Department of Pathology, VU University Medical Center and Cancer Center Amsterdam, The Netherlands
| | - S A W M Verkuijlen
- Department of Pathology, VU University Medical Center and Cancer Center Amsterdam, The Netherlands
| | - Z Novalić
- Department of Pathology, VU University Medical Center and Cancer Center Amsterdam, The Netherlands
| | - H Juwana
- Department of Pathology, VU University Medical Center and Cancer Center Amsterdam, The Netherlands
| | - J M Middeldorp
- Department of Pathology, VU University Medical Center and Cancer Center Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Ammous-Boukhris N, Mosbah A, Sahli E, Ayadi W, Hadhri-Guiga B, Chérif A, Gargouri A, Mokdad-Gargouri R. Phage-display screening identifies LMP1-binding peptides targeting the C-terminus region of the EBV oncoprotein. Peptides 2016; 85:73-79. [PMID: 27650372 DOI: 10.1016/j.peptides.2016.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/25/2023]
Abstract
Latent membrane protein 1 (LMP1), a major oncoprotein of Epstein Barr Virus (EBV) is responsible for transforming B lymphocytes in vitro. LMP1 is overexpressed in several EBV-associated malignancies, and different approaches have been developed to reduce its level and accordingly its oncogenic function in tumor tissues. This study aimed to use phage display peptide library to obtain peptides which could specifically bind to the cytoplasmic region of LMP1 to prevent its interaction with signaling proteins. The LMP1 C-terminus region was produced in bacterial E. coli and used as target for the phage library panning. After 3 rounds, 20 phage clones were randomly selected and 8 showed high binding affinity to the recombinant C-terminus LMP1 protein. The most interesting candidates are the FO5 "QPTKDSSPPLRV" and NO4 "STTSPPAVPHNN" peptides since both bind the C-terminus LMP1 as showed by molecular docking. Furthermore, sequence alignment revealed that the FO5 peptide shared sequence similarity with the Death Receptor 4 which belongs to the tumor necrosis factor-related apoptosis-inducing receptor which plays key role in anti-tumor immunity.
Collapse
Affiliation(s)
| | - Amor Mosbah
- BVBGR-LR 11ES31, ISBST University of Manouba, Biotechpole Sidi Thabet, 2020 Ariana, Tunisie
| | - Emna Sahli
- LBME, Center of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisie
| | - Wajdi Ayadi
- LBME, Center of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisie
| | | | - Ameur Chérif
- BVBGR-LR 11ES31, ISBST University of Manouba, Biotechpole Sidi Thabet, 2020 Ariana, Tunisie
| | - Ali Gargouri
- LBME, Center of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisie
| | | |
Collapse
|
34
|
Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol 2016; 7:1602. [PMID: 27826287 PMCID: PMC5078142 DOI: 10.3389/fmicb.2016.01602] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was first discovered in 1964, and was the first known human tumor virus now shown to be associated with a vast number of human diseases. Numerous studies have been conducted to understand infection, propagation, and transformation in various cell types linked to human diseases. However, a comprehensive lens through which virus infection, reactivation and transformation of infected host cells can be visualized is yet to be formally established and will need much further investigation. Several human cell types infected by EBV have been linked to associated diseases. However, whether these are a direct result of EBV infection or indirectly due to contributions by additional infectious agents will need to be fully investigated. Therefore, a thorough examination of infection, reactivation, and cell transformation induced by EBV will provide a more detailed view of its contributions that drive pathogenesis. This undoubtedly expand our knowledge of the biology of EBV infection and the signaling activities of targeted cellular factors dysregulated on infection. Furthermore, these insights may lead to identification of therapeutic targets and agents for clinical interventions. Here, we review the spectrum of EBV-associated diseases, the role of the encoded latent antigens, and the switch to latency or lytic replication which occurs in EBV infected cells. Furthermore, we describe the cellular processes and critical factors which contribute to cell transformation. We also describe the fate of B-cells and epithelial cells after EBV infection and the expected consequences which contribute to establishment of viral-associated pathologies.
Collapse
Affiliation(s)
- Hem C Jha
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
35
|
Choi H, Lee SK. TAX1BP1 downregulation by EBV-miR-BART15-3p enhances chemosensitivity of gastric cancer cells to 5-FU. Arch Virol 2016; 162:369-377. [PMID: 27757686 DOI: 10.1007/s00705-016-3109-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNA molecules approximately 19 to 25 nucleotides in length that downregulate the expression of target genes at the post-transcriptional level by binding to the 3'-untranslated region (3'-UTR). Epstein-Barr virus (EBV) generates at least 44 miRNAs, but the functions of most of these miRNAs have not yet been identified. Previously, we reported BRUCE as a target of miR-BART15-3p, a miRNA produced by EBV, but our data suggested that there might be other apoptosis-associated target genes of miR-BART15-3p. Thus, in this study, we searched for new target genes of miR-BART15-3p using in silico analyses. We found a possible seed match site in the 3'-UTR of Tax1-binding protein 1 (TAX1BP1). The luciferase activity of a reporter vector including the 3'-UTR of TAX1BP1 was decreased by miR-BART15-3p. MiR-BART15-3p downregulated the expression of TAX1BP1 mRNA and protein in AGS cells, while an inhibitor against miR-BART15-3p upregulated the expression of TAX1BP1 mRNA and protein in AGS-EBV cells. Mir-BART15-3p modulated NF-κB activity in gastric cancer cell lines. Moreover, miR-BART15-3p strongly promoted chemosensitivity to 5-fluorouracil (5-FU). Our results suggest that miR-BART15-3p targets the anti-apoptotic TAX1BP1 gene in cancer cells, causing increased apoptosis and chemosensitivity to 5-FU.
Collapse
Affiliation(s)
- Hoyun Choi
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
36
|
Zhang W, Chen B, Chen Y, Chamberland R, Fider-Whyte A, Craig J, Varma C, Befeler AS, Bisceglie AMD, Horton P, Lai JP. Epstein-Barr Virus-Associated Acute Liver Failure Present in a 67-Year-Old Immunocompetent Female. Gastroenterology Res 2016; 9:74-78. [PMID: 27785330 PMCID: PMC5040549 DOI: 10.14740/gr718e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
Acute liver failure (ALF) is a rare illness with a high mortality rate. The only favorable management is emergent liver transplantation. About 13% of ALF cases have no clear etiology. Epstein-Barr virus (EBV)-associated ALF accounts for less than 1% of all ALF cases, and is seen mostly in adults younger than 40 years. There are only a few cases of EBV-associated ALF in elderly immunocompromised adults. We report a case of ALF in an immunocompetent 67-year-old woman caused by EBV infection that was treated by orthotopic liver transplantation (OLT). The diagnosis of EBV-associated ALF was established by EBV-DNA polymerase chain reaction (PCR) and EBV-encoded RNA (EBER-RNA) in situ hybridization (EBER-RISH). The patient is currently doing well 6 months after transplantation without any evidence of clinical EBV infection. This case illustrates the importance of early recognition and diagnosis of EBV-associated ALF by detection of EBV from liver biopsy, especially when patients are immunocompetent and other causes are excluded. To the best of our knowledge, this is the first case of EBV-associated ALF present in an immunocompetent elderly female.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO 63104, USA; Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Betty Chen
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Yongxin Chen
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Robin Chamberland
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Alexa Fider-Whyte
- Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Julia Craig
- Department of Surgery, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Chintalapati Varma
- Department of Surgery, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Alex S Befeler
- Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Adrian M Di Bisceglie
- Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Peter Horton
- Department of Surgery, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Jin-Ping Lai
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| |
Collapse
|
37
|
Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103. Cell Death Dis 2016; 7:e2353. [PMID: 27584792 PMCID: PMC5059857 DOI: 10.1038/cddis.2016.253] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection is causatively related to a variety of human cancers, including nasopharyngeal carcinoma (NPC) and gastric cancer (GC). EBV encodes 44 mature miRNAs, a number of which have been proven to promote carcinogenesis by targeting host genes or self-viral genes. However, in this study, we found that an EBV-encoded microRNA, termed EBV-miR-BART6-3p, inhibited EBV-associated cancer cell migration and invasion including NPC and GC by reversing the epithelial-mesenchymal transition (EMT) process. Using microarray analysis, we identified and validated that a novel long non-coding RNA (lncRNA) LOC553103 was downregulated by EBV-miR-BART6-3p, and LOC553103 knockdown by specific siRNAs phenocopied the effect of EBV-miR-BART6-3p, while LOC553103 overexpression promoted cancer cell migration and invasion to facilitate EMT. In conclusion, we determined that EBV-miR-BART6-3p, a microRNA encoded by oncogenic EBV, inhibited EBV-associated cancer cell migration and invasion by targeting and downregulating a novel lncRNA LOC553103. Thus, our study presents an unreported mechanism underlying EBV infection in EBV-associated cancer carcinogenesis, and provides a potential novel diagnosis and treatment biomarker for NPC and other EBV-related cancers.
Collapse
|
38
|
Sadreddini S, Jadidi-Niaragh F, Younesi V, Pourlak T, Afkham A, Shokri F, Yousefi M. Evaluation of EBV transformation of human memory B-cells isolated by FACS and MACS techniques. J Immunotoxicol 2016; 13:490-7. [DOI: 10.3109/1547691x.2015.1132288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Younesi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Tala Pourlak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afkham
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Aboulkassim T, Yasmeen A, Akil N, Batist G, Al Moustafa AE. Incidence of Epstein-Barr virus in Syrian women with breast cancer: A tissue microarray study. Hum Vaccin Immunother 2016; 11:951-5. [PMID: 25933186 DOI: 10.1080/21645515.2015.1009342] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) has been recently shown to be present in human breast cancer worldwide, which could play an important role in the initiation and progression of this cancer. In this regard, we aimed to explore the prevalence of EBV in 108 breast cancer tissues from Syrian women using polymerase chain reaction (PCR) and tissue microarray (TMA) analysis. We found that EBV is present in 56 (51.85%) of breast cancers samples. Additionally, we report that the expression of LMP1 gene of EBV is associated with a cancer invasive phenotype in the majority of the cancer samples. These data imply that EBV is present in breast cancer worldwide including Syria and its presence is associated with more aggressive cancer phenotype. Thus, future investigations are needed to elucidate the exact role of EBV in breast carcinogenesis and metastasis.
Collapse
Affiliation(s)
- Tahar Aboulkassim
- a Segal Cancer Center ; Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital ; McGill University ; Montreal , Quebec , Canada
| | | | | | | | | |
Collapse
|
40
|
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are a group of conditions that involve uncontrolled proliferation of lymphoid cells as a consequence of extrinsic immunosuppression after organ or haematopoietic stem cell transplant. PTLDs show some similarities to classic lymphomas in the non-immunosuppressed general population. The oncogenic Epstein-Barr virus (EBV) is a key pathogenic driver in many early-onset cases, through multiple mechanisms. The incidence of PTLD varies with the type of transplant; a clear distinction should therefore be made between the conditions after solid organ transplant and after haematopoietic stem cell transplant. Recipient EBV seronegativity and the intensity of immunosuppression are among key risk factors. Symptoms and signs depend on the localization of the lymphoid masses. Diagnosis requires histopathology, although imaging techniques can provide additional supportive evidence. Pre-emptive intervention based on monitoring EBV levels in blood has emerged as the preferred strategy for PTLD prevention. Treatment of established disease includes reduction of immunosuppression and/or administration of rituximab (a B cell-specific antibody against CD20), chemotherapy and EBV-specific cytotoxic T cells. Despite these strategies, the mortality and morbidity remains considerable. Patient outcome is influenced by the severity of presentation, treatment-related complications and risk of allograft loss. New innovative treatment options hold promise for changing the outlook in the future.
Collapse
|
41
|
El-Araby AM, Fouad AA, Hanbal AM, Abdelwahab SM, Qassem OM, El-Araby ME. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises. Arch Pharm (Weinheim) 2016; 349:73-90. [PMID: 26754591 DOI: 10.1002/ardp.201500375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed.
Collapse
Affiliation(s)
- Amr M El-Araby
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Amr M Hanbal
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Omar M Qassem
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanya, Jeddah, Saudi Arabia.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
42
|
Ernberg I, Niller HH, Minarovits J. Epigenetic Alterations of Viral and Cellular Genomes in EBV-Infected Cells. EPIGENETICS AND HUMAN HEALTH 2016:91-122. [DOI: 10.1007/978-3-319-27186-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Jha HC, Mehta D, Lu J, El-Naccache D, Shukla SK, Kovacsics C, Kolson D, Robertson ES. Gammaherpesvirus Infection of Human Neuronal Cells. mBio 2015; 6:e01844-15. [PMID: 26628726 PMCID: PMC4669387 DOI: 10.1128/mbio.01844-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Gammaherpesviruses human herpesvirus 4 (HHV4) and HHV8 are two prominent members of the herpesvirus family associated with a number of human cancers. HHV4, also known as Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus prevalent in 90 to 95% of the human population, is clinically associated with various neurological diseases such as primary central nervous system lymphoma, multiple sclerosis, Alzheimer's disease, cerebellar ataxia, and encephalitis. However, the possibility that EBV and Kaposi's sarcoma-associated herpesvirus (KSHV) can directly infect neurons has been largely overlooked. This study has, for the first time, characterized EBV infection in neural cell backgrounds by using the Sh-Sy5y neuroblastoma cell line, teratocarcinoma Ntera2 neurons, and primary human fetal neurons. Furthermore, we also demonstrated KSHV infection of neural Sh-Sy5y cells. These neuronal cells were infected with green fluorescent protein-expressing recombinant EBV or KSHV. Microscopy, genetic analysis, immunofluorescence, and Western blot analyses for specific viral antigens supported and validated the infection of these cells by EBV and KSHV and showed that the infection was efficient and productive. Progeny virus produced from infected neuronal cells efficiently infected fresh neuronal cells, as well as peripheral blood mononuclear cells. Furthermore, acyclovir was effective at inhibiting the production of virus from neuronal cells similar to lymphoblastoid cell lines; this suggests active lytic replication in infected neurons in vitro. These studies represent a potentially new in vitro model of EBV- and KSHV-associated neuronal disease development and pathogenesis. IMPORTANCE To date, no in vitro study has demonstrated gammaherpesvirus infection of neuronal cells. Moreover, worldwide clinical findings have linked EBV to neuronal pathologies, including multiple sclerosis, primary central nervous system lymphoma, and Alzheimer's disease. In this study, for the first time, we have successfully demonstrated the in vitro infection of Sh-Sy5y and Ntera2 cells, as well as human primary neurons. We have also determined that the infection is predominately lytic. Additionally, we also report infection of neuronal cells by KSHV in vitro similar to that by EBV. These findings may open new avenues of consideration related to neuronal pathologies and infection with these viruses. Furthermore, their contribution to chronic infection linked to neuronal disease will provide new clues to potential new therapies.
Collapse
MESH Headings
- Acyclovir/metabolism
- Antiviral Agents/metabolism
- Blotting, Western
- Cells, Cultured
- Genes, Reporter
- Green Fluorescent Proteins/analysis
- Green Fluorescent Proteins/genetics
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/growth & development
- Herpesvirus 4, Human/physiology
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/growth & development
- Herpesvirus 8, Human/physiology
- Humans
- Immunohistochemistry
- Leukocytes, Mononuclear/virology
- Microscopy, Fluorescence
- Neurons/virology
- Staining and Labeling
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Devan Mehta
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Darine El-Naccache
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanket K Shukla
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colleen Kovacsics
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dennis Kolson
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Stoker SD, Novalić Z, Wildeman MA, Huitema ADR, Verkuijlen SAWM, Juwana H, Greijer AE, Tan IB, Middeldorp JM, de Boer JP. Epstein-Barr virus-targeted therapy in nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2015; 141:1845-57. [PMID: 25920375 DOI: 10.1007/s00432-015-1969-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/30/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE Despite successful primary treatment of nasopharyngeal carcinoma (NPC), the incidence of distant metastasis remains 25-34 %. Treatment options are limited, and survival is poor. Intratumoural Epstein-Barr virus (EBV) was used as treatment target. In NPC, EBV is present in a latent state, expressing only few non-immunogenic viral products. Gemcitabine and valproic acid can trigger EBV to the lytic state, wherein viral kinases are expressed, making EBV-positive tumour cells susceptible for antiviral therapy with, i.e. valganciclovir, and inducing an EBV-specific immune response. METHODS This drug combination was applied in eight patients with EBV-positive NPC, refractory to conventional treatment. The primary endpoints were safety, tolerability and clinical response. Secondary endpoint was to get proof of concept based on biomarkers, i.e. pharmacokinetics, EBV-DNA load in whole blood and nasopharyngeal brushes, EBV-RNA profiling for proof of lytic induction, EBV-IgG and EBV-IgA levels and diversity and EBV-specific T cell response. RESULTS The best observed clinical response was partial in two patients (25 %) and stable disease in three patients (37.5 %). The median survival was 9 months (95 % confidence interval 7-17 months). Effective dose levels were reached. Peaking of EBV-DNA loads in blood and brush proved the biological effect on EBV during most treatment cycles. In one patient, RNA profiling confirmed lytic EBV induction. EBV-IgG and EBV-IgA antibody levels were already high before treatment and did not change during treatment. No changes in EBV-specific T cell response were detected. CONCLUSION The treatment was safe with manageable side effects, clinical response was observed, and viral activation corroborated.
Collapse
Affiliation(s)
- Sharon D Stoker
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Savitri E, Haryana MS. Expression of interleukin-8, interleukin-10 and Epstein-Barr viral-load as prognostic indicator in nasopharyngeal carcinoma. Glob J Health Sci 2015; 7:364-72. [PMID: 25948470 PMCID: PMC4802121 DOI: 10.5539/gjhs.v7n3p364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/23/2015] [Indexed: 12/18/2022] Open
Abstract
Interleukin-8 (IL-8) is angiogeneic chemokine that plays a potential role in both development and progression of many human malignancies including nasopharyngeal carcinoma (NPC). Epstein- Barr virus (EBV) is recognized to be an important etiologic agent of NPC as the viral gene products are frequently detected in NPC tissue along with the elevation of antibody titre to the viral protein (VCA-p18+ EBNA1) of IgA in the majority of patients. Elevated plasma of Viral Load is regarded as an important marker for the presence of the disease and for the monitoring of disease progression. However, other serum /plasma parameters such as the level of certain interleukins (IL-8 and IL-10) has also been implicated in NPC progression. The study aimed to investigate the correlations between plasma Viral Load and the level of interleukin (IL-8) and Interleukin (IL-10) in relating these parameters to the stages of NPC. In addition of Viral Load (VCA-p18+EBNA1) IgA, Interleukin-8 and Interleukin-10 before and after therapy will be investigated to seek the possible marker for disease progression. A total of 39 NPC patients and 29 healthy control individuals enrolled in this study. Plasma Viral Load was quantified using real-time quantitative PCR. The Level of plasma interleukins both IL-8 and IL-10 were analyzed using ELISA methods. Results indicated there was a significant decrease in viral load was detected in plasma of NPC patients following therapy. Plasma of viral load was shown to be a good prognosticator for disease progression. There were positive correlation between plasma of viral load and IL-8. These non invasive parameters expressed in blood, could be substitutes of viral load using brushing method, which is invasive. In conclusion that: Viral Load, (VCA-p18+EBNA1) IgA and IL-8 levels are promising markers for the presence of NPC and progression of the disease.
Collapse
Affiliation(s)
- Eka Savitri
- Medical Faculty, Hasanuddin University. Makassar.
| | | |
Collapse
|
46
|
|
47
|
Epstein-Barr virus: dermatologic associations and implications: part I. Mucocutaneous manifestations of Epstein-Barr virus and nonmalignant disorders. J Am Acad Dermatol 2015; 72:1-19; quiz 19-20. [PMID: 25497917 DOI: 10.1016/j.jaad.2014.07.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/23/2014] [Accepted: 07/16/2014] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous virus that has been implicated in a wide range of human diseases, many of which have mucocutaneous manifestations. As a member of the herpesviridae family, EBV causes lifelong infection by establishing latency in B lymphocytes. An intact immune response is critical in preventing progression of EBV disease, and the clinical manifestations of infection are dependent on the intricate relationship between virus and host immune system. This review provides a comprehensive overview of the epidemiology, pathophysiology, and diagnostic testing in EBV infection. In part I of this continuing medical education article, the mucocutaneous manifestations of EBV infection are reviewed with an emphasis on pathophysiology and management.
Collapse
|
48
|
Casabonne D, Benavente Y, Robles C, Costas L, Alonso E, Gonzalez-Barca E, Tardón A, Dierssen-Sotos T, Vázquez EG, Aymerich M, Campo E, Castaño-Vinyals G, Aragones N, Pollan M, Kogevinas M, Juwana H, Middeldorp J, de Sanjose S. Aberrant Epstein-Barr virus antibody patterns and chronic lymphocytic leukemia in a Spanish multicentric case-control study. Infect Agent Cancer 2015; 10:5. [PMID: 25972916 PMCID: PMC4429596 DOI: 10.1186/1750-9378-10-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/14/2015] [Indexed: 11/15/2022] Open
Abstract
Background Epstein-Barr virus (EBV)-related malignancies harbour distinct serological responses to EBV antigens. We hypothesized that EBV serological patterns can be useful to identify different stages of chronic lymphocytic leukemia. Methods Information on 150 cases with chronic lymphocytic leukemia and 157 frequency-matched (by age, sex and region) population-based controls from a Spanish multicentre case-control study was obtained. EBV immunoglobulin G serostatus was evaluated through a peptide-based ELISA and further by immunoblot analysis to EBV early antigens (EA), nuclear antigen (EBNA1), VCA-p18, VCA-p40 and Zebra. Two independent individuals categorized the serological patterns of the western blot analysis. Patients with very high response and diversity in EBV-specific polypeptides, in particular with clear responses to EA-associated proteins, were categorized as having an abnormal reactive pattern (ab_EBV). Adjusted odds ratios (OR) and 95% confidence interval (CI) were estimated using logistic regression models. Results Almost all subjects were EBV-IgG positive (>95% of cases and controls) whereas ab_EBV patterns were detected in 23% of cases (N = 34) and 11% of controls (N = 17; OR: 2.44, 95% CI, 1.29 to 4.62; P = 0.006), particularly in intermediate/high risk patients. Although based on small numbers, the association was modified by smoking with a gradual reduction of ab_EBV-related OR for all Rai stages from never smokers to current smokers. Conclusions Highly distinct EBV antibody diversity patterns revealed by immunoblot analysis were detected in cases compared to controls, detectable at very early stages of the disease and particularly among non smokers. This study provides further evidence of an abnormal immunological response against EBV in patients with chronic lymphocytic leukemia. Electronic supplementary material The online version of this article (doi:10.1186/1750-9378-10-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Delphine Casabonne
- Unit of Infections and Cancer (UNIC), IDIBELL, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Av. Gran Via 199 - 203, 2°; 08908 L'Hospitalet de Llobregat, Barcelona, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Yolanda Benavente
- Unit of Infections and Cancer (UNIC), IDIBELL, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Av. Gran Via 199 - 203, 2°; 08908 L'Hospitalet de Llobregat, Barcelona, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Claudia Robles
- Unit of Infections and Cancer (UNIC), IDIBELL, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Av. Gran Via 199 - 203, 2°; 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Costas
- Unit of Infections and Cancer (UNIC), IDIBELL, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Av. Gran Via 199 - 203, 2°; 08908 L'Hospitalet de Llobregat, Barcelona, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Esther Alonso
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de LLobregat, Barcelona, Spain
| | - Eva Gonzalez-Barca
- Hematology, L' Hospitalet de Llobregat, IDIBELL, Institut Català d' Oncologia, Barcelona, Spain
| | - Adonina Tardón
- Faculty of Medicine, University of Oviedo, Oviedo, Asturias
| | - Trinidad Dierssen-Sotos
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain ; Faculty of Medicine, University of Cantabria- IDIVAL, Santander, Spain
| | | | - Marta Aymerich
- Hematopathology Unit, Pathology Department, Hospital Clínic and University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elias Campo
- Hematopathology Unit, Pathology Department, Hospital Clínic and University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Castaño-Vinyals
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain ; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain ; Universitat Pompeu Fabra (UPF), Barcelona, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nuria Aragones
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain ; National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain ; Instituto de Investigación Sanitaria (IIS) of Hierro, Majadahonda, Spain
| | - Marina Pollan
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain ; National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain ; Instituto de Investigación Sanitaria (IIS) of Hierro, Majadahonda, Spain
| | - Manolis Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain ; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain ; Universitat Pompeu Fabra (UPF), Barcelona, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain ; National School of Public Health, Athens, Greece
| | - Hedy Juwana
- Department Pathology, VU University medical center, Amsterdam, The Netherlands
| | - Jaap Middeldorp
- Department Pathology, VU University medical center, Amsterdam, The Netherlands
| | - Silvia de Sanjose
- Unit of Infections and Cancer (UNIC), IDIBELL, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Av. Gran Via 199 - 203, 2°; 08908 L'Hospitalet de Llobregat, Barcelona, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
49
|
Ok CY, Li L, Young KH. EBV-driven B-cell lymphoproliferative disorders: from biology, classification and differential diagnosis to clinical management. Exp Mol Med 2015; 47:e132. [PMID: 25613729 PMCID: PMC4314582 DOI: 10.1038/emm.2014.82] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus, affecting >90% of the adult population. EBV targets B-lymphocytes and achieves latent infection in a circular episomal form. Different latency patterns are recognized based on latent gene expression pattern. Latent membrane protein-1 (LMP-1) mimics CD40 and, when self-aggregated, provides a proliferation signal via activating the nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, phosphoinositide 3-kinase/Akt (PI3K/Akt) and mitogen-activated protein kinase pathways to promote cellular proliferation. LMP-1 also induces BCL-2 to escape from apoptosis and gives a signal for cell cycle progression by enhancing cyclin-dependent kinase 2 and phosphorylation of retinoblastoma (Rb) protein and by inhibiting p16 and p27. LMP-2A blocks the surface immunoglobulin-mediated lytic cycle reactivation. It also activates the Ras/PI3K/Akt pathway and induces Bcl-xL expression to promote B-cell survival. Recent studies have shown that ebv-microRNAs can provide extra signals for cellular proliferation, cell cycle progression and anti-apoptosis. EBV is well known for association with various types of B-lymphocyte, T-lymphocyte, epithelial cell and mesenchymal cell neoplasms. B-cell lymphoproliferative disorders encompass a broad spectrum of diseases, from benign to malignant. Here we review our current understanding of EBV-induced lymphomagenesis and focus on biology, diagnosis and management of EBV-associated B-cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Oncology, University of Zhengzhou School of Medicine, Zhengzhou, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
50
|
Han L, Sun L, Zhao Z, Chao Y, Sun Z, Li H, Luo B. Sequence variation of Epstein-Barr virus (EBV) BCRF1 in lymphomas in non-endemic areas of nasopharyngeal carcinoma. Arch Virol 2014; 160:441-5. [PMID: 25373543 DOI: 10.1007/s00705-014-2279-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022]
Abstract
To characterize the sequence variation and the potential implication of the Epstein-Barr virus (EBV) oncogene in lymphoma, BamHI-C fragment rightward reading frame 1 (BCRF1) was sequenced in different types of EBV-positive lymphoma in northern China, and polymorphisms were compared with previous variation data from other malignancies. The dominate subtype of BCRF1 in EBV-positive lymphoma was the B95-8 prototype, and a mutation in the signal peptide was more strongly associated with Hodgkin's lymphoma. The high conservation of BCRF1 in EBV-positive lymphoma suggests its important role in maintaining the basic biological activity and immunosuppressive functions of the virus.
Collapse
Affiliation(s)
- Lu Han
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | | | | | | | | | | | | |
Collapse
|