1
|
Cheah K, Chu P, Schmidt G, Scarlata S. Imaging methods to monitor and quantify cell differentiation. Front Cell Dev Biol 2025; 13:1584858. [PMID: 40433548 PMCID: PMC12106324 DOI: 10.3389/fcell.2025.1584858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025] Open
Abstract
The transition of a cell from a stem to a differentiated state involves an interrelated and complex series of events. These events include dynamic changes in cellular nucleic acid and protein content that are mediated by both intrinsic and extrinsic factors which ultimately lead to differentiation into specific lineage. Quantifying the parameters associated with differentiation and their changes under different conditions would not only allow for a better understanding of this process but also would enable the development of approaches that control differentiation. Here, we describe processes associated with the differentiation of two types of cultured cells, neurons and fibroblasts, and the tools to follow changes in real time. Specifically, we discuss methods to the identify cell lineage, changes in morphology, shifts in specific mRNA and miRNA levels as well as the changes in protein localization, interactions and assemblies that accompany differentiation.
Collapse
Affiliation(s)
| | | | | | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
2
|
Göksu AY. A review article on the development of dopaminergic neurons and establishment of dopaminergic neuron-based in vitro models by using immortal cell lines or stem cells to study and treat Parkinson's disease. Int J Dev Neurosci 2024; 84:817-842. [PMID: 39379284 DOI: 10.1002/jdn.10383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
The primary pathological hallmark of Parkinson's disease (PD) is the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta, a critical midbrain region. In vitro models based on DA neurons provide a powerful platform for investigating the cellular and molecular mechanisms of PD and testing novel therapeutic strategies. A deep understanding of DA neuron development, including the signalling pathways and transcription factors involved, is essential for advancing PD research. This article first explores the differentiation and maturation processes of DA neurons in the midbrain, detailing the relevant signalling pathways. It then compares various in vitro models, including primary cells, immortalized cell lines, and stem cell-based models, focusing on the advantages and limitations of each. Special attention is given to the role of immortalized and stem cell models in PD research. This review aims to guide researchers in selecting the most appropriate model for their specific research goals. Ethical considerations and clinical implications of using stem cells in PD research are also discussed.
Collapse
Affiliation(s)
- Azize Yasemin Göksu
- Department of Histology and Embryology, Department of Gene and Cell Therapy, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
3
|
Kulatunga DCM, Ranaraja U, Kim EY, Kim RE, Kim DE, Ji KB, Kim MK. A novel APP splice variant-dependent marker system to precisely demarcate maturity in SH-SY5Y cell-derived neurons. Sci Rep 2024; 14:12113. [PMID: 38802572 PMCID: PMC11130256 DOI: 10.1038/s41598-024-63005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
SH-SY5Y, a neuroblastoma cell line, can be converted into mature neuronal phenotypes, characterized by the expression of mature neuronal and neurotransmitter markers. However, the mature phenotypes described across multiple studies appear inconsistent. As this cell line expresses common neuronal markers after a simple induction, there is a high chance of misinterpreting its maturity. Therefore, sole reliance on common neuronal markers is presumably inadequate. The Alzheimer's disease (AD) central gene, amyloid precursor protein (APP), has shown contrasting transcript variant dynamics in various cell types. We differentiated SH-SY5Y cells into mature neuron-like cells using a concise protocol and observed the upregulation of total APP throughout differentiation. However, APP transcript variant-1 was upregulated only during the early to middle stages of differentiation and declined in later stages. We identified the maturity state where this post-transcriptional shift occurs, terming it "true maturity." At this stage, we observed a predominant expression of mature neuronal and cholinergic markers, along with a distinct APP variant pattern. Our findings emphasize the necessity of using a differentiation state-sensitive marker system to precisely characterize SH-SY5Y differentiation. Moreover, this study offers an APP-guided, alternative neuronal marker system to enhance the accuracy of the conventional markers.
Collapse
Affiliation(s)
- D Chanuka M Kulatunga
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Umanthi Ranaraja
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | | | | | - Dong Ern Kim
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Kuk Bin Ji
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Min Kyu Kim
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
- MK Biotech Inc., Daejeon, Republic of Korea.
| |
Collapse
|
4
|
González-Burguera I, Lin G, López de Jesús M, Saumell-Esnaola M, Barrondo S, García Del Caño G, Sallés J, Scarlata S. PLCβ1 by-passes early growth response -1 to induce the differentiation of neuronal cells. Cell Death Discov 2024; 10:250. [PMID: 38789419 PMCID: PMC11126630 DOI: 10.1038/s41420-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The Gαq/phospholipase C-β (PLCβ) signaling system mediates calcium responses to a variety of hormones and neurotransmitters. Recent studies suggest that PLCβ1 expression plays a role in the differentiation of two types of cultured neuronal cells (PC12 and SK-N-SH) through a mechanism independent of Gαq. Here, we show that, similar to that observed in PC12 and SK-N-SH cells, PLCβ1 expression increases when human NT2 cells are induced to differentiate either through cytosine-β-D-arabinofuranoside or retinoic acid. Preventing this increase, abolishes differentiation, and down-regulating PLCβ1 in rat primary astrocytes causes cells to adapt an undifferentiated morphology. Surprisingly, transfecting PLCβ1 into undifferentiated PC12 or NT2 cells induces differentiation without the need for differentiating agents. Studies to uncover the underlying mechanism focused on the transcription factor early growth response 1 (Egr-1) which mediates PLCβ1 expression early in differentiation. Over-expressing PLCβ1 in HEK293 cells enhances Egr-1 expression and induces morphological changes. We show that increased levels of cytosolic PLCβ1 in undifferentiated PC12 cells disrupts the association between Egr-1 and its cytosolic binding partner (Tar RNA binding protein), promoting relocalization of Egr-1 to the nucleus, which promotes transcription of proteins needed for differentiation. These studies show a novel mechanism through which differentiation can be modulated.
Collapse
Affiliation(s)
- Imanol González-Burguera
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
| | - Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, USA
| | - Maider López de Jesús
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
| | - Miquel Saumell-Esnaola
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, USA.
| |
Collapse
|
5
|
Curcumin Induces Neural Differentiation of Human Pluripotent Embryonal Carcinoma Cells through the Activation of Autophagy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4378710. [PMID: 30800669 PMCID: PMC6360631 DOI: 10.1155/2019/4378710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/10/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
Curcumin is a natural polyphenolic compound, isolated from Curcuma longa, and is an important ingredient of Asian foods. Curcumin has revealed its strong activities of anti-inflammatory, antioxidant, and anticancer. The efficient amount of curcumin could induce differentiation of stem cells and promoted the differentiation of glioma-initiating cells; however, the mechanisms underlying neural induction of curcumin have not yet been revealed. In this study, neural-inducing ability of curcumin was explored by using human pluripotent embryonal carcinoma cells, NTERA2 cells. The cells were induced toward neural lineage with curcumin and were compared with a standard neutralizing agent (retinoic acid). It was found that, after 14 days of the induction by curcumin, NTERA2 cells showed neuronal morphology and expressed neural-specific genes, including NeuroD, TUJ1, and PAX6. Importantly, curcumin activated neurogenesis of NTERA2 cells via the activation of autophagy, since autophagy-related genes, such as LC3, LAMP1, and ATG5, were upregulated along with the expression of neural genes. The inhibition of autophagy by chloroquine suppressed both autophagy and neural differentiation, highlighting the positive role of autophagy during neural differentiation. This autophagy-mediated neural differentiation of curcumin was found to be an ROS-dependent manner; curcumin induced ROS generation and suppressed antioxidant gene expression. Altogether, this study proposed the neural-inducing activity of curcumin via the regulation of autophagy within NTERA2 cells and underscored the health beneficial effects of curcumin for neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.
Collapse
|
6
|
Sharif T, Dai C, Martell E, Ghassemi-Rad MS, Hanes MR, Murphy PJ, Kennedy BE, Venugopal C, Subapanditha M, Giacomantonio CA, Marcato P, Singh SK, Gujar S. TAp73 Modifies Metabolism and Positively Regulates Growth of Cancer Stem-Like Cells in a Redox-Sensitive Manner. Clin Cancer Res 2018; 25:2001-2017. [PMID: 30593514 DOI: 10.1158/1078-0432.ccr-17-3177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/14/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Stem-like cancer cells, with characteristic self-renewal abilities, remain highly refractory to various clinical interventions. As such, stemness-inhibiting entities, such as tumor suppressor p53, are therapeutically pursued for their anticancer activities. Interestingly, similar implications for tumor suppressor TAp73 in regulating stemness features within stem-like cancer cells remain unknown.Experimental Design: This study utilizes various in vitro molecular biology techniques, including immunoblotting, qRT-PCR, and mass spectrometry-based proteomics, and metabolomics approaches to study the role of TAp73 in human and murine embryonal carcinoma stem-like cells (ECSLC) as well as human breast cancer stem-like cells (BCSLC). These findings were confirmed using patient-derived brain tumor-initiating cells (BTIC) and in vivo xenograft models. RESULTS TAp73 inhibition decreases the expression of stem cell transcription factors Oct4, Nanog, and Sox-2, as well as tumorsphere formation capacity in ECSLCs. In vivo, TAp73-deficient ECSLCs and BCSLCs demonstrate decreased tumorigenic potential when xenografted in mice. Mechanistically, TAp73 modifies the proline regulatory axis through regulation of enzymes GLS, OAT, and PYCR1 involved in the interconversion of proline-glutamine-ornithine. Further, TAp73 deficiency exacerbates glutamine dependency, enhances accumulation of reactive oxygen species through reduced superoxide dismutase 1 (SOD1) expression, and promotes differentiation by arresting cell cycle and elevating autophagy. Most importantly, the knockdown of TAp73 in CD133HI BTICs, separated from three different glioblastoma patients, strongly decreases the expression of prosurvival factors Sox-2, BMI-1, and SOD1, and profoundly decreases their self-renewal capacity as evidenced through their reduced tumorsphere formation ability. CONCLUSIONS Collectively, we reveal a clinically relevant aspect of cancer cell growth and stemness regulation through TAp73-mediated redox-sensitive metabolic reprogramming.
Collapse
Affiliation(s)
- Tanveer Sharif
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cathleen Dai
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma Martell
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Mark Robert Hanes
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patrick J Murphy
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Minomi Subapanditha
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Carman A Giacomantonio
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Trattnig C, Üçal M, Tam-Amersdorfer C, Bucko A, Zefferer U, Grünbacher G, Absenger-Novak M, Öhlinger KA, Kraitsy K, Hamberger D, Schaefer U, Patz S. MicroRNA-451a overexpression induces accelerated neuronal differentiation of Ntera2/D1 cells and ablation affects neurogenesis in microRNA-451a-/- mice. PLoS One 2018; 13:e0207575. [PMID: 30462722 PMCID: PMC6248975 DOI: 10.1371/journal.pone.0207575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/02/2018] [Indexed: 12/22/2022] Open
Abstract
MiR-451a is best known for its role in erythropoiesis and for its tumour suppressor features. Here we show a role for miR-451a in neuronal differentiation through analysis of endogenous and ectopically expressed or silenced miR-451a in Ntera2/D1 cells during neuronal differentiation. Furthermore, we compared neuronal differentiation in the dentate gyrus of hippocampus of miR-451a-/- and wild type mice. MiR-451a overexpression in lentiviral transduced Ntera2/D1 cells was associated with a significant shifting of mRNA expression of the developmental markers Nestin, βIII Tubulin, NF200, DCX and MAP2 to earlier developmental time points, compared to control vector transduced cells. In line with this, accelerated neuronal network formation in AB.G.miR-451a transduced cells, as well as an increase in neurite outgrowth both in number and length was observed. MiR-451a targets genes MIF, AKT1, CAB39, YWHAZ, RAB14, TSC1, OSR1, POU3F2, TNS4, PSMB8, CXCL16, CDKN2D and IL6R were, moreover, either constantly downregulated or exhibited shifted expression profiles in AB.G.miR-451a transduced cells. Lentiviral knockdown of endogenous miR-451a expression in Ntera2/D1 cells resulted in decelerated differentiation. Endogenous miR-451a expression was upregulated during development in the hippocampus of wildtype mice. In situ hybridization revealed intensively stained single cells in the subgranular zone and the hilus of the dentate gyrus of wild type mice, while genetic ablation of miR-451a was observed to promote an imbalance between proliferation and neuronal differentiation in neurogenic brain regions, suggested by Ki67 and DCX staining. Taken together, these results provide strong support for a role of miR-451a in neuronal maturation processes in vitro and in vivo.
Collapse
Affiliation(s)
- Christa Trattnig
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Muammer Üçal
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | | | - Angela Bucko
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Ulrike Zefferer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Gerda Grünbacher
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | | | | | - Klaus Kraitsy
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Daniel Hamberger
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Ute Schaefer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
- * E-mail:
| | - Silke Patz
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| |
Collapse
|
8
|
Chrenek R, Magnotti LM, Herrera GR, Jha RM, Cardozo DL. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans. J Comp Neurol 2016; 525:661-675. [PMID: 27511739 PMCID: PMC5216448 DOI: 10.1002/cne.24094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/24/2023]
Abstract
Neural stem cells (NSCs) reside in a unique microenvironment within the central nervous system (CNS) called the NSC niche. Although they are relatively rare, niches have been previously characterized in both the brain and spinal cord of adult animals. Recently, another potential NSC niche has been identified in the filum terminale (FT), which is a thin band of tissue at the caudal end of the spinal cord. While previous studies have demonstrated that NSCs can be isolated from the FT, the in vivo architecture of this tissue and its relation to other NSC niches in the CNS has not yet been established. In this article we report a histological analysis of the FT NSC niche in postnatal rats and humans. Immunohistochemical characterization reveals that the FT is mitotically active and its cells express similar markers to those in other CNS niches. In addition, the organization of the FT most closely resembles that of the adult spinal cord niche. J. Comp. Neurol. 525:661–675, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan Chrenek
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Laura M. Magnotti
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Ruchira M. Jha
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - David L. Cardozo
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
9
|
Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci 2014; 55:7-20. [PMID: 24874578 DOI: 10.1007/s12031-014-0329-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with limited effective treatment options. Cancer stem cells (CSCs), a subpopulation of cancer cells with stem cell properties found in GBMs, have been shown to be extremely resistant to radiation and chemotherapeutic agents and have the ability to readily reform tumors. Therefore, the development of therapeutic agents targeting CSCs is extremely important. In this study, we isolated glioblastoma-derived stem cells (GDSCs) from GBM tissue removed from patients during surgery and analyzed their gene expression using quantitative real-time PCR and immunocytochemistry. We examined the effects of histone deacetylase inhibitors trichostatin A (TSA) and valproic acid (VPA) on the proliferation and gene expression profiles of GDSCs. The GDSCs expressed significantly higher levels of both neural and embryonic stem cell markers compared to GBM cells expanded in conventional monolayer cultures. Treatment of GDSCs with histone deacetylase inhibitors, TSA and VPA, significantly reduced proliferation rates of the cells and expression of the stem cell markers, indicating differentiation of the cells. Since differentiation into GBM makes them susceptible to the conventional cancer treatments, we posit that use of histone deacetylase inhibitors may increase efficacy of the conventional cancer treatments for eliminating GDSCs.
Collapse
|
10
|
Haubenwallner S, Katschnig M, Fasching U, Patz S, Trattnig C, Andraschek N, Grünbacher G, Absenger M, Laske S, Holzer C, Balika W, Wagner M, Schäfer U. Effects of the polymeric niche on neural stem cell characteristics during primary culturing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1339-1355. [PMID: 24577943 DOI: 10.1007/s10856-014-5155-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/12/2014] [Indexed: 06/03/2023]
Abstract
The polymeric niche encountered by cells during primary culturing can affect cell fate. However, most cell types are primarily propagated on polystyrene (PS). A cell type specific screening for optimal primary culture polymers particularly for regenerative approaches seems inevitable. The effect of physical and chemical properties of treated (corona, oxygen/nitrogen plasma) and untreated cyclic olefin polymer (COP), polymethymethacrylate (PMMA), PP, PLA, PS, PC on neuronal stem cell characteristics was analyzed. Our comprehensive approach revealed plasma treated COP and PMMA as optimal polymers for primary neuronal stem cell culturing and propagation. An increase in the number of NT2/D1 cells with pronounced adhesion, metabolic activities and augmented expression of neural precursor markers was associated to the plasma treatment of surfaces of COP and PMMA with nitrogen or oxygen, respectively. A shift towards large cell sizes at stable surface area/volume ratios that might promote the observed increase in metabolic activities and distinct modulations in F-actin arrangements seem to be primarily mediated by the plasma treatment of surfaces. These results indicate that the polymeric niche has a distinct impact on various cell characteristics. The selection of distinct polymers and the controlled design of an optimized polymer microenvironment might thereby be an effective tool to promote essential cell characteristics for subsequent approaches.
Collapse
Affiliation(s)
- Stefan Haubenwallner
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 2/2, 8036, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Antibodies directed to the gram-negative bacterium Neisseria gonorrhoeae cross-react with the 60 kDa heat shock protein and lead to impaired neurite outgrowth in NTera2/D1 cells. J Mol Neurosci 2014; 54:125-36. [PMID: 24577885 DOI: 10.1007/s12031-014-0258-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/06/2014] [Indexed: 01/06/2023]
Abstract
Children of mothers with prenatal gonococcal infections are of increased risk to develop schizophrenic psychosis in later life. The present study hypothesizes an autoimmune mechanism for this, investigating interactions of a commercial rabbit antiserum directed to Neisseria gonorrhoeae (α-NG) with human NTera2/D1 cells, an established in vitro model for human neuronal differentiation. Immunocytochemistry demonstrated α-NG to label antigens on an intracellular organelle, which by Western blot analysis showed a molecular weight shortly below 72 kDa. An antiserum directed to Neisseria meningitidis (α-NM) reacts with an antigen shortly below 95 kDa, confirming antibody specificity of these interactions. Two-dimensional gel electrophoresis and partial Western transfer, allowed to localize an α-NG reactive protein spot which was identified by LC-Q-TOF MS/MS analysis as mitochondrial heat shock protein Hsp60. This was confirmed by Western blot analysis of α-NG immunoreactivity with a commercial Hsp60 protein sample, with which α-NM failed to interact. Finally, analysis of neurite outgrowth in retinoic acid-stimulated differentiating NTera2-D1 cells, demonstrates that α-NG but not α-NM treatment reduces neurite length. These results demonstrate that α-NG can interact with Hsp60 in vitro, whereas pathogenetic relevance of this interaction for psychotic symptomatology remains to be clarified.
Collapse
|
12
|
Vlasblom J, Jin K, Kassir S, Babu M. Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping. J Proteomics 2013; 100:8-24. [PMID: 24262152 DOI: 10.1016/j.jprot.2013.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/08/2013] [Accepted: 11/06/2013] [Indexed: 12/20/2022]
Abstract
UNLABELLED Mitochondria are double membraned, dynamic organelles that are required for a large number of cellular processes, and defects in their function have emerged as causative factors for a growing number of human disorders and are highly associated with cancer, metabolic, and neurodegenerative (ND) diseases. Biochemical and genetic investigations have uncovered small numbers of candidate mitochondrial proteins (MPs) involved in ND disease, but given the diversity of processes affected by MP function and the difficulty of detecting interactions involving these proteins, many more likely remain unknown. However, high-throughput proteomic and genomic approaches developed in genetically tractable model prokaryotes and lower eukaryotes have proven to be effective tools for querying the physical (protein-protein) and functional (gene-gene) relationships between diverse types of proteins, including cytosolic and membrane proteins. In this review, we highlight how experimental and computational approaches developed recently by our group and others can be effectively used towards elucidating the mitochondrial interactome in an unbiased and systematic manner to uncover network-based connections. We discuss how the knowledge from the resulting interaction networks can effectively contribute towards the identification of new mitochondrial disease gene candidates, and thus further clarify the role of mitochondrial biology and the complex etiologies of ND disease. BIOLOGICAL SIGNIFICANCE Biochemical and genetic investigations have uncovered small numbers of candidate mitochondrial proteins (MPs) involved in neurodegenerative (ND) diseases, but given the diversity of processes affected by MP function and the difficulty of detecting interactions involving these proteins, many more likely remain unknown. Large-scale proteomic and genomic approaches developed in model prokaryotes and lower eukaryotes have proven to be effective tools for querying the physical (protein-protein) and functional (gene-gene) relationships between diverse types of proteins. Extension of this new framework to the mitochondrial sub-system in human will likewise provide a universally informative systems-level view of the physical and functional landscape for exploring the evolutionary principles underlying mitochondrial function. In this review, we highlight how experimental and computational approaches developed recently by our group and others can be effectively used towards elucidating the mitochondrial interactome in an unbiased and systematic manner to uncover network-based connections. We anticipate that the knowledge from these resulting interaction networks can effectively contribute towards the identification of new mitochondrial disease gene candidates, and thus foster a deeper molecular understanding of mitochondrial biology as well as the etiology of mitochondrial diseases. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- James Vlasblom
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ke Jin
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada; Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Sandy Kassir
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| |
Collapse
|
13
|
Öz S, Maercker C, Breiling A. Embryonic carcinoma cells show specific dielectric resistance profiles during induced differentiation. PLoS One 2013; 8:e59895. [PMID: 23533658 PMCID: PMC3606267 DOI: 10.1371/journal.pone.0059895] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/18/2013] [Indexed: 11/18/2022] Open
Abstract
Induction of differentiation in cancer stem cells by drug treatment represents an important approach for cancer therapy. The understanding of the mechanisms that regulate such a forced exit from malignant pluripotency is fundamental to enhance our knowledge of tumour stability. Certain nucleoside analogues, such as 2′-deoxy-5-azacytidine and 1β-arabinofuranosylcytosine, can induce the differentiation of the embryonic cancer stem cell line NTERA 2 D1 (NT2). Such induced differentiation is associated with drug-dependent DNA-damage, cellular stress and the proteolytic depletion of stem cell factors. In order to further elucidate the mode of action of these nucleoside drugs, we monitored differentiation-specific changes of the dielectric properties of growing NT2 cultures using electric cell-substrate impedance sensing (ECIS). We measured resistance values of untreated and retinoic acid treated NT2 cells in real-time and compared their impedance profiles to those of cell populations triggered to differentiate with several established substances, including nucleoside drugs. Here we show that treatment with retinoic acid and differentiation-inducing drugs can trigger specific, concentration-dependent changes in dielectric resistance of NT2 cultures, which can be observed as early as 24 hours after treatment. Further, low concentrations of nucleoside drugs induce differentiation-dependent impedance values comparable to those obtained after retinoic acid treatment, whereas higher concentrations induce proliferation defects. Finally, we show that impedance profiles of substance-induced NT2 cells and those triggered to differentiate by depletion of the stem cell factor OCT4 are very similar, suggesting that reduction of OCT4 levels has a dominant function for differentiation induced by nucleoside drugs and retinoic acid. The data presented show that NT2 cells have specific dielectric properties, which allow the early identification of differentiating cultures and real-time label-free monitoring of differentiation processes. This work might provide a basis for further analyses of drug candidates for differentiation therapy of cancers.
Collapse
Affiliation(s)
- Simin Öz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Christian Maercker
- Mannheim University of Applied Sciences, Mannheim, Germany
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Heidelberg, Germany
- * E-mail: (AB); (CM)
| | - Achim Breiling
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- * E-mail: (AB); (CM)
| |
Collapse
|
14
|
Zhang J, Li P, Wang Y, Liu J, Zhang Z, Cheng W, Wang Y. Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats. PLoS One 2013; 8:e56658. [PMID: 23437202 PMCID: PMC3577735 DOI: 10.1371/journal.pone.0056658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022] Open
Abstract
Aims To investigate the therapeutic effects and acting mechanism of a combination of Chinese herb active components, i.e., a combination of baicalin, jasminoidin and cholic acid (CBJC) on Alzheimer’s disease (AD). Methods Male rats were intracerebroventricularly injected with ibotenic acid (IBO), and CBJC was orally administered. Therapeutic effect was evaluated with the Morris water maze test, FDG-PET examination, and histological examination, and the acting mechanism was studied with DNA microarrays and western blotting. Results CBJC treatment significantly attenuated IBO-induced abnormalities in cognition, brain functional images, and brain histological morphology. Additionally, the expression levels of 19 genes in the forebrain were significantly influenced by CBJC; approximately 60% of these genes were related to neuroprotection and neurogenesis, whereas others were related to anti-oxidation, protein degradation, cholesterol metabolism, stress response, angiogenesis, and apoptosis. Expression of these genes was increased, except for the gene related to apoptosis. Changes in expression for 5 of these genes were confirmed by western blotting. Conclusion CBJC can ameliorate the IBO-induced dementia in rats and may be significant in the treatment of AD. The therapeutic mechanism may be related to CBJC’s modulation of a number of processes, mainly through promotion of neuroprotection and neurogenesis, with additional promotion of anti-oxidation, protein degradation, etc.
Collapse
Affiliation(s)
- Junying Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China
| | - Peng Li
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yanping Wang
- The Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jianxun Liu
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China
- * E-mail:
| | - Weidong Cheng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
- * E-mail:
| | - Yongyan Wang
- The Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| |
Collapse
|
15
|
Guichet PO, Bieche I, Teigell M, Serguera C, Rothhut B, Rigau V, Scamps F, Ripoll C, Vacher S, Taviaux S, Chevassus H, Duffau H, Mallet J, Susini A, Joubert D, Bauchet L, Hugnot JP. Cell death and neuronal differentiation of glioblastoma stem-like cells induced by neurogenic transcription factors. Glia 2012; 61:225-39. [DOI: 10.1002/glia.22429] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/06/2012] [Indexed: 12/28/2022]
|
16
|
Isolation of mineralizing Nestin+ Nkx6.1+ vascular muscular cells from the adult human spinal cord. BMC Neurosci 2011; 12:99. [PMID: 21985235 PMCID: PMC3205052 DOI: 10.1186/1471-2202-12-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/10/2011] [Indexed: 01/23/2023] Open
Abstract
Background The adult central nervous system (CNS) contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium). Results Here we report the isolation and long term propagation of another population of Nestin+ cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin). These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. Conclusion Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.
Collapse
|
17
|
Cheng PY, Lin YP, Chen YL, Lee YC, Tai CC, Wang YT, Chen YJ, Kao CF, Yu J. Interplay between SIN3A and STAT3 mediates chromatin conformational changes and GFAP expression during cellular differentiation. PLoS One 2011; 6:e22018. [PMID: 21779366 PMCID: PMC3136934 DOI: 10.1371/journal.pone.0022018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/12/2011] [Indexed: 01/28/2023] Open
Abstract
Background Neurons and astrocytes are generated from common neural precursors, yet neurogenesis precedes astrocyte formation during embryogenesis. The mechanisms of neural development underlying suppression and de-suppression of differentiation- related genes for cell fate specifications are not well understood. Methodology/Principal Findings By using an in vitro system in which NTera-2 cells were induced to differentiate into an astrocyte-like lineage, we revealed a novel role for Sin3A in maintaining the suppression of GFAP in NTera-2 cells. Sin3A coupled with MeCP2 bound to the GFAP promoter and their occupancies were correlated with repression of GFAP transcription. The repression by Sin3A and MeCP2 may be an essential mechanism underlying the inhibition of cell differentiation. Upon commitment toward an astrocyte-like lineage, Sin3A- MeCP2 departed from the promoter and activated STAT3 simultaneously bound to the promoter and exon 1 of GFAP; meanwhile, olig2 was exported from nuclei to the cytoplasm. This suggested that a three-dimensional or higher-order structure was provoked by STAT3 binding between the promoter and proximal coding regions. STAT3 then recruited CBP/p300 to exon 1 and targeted the promoter for histone H3K9 and H3K14 acetylation. The CBP/p300-mediated histone modification further facilitates chromatin remodeling, thereby enhancing H3K4 trimethylation and recruitment of RNA polymerase II to activate GFAP gene transcription. Conclusions/Significance These results provide evidence that exchange of repressor and activator complexes and epigenetic modifications are critical strategies for cellular differentiation and lineage-specific gene expression.
Collapse
Affiliation(s)
- Pei-Yi Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ping Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Ling Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Lee
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Chen Tai
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (JY); (CFK)
| | - John Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (JY); (CFK)
| |
Collapse
|
18
|
Jezierski A, Ly D, Smith B, Smith C, Tremblay R, Gruslin A, Sikorska M, Bani-Yaghoub M. Novel RBPJ transcripts identified in human amniotic fluid cells. Stem Cell Rev Rep 2011; 6:677-84. [PMID: 20574714 DOI: 10.1007/s12015-010-9162-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The NOTCH signaling pathway plays important roles in stem cell maintenance, cell-fate determination and differentiation during development. Following ligand binding, the cleaved NOTCH intracellular domain (NICD) interacts directly with the recombinant signal binding protein for immunoglobulin kappa J region (RBPJ) transcription factor and the resulting complex targets gene expression in the nucleus. To date, four human RBPJ isoforms have been described in Entrez Gene, varying in the first 5'coding exons. Using an improved protocol, we were able to further identify all four known and five novel RBPJ transcript variants in human amniotic fluid (AF) cells, a cell type known for its stem cell characteristics. In addition, we used human embryonal carcinoma (EC) NTera2/D1 (NT2) cells and NT2-derived neuron and astrocytes to compare the expression pattern of RBPJ transcripts. Further examination of RBPJ transcripts showed that the novel splice variants contain open reading frames in-frame with the known isoforms, suggesting that they can putatively generate similar function proteins. All known and novel RBPJ transcripts contain the putative nuclear localization signal (NLS), an important component of RBPJ-mediated gene regulation.
Collapse
Affiliation(s)
- Anna Jezierski
- Neurogenesis and Brain Repair, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, Building M-54, 1200 Montreal Road, Ottawa, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pérez-Alvarez MJ, Isiegas C, Santano C, Salazar JJ, Ramírez AI, Triviño A, Ramírez JM, Albar JP, de la Rosa EJ, Prada C. Vimentin isoform expression in the human retina characterized with the monoclonal antibody 3CB2. J Neurosci Res 2008; 86:1871-83. [PMID: 18241054 DOI: 10.1002/jnr.21623] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The antigen recognized by the monoclonal antibody 3CB2 (3CB2-Ag and 3CB2 mAb) is expressed by radial glia and astrocytes in the developing and adult vertebrate central nervous system (CNS) of vertebrates as well as in neural stem cells. Here we identified the 3CB2-Ag as vimentin by proteomic analysis of human glial cell line U-87 extracts (derived from a malignant astrocytoma). Indeed, the 3CB2 mAb recognized three vimentin isoforms in glial cell lines. In the human retina, 3CB2-Ag was expressed in Müller cells, astrocytes, some blood vessels, and cells in the horizontal cell layer, as determined by immunoprecipitation and immunofluorescence. Three populations of astrocytes were distinguishable by double-labeling immunohistochemistry: vimentin+/GFAP+, vimentin-/GFAP+, and vimentin+/GFAP-. Hence, we conclude that 1) the 3CB2-Ag is vimentin; 2) vimentin isoforms are differentially expressed in normal and transformed astrocytes; 3) human retinal astrocytes display molecular heterogeneity; and 4) the 3CB2 mAb is a valuable tool to study vimentin expression and its function in the human retina.
Collapse
Affiliation(s)
- M J Pérez-Alvarez
- Department of Physiology, School of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dromard C, Bartolami S, Deleyrolle L, Takebayashi H, Ripoll C, Simonneau L, Prome S, Puech S, Tran VBC, Duperray C, Valmier J, Privat A, Hugnot JP. NG2 and Olig2 expression provides evidence for phenotypic deregulation of cultured central nervous system and peripheral nervous system neural precursor cells. Stem Cells 2006; 25:340-53. [PMID: 17053213 DOI: 10.1634/stemcells.2005-0556] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neural stem cells cultured with fibroblast growth factor 2 (FGF2)/epidermal growth factor (EGF) generate clonal expansions called neurospheres (NS), which are widely used for therapy in animal models. However, their cellular composition is still poorly defined. Here, we report that NS derived from several embryonic and adult central nervous system (CNS) regions are composed mainly of remarkable cells coexpressing radial glia markers (BLBP, RC2, GLAST), oligodendrogenic/neurogenic factors (Mash1, Olig2, Nkx2.2), and markers that in vivo are typical of the oligodendrocyte lineage (NG2, A2B5, PDGFR-alpha). On NS differentiation, the latter remain mostly expressed in neurons, together with Olig2 and Mash1. Using cytometry, we show that in growing NS the small population of multipotential self-renewing NS-forming cells are A2B5(+) and NG2(+). Additionally, we demonstrate that these NS-forming cells in the embryonic spinal cord were initially NG2(-) and rapidly acquired NG2 in vitro. NG2 and Olig2 were found to be rapidly induced by cell culture conditions in spinal cord neural precursor cells. Olig2 expression was also induced in astrocytes and embryonic peripheral nervous system (PNS) cells in culture after EGF/FGF treatment. These data provide new evidence for profound phenotypic modifications in CNS and PNS neural precursor cells induced by culture conditions.
Collapse
Affiliation(s)
- Cecile Dromard
- INSERM U583, Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs Institut des Neurosciences de Montpellier, Hôpital St ELOI, BP 74103 80, avenue Augustin Fliche 34091 Montpellier Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Deleyrolle L, Marchal-Victorion S, Dromard C, Fritz V, Saunier M, Sabourin JC, Tran Van Ba C, Privat A, Hugnot JP. Exogenous and Fibroblast Growth Factor 2/Epidermal Growth Factor-Regulated Endogenous Cytokines Regulate Neural Precursor Cell Growth and Differentiation. Stem Cells 2006; 24:748-62. [PMID: 16166253 DOI: 10.1634/stemcells.2005-0138] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurospheres (NSs) are clonal cellular aggregates composed of neural stem cells and progenitors. A comprehensive description of their proliferation and differentiation regulation is an essential prerequisite for their use in biotherapies. Cytokines are essential molecules regulating cell precursor fate. Using a gene-array strategy, we conducted a descriptive and functional analysis of endogenous cytokines and receptors expressed by spinal cord-derived NSs during their growth or their differentiation into neuronal and glial cells. NSs were found to express approximately 100 receptor subunits and cytokine/secreted developmental factors. Several angiogenic factors and receptors that could mediate neural precursor cell-endothelial cell relationships were detected. Among them, receptor B for endothelins was highly expressed, and endothelins were found to increase NS growth. In contrast, NSs express receptors for ciliary neurotrophic factor (CNTF), bone morphogenetic protein (BMP), interferon (IFN)-gamma, or tumor necrosis factor (TNF)-alpha, which, when added in the growth phase, led to a dramatic growth reduction followed by a reduction or a loss of oligodendrocyte formation on differentiation. In addition, NSs synthesize fibroblast growth factor 2/epidermal growth factor (FGF2/EGF)-regulated endogenous cytokines that participate in their growth and differentiation. Notably, BMP-7 and CNTF were expressed during expansion, but upon differentiation there was a remarkable switch from BMP-7 to BMP-4 and -6 and a sharp increase of CNTF. Reintroduction of growth factors reverses the BMP expression profile, indicating growth factor-BMP cross-regulations. The role of endogenous CNTF was investigated by deriving NSs from CNTF knockout mice. These NSs have an increased growth rate associated with reduction of apoptosis and generate astrocytes with a reduced glial fibulary acidic protein (GFAP) content. These results demonstrate the combined role of endogenous and exogenous cytokines in neural precursor cell growth and differentiation.
Collapse
Affiliation(s)
- Loïc Deleyrolle
- INSERM U583, INM-Hôpital Saint Eloi, 80 rue Augustin Fliche, 34295 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schwartz CM, Spivak CE, Baker SC, McDaniel TK, Loring JF, Nguyen C, Chrest FJ, Wersto R, Arenas E, Zeng X, Freed WJ, Rao MS. NTera2: a model system to study dopaminergic differentiation of human embryonic stem cells. Stem Cells Dev 2006; 14:517-34. [PMID: 16305337 DOI: 10.1089/scd.2005.14.517] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
NTera2, a human embryonal carcinoma (EC) stem cell line, shares many characteristics with human embryonic stem cells (hESCs). To determine whether NTera2 can serve as a useful surrogate for hESCs, we compared global gene expression between undifferentiated NTera2, multiple undifferentiated hESC cell lines, and their differentiated derivatives, and we showed that NTera2 cells share multiple markers with hESCs. Similar to hESCs, NTera2 cells differentiated into TH-positive cells that express dopaminergic markers including AADC, DAT, Nurr1, TrkB, TrkC, and GFRA1 when co-cultured with PA6 cells. Flow cytometry analysis showed that tyrosine hydroxylase (TH) and neural cell adhesion molecule (NCAM) expression increased, whereas SSEA4 expression decreased as cells differentiated. Medium conditioned by PA6 cells stimulated differentiation of NTera2 cells to generate TH-positive cells that expressed dopaminergic markers. Flow cytometry selected polysialylated (PSA-NCAM) cells responded to medium conditioned by PA6 cells by differentiating into TH-positive cells and expressed dopaminergic markers. Sorted cells differentiated for 4 weeks in PA6 cell conditioned media included functional neurons that responded to neurotransmitters and exhibited electronic excitability. Therefore, NTera2 cell dopaminergic neuronal differentiation and PSA-NCAM enrichment provides a useful system for the future study of hESCs.
Collapse
Affiliation(s)
- Catherine M Schwartz
- Gerontology Research Center, Stem Cell Biology Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|